WO2018043671A1 - リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 - Google Patents

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 Download PDF

Info

Publication number
WO2018043671A1
WO2018043671A1 PCT/JP2017/031443 JP2017031443W WO2018043671A1 WO 2018043671 A1 WO2018043671 A1 WO 2018043671A1 JP 2017031443 W JP2017031443 W JP 2017031443W WO 2018043671 A1 WO2018043671 A1 WO 2018043671A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium secondary
secondary battery
active material
electrode active
Prior art date
Application number
PCT/JP2017/031443
Other languages
English (en)
French (fr)
Inventor
裕一郎 今成
佳世 松本
恭崇 飯田
Original Assignee
住友化学株式会社
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社田中化学研究所 filed Critical 住友化学株式会社
Priority to CN201780051802.7A priority Critical patent/CN109643798B/zh
Priority to EP17846675.1A priority patent/EP3509143A4/en
Priority to KR1020197005642A priority patent/KR102437198B1/ko
Priority to US16/328,612 priority patent/US20210028453A1/en
Publication of WO2018043671A1 publication Critical patent/WO2018043671A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a lithium secondary battery.
  • the lithium composite oxide is used as a positive electrode active material for a lithium secondary battery.
  • Lithium secondary batteries have already been put into practical use not only for small power supplies for mobile phones and laptop computers, but also for medium and large power supplies for automobiles and power storage.
  • Patent Documents 1 to 6 In order to improve the performance of lithium secondary batteries such as initial discharge capacity, attempts have been made focusing on the particle strength of the positive electrode active material for lithium secondary batteries (for example, Patent Documents 1 to 6).
  • the present invention has been made in view of the above circumstances, and is positive electrode active material for lithium secondary battery excellent in initial charge and discharge efficiency, positive electrode for lithium secondary battery using the positive electrode active material for lithium secondary battery, and the above It is an object of the present invention to provide a lithium secondary battery having a positive electrode for a lithium secondary battery.
  • a positive electrode active material for a lithium secondary battery including the lithium metal composite oxide powder represented by the general formula (1), wherein the lithium metal composite oxide powder aggregates primary particles and the primary particles.
  • the BET specific surface area of the positive electrode active material for a lithium secondary battery is 1 m 2 / g or more and 3 m 2 / g or less, and the average crushing strength of the secondary particles is 10 MPa.
  • the positive electrode active material for lithium secondary batteries which is 100 MPa or less.
  • M is one or more elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V; 1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, 0 ⁇ w ⁇ 0.1, 0.25 ⁇ y + z + w are satisfied.
  • the lithium carbonate component contained in the positive electrode active material for lithium secondary battery is 0.4% by mass or less based on the total mass of the positive electrode active material for lithium secondary battery.
  • the lithium hydroxide component contained in the positive electrode active material for lithium secondary batteries is 0.35% by mass or less based on the total mass of the positive electrode active material for lithium secondary batteries [1] to [7] The positive electrode active material for lithium secondary batteries of any one of these.
  • a positive electrode for a lithium secondary battery comprising the positive electrode active material for a lithium secondary battery according to any one of [1] to [8].
  • a positive electrode active material for a lithium secondary battery excellent in initial charge and discharge efficiency a positive electrode for a lithium secondary battery using the positive electrode active material for a lithium secondary battery, and lithium having the positive electrode for the lithium secondary battery A secondary battery can be provided.
  • the present invention is a positive electrode active material for a lithium secondary battery including the lithium metal composite oxide powder represented by the general formula (1), wherein the lithium metal composite oxide powder is agglomerated with primary particles and the primary particles are agglomerated.
  • the BET specific surface area of the positive electrode active material for a lithium secondary battery is 1 m 2 / g or more and 3 m 2 / g or less, and the average crushing strength of the secondary particles is It is a positive electrode active material for a lithium secondary battery that is 10 MPa or more and 100 MPa or less.
  • M is one or more elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V; 1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, 0 ⁇ w ⁇ 0.1, 0.25 ⁇ y + z + w are satisfied.
  • the “primary particle” is a minimum unit observed as an independent particle by SEM, and the particle is a single crystal or a polycrystal composed of crystallites.
  • secondary particles are particles formed by aggregating primary particles and can be observed by SEM.
  • the positive electrode active material for a lithium secondary battery of the present embodiment (hereinafter sometimes referred to as “positive electrode active material”) has a specific range of BET specific surface area, and further, the average crushing strength of secondary particles is specified. It is the range of these.
  • the lithium metal composite oxide powder used in the present embodiment has a low particle strength because the average crushing strength of secondary particles is in the specific range. This is presumed to be a secondary particle structure in which the contact area between primary particles is small and there are many voids. That is, the positive electrode active material of the present embodiment has a large contact area with the electrolytic solution including secondary particles with many voids. For this reason, desorption (charge) and insertion (discharge) of lithium ions are likely to proceed inside the secondary particles. Therefore, the positive electrode active material of this embodiment is excellent in the initial charge / discharge efficiency.
  • the lithium metal composite oxide powder is represented by the following general formula (1).
  • M is one or more elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V; 1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, 0 ⁇ w ⁇ 0.1, 0.25 ⁇ y + z + w are satisfied.
  • x in the composition formula (1) is preferably more than 0, more preferably 0.01 or more, and further preferably 0.02 or more. .
  • x in the composition formula (1) is preferably 0.1 or less, more preferably 0.08 or less, and 0.06. More preferably, it is as follows.
  • the upper limit value and the lower limit value of x can be arbitrarily combined.
  • x is preferably more than 0 and 0.1 or less, more preferably 0.01 or more and 0.08 or less, and further preferably 0.02 or more and 0.06 or less.
  • “high cycle characteristics” means that the discharge capacity retention rate is high when charging and discharging are repeated.
  • y in the composition formula (1) is preferably 0.005 or more, preferably 0.01 or more. More preferably, it is more preferably 0.05 or more.
  • y in the composition formula (1) is preferably 0.4 or less, more preferably 0.35 or less, and 0.33. More preferably, it is as follows.
  • the upper limit value and the lower limit value of y can be arbitrarily combined. For example, y is preferably from 0.005 to 0.4, more preferably from 0.01 to 0.35, and even more preferably from 0.05 to 0.33.
  • z in the composition formula (1) is preferably 0.01 or more, more preferably 0.03 or more, and 0.1 or more. More preferably it is.
  • z in the composition formula (1) is preferably 0.4 or less, and preferably 0.38 or less in order to obtain a lithium secondary battery having high storage characteristics at a high temperature (for example, in an environment of 60 ° C.). Is more preferable, and it is still more preferable that it is 0.35 or less.
  • the upper limit value and lower limit value of z can be arbitrarily combined.
  • z is preferably 0.01 or more and 0.4 or less, more preferably 0.03 or more and 0.38 or less, and further preferably 0.1 or more and 0.35 or less.
  • w in the composition formula (1) is preferably more than 0, and preferably 0.0005 or more. More preferably, it is more preferably 0.001 or more. In the sense of obtaining a lithium secondary battery having a high discharge capacity at a high current rate, w in the composition formula (1) is preferably 0.09 or less, more preferably 0.08 or less, and 0 More preferably, it is 0.07 or less.
  • the upper limit value and the lower limit value of w can be arbitrarily combined. For example, w is preferably more than 0 and 0.09 or less, more preferably from 0.0005 to 0.08, and even more preferably from 0.001 to 0.07.
  • M in the composition formula (1) represents one or more elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V. .
  • M in the composition formula (1) is preferably Ti, Mg, Al, W, B, or Zr, and lithium secondary battery having high thermal stability.
  • Al, W, B, or Zr is preferable.
  • the BET specific surface area (m 2 / g) of the positive electrode active material for a lithium secondary battery is preferably 1 m 2 / g or more in the sense of obtaining a lithium secondary battery having high initial charge / discharge efficiency. 1.05 m 2 / g or more is more preferable, and 1.1 m 2 / g or more is more preferable. Moreover, it is preferably 3 m 2 / g or less, more preferably 2.95 m 2 / g or less, and 2.9 m 2 / g or less in the sense of improving the handling properties of the positive electrode active material for lithium secondary batteries. More preferably.
  • the upper limit value and the lower limit value of the BET specific surface area can be arbitrarily combined.
  • the BET specific surface area is preferably 1 m 2 / g or more and 3 m 2 / g or less, more preferably 1.05 m 2 / g or more and 2.95 m 2 / g or less, and 1.1 m 2 / g. More preferably, it is 2.9 m 2 / g or less.
  • the BET specific surface area (m 2 / g) in the present embodiment was measured using 1 m of a positive electrode active material for a lithium secondary battery at 105 ° C. for 30 minutes in a nitrogen atmosphere and then using Mounttech Macsorb (registered trademark). can do.
  • the lithium metal composite oxide powder is composed of primary particles and secondary particles formed by aggregation of the primary particles.
  • the average crushing strength of the secondary particles is preferably 10 MPa or more, more preferably 11 MPa or more, and 12 MPa or more. More preferably. Further, in the sense of obtaining a lithium secondary battery having a high discharge capacity at a high current rate, it is preferably 100 MPa or less, more preferably 99 MPa or less, and further preferably 98 MPa or less.
  • the upper limit value and lower limit value of the average crushing strength can be arbitrarily combined.
  • the average crushing strength of the secondary particles is preferably 10 MPa or more and 100 MPa or less, more preferably 11 MPa or more and 99 MPa or less, and further preferably 12 MPa or more and 98 MPa or less.
  • the average crushing strength of the secondary particles is preferably 10 MPa or more and 60 MPa or less, more preferably 10 MPa or more and 40 MPa or less, and further preferably 15 MPa or more and 35 MPa or less. A method for measuring the average crushing strength of the secondary particles in the present embodiment will be described later.
  • FIG. 2A shows a schematic diagram of a cross section of the secondary particle of the present embodiment.
  • the positive electrode active material of this embodiment has many voids, the contact area with the electrolytic solution increases. For this reason, the desorption (charging) of lithium ions indicated by reference A in FIG. 2A and the insertion (discharge) of lithium ions indicated by reference B are likely to proceed inside and on the surface of the secondary particles. For this reason, initial discharge efficiency can be improved.
  • FIG. 2A shows a schematic diagram of a cross section of the secondary particle of the present embodiment.
  • FIG. 2B shows a schematic diagram of a cross section of a secondary particle having a dense particle structure conventionally used.
  • the lithium ion desorption (charge) indicated by symbol A and the lithium ion insertion (discharge) indicated by symbol B proceed only near the surface of the particle.
  • the initial discharge efficiency can be improved because the process proceeds not only near the surface of the secondary particles but also inside.
  • the average crushing strength of the secondary particles is a value measured by the following measuring method.
  • the “average crushing strength” of the secondary particles present in the lithium metal composite oxide powder refers to a value measured by the following method.
  • the lithium metal composite oxide powder was subjected to a test pressure (load) on one arbitrarily selected secondary particle using a “micro compression tester MCT-510” manufactured by Shimadzu Corporation. Measure the amount of displacement.
  • P test force
  • St crushing strength
  • the content of the lithium metal composite oxide powder with respect to the total mass of the positive electrode active material for a lithium secondary battery is not particularly limited, but is preferably, for example, 10% by mass to 100% by mass, More preferably, the content is from 100% by mass to 100% by mass, and further preferably from 50% by mass to 100% by mass.
  • y ⁇ z is preferable in the general formula (1) in order to obtain a lithium secondary battery with high cycle characteristics.
  • the cycle characteristics of the lithium secondary battery may be deteriorated.
  • the mean particle size of the positive electrode active material for a lithium secondary battery is preferably 2 ⁇ m or more and 2.1 ⁇ m or more in order to improve the handleability of the positive electrode active material for a lithium secondary battery. Is more preferably 2.2 ⁇ m or more. Further, in order to obtain a lithium secondary battery having a high discharge capacity at a high current rate, it is preferably 10 ⁇ m or less, more preferably 9.9 ⁇ m or less, and further preferably 9.8 ⁇ m or less.
  • the upper limit value and the lower limit value of the average particle diameter can be arbitrarily combined.
  • the average particle diameter of the positive electrode active material for a lithium secondary battery is preferably 2 ⁇ m or more and 10 ⁇ m or less, more preferably 2.1 ⁇ m or more and 9.9 ⁇ m or less, and 2.2 ⁇ m or more and 9.8 ⁇ m or less. More preferably it is.
  • the “average particle diameter” of the positive electrode active material for a lithium secondary battery refers to a value measured by the following method (laser diffraction scattering method).
  • a positive electrode active material for a lithium secondary battery was introduced into 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution, and the lithium A dispersion in which a positive electrode active material for a secondary battery is dispersed is obtained.
  • the particle size distribution of the obtained dispersion is measured to obtain a volume-based cumulative particle size distribution curve.
  • the value of the particle diameter (D 50 ) viewed from the fine particle side at the time of 50% accumulation is taken as the average particle diameter of the positive electrode active material for a lithium secondary battery.
  • the BET specific surface area of the positive electrode active material for a lithium secondary battery is in the specific range, and the average crushing strength of the secondary particles is in the specific range, whereby the initial charge and discharge efficiency Can be improved. Furthermore, when the BET specific surface area and the average crushing strength are in the specific ranges described above, the contact area between the lithium metal composite oxide and the electrolytic solution increases, and the viscosity of the electrolytic solution increases ( ⁇ 15 ° C. to 0 ° C.). C)), the battery resistance can be lowered. Furthermore, by adding the element M in the general formula (1), the conductivity of lithium ions in the lithium metal composite oxide is increased, and the battery resistance can be lowered under low temperature conditions.
  • the product of A and B is preferably 0.014 or more and 0.015 or more in order to obtain a lithium secondary battery having a high discharge capacity at a high current rate. Is more preferable, and is more preferably 0.016 or more.
  • the product of A and B is preferably 0.014 or more and 0.030 or less, more preferably 0.015 or more and 0.029 or less, and 0.016 or more and 0.028 or less. Is more preferable.
  • a diffraction peak within the range of 4 ⁇ 1 ° (hereinafter sometimes referred to as peak B ′) is determined.
  • D crystallite size
  • K Scherrer constant
  • B half width
  • X-ray wavelength
  • the calculation of the crystallite size by the above formula is a conventionally used technique (for example, “X-ray structure analysis—determining the arrangement of atoms—” issued on April 30, 2002, 3rd edition, Yoshio Waseda, (See Eiichiro Matsubara).
  • the range of the half-value width A of the positive electrode active material is preferably 0.115 or more, and preferably 0.116 or more. Is more preferably 0.117 or more.
  • it is preferably 0.165 or less, more preferably 0.164 or less, and further preferably 0.163 or less.
  • the upper limit value and the lower limit value of the half width A can be arbitrarily combined.
  • the range of the half width A of the positive electrode active material is preferably 0.115 or more and 0.165 or less, more preferably 0.116 or more and 0.164 or less, and 0.117 or more and 0.163 or less. More preferably.
  • the range of the half-value width B of the positive electrode active material is preferably 0.120 or more, and preferably 0.125 or more. Is more preferably 0.126 or more.
  • it is preferably 0.180 or less, more preferably 0.179 or less, and further preferably 0.178 or less.
  • the upper limit value and the lower limit value of the half value B can be arbitrarily combined.
  • the range of the half width B of the positive electrode active material is preferably 0.120 or more and 0.180 or less, more preferably 0.125 or more and 0.179 or less, and 0.126 or more and 0.178 or less. More preferably.
  • the crystal structure of the lithium nickel composite oxide is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, P-
  • the monoclinic crystal structure is P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, C2 / It belongs to any one space group selected from the group consisting of c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m, or a monoclinic crystal belonging to C2 / m.
  • a crystal structure is particularly preferred.
  • the lithium compound used in the present invention is not particularly limited as long as it satisfies the above formula (1), and is lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride, or lithium fluoride. Any one of them or a mixture of two or more can be used. In these, any one or both of lithium hydroxide and lithium carbonate are preferable.
  • the lithium carbonate component contained in the positive electrode active material for the lithium secondary battery is 0.4 mass relative to the total mass of the positive electrode active material for the lithium secondary battery, in order to improve the handling property of the positive electrode active material for the lithium secondary battery. % Or less, more preferably 0.39% by mass or less, and further preferably 0.38% by mass or less.
  • the lithium carbonate component contained in the positive electrode active material for a lithium secondary battery is 0% by mass to 0.4% by mass with respect to the total mass of the positive electrode active material for the lithium secondary battery. Preferably, it is 0.001% by mass or more and 0.39% by mass or less, and more preferably 0.01% by mass or more and 0.38% by mass or less.
  • the lithium hydroxide component contained in the positive electrode active material for lithium secondary batteries is 0 with respect to the total mass of the positive electrode active material for lithium secondary batteries in the meaning which improves the handleability of the positive electrode active material for lithium secondary batteries. It is preferably .35% by mass or less, more preferably 0.25% by mass or less, and particularly preferably 0.2% by mass or less.
  • the lithium hydroxide component contained in the positive electrode active material for lithium secondary batteries is 0% by mass or more and 0.35% by mass or less based on the total mass of the positive electrode active material for lithium secondary batteries. It is preferable that it is 0.001 mass% or more and 0.25 mass% or less, and it is more preferable that it is 0.01 mass% or more and 0.20 mass% or less. As described later, the lithium carbonate component and the lithium hydroxide component contained in the positive electrode active material for a lithium secondary battery can be reduced by adjusting the firing temperature, firing time, firing atmosphere, and the like.
  • the contents of the lithium carbonate component and the lithium hydroxide component contained in the positive electrode active material for a lithium secondary battery can be determined by neutralization titration with an acidic solution. Specifically, a positive electrode active material for a lithium secondary battery is contact-treated with pure water, and a lithium carbonate component and a lithium hydroxide component are eluted in pure water. By neutralizing and titrating the eluate with an acidic solution such as hydrochloric acid, the contents of the lithium carbonate component and the lithium hydroxide component can be determined. A more specific operation and a method for calculating the content of the lithium carbonate component and the lithium hydroxide component will be described in Examples.
  • a metal other than lithium that is, an essential metal composed of Ni, Co and Mn, and Fe, Cu
  • a metal composite compound containing any one or more optional elements of Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V is prepared. It is preferred to calcine with the compound.
  • a metal complex compound a metal complex hydroxide or a metal complex oxide is preferable.
  • the metal complex compound can be produced by a generally known batch coprecipitation method or continuous coprecipitation method.
  • the manufacturing method will be described in detail by taking a metal composite hydroxide containing nickel, cobalt, and manganese as an example.
  • a nickel salt solution, a cobalt salt solution, a manganese salt solution, and a complexing agent are reacted by a coprecipitation method, in particular, a continuous method described in JP-A-2002-201028, and Ni x Co y Mn z (OH) 2
  • a metal composite hydroxide represented by the formula (where x + y + z 1) is produced.
  • nickel salt which is the solute of the said nickel salt solution For example, any one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used.
  • cobalt salt that is the solute of the cobalt salt solution for example, any one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used.
  • manganese salt that is the solute of the manganese salt solution for example, any of manganese sulfate, manganese nitrate, manganese chloride, and manganese acetate can be used.
  • the above metal salt is used in a proportion corresponding to the composition ratio of Ni x Co y Mn z (OH) 2 . That is, the amount of each metal salt is defined so that the molar ratio of nickel, cobalt, and manganese in the mixed solution containing the metal salt is x: y: z. Moreover, water is used as a solvent.
  • the complexing agent can form a complex with nickel, cobalt, and manganese ions in an aqueous solution.
  • an ammonium ion supplier ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.
  • Hydrazine ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine.
  • the complexing agent may not be included in the production reaction of the composite hydroxide.
  • the complexing agent is included, for example, the molar ratio of the complexing agent to the total number of moles of the metal salt is larger than 0 and 2.0. It is as follows. Further, the complexing agent may be added to the metal salt in advance and may be added separately from the mixed solution of the metal salt.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • the temperature of the reaction vessel is controlled within a range of, for example, 20 ° C. or more and 80 ° C. or less, preferably 30 to 70 ° C.
  • the substance in the reaction vessel is appropriately stirred.
  • the reaction vessel is of a type that causes the formed reaction precipitate to overflow for separation.
  • the lithium metal composite oxide finally obtained in the following steps by appropriately controlling the concentration of metal salt supplied to the reaction tank, the stirring speed, the reaction temperature, the reaction pH, and the firing conditions described later, or the lithium metal
  • Various physical properties such as the primary particle size, secondary particle size, crystallite size, BET specific surface area, and average crushing strength of the positive electrode active material for a lithium secondary battery including the composite oxide can be controlled.
  • various gases for example, inert gases such as nitrogen, argon, carbon dioxide, etc.
  • bubbling with an oxidizing gas such as air or oxygen, or a mixed gas thereof may be used in combination.
  • peroxides such as hydrogen peroxide, peroxides such as permanganate, perchlorates, hypochlorites, nitric acid, halogens, ozone, etc.
  • peroxides such as permanganate, perchlorates, hypochlorites, nitric acid, halogens, ozone, etc.
  • organic acids such as oxalic acid and formic acid, sulfites, hydrazine and the like can be used to promote the reduced state.
  • the reaction pH in the reaction vessel when the reaction pH in the reaction vessel is increased, the primary particle diameter of the metal composite compound is decreased, and a positive electrode active material for a lithium secondary battery having a high BET specific surface area is easily obtained.
  • the reaction pH when the reaction pH is lowered, the primary particle diameter of the metal composite compound is increased, and a positive electrode active material for a lithium secondary battery having a low BET specific surface area is easily obtained.
  • the oxidation state in the reaction vessel is increased, a metal composite oxide having many voids is easily obtained.
  • the oxidation state when the oxidation state is lowered, a dense metal composite compound is easily obtained.
  • the reaction pH and oxidation state conditions may be appropriately controlled so that the metal composite compound has desired physical properties.
  • the BET specific surface area of the positive electrode active material for a lithium secondary battery and the average crushing strength of the secondary particles of the lithium metal composite oxide powder in the present invention control firing conditions and the like to be described later using the metal composite compound. This can be within the specific scope of the present invention.
  • reaction conditions depend on the size of the reaction tank to be used, the reaction conditions may be optimized while monitoring various physical properties of the finally obtained lithium composite oxide.
  • nickel cobalt manganese composite hydroxide is manufactured, but nickel cobalt manganese composite oxide may be prepared.
  • a step of bringing the coprecipitate slurry into contact with an oxidizing agent or a step of heat treating the nickel cobalt manganese composite oxide may be performed.
  • the metal composite oxide or hydroxide is dried and then mixed with a lithium compound.
  • the drying conditions are not particularly limited.
  • the metal composite oxide or hydroxide is not oxidized / reduced (oxide ⁇ oxide, hydroxide ⁇ hydroxide), and the metal composite hydroxide is oxidized. Any of the conditions (hydroxide ⁇ oxide) and the conditions under which the metal composite oxide is reduced (oxide ⁇ hydroxide) may be used.
  • An inert gas such as nitrogen, helium and argon may be used for conditions where oxidation / reduction is not performed, and oxygen or air may be used for conditions where hydroxide is oxidized.
  • a reducing agent such as hydrazine or sodium sulfite may be used in an inert gas atmosphere.
  • the lithium compound any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, or a mixture of two or more can be used. Classification may be appropriately performed after the metal composite oxide or hydroxide is dried. The above lithium compound and metal composite hydroxide are used in consideration of the composition ratio of the final target product.
  • a lithium-nickel cobalt manganese composite oxide is obtained by firing a mixture of a nickel cobalt manganese metal composite hydroxide and a lithium compound. For the firing, dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are performed if necessary.
  • the firing temperature of the metal composite oxide or hydroxide and a lithium compound such as lithium hydroxide or lithium carbonate is not particularly limited, but the BET specific surface area of the positive electrode active material for lithium secondary batteries and the lithium metal composite In order to set the average crushing strength of the secondary oxide particles within the specific range of the present invention, it is preferably 600 ° C. or higher and 1100 ° C. or lower, more preferably 750 ° C. or higher and 1050 ° C. or lower, and 800 ° C. or higher. More preferably, it is 1025 degrees C or less.
  • the firing temperature is less than 600 ° C., it is difficult to obtain a lithium metal composite oxide having a regular crystal structure, the BET specific surface area of the positive electrode active material for lithium secondary batteries exceeds the upper limit of the present invention, or secondary particles.
  • the average crushing strength may be lower than the lower limit of the present invention, and the energy density (discharge capacity) and charge / discharge efficiency (discharge capacity / charge capacity) are likely to be reduced. That is, when the firing temperature is 600 ° C. or higher, it is easy to obtain a lithium metal composite oxide having a regular crystal structure, and the BET specific surface area of the positive electrode active material for a lithium secondary battery is lower than the upper limit value of the present invention.
  • the average crushing strength of the particles is not less than the lower limit of the present invention, and the problem that the energy density (discharge capacity) and charge / discharge efficiency (discharge capacity / charge capacity) are reduced is unlikely to occur. Moreover, it is easy to reduce the lithium carbonate component and the lithium hydroxide component contained in the positive electrode active material for a lithium secondary battery when the firing temperature is 600 ° C. or higher.
  • the firing temperature exceeds 1100 ° C.
  • the BET specific surface area of the positive electrode active material for a lithium secondary battery is added to the problem of production such as difficulty in obtaining a lithium metal composite oxide having a target composition due to the volatilization of Li. May fall below the lower limit of the present invention, or the average crushing strength of the secondary particles of the lithium metal composite oxide may exceed the upper limit of the present invention due to the effect of increasing the density of the particles, resulting in a decrease in battery performance.
  • the problem is likely to occur. It is considered that this is because when the temperature exceeds 1100 ° C., the primary particle growth rate increases and the crystal particles of the lithium metal composite oxide become too large. That is, when the firing temperature is 1100 ° C.
  • the volatilization of Li is suppressed, a lithium metal composite oxide having a target composition is easily obtained, and the BET specific surface area of the positive electrode active material for a lithium secondary battery is the lower limit of the present invention.
  • the average crushing strength of the secondary particles of the lithium metal composite oxide does not become the upper limit of the present invention, and the battery performance is unlikely to occur.
  • the firing time is preferably 3 hours to 50 hours.
  • the firing time exceeds 50 hours, there is no problem in battery performance, but the battery performance tends to be substantially inferior due to volatilization of Li.
  • the firing time is less than 3 hours, the crystal growth is poor and the battery performance tends to be poor. That is, when the firing time is within 50 hours, the volatilization of Li can be suppressed and deterioration of battery performance can be prevented.
  • the firing temperature is 3 hours or more, the crystal progresses well, and the lithium carbonate component and lithium hydroxide component contained in the positive electrode active material for the lithium secondary battery can be reduced, improving the battery performance. Can be made.
  • the firing time means a time from when the target temperature is reached until the temperature holding is completed, a so-called holding time.
  • the heating rate to the target temperature is preferably 50 ° C./hour or more and 600 ° C./hour or less, more preferably 75 ° C./hour or more and 500 ° C./hour or less, and 100 ° C./hour or more and 400 ° C./hour or less. Further preferred.
  • the temperature for such preliminary firing is preferably in the range of 300 ° C. to 850 ° C. for 1 hour to 10 hours.
  • the positive electrode active material for a lithium secondary battery containing the lithium metal composite oxide obtained by firing is appropriately classified after pulverization, and is used as a positive electrode active material applicable to a lithium secondary battery.
  • Lithium secondary battery> a positive electrode using the positive electrode active material for a lithium secondary battery of the present invention as a positive electrode active material of the lithium secondary battery, and a lithium secondary battery having the positive electrode will be described. To do.
  • An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of the lithium secondary battery of the present embodiment.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • a shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
  • IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
  • cylindrical shape, square shape, etc. can be mentioned.
  • the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode of this embodiment can be manufactured by first adjusting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • thermoplastic resin As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used.
  • the thermoplastic resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • fluororesins such as copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene.
  • thermoplastic resins may be used as a mixture of two or more.
  • a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total mass of the positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less.
  • a positive electrode mixture having both high adhesion to the positive electrode current collector and high bonding strength inside the positive electrode mixture can be obtained.
  • a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used as the positive electrode current collector included in the positive electrode of the present embodiment.
  • a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
  • usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • a positive electrode can be manufactured by the method mentioned above.
  • the negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
  • Negative electrode active material examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
  • the oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc.
  • Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2
  • Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3). And lithium-containing nitrides.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
  • examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
  • carbon materials containing graphite as a main component such as natural graphite and artificial graphite, are preferably used.
  • the shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • the negative electrode current collector of the negative electrode examples include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
  • Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a nonwoven fabric, a woven fabric, and the like made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. A material having the following can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
  • the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117: 2009 is 50 seconds / 100 cc or more, 300 seconds. / 100 cc or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the volume of the separator.
  • the separator may be a laminate of separators having different porosity.
  • the electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salt such as lower aliphatic carboxylic acid lithium salt, LiAlCl 4, and a mixture of two or more of these May be used.
  • BOB bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide)
  • lithium salt such as lower aliphatic
  • the electrolyte at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
  • Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; Carbamates such as 3-methyl-2-oxazolidone;
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of a cyclic carbonate and an acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • the electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
  • an electrolytic solution containing a lithium compound containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • maintained the non-aqueous electrolyte in the high molecular compound can also be used.
  • Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
  • the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
  • the positive electrode active material having the above-described configuration includes the lithium metal composite oxide of the present embodiment described above, the life of a lithium secondary battery using the positive electrode active material can be extended.
  • the positive electrode having the above-described configuration has the above-described positive electrode active material for a lithium secondary battery according to this embodiment, the life of the lithium secondary battery can be extended.
  • the lithium secondary battery having the above-described configuration has the above-described positive electrode, it becomes a lithium secondary battery having a longer life than before.
  • evaluation of a positive electrode active material for a lithium secondary battery and production evaluation of a positive electrode for a lithium secondary battery and a lithium secondary battery were performed as follows.
  • (1) Evaluation of positive electrode active material for lithium secondary battery Average crushing strength of secondary particles The average crushing strength of secondary particles was measured using a micro compression tester (manufactured by Shimadzu Corporation, MCT-510), and a secondary selected arbitrarily from lithium metal composite oxide powders. Measurement was performed by applying a test pressure to one particle. A pressure value at which the test pressure was almost constant and the displacement of the secondary particles was maximum was obtained as the test force (P).
  • the secondary particle size (d) was measured using an optical microscope attached to a micro-compression tester, and the crushing strength (St) was calculated according to the above-mentioned equation of Hiramatsu et al. Finally, the average crushing strength was determined from the average value obtained by performing the crushing strength test five times in total.
  • the average particle diameter was measured using a laser diffraction particle size distribution analyzer (LA-950, manufactured by Horiba, Ltd.), 0.1 g of a positive electrode active material for a lithium secondary battery, and 0.2 mass% hexametalin.
  • LA-950 laser diffraction particle size distribution analyzer
  • the mixture was poured into 50 ml of an aqueous sodium acid solution to obtain a dispersion liquid in which the positive electrode active material for a lithium secondary battery was dispersed.
  • the particle size distribution of the obtained dispersion is measured to obtain a volume-based cumulative particle size distribution curve.
  • the value of the particle diameter (D 50 ) viewed from the fine particle side at 50% accumulation was taken as the average particle diameter of the positive electrode active material for lithium secondary batteries.
  • composition analysis of the positive electrode active material for lithium secondary batteries produced by the method described below is performed by dissolving the obtained positive electrode active material for lithium secondary batteries in hydrochloric acid, and then using an inductively coupled plasma emission spectrometer (SII). -It carried out using Nanotechnology Co., Ltd. product and SPS3000).
  • SII inductively coupled plasma emission spectrometer
  • the composition of the lithium metal oxide powder was determined by subtracting lithium carbonate and lithium hydroxide derived from lithium hydroxide measured by the method described later from the amount of lithium obtained above.
  • the concentration of lithium carbonate and lithium hydroxide remaining in the material was calculated.
  • Lithium hydroxide concentration (%) 0.1 ⁇ (2C ⁇ D) /1000 ⁇ 23.941/ (20 ⁇ 60/100) ⁇ 100
  • a positive electrode active material for lithium secondary battery, a conductive material (acetylene black), and a binder (PVdF) obtained by the production method described later are used as a positive electrode active material for lithium secondary battery:
  • N-methyl-2-pyrrolidone was used as the organic solvent.
  • the obtained positive electrode mixture was applied to an Al foil having a thickness of 40 ⁇ m serving as a current collector and vacuum-dried at 150 ° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of the positive electrode for the lithium secondary battery was 1.65 cm 2 .
  • the obtained negative electrode mixture was applied to a 12 ⁇ m thick Cu foil serving as a current collector and vacuum dried at 100 ° C. for 8 hours to obtain a negative electrode for a lithium secondary battery.
  • the electrode area of the negative electrode for a lithium secondary battery was 1.77 cm 2 .
  • the electrolytic solution was ethylene carbonate (hereinafter sometimes referred to as EC), dimethyl carbonate (hereinafter sometimes referred to as DMC), and ethyl methyl carbonate (hereinafter sometimes referred to as EMC) 30:35. : 35 (volume ratio) a mixture of LiPF 6 dissolved to 1.0 mol / l (hereinafter sometimes referred to as LiPF 6 / EC + DMC + EMC) was used.
  • LiPF 6 / EC + DMC + EMC lithium metal as the negative electrode
  • the negative electrode is placed on the upper side of the laminated film separator, covered with a gasket, and then caulked with a caulking machine to form a lithium secondary battery (coin type half cell R2032, hereinafter "half cell”).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • the electrolyte was 16:10 of ethylene carbonate (hereinafter sometimes referred to as EC), dimethyl carbonate (hereinafter sometimes referred to as DMC), and ethyl methyl carbonate (hereinafter sometimes referred to as EMC).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • VC vinylene carbonate
  • LiPF 6 LiPF 6
  • the negative electrode for lithium secondary battery prepared in “(3) Preparation of negative electrode for lithium secondary battery” is placed on the upper side of the laminated film separator, the upper lid is covered through a gasket, and the lithium secondary battery is caulked with a caulking machine.
  • a battery coin-type full cell R2032, hereinafter sometimes referred to as “full cell” was produced.
  • a full cell with SOC adjusted in a thermostatic chamber at ⁇ 15 ° C. was allowed to stand for 2 hours, discharged at 20 ⁇ A for 15 seconds, left for 5 minutes, charged at 20 ⁇ A for 15 seconds, allowed to stand for 5 minutes, 15 at 40 ⁇ A.
  • the battery resistance was calculated from the plot of the battery voltage after 10 seconds measured at the time of discharging at 20, 40, 80, and 120 ⁇ A and each current value by using the least square approximation method, and this inclination was defined as the battery resistance. .
  • Example 1 Manufacture of positive electrode active material 1 for lithium secondary battery After putting water in the reaction tank provided with the stirrer and the overflow pipe, the sodium hydroxide aqueous solution was added and liquid temperature was hold
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.315: 0.330: 0.355, and a mixed raw material solution is prepared. It was adjusted.
  • this mixed raw material solution and ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction vessel, and air was mixed with nitrogen gas so that the oxygen concentration was 4.0%.
  • An oxygen-containing gas was continuously vented.
  • a sodium hydroxide aqueous solution is dropped in a timely manner so that the pH of the solution in the reaction tank becomes 11.7 to obtain nickel cobalt manganese composite hydroxide particles, washed, dehydrated with a centrifuge, washed, dehydrated, The nickel cobalt manganese composite hydroxide 1 was obtained by isolating and drying at 105 ° C.
  • the average crushing strength of the positive electrode active material 1 for a lithium secondary battery is 52.2 MPa
  • the BET specific surface area is 2.4 m 2 / g
  • the average particle diameter D 50 is 3.4 ⁇ m
  • the half width of 2 ⁇ 18.7 ⁇ 1 °.
  • the half-value width A 0.134
  • the half-value width B was 0.147.
  • lithium carbonate was 0.10% by mass and lithium hydroxide was 0.11% by mass.
  • a coin-type full cell was produced using the positive electrode active material 1 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the DC resistances at 15% SOC and 50% SOC were 423 ⁇ and 384 ⁇ , respectively.
  • Example 2 Production of Positive Electrode Active Material 2 for Lithium Secondary Battery In the same manner as in Example 1, nickel cobalt manganese composite hydroxide 1 was obtained.
  • a LiOH aqueous solution in which WO 3 was dissolved at 61 g / L was prepared.
  • the average crushing strength of the positive electrode active material 2 for a lithium secondary battery is 54.0 MPa
  • the BET specific surface area is 2.0 m 2 / g
  • the average particle diameter D 50 is 3.6 ⁇ m
  • 2 ⁇ 18.7 ⁇ 1 ° half width.
  • the half-value width A was 0.141
  • the half-value width B was 0.161.
  • the amount of residual lithium in the positive electrode active material 2 for a lithium secondary battery was determined to be 0.17% by mass of lithium carbonate and 0.11% by mass of lithium hydroxide.
  • a coin-type full cell was produced using the positive electrode active material 2 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the direct current resistances at SOC 15% and SOC 50% were 296 ⁇ and 269 ⁇ , respectively.
  • Example 3 Production of Positive Electrode Active Material 3 for Lithium Secondary Battery In the same manner as in Example 1, nickel cobalt manganese composite hydroxide 1 was obtained.
  • the average crushing strength of the positive electrode active material 3 for a lithium secondary battery is 57.6 MPa
  • the BET specific surface area is 2.4 m 2 / g
  • the average particle diameter D 50 is 3.5 ⁇ m
  • the half width of 2 ⁇ 18.7 ⁇ 1 °.
  • the half-value width A 0.133
  • the half-value width B was 0.161.
  • the amount of residual lithium in the positive electrode active material 3 for a lithium secondary battery was determined to be 0.15% by mass of lithium carbonate and 0.12% by mass of lithium hydroxide.
  • a coin-type full cell was produced using the positive electrode active material 3 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the DC resistances at 15% SOC and 50% SOC were 298 ⁇ and 271 ⁇ , respectively.
  • Example 4 Production of cathode active material 4 for lithium secondary battery The same procedure as in Example 1 was carried out except that the oxygen concentration was 2.1% and the pH of the solution in the reaction vessel was 11.2. Manganese composite hydroxide 2 was obtained.
  • the average crushing strength of the positive electrode active material 4 for a lithium secondary battery is 92.6 MPa
  • the BET specific surface area is 1.1 m 2 / g
  • the average particle diameter D 50 is 9.8 ⁇ m
  • 2 ⁇ 18.7 ⁇ 1 ° half width.
  • the half width A was 0.133
  • the half width B was 0.142.
  • the amount of residual lithium in the positive electrode active material 4 for a lithium secondary battery was determined to be 0.04% by mass of lithium carbonate and 0.10% by mass of lithium hydroxide.
  • a coin-type full cell was prepared using the positive electrode active material 4 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the DC resistances at 15% SOC and 50% SOC were 480 ⁇ and 332 ⁇ , respectively.
  • Example 5 Manufacture of positive electrode active material 5 for lithium secondary battery After putting water in the reaction tank provided with the stirrer and the overflow pipe, the sodium hydroxide aqueous solution was added and liquid temperature was hold
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.510: 0.225: 0.265. It was adjusted.
  • the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent to the reaction vessel, and air was mixed with nitrogen gas so that the oxygen concentration was 8.3%.
  • An oxygen-containing gas was continuously vented.
  • a sodium hydroxide aqueous solution is dropped in a timely manner so that the pH of the solution in the reaction vessel becomes 12.2 to obtain nickel cobalt manganese composite hydroxide particles, washed, dehydrated with a centrifuge, washed, dehydrated, The nickel cobalt manganese composite hydroxide 3 was obtained by isolation and drying at 105 ° C.
  • the average crushing strength of the positive electrode active material 5 for a lithium secondary battery is 71.8 MPa
  • the BET specific surface area is 1.3 m 2 / g
  • the average particle diameter D 50 is 7.8 ⁇ m
  • the half width of 2 ⁇ 18.7 ⁇ 1 °.
  • a ⁇ B, which is the product of A and the half width B of 2 ⁇ 44.4 ⁇ 1 °, was 0.015
  • the half width A was 0.120
  • the half width B was 0.125.
  • the amount of residual lithium in the positive electrode active material 5 for a lithium secondary battery was determined to be 0.15% by mass of lithium carbonate and 0.19% by mass of lithium hydroxide.
  • a coin-type full cell was produced using the positive electrode active material 5 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the direct current resistances at SOC 15% and SOC 50% were 340 ⁇ and 301 ⁇ , respectively.
  • Example 6 Manufacture of positive electrode active material 6 for lithium secondary battery After putting water in the reaction tank provided with the stirrer and the overflow pipe, sodium hydroxide aqueous solution was added and liquid temperature was hold
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.550: 0.210: 0.240. It was adjusted.
  • this mixed raw material solution and ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction vessel, and the air was mixed with nitrogen gas so that the oxygen concentration was 9.5%.
  • An oxygen-containing gas was continuously vented.
  • a sodium hydroxide aqueous solution is dropped in a timely manner so that the pH of the solution in the reaction tank becomes 12.5 to obtain nickel cobalt manganese composite hydroxide particles, washed, dehydrated with a centrifuge, washed, dehydrated, The nickel cobalt manganese composite hydroxide 4 was obtained by isolating and drying at 105 ° C.
  • the average crushing strength of the positive electrode active material 6 for a lithium secondary battery is 13.6 MPa
  • the BET specific surface area is 2.8 m 2 / g
  • the average particle diameter D 50 is 2.5 ⁇ m
  • 2 ⁇ 18.7 ⁇ 1 ° half width.
  • the half width A was 0.160
  • the half width B was 0.175.
  • the amount of residual lithium in the positive electrode active material 6 for a lithium secondary battery was determined to be 0.16% by mass of lithium carbonate and 0.11% by mass of lithium hydroxide.
  • a coin-type full cell was prepared using the positive electrode active material 6 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the direct current resistances at SOC 15% and SOC 50% were 463 ⁇ and 413 ⁇ , respectively.
  • Example 7 Production of Positive Electrode Active Material 7 for Lithium Secondary Battery In the same manner as in Example 6, a nickel cobalt manganese composite hydroxide 4 was obtained.
  • a LiOH aqueous solution in which WO 3 was dissolved at 61 g / L was prepared.
  • the average crushing strength of the positive electrode active material 7 for a lithium secondary battery is 23.9 MPa
  • the BET specific surface area is 2.0 m 2 / g
  • the average particle diameter D 50 is 3.4 ⁇ m
  • 2 ⁇ 18.7 ⁇ 1 ° half width.
  • the half width A was 0.142
  • the half width B was 0.163.
  • the amount of residual lithium in the positive electrode active material 7 for a lithium secondary battery was determined to be 0.29% by mass of lithium carbonate and 0.30% by mass of lithium hydroxide.
  • a coin-type full cell was prepared using the positive electrode active material 7 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the DC resistances at 15% SOC and 50% SOC were 328 ⁇ and 269 ⁇ , respectively.
  • Example 8 Manufacture of positive electrode active material 8 for lithium secondary battery After putting water in the reaction tank provided with the stirrer and the overflow pipe, the sodium hydroxide aqueous solution was added and liquid temperature was hold
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.750: 0.150: 0.100. It was adjusted.
  • the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent to the reaction vessel, and air was mixed with nitrogen gas so that the oxygen concentration was 7.5%.
  • An oxygen-containing gas was continuously vented.
  • a sodium hydroxide aqueous solution is added dropwise at an appropriate time so that the pH of the solution in the reaction vessel becomes 11.0 to obtain nickel cobalt manganese composite hydroxide particles, washed, dehydrated with a centrifuge, washed, dehydrated, The nickel cobalt manganese composite hydroxide 5 was obtained by isolation and drying at 105 ° C.
  • the amount of residual lithium in the positive electrode active material 8 for a lithium secondary battery was determined to be 0.36% by mass of lithium carbonate and 0.34% by mass of lithium hydroxide.
  • a coin-type full cell was prepared using the positive electrode active material 8 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the DC resistances at 15% SOC and 50% SOC were 301 ⁇ and 262 ⁇ , respectively.
  • the average crushing strength of the positive electrode active material 9 for a lithium secondary battery is 7.5 MPa
  • the BET specific surface area is 3.6 m 2 / g
  • the average particle diameter D 50 is 3.0 ⁇ m
  • 2 ⁇ 18.7 ⁇ 1 ° half-width.
  • the half width A was 0.165
  • the half width B was 0.185.
  • the amount of residual lithium in the positive electrode active material 9 for a lithium secondary battery was determined to be 0.41% by mass of lithium carbonate and 0.45% by mass of lithium hydroxide.
  • a coin-type full cell was prepared using the positive electrode active material 9 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the DC resistances at 15% SOC and 50% SOC were 710 ⁇ and 651 ⁇ , respectively.
  • the amount of residual lithium in the positive electrode active material 10 for a lithium secondary battery was determined to be 0.18% by mass of lithium carbonate and 0.11% by mass of lithium hydroxide.
  • a coin-type full cell was prepared using the positive electrode active material 10 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the direct current resistances at SOC 15% and SOC 50% were 621 ⁇ and 532 ⁇ , respectively.
  • the average crushing strength of the positive electrode active material 11 for a lithium secondary battery is 105.3 MPa
  • the BET specific surface area is 1.4 m 2 / g
  • the average particle diameter D 50 is 5.2 ⁇ m
  • 2 ⁇ 18.7 ⁇ 1 ° half width.
  • the half width A was 0.133
  • the half width B was 0.144.
  • the amount of residual lithium in the positive electrode active material 11 for a lithium secondary battery was determined to be 0.21% by mass of lithium carbonate and 0.18% by mass of lithium hydroxide.
  • a coin-type full cell was prepared using the positive electrode active material 11 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the DC resistances at 15% SOC and 50% SOC were 532 ⁇ and 503 ⁇ , respectively.
  • Example 4 Production of positive electrode active material 12 for lithium secondary battery The same as in Example 5 except that the liquid temperature in the reaction vessel was 60 ° C., the oxygen concentration was 0%, and the pH of the solution in the reaction vessel was 11.5. Nickel cobalt manganese composite hydroxide 7 was obtained.
  • the amount of residual lithium in the positive electrode active material 12 for a lithium secondary battery was determined to be 0.18% by mass of lithium carbonate and 0.26% by mass of lithium hydroxide.
  • a coin-type full cell was prepared using the positive electrode active material 12 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the DC resistances at 15% SOC and 50% SOC were 854 ⁇ and 621 ⁇ , respectively.
  • Example 5 Production of cathode active material 13 for lithium secondary battery The same as in Example 6 except that the liquid temperature in the reaction vessel was 60 ° C., the oxygen concentration was 0%, and the pH of the solution in the reaction vessel was 11.5. Nickel cobalt manganese composite hydroxide 8 was obtained.
  • the target was calcined at 850 ° C. for 10 hours to obtain the target positive electrode active material 13 for a lithium secondary battery.
  • the average crushing strength of the positive electrode active material 13 for a lithium secondary battery is 115.6 MPa
  • the BET specific surface area is 3.2 m 2 / g
  • the average particle diameter D 50 is 10.8 ⁇ m
  • the half-value width of 2 ⁇ 18.7 ⁇ 1 °.
  • the half-value width A 0.119
  • the half-value width B was 0.123.
  • the amount of residual lithium in the positive electrode active material 13 for a lithium secondary battery was determined to be 0.23% by mass of lithium carbonate and 0.27% by mass of lithium hydroxide.
  • a coin-type full cell was prepared using the positive electrode active material 13 for a lithium secondary battery, and a low temperature discharge test at ⁇ 15 ° C. was performed.
  • the DC resistances at 15% SOC and 50% SOC were 583 ⁇ and 552 ⁇ , respectively.
  • Table 1 shows the compositions of the positive electrode active materials of Examples 1 to 8 and Comparative Examples 1 to 5, average crushing strength, BET specific surface area, half width of powder X-ray diffraction peak, residual lithium amount, initial charge / discharge capacity, initial charge The discharge capacity, initial discharge efficiency, and -15 ° C DC resistance are listed together.
  • a positive electrode active material for a lithium secondary battery excellent in initial charge / discharge efficiency a positive electrode for a lithium secondary battery using the positive electrode active material for a lithium secondary battery, and a lithium secondary battery having the positive electrode for a lithium secondary battery. Since the secondary battery can be provided, it is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、一般式(1)で表されるリチウム金属複合酸化物粉末を含むリチウム二次電池用正極活物質であって、前記リチウム金属複合酸化物が一次粒子と、前記一次粒子が凝集して形成された二次粒子と、から構成され、前記リチウム二次電池用正極活物質のBET比表面積が1m/g以上3m/g以下であり、前記二次粒子の平均圧壊強度が10MPa以上100MPa以下であるリチウム二次電池用正極活物質に関する。 Li[Li(Ni(1-y-z-w)CoMn1-x]O2 (1) (MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属元素、-0.1≦x≦0.2、0<y≦0.4、0<z≦0.4、0≦w≦0.1、0.25<y+z+w。)

Description

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
 本発明は、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池に関する。
 本願は、2016年8月31日に、日本に出願された特願2016-169816号に基づき優先権を主張し、その内容をここに援用する。
 リチウム複合酸化物は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。
 初期放電容量等のリチウム二次電池の性能を向上させるために、リチウム二次電池用正極活物質の粒子強度に着目した試みがされている(例えば特許文献1~6)。
特開2001-80920号公報 特開2004-335152号公報 国際公開第2005/124898号公報 特開2007-257985号公報 特開2011-119092号公報 特開2013-232318号公報
 リチウム二次電池の応用分野の拡大が進む中、リチウム二次電池の正極活物質にはさらなる初回充放電効率の向上が求められる。
 しかしながら、前記特許文献1~6に記載のようなリチウム二次電池用正極活物質においては、初回充放電効率を向上させる観点から改良の余地がある。
 本発明は上記事情に鑑みてなされたものであって、初回充放電効率に優れるリチウム二次電池用正極活物質、前記リチウム二次電池用正極活物質を用いたリチウム二次電池用正極及び前記リチウム二次電池用正極を有するリチウム二次電池を提供することを課題とする。
 すなわち、本発明は、下記[1]~[9]の発明を包含する。
[1]一般式(1)で表されるリチウム金属複合酸化物粉末を含むリチウム二次電池用正極活物質であって、前記リチウム金属複合酸化物粉末が一次粒子と、前記一次粒子が凝集して形成された二次粒子と、から構成され、前記リチウム二次電池用正極活物質のBET比表面積が1m/g以上3m/g以下であり、前記二次粒子の平均圧壊強度が10MPa以上100MPa以下であるリチウム二次電池用正極活物質。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O2  (1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0<y≦0.4、0<z≦0.4、0≦w≦0.1、0.25<y+z+wを満たす。)
[2]前記一般式(1)において、y<zである[1]記載のリチウム二次電池用正極活物質。
[3]前記リチウム二次電池用正極活物質の平均粒子径が2μm以上10μm以下である[1]又は[2]に記載のリチウム二次電池用正極活物質。
[4]CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内の回折ピークの半値幅をA、2θ=44.4±1°の範囲内の回折ピークの半値幅をBとしたとき、AとBの積が0.014以上0.030以下である[1]~[3]のいずれか1項に記載のリチウム二次電池用正極活物質。
[5]前記半値幅Aの範囲が0.115以上0.165以下である[4]に記載のリチウム二次電池用正極活物質。
[6]前記半値幅Bの範囲が0.120以上0.180以下である[4]又は[5]に記載のリチウム二次電池用正極活物質。
[7]前記リチウム二次電池用正極活物質に含まれる炭酸リチウム成分が前記リチウム二次電池用正極活物質の総質量に対して0.4質量%以下である[1]~[6]のいずれか1項に記載のリチウム二次電池用正極活物質。
[8]前記リチウム二次電池用正極活物質に含まれる水酸化リチウム成分が前記リチウム二次電池用正極活物質の総質量に対して0.35質量%以下である[1]~[7]のいずれか1項に記載のリチウム二次電池用正極活物質。
[9][1]~[8]のいずれか1項に記載のリチウム二次電池用正極活物質を有するリチウム二次電池用正極。
[10][9]に記載のリチウム二次電池用正極を有するリチウム二次電池。
 本発明によれば、初回充放電効率に優れるリチウム二次電池用正極活物質、前記リチウム二次電池用正極活物質を用いたリチウム二次電池用正極及び前記リチウム二次電池用正極を有するリチウム二次電池を提供することができる。
リチウムイオン二次電池の一例を示す概略構成図である。 リチウムイオン二次電池の一例を示す概略構成図である。 本発明の効果を説明する模式図である。 従来用いられている緻密な粒子構造の二次粒子の断面の模式図である。 実施例2の二次粒子断面を走査型電子顕微鏡(以下、SEMともいう)で観察した画像(以下、SEM画像ともいう)である。 比較例4の二次粒子断面のSEM画像である。
<リチウム二次電池用正極活物質>
 本発明は、一般式(1)で表されるリチウム金属複合酸化物粉末を含むリチウム二次電池用正極活物質であって、前記リチウム金属複合酸化物粉末が一次粒子と、前記一次粒子が凝集して形成された二次粒子と、から構成され、前記リチウム二次電池用正極活物質のBET比表面積が1m/g以上3m/g以下であり、前記二次粒子の平均圧壊強度が10MPa以上100MPa以下であるリチウム二次電池用正極活物質である。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O2  (1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0<y≦0.4、0<z≦0.4、0≦w≦0.1、0.25<y+z+wを満たす。)
 本明細書において「一次粒子」とは、SEMにより独立した粒子として観察される最小単位であり、前記粒子は単結晶又は結晶子が集合した多結晶である。
 本明細書において「二次粒子」とは一次粒子が集合して形成された粒子であり、SEMにより観察することができる。
 本実施形態のリチウム二次電池用正極活物質(以下、「正極活物質」と記載することがある)は、BET比表面積が特定の範囲であり、さらに、二次粒子の平均圧壊強度が特定の範囲であることを特徴とする。本実施形態に用いるリチウム金属複合酸化物粉末は、二次粒子の平均圧壊強度が上記特定の範囲であるため粒子強度が低い。これは、一次粒子同士の接触面積が小さく、空隙の多い二次粒子構造であると推定される。つまり、本実施形態の正極活物質は、空隙の多い二次粒子を含む、電解液との接触面積が大きくなる。このためリチウムイオンの脱離(充電)と挿入(放電)が、二次粒子の内部で進行しやすい。従って、本実施形態の正極活物質は、初回充放電効率に優れる。
 本実施形態において、リチウム金属複合酸化物粉末は下記一般式(1)で表される。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O2  (1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0<y≦0.4、0<z≦0.4、0≦w≦0.1、0.25<y+z+wを満たす。)
 サイクル特性が高いリチウム二次電池を得る意味で、前記組成式(1)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る意味で、前記組成式(1)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。
 xの上限値と下限値は任意に組み合わせることができる。
 例えば、前記xは0超0.1以下であることが好ましく、0.01以上0.08以下であることがより好ましく、0.02以上0.06以下であることがさらに好ましい。
 本明細書において、「サイクル特性が高い」とは、充放電を繰り返し行った際に放電容量維持率が高いことを意味する。
 また、低温時(-15℃~0℃)の電池抵抗が低いリチウム二次電池を得る意味で、前記組成式(1)におけるyは0.005以上であることが好ましく、0.01以上であることがより好ましく、0.05以上であることがさらに好ましい。また、熱的安定性が高いリチウム二次電池を得る意味で、前記組成式(1)におけるyは0.4以下であることが好ましく、0.35以下であることがより好ましく、0.33以下であることがさらに好ましい。
 yの上限値と下限値は任意に組み合わせることができる。
 例えば、前記yは0.005以上0.4以下であることが好ましく、0.01以上0.35以下であることがより好ましく、0.05以上0.33以下であることがさらに好ましい。
 また、サイクル特性が高いリチウム二次電池を得る意味で、前記組成式(1)におけるzは0.01以上であることが好ましく、0.03以上であることがより好ましく、0.1以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存特性が高いリチウム二次電池を得る意味で、前記組成式(1)におけるzは0.4以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることがさらに好ましい。
 zの上限値と下限値は任意に組み合わせることができる。
 例えば、前記zは0.01以上0.4以下であることが好ましく、0.03以上0.38以下であることがより好ましく、0.1以上0.35以下であることがさらに好ましい。
 また、低温時(-15℃~0℃)の電池抵抗が低いリチウム二次電池を得る意味で、前記組成式(1)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、前記組成式(1)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
 wの上限値と下限値は任意に組み合わせることができる。
 例えば、前記wは0超0.09以下であることが好ましく、0.0005以上0.08以下であることがより好ましく、0.001以上0.07以下であることがさらに好ましい。
 前記組成式(1)におけるMはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。
 また、サイクル特性が高いリチウム二次電池を得る意味で、組成式(1)におけるMは、Ti、Mg、Al、W、B、又はZrであることが好ましく、熱的安定性が高いリチウム二次電池を得る意味では、Al、W、B、又はZrであることが好ましい。
 (BET比表面積)
 本実施形態において、初回充放電効率が高いリチウム二次電池を得る意味で、リチウム二次電池用正極活物質のBET比表面積(m/g)は1m/g以上であることが好ましく、1.05m/g以上であることがより好ましく、1.1m/g以上であることがさらに好ましい。また、リチウム二次電池用正極活物質のハンドリング性を高める意味で、3m/g以下であることが好ましく、2.95m/g以下であることがより好ましく、2.9m/g以下であることがさらに好ましい。
 BET比表面積の上限値と下限値は任意に組み合わせることができる。
 例えば、前記BET比表面積は1m/g以上3m/g以下であることが好ましく、1.05m/g以上2.95m/g以下であることがより好ましく、1.1m/g以上2.9m/g以下であることがさらに好ましい。
 本実施形態におけるBET比表面積(m/g)は、リチウム二次電池用正極活物質1gを、窒素雰囲気中105℃で30分間乾燥させた後、マウンテック社Macsorb(登録商標)を用いて測定することができる。
 (平均圧壊強度)
 本実施形態において、リチウム金属複合酸化物粉末は、一次粒子と、前記一次粒子が凝集して形成された二次粒子とから構成されている。
 本実施形態において、初回充放電効率が高いリチウム二次電池を得る意味で、前記二次粒子の平均圧壊強度は10MPa以上であることが好ましく、11MPa以上であることがより好ましく、12MPa以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、100MPa以下であることが好ましく、99MPa以下であることがより好ましく、98MPa以下であることがさらに好ましい。
 平均圧壊強度の上限値と下限値は任意に組み合わせることができる。
 例えば、前記二次粒子の平均圧壊強度は10MPa以上100MPa以下であることが好ましく、11MPa以上99MPa以下であることがより好ましく、12MPa以上98MPa以下であることがさらに好ましい。
 本発明の別の側面としては、前記二次粒子の平均圧壊強度は10MPa以上60MPa以下であることが好ましく、10MPa以上40MPa以下であることがより好ましく、15MPa以上35MPa以下であることがさらに好ましい。
 本実施形態における前記二次粒子の平均圧壊強度の測定方法については後述する。
 従来用いられている緻密な粒子構造の二次粒子は、平均圧壊強度が100MPaを超えるものである。これに比べて、平均圧壊強度が上記特定の範囲である二次粒子は、従来の緻密な粒子構造の二次粒子に比べて粒子強度が低く、空隙の多い粒子である。
 図2Aに本実施形態の二次粒子の断面の模式図を示す。図2Aに示すとおり、本実施形態の正極活物質は空隙が多いため電解液との接触面積が大きくなる。このため、図2Aの符号Aに示すリチウムイオンの脱離(充電)と、符号Bに示すリチウムイオンの挿入(放電)が、二次粒子の内部と表面で進行しやすくなる。このため、初回放電効率を向上させることができる。
 図2Bに従来用いられている緻密な粒子構造の二次粒子の断面の模式図を示す。図2Bに記載の通り、緻密な粒子構造の場合、符号Aに示すリチウムイオンの脱離(充電)と、符号Bに示すリチウムイオンの挿入(放電)が、粒子の表面近傍でのみ進行する。これに対し、上述の通り本実施形態では、二次粒子の表面近傍のみだけでなく、内部でも進行するため、初回放電効率を向上させることができる。
 本実施形態において、二次粒子の平均圧壊強度は、下記の測定方法により測定した値である。
 [平均圧壊強度の測定方法]
 本発明において、リチウム金属複合酸化物粉末に存在する二次粒子の「平均圧壊強度」とは、以下の方法によって測定される値を指す。
 まず、リチウム金属複合酸化物粉末について株式会社島津製作所製「微小圧縮試験機MCT-510」を用いて、任意に選んだ二次粒子1個に対して試験圧力(負荷)をかけ、二次粒子の変位量を測定する。試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す平松らの式(日本鉱業会誌,Vol.81,(1965))により、圧壊強度(St)を算出する。この操作を計5回行い、圧壊強度の5回平均値から平均圧壊強度を算出する。
    St=2.8×P/(π×d×d) (d:二次粒子径) …(A)
 上記式(A)において、d:二次粒子径は微小圧縮試験機MCT-510に付属されている光学顕微鏡を用いて測定される値を使用することができる。
 本発明において、前記リチウム二次電池用正極活物質の総質量に対する前記リチウム金属複合酸化物粉末の含有量は、特に限定されないが、例えば10質量%以上100質量%以下であることが好ましく、30質量%以上100質量%以下であることがより好ましく、50質量%以上100質量%以下であることがさらに好ましい。
(遷移金属の組成)
 本実施形態において、サイクル特性が高いリチウム二次電池を得る意味で、一般式(1)において、y<zであることが好ましい。y≧zである場合は、リチウム二次電池のサイクル特性が低下する場合がある。
(平均粒子径)
 本実施形態において、リチウム二次電池用正極活物質のハンドリング性を高める意味で、前記リチウム二次電池用正極活物質の平均粒子径は2μm以上であることが好ましく、2.1μm以上であることがより好ましく、2.2μm以上であることがさらに好ましい。
 また、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、10μm以下であることが好ましく、9.9μm以下であることがより好ましく、9.8μm以下であることがさらに好ましい。
 平均粒子径の上限値と下限値は任意に組み合わせることができる。
 例えば、前記リチウム二次電池用正極活物質の平均粒子径は2μm以上10μm以下であることが好ましく、2.1μm以上9.9μm以下であることがより好ましく、2.2μm以上9.8μm以下であることがさらに好ましい。
 本発明において、リチウム二次電池用正極活物質の「平均粒子径」とは、以下の方法(レーザー回折散乱法)によって測定される値を指す。
 レーザー回折粒度分布計(株式会社堀場製作所製、型番:LA-950)を用い、リチウム二次電池用正極活物質0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、前記リチウム二次電池用正極活物質を分散させた分散液を得る。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、リチウム二次電池用正極活物質の平均粒子径とする。
 本実施形態においては、リチウム二次電池用正極活物質のBET比表面積が上記特定の範囲であり、さらに、前記二次粒子の平均圧壊強度が上記特定の範囲であることにより、初回充放電効率を向上させることができる。さらに、BET比表面積や平均圧壊強度が上記特定の範囲であることにより、リチウム金属複合酸化物と電解液との接触面積が増加し、電解液の粘度が上昇する低温条件(-15℃~0℃)において、電池抵抗を低くすることができる。さらに、一般式(1)において元素Mを加えることにより、リチウム金属複合酸化物中におけるリチウムイオンの伝導性が高まり、低温条件において、電池抵抗を低くすることができる。
(半値幅)
 本実施形態において、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内の回折ピークの半値幅をA、2θ=44.4±1°の範囲内の回折ピークの半値幅をBとしたとき、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、AとBの積が0.014以上であることが好ましく、0.015以上であることがより好ましく、0.016以上であることがさらに好ましい。また、サイクル特性が高いリチウム二次電池を得る意味で、0.030以下であることが好ましく、0.029以下であることがより好ましく、0.028以下であることがさらに好ましい。
 AとBの積の上限値と下限値は任意に組み合わせることができる。
 例えば、前記Aと前記Bの積は0.014以上0.030以下であることが好ましく、0.015以上0.029以下であることがより好ましく、0.016以上0.028以下であることがさらに好ましい。
 まず、正極活物質について、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内の回折ピーク(以下、ピークA’と呼ぶこともある)、2θ=44.4±1°の範囲内の回折ピーク(以下、ピークB’と呼ぶこともある)を決定する。
 さらに、決定したピークA’の半値幅Aと、ピークB’の半値幅Bとを算出し、Scherrer式 D=Kλ/Bcosθ [D:結晶子サイズ、K:Scherrer定数、B:半値幅、λ:X線の波長、θ:回折角(例えば2θ=18.7±1°、又は2θ=44.4±1°)]
を用いることで結晶子サイズを算出することが出来る。前記式により、結晶子サイズを算出することは従来から使用されている手法である(例えば「X線構造解析-原子の配列を決める-」2002年4月30日第3版発行、早稲田嘉夫、松原栄一郎著、参照)。
 本実施形態において、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、正極活物質の前記半値幅Aの範囲が0.115以上であることが好ましく、0.116以上であることがより好ましく、0.117以上であることがさらに好ましい。また、サイクル特性が高いリチウム二次電池を得る意味で、0.165以下であることが好ましく、0.164以下であることがより好ましく、0.163以下であることがさらに好ましい。
 半値幅Aの上限値と下限値は任意に組み合わせることができる。
 例えば、正極活物質の前記半値幅Aの範囲は0.115以上0.165以下であることが好ましく、0.116以上0.164以下であることがより好ましく、0.117以上0.163以下であることがさらに好ましい。
 本実施形態において、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、正極活物質の前記半値幅Bの範囲が0.120以上であることが好ましく、0.125以上であることがより好ましく、0.126以上であることがさらに好ましい。また、サイクル特性が高いリチウム二次電池を得る意味で、0.180以下であることが好ましく、0.179以下であることがより好ましく、0.178以下であることがさらに好ましい。
 半値Bの上限値と下限値は任意に組み合わせることができる。
 例えば、正極活物質の前記半値幅Bの範囲は0.120以上0.180以下であることが好ましく、0.125以上0.179以下であることがより好ましく、0.126以上0.178以下であることがさらに好ましい。
(層状構造)
 リチウムニッケル複合酸化物の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、P6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
 これらのうち、放電容量が高いリチウム二次電池を得る意味で、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
 本発明に用いるリチウム化合物は、前記(1)式を満たすものであれば特に限定されず、炭酸リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム、フッ化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又は両方が好ましい。
 リチウム二次電池用正極活物質のハンドリング性を高める意味で、リチウム二次電池用正極活物質に含まれる炭酸リチウム成分は、リチウム二次電池用正極活物質の総質量に対して0.4質量%以下であることが好ましく、0.39質量%以下であることがより好ましく、0.38質量%以下であることがさらに好ましい。
 本発明の一つの側面としては、リチウム二次電池用正極活物質に含まれる炭酸リチウム成分は、リチウム二次電池用正極活物質の総質量に対して0質量%以上0.4質量%以下であることが好ましく、0.001質量%以上0.39質量%以下であることがより好ましく、0.01質量%以上0.38質量%以下であることがさらに好ましい。
 また、リチウム二次電池用正極活物質のハンドリング性を高める意味で、リチウム二次電池用正極活物質に含まれる水酸化リチウム成分は、リチウム二次電池用正極活物質の総質量に対して0.35質量%以下であることが好ましく、0.25質量%以下であることがより好ましく、0.2質量%以下であることが特に好ましい。
 本発明の別の側面としては、リチウム二次電池用正極活物質に含まれる水酸化リチウム成分は、リチウム二次電池用正極活物質の総質量に対して0質量%以上0.35質量%以下であることが好ましく、0.001質量%以上0.25質量%以下であることがより好ましく、0.01質量%以上0.20質量%以下であることがさらに好ましい。
 後述のように、焼成温度、焼成時間、焼成雰囲気などを調整することによって、リチウム二次電池用正極活物質に含まれる炭酸リチウム成分及び水酸化リチウム成分を低減することができる。
 リチウム二次電池用正極活物質中に含まれる炭酸リチウム成分及び水酸化リチウム成分の含有量は、酸性溶液による中和滴定により求めることができる。具体的には、リチウム二次電池用正極活物質を純水で接触処理し、炭酸リチウム成分及び水酸化リチウム成分を純水に溶出させる。前記溶出液を塩酸等の酸性溶液で中和滴定することにより、炭酸リチウム成分及び水酸化リチウム成分の含有量を求めることができる。より具体的な操作、及び炭酸リチウム成分及び水酸化リチウム成分の含有量の算出方法などは実施例で説明する。
 [リチウム金属複合酸化物の製造方法]
 本発明のリチウム金属複合酸化物を含むリチウム二次電池用正極活物質を製造するにあたって、まず、リチウム以外の金属、すなわち、Ni、Co及びMnから構成される必須金属、並びに、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVのうちいずれか1種以上の任意元素を含む金属複合化合物を調製し、前記金属複合化合物を適当なリチウム化合物と焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、正極活物質の製造方法の一例を、金属複合化合物の製造工程と、リチウム金属複合酸化物の製造工程とに分けて説明する。
(金属複合化合物の製造工程)
 金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
 まず共沈殿法、特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、NiCoMn(OH)(式中、x+y+z=1)で表される金属複合水酸化物を製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れかを使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れかを使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン、及び酢酸マンガンのうちの何れかを使用することができる。以上の金属塩は、上記NiCoMn(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるニッケル、コバルト、マンガンのモル比がx:y:zとなるよう各金属塩の量を規定する。また、溶媒として水が使用される。
 錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。
 錯化剤は複合水酸化物の製造反応に含まれていなくてもよく、錯化剤が含まれる場合、例えば金属塩のモル数の合計に対する錯化剤のモル比が0より大きく2.0以下である。また、錯化剤は金属塩に予め混合して添加してもよく、更には金属塩の混合液とは分けて添加してもよい。
 沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、NiCoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30~70℃の範囲内で制御され、反応槽内のpH値は例えばpH9以上pH13以下、好ましくはpH11~13の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。
 反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、下記工程で最終的に得られるリチウム金属複合酸化物、又は前記リチウム金属複合酸化物を含むリチウム二次電池用正極活物質の一次粒子径、二次粒子径、各結晶子サイズ、BET比表面積、平均圧壊強度等の各種物性を制御することができる。とりわけ、所望とする二次粒子の平均圧壊強度、細孔分布、空隙を実現するためには、上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等の酸化性ガス、あるいはそれらの混合ガスによるバブリングを併用しても良い。気体以外に酸化状態を促すものとして、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン、オゾンなどを使用することができる。気体以外に還元状態を促すものとして、シュウ酸、ギ酸などの有機酸、亜硫酸塩、ヒドラジンなどを使用することができる。
 例えば、反応槽内の反応pHを高くすると、金属複合化合物の一次粒子径は小さくなり、BET比表面積が高いリチウム二次電池用正極活物質が得られやすい。一方、反応pHを低くすると、金属複合化合物の一次粒子径は大きくなり、BET比表面積が低いリチウム二次電池用正極活物質が得られやすい。また、反応槽内の酸化状態を高くすると、空隙を多く有する金属複合酸化物が得られやすい。一方、酸化状態を低くすると、緻密な金属複合化合物が得られやすい。最終的に、金属複合化合物が所望の物性となるよう、反応pHと酸化状態の各条件を適宜制御すればよい。
 本発明におけるリチウム二次電池用正極活物質のBET比表面積や、リチウム金属複合酸化物粉末の二次粒子の平均圧壊強度は、前記の金属複合化合物を用いて、後述する焼成条件等を制御することにより、本発明の特定の範囲内とすることができる。
 反応条件については、使用する反応槽のサイズ等にも依存することから、最終的に得られるリチウム複合酸化物の各種物性をモニタリングしつつ、反応条件を最適化すれば良い。
 以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン水酸化物を単離する。また、必要に応じて弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄しても良い。
なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。ニッケルコバルトマンガン複合酸化物を調製する場合は、例えば、前記共沈物スラリーと酸化剤を接触させる工程や、ニッケルコバルトマンガン複合酸化物を熱処理する工程を行えばよい。
(リチウム金属複合酸化物を含むリチウム二次電池用正極活物質の製造工程)
 上記金属複合酸化物又は水酸化物を乾燥した後、リチウム化合物と混合する。乾燥条件は、特に制限されないが、例えば、金属複合酸化物又は水酸化物が酸化・還元されない条件(酸化物→酸化物、水酸化物→水酸化物)、金属複合水酸化物が酸化される条件(水酸化物→酸化物)、金属複合酸化物が還元される条件(酸化物→水酸化物)のいずれの条件でもよい。酸化・還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の不活性ガスを使用すれば良く、水酸化物が酸化される条件では、酸素又は空気を使用すれば良い。
また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すれば良い。リチウム化合物としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。
 金属複合酸化物又は水酸化物の乾燥後に、適宜分級を行っても良い。以上のリチウム化合物と金属複合水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム化合物と前記金属複合水酸化物は、LiNiCoMn(式中、x+y+z=1)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン金属複合水酸化物及びリチウム化合物の混合物を焼成することによって、リチウム-ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
 上記金属複合酸化物又は水酸化物と、水酸化リチウム、炭酸リチウム等のリチウム化合物との焼成温度としては、特に制限はないが、リチウム二次電池用正極活物質のBET比表面積やリチウム金属複合酸化物の二次粒子の平均圧壊強度を本発明の特定の範囲とするために、600℃以上1100℃以下であることが好ましく、750℃以上1050℃以下であることがより好ましく、800℃以上1025℃以下であることがさらに好ましい。焼成温度が600℃を下回ると、規則正しい結晶構造をもったリチウム金属複合酸化物が得られにくく、リチウム二次電池用正極活物質のBET比表面積が本発明の上限値を超えたり、二次粒子の平均圧壊強度が本発明の下限値を下回るおそれがあり、エネルギー密度(放電容量)や充放電効率(放電容量÷充電容量)が低下するという問題を生じやすい。すなわち、焼成温度が600℃以上であると、規則正しい結晶構造をもったリチウム金属複合酸化物が得やすく、リチウム二次電池用正極活物質のBET比表面積が本発明の上限値以下となり、二次粒子の平均圧壊強度が本発明の下限値以上となり、エネルギー密度(放電容量)や充放電効率(放電容量÷充電容量)が低下するという問題が生じにくい。また、焼成温度が600℃以上であると、リチウム二次電池用正極活物質に含まれる炭酸リチウム成分及び水酸化リチウム成分を低減しやすい。
 一方、焼成温度が1100℃を上回ると、Liの揮発によって目標とする組成のリチウム金属複合酸化物が得られにくいなどの作製上の問題に加え、リチウム二次電池用正極活物質のBET比表面積が本発明の下限値を下回ったり、粒子の高密度化の影響でリチウム金属複合酸化物の二次粒子の平均圧壊強度が本発明の上限値を超えたりするおそれがあり、電池性能が低下するという問題が生じやすい。これは、1100℃を上回ると、一次粒子成長速度が増加し、リチウム金属複合酸化物の結晶粒子が大きくなりすぎることに起因していると考えられる。すなわち、焼成温度が1100℃以下であると、Liの揮発が抑制され、目標とする組成のリチウム金属複合酸化物が得やすく、リチウム二次電池用正極活物質のBET比表面積が本発明の下限値以上となり、粒子が高密度化せずリチウム金属複合酸化物の二次粒子の平均圧壊強度が本発明の上限値以下となり、電池性能が低下するという問題が生じにくい。焼成温度を600℃以上1100℃以下の範囲とすることによって、特に高いエネルギー密度を示し、充放電効率や出力特性に優れた電池を作製できる。
 焼成時間は、3時間~50時間が好ましい。焼成時間が50時間を超えると、電池性能上問題はないが、Liの揮発によって実質的に電池性能に劣る傾向となる。焼成時間が3時間より少ないと、結晶の発達が悪く、電池性能が悪くなる傾向となる。すなわち、焼成時間が50時間以内であると、Liの揮発が抑制され、電池性能の劣化を防止することができる。焼成温度が3時間以上であると、結晶の発達が良好に進行するとともに、リチウム二次電池用正極活物質に含まれる炭酸リチウム成分及び水酸化リチウム成分を低減することができ、電池性能を向上させることができる。本実施形態において焼成時間とは、目的の温度に達温してから温度保持が終了するまでの時間、いわゆる保持時間を意味する。前記目的の温度までの昇温速度としては、50℃/時間以上600℃/時間以下が好ましく、75℃/時間以上500℃/時間以下がより好ましく、100℃/時間以上400℃/時間以下がさらに好ましい。
 なお、上記の焼成の前に、仮焼成を行うことも有効である。この様な仮焼成の温度は、300℃~850℃の範囲で、1時間~10時間行うことが好ましい。
 焼成によって得たリチウム金属複合酸化物を含むリチウム二次電池用正極活物質は、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。
<リチウム二次電池>
 次いで、リチウム二次電池の構成を説明しながら、本発明のリチウム二次電池用正極活物質を、リチウム二次電池の正極活物質として用いた正極、及びこの正極を有するリチウム二次電池について説明する。
 本実施形態のリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1A及び図1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。
この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体の質量に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する金属複合酸化物;を挙げることができる。
 負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
 負極活物質として使用可能な窒化物としては、LiN、Li3-xN(ここで、AはNi及びCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117:2009で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、好ましくはセパレータの体積に対して30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム化合物及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
 以上のような構成の正極活物質は、上述した本実施形態のリチウム金属複合酸化物を含むため、正極活物質を用いたリチウム二次電池の寿命を延ばすことができる。
 また、以上のような構成の正極は、上述した本実施形態のリチウム二次電池用正極活物質を有するため、リチウム二次電池の寿命を延ばすことができる。
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、従来よりも寿命の長いリチウム二次電池となる。
  次に、本発明の態様を実施例によりさらに詳細に説明する。
  本実施例においては、リチウム二次電池用正極活物質の評価、リチウム二次電池用正極及びリチウム二次電池の作製評価を、次のようにして行った。
 (1)リチウム二次電池用正極活物質の評価
1.二次粒子の平均圧壊強度
 二次粒子の平均圧壊強度の測定は、微小圧縮試験機(株式会社島津製作所製、MCT-510)を用い、リチウム金属複合酸化物粉末中から任意に選んだ二次粒子1個に対して試験圧力をかけて測定した。試験圧力がほぼ一定で、二次粒子の変位量が最大となる圧力値を試験力(P)として得た。二次粒子径(d)は、微小圧縮試験機に付属されている光学顕微鏡を用いて測定し、前述した平松らの式により、圧壊強度(St)を算出した。最終的に、圧壊強度試験を計5回行った平均値から平均圧壊強度を求めた。
2.BET比表面積測定
 リチウム二次電池用正極活物質1gを窒素雰囲気中、105℃で30分間乾燥させた後、マウンテック社製Macsorb(登録商標)を用いて測定した。
3.平均粒子径の測定
 平均粒子径の測定は、レーザー回折粒度分布計(株式会社堀場製作所製、LA-950)を用い、リチウム二次電池用正極活物質0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、前記リチウム二次電池用正極活物質を分散させた分散液を得た。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、リチウム二次電池用正極活物質の平均粒子径とした。
4.粉末X線回折測定
 粉末X線回折測定は、X線回折装置(PANalytical社製、X‘Pert PRO)を用いて行った。リチウム二次電池用正極活物質を専用の基板に充填し、Cu-Kα線源を用いて、回折角2θ=10°~90°の範囲にて測定を行うことで、粉末X線回折図形を得た。粉末X線回折パターン総合解析ソフトウェアJADE5を用い、前記粉末X線回折図形から2θ=18.7±1°の回折ピークの半値幅A及び、2θ=44.4±1°の回折ピークの半値幅Bを求めた。
     半値幅Aの回折ピーク: 2θ=18.7±1°
     半値幅Bの回折ピーク: 2θ=44.4±1°
 5.組成分析
 後述の方法で製造されるリチウム二次電池用正極活物質の組成分析は、得られたリチウム二次電池用正極活物質を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。上記で得られたリチウム量から、後述する方法によって測定された炭酸リチウム、及び水酸化リチウム由来のリチウム量を引き、リチウム金属酸化物粉末の組成を求めた。
 6.リチウム二次電池用正極活物質に含まれる残留リチウム定量(中和滴定)
 リチウム二次電池用正極活物質20gと純水100gを100mlビーカーに入れ、5分間撹拌した。撹拌後、リチウム二次電池用正極活物質を濾過し、残った濾液の60gに0.1mol/L塩酸を滴下し、pHメーターにて濾液のpHを測定した。pH=8.3±0.1時の塩酸の滴定量をCml、pH=4.5±0.1時の塩酸の滴定量をDmlとして、下記の計算式より、リチウム二次電池用正極活物質中に残存する炭酸リチウム及び水酸化リチウム濃度を算出した。下記の式中、炭酸リチウム及び水酸化リチウムの分子量は、各原子量を、H;1.000、Li;6.941、C;12、O;16、として算出した。
炭酸リチウム濃度(%)=0.1×(D-C)/1000×73.882/(20×60/100)×100
水酸化リチウム濃度(%)=0.1×(2C-D)/1000×23.941/(20×60/100)×100
(2)リチウム二次電池用正極の作製
 後述する製造方法で得られるリチウム二次電池用正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得た。このリチウム二次電池用正極の電極面積は1.65cmとした。
(3)リチウム二次電池用負極の作製
 次に、負極活物質として人造黒鉛(日立化成株式会社製MAGD)と、バインダーとしてCMC(第一工業薬製株式会社製)とSBR(日本エイアンドエル株式会社製)とを、負極活物質:CMC:SRR=98:1:1(質量比)の組成となるように加えて混練することにより、ペースト状の負極合剤を調製した。負極合剤の調製時には、溶媒としてイオン交換水を用いた。
 得られた負極合剤を、集電体となる厚さ12μmのCu箔に塗布して100℃で8時間真空乾燥を行い、リチウム二次電池用負極を得た。このリチウム二次電池用負極の電極面積は1.77cmとした。
(4)リチウム二次電池(コイン型ハーフセル)の作製
 以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
 「(2)リチウム二次電池用正極の作製」で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECと称することがある。)とジメチルカーボネート(以下、DMCと称することがある。)とエチルメチルカーボネート(以下、EMCと称することがある。)の30:35:35(体積比)混合液に、LiPF6を1.0mol/lとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)を用いた。
 次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032。以下、「ハーフセル」と称することがある。)を作製した。
(5)リチウム二次電池(コイン型フルセル)の作製
 以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
 「(2)リチウム二次電池用正極の作製」で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECと称することがある。)とジメチルカーボネート(以下、DMCと称することがある。)とエチルメチルカーボネート(以下、EMCと称することがある。)の16:10:74(体積比)混合液にビニレンカーボネート(以下、VCと称することがある。)を1体積%加え、そこにLiPF6を1.3mol/lとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)を用いた。
 次に、「(3)リチウム二次電池用負極の作製」で作製したリチウム二次電池用負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型フルセルR2032。以下、「フルセル」と称することがある。)を作製した。
(6)初回充放電試験
 「(4)リチウム二次電池(コイン型ハーフセル)の作製」で作製したハーフセルを用いて、以下に示す条件で初回充放電試験を実施した。
<初回充放電試験>
 試験温度25℃
 充電最大電圧4.3V、充電時間6時間、充電電流0.2CA、定電流定電圧充電
 放電最小電圧2.5V、放電時間5時間、放電電流0.2CA、定電流放電
また、初回充放電効率は以下のようにして求めた。
 初回充放電効率(%)=0.2CAの初回放電容量/0.2CAの初回充電容量×100
(7)低温放電試験
 「(5)リチウム二次電池(コイン型フルセル)の作製」で作製したフルセルを用いて、以下に示す条件で初回充放電試験を実施した。
<充放電試験条件>
 試験温度:25℃
 充電最大電圧4.2V、充電時間6時間、充電電流0.2CA、定電流定電圧充電
 放電最小電圧2.7V、放電時間5時間、放電電流0.2CA、定電流放電
<電池抵抗測定>
 上記で測定した放電容量を充電深度(以下、SOCと称することがある。)100%として、-15℃において、SOC15%、50%の電池抵抗を測定した。なお、各SOCへの調整は25℃環境下で行った。電池抵抗測定は、-15℃の恒温槽内にSOCを調整したフルセルを2時間静置し、20μAで15秒間放電、5分静置、20μAで15秒間充電、5分静置、40μAで15秒間放電、5分静置、20μAで30秒間充電、5分静置、80μAで15秒間放電、5分静置、20μAで60秒間充電、5分静置、160μAで15秒間放電、5分静置、20μAで120秒間充電、5分静置の順に実施した。電池抵抗は、20、40、80、120μA放電時に測定された10秒後の電池電圧と各電流値とのプロットから、最小二乗近似法を用いて傾きを算出し、この傾きを電池抵抗とした。
(実施例1)
1.リチウム二次電池用正極活物質1の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.315:0.330:0.355となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が4.0%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが11.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物1を得た。
 ニッケルコバルトマンガン複合水酸化物1と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.13となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに、大気雰囲気下925℃で6時間焼成して、目的のリチウム二次電池用正極活物質1を得た。
2.リチウム二次電池用正極活物質1の評価
 リチウム二次電池用正極活物質1の組成分析を行い、一般式(1)に対応させたところ、x=0.06、y=0.328、z=0.356、w=0であった。
 リチウム二次電池用正極活物質1の平均圧壊強度は52.2MPa、BET比表面積は2.4m/g、平均粒子径D50は3.4μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.020、半値幅Aが0.134、半値幅Bが0.147であった。
 リチウム二次電池用正極活物質1の残留リチウム定量を行った所、炭酸リチウムが0.10質量%、水酸化リチウムが0.11質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質1を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ170.4mAh/g、161.1mAh/g、94.5%であった。
 リチウム二次電池用正極活物質1を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ423Ω、384Ωであった。
(実施例2)
1.リチウム二次電池用正極活物質2の製造
 実施例1と同様にしてニッケルコバルトマンガン複合水酸化物1を得た。
 WOを61g/Lで溶解したLiOH水溶液を作製した。作製したW溶解LiOH水溶液をレディゲミキサーにてW/(Ni+Co+Mn+W)=0.005となるよう、ニッケルコバルトマンガン複合水酸化物1に被着させた。Wが被着したニッケルコバルトマンガン複合水酸化物と炭酸リチウム粉末とを、Li/(Ni+Co+Mn+W)=1.13となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに大気雰囲気下925℃で6時間焼成して、目的のリチウム二次電池用正極活物質2を得た。
2.リチウム二次電池用正極活物質2の評価
 リチウム二次電池用正極活物質2の組成分析を行い、一般式(1)に対応させたところ、MがW、x=0.06、y=0.327、z=0.354、w=0.005であった。
 リチウム二次電池用正極活物質2の平均圧壊強度は54.0MPa、BET比表面積は2.0m/g、平均粒子径D50は3.6μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.023、半値幅Aが0.141、半値幅Bが0.161であった。
 リチウム二次電池用正極活物質2の残留リチウム定量を行い、炭酸リチウムが0.17質量%、水酸化リチウムが0.11質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質2を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ170.6mAh/g、161.2mAh/g、94.5%であった。
 リチウム二次電池用正極活物質2を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ296Ω、269Ωであった。
(実施例3)
1.リチウム二次電池用正極活物質3の製造
 実施例1と同様にしてニッケルコバルトマンガン複合水酸化物1を得た。
 ニッケルコバルトマンガン複合水酸化物1と、Zr/(Ni+Co+Mn+Zr)=0.003となるようにZrOを添加し、混合してZrO含有混合粉を得た。この混合粉と炭酸リチウム粉末とを、Li/(Ni+Co+Mn+Zr)=1.13となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに大気雰囲気下925℃で6時間焼成して、目的のリチウム二次電池用正極活物質3を得た。
2.リチウム二次電池用正極活物質3の評価
 リチウム二次電池用正極活物質3の組成分析を行い、一般式(1)に対応させたところ、MがZr、x=0.06、y=0.328、z=0.354、w=0.003であった。
 リチウム二次電池用正極活物質3の平均圧壊強度は57.6MPa、BET比表面積は2.4m/g、平均粒子径D50は3.5μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.021、半値幅Aが0.133、半値幅Bが0.161であった。
 リチウム二次電池用正極活物質3の残留リチウム定量を行い、炭酸リチウムが0.15質量%、水酸化リチウムが0.12質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質3を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ170.5mAh/g、160.2mAh/g、94.0%であった。
 リチウム二次電池用正極活物質3を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ298Ω、271Ωであった。
(実施例4)
1.リチウム二次電池用正極活物質4の製造
 酸素濃度が2.1%、反応槽内の溶液のpHが11.2となるように操作したこと以外は実施例1と同様に実施し、ニッケルコバルトマンガン複合水酸化物2を得た。
 ニッケルコバルトマンガン複合水酸化物2と、Mg/(Ni+Co+Mn+Mg)=0.003となるようにMgOを添加し、混合してMgO含有混合粉を得た。この混合粉と炭酸リチウム粉末とを、Li/(Ni+Co+Mn+Mg)=1.08となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに大気雰囲気下950℃で6時間焼成して、目的のリチウム二次電池用正極活物質4を得た。
2.リチウム二次電池用正極活物質4の評価
 リチウム二次電池用正極活物質4の組成分析を行い、一般式(1)に対応させたところ、MがMg、x=0.04、y=0.328、z=0.355、w=0.003であった。
 リチウム二次電池用正極活物質4の平均圧壊強度は92.6MPa、BET比表面積は1.1m/g、平均粒子径D50は9.8μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.019、半値幅Aが0.133、半値幅Bが0.142であった。
 リチウム二次電池用正極活物質4の残留リチウム定量を行い、炭酸リチウムが0.04質量%、水酸化リチウムが0.10質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質4を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ173.4mAh/g、157.1mAh/g、90.6%であった。
 リチウム二次電池用正極活物質4を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ480Ω、332Ωであった。
(実施例5)
1.リチウム二次電池用正極活物質5の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.510:0.225:0.265となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が8.3%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが12.2になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物3を得た。
 ニッケルコバルトマンガン複合水酸化物3と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.06となるように秤量して混合した後、大気雰囲気下720℃で3時間焼成し、さらに大気雰囲気下875℃で10時間焼成して、目的のリチウム二次電池用正極活物質5を得た。
2.リチウム二次電池用正極活物質5の評価
 リチウム二次電池用正極活物質5の組成分析を行い、一般式(1)に対応させたところ、x=0.03、y=0.222、z=0.267、w=0であった。
 リチウム二次電池用正極活物質5の平均圧壊強度は71.8MPa、BET比表面積は1.3m/g、平均粒子径D50は7.8μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.015、半値幅Aが0.120、半値幅Bが0.125であった。
 リチウム二次電池用正極活物質5の残留リチウム定量を行い、炭酸リチウムが0.15質量%、水酸化リチウムが0.19質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質5を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ189.6mAh/g、174.1mAh/g、91.8%であった。
 リチウム二次電池用正極活物質5を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ340Ω、301Ωであった。
(実施例6)
1.リチウム二次電池用正極活物質6の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.550:0.210:0.240となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が9.5%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが12.5になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物4を得た。
 ニッケルコバルトマンガン複合水酸化物4と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.06となるように秤量して混合した後、大気雰囲気下790℃で3時間焼成し、さらに酸素雰囲気下830℃で10時間焼成して、目的のリチウム二次電池用正極活物質6を得た。
2.リチウム二次電池用正極活物質6の評価
 リチウム二次電池用正極活物質6の組成分析を行い、一般式(1)に対応させたところ、x=0.03、y=0.208、z=0.242、w=0であった。
 リチウム二次電池用正極活物質6の平均圧壊強度は13.6MPa、BET比表面積は2.8m/g、平均粒子径D50は2.5μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.028、半値幅Aが0.160、半値幅Bが0.175であった。
 リチウム二次電池用正極活物質6の残留リチウム定量を行い、炭酸リチウムが0.16質量%、水酸化リチウムが0.11質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質6を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ192.3mAh/g、175.8mAh/g、91.4%であった。
 リチウム二次電池用正極活物質6を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ463Ω、413Ωであった。
(実施例7)
1.リチウム二次電池用正極活物質7の製造
 実施例6と同様にしてニッケルコバルトマンガン複合水酸化物4を得た。
 WOを61g/Lで溶解したLiOH水溶液を作製した。作製したW溶解LiOH水溶液をレディゲミキサーにてW/(Ni+Co+Mn+W)=0.003となるよう、ニッケルコバルトマンガン複合水酸化物4に被着させた。Wが被着したニッケルコバルトマンガン複合水酸化物と炭酸リチウム粉末とを、Li/(Ni+Co+Mn+W)=1.08となるように秤量して混合した後、大気雰囲気下790℃で3時間焼成し、さらに酸素雰囲気下860℃で10時間焼成して、目的のリチウム二次電池用正極活物質7を得た。
2.リチウム二次電池用正極活物質7の評価
 リチウム二次電池用正極活物質7の組成分析を行い、一般式(1)に対応させたところ、MがW、x=0.04、y=0.208、z=0.241、w=0.003であった。
 リチウム二次電池用正極活物質7の平均圧壊強度は23.9MPa、BET比表面積は2.0m/g、平均粒子径D50は3.4μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.023、半値幅Aが0.142、半値幅Bが0.163であった。
 リチウム二次電池用正極活物質7の残留リチウム定量を行い、炭酸リチウムが0.29質量%、水酸化リチウムが0.30質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質7を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ191.6mAh/g、184.1mAh/g、96.1%であった。
 リチウム二次電池用正極活物質7を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ328Ω、269Ωであった。
(実施例8)
1.リチウム二次電池用正極活物質8の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を60℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.750:0.150:0.100となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が7.5%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが11.0になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物5を得た。
 ニッケルコバルトマンガン複合水酸化物5と、Al/(Ni+Co+Mn+Al)=0.05となるようにAlを添加し、混合してAl含有混合粉を得た。この混合粉と炭酸リチウム粉末とを、Li/(Ni+Co+Mn+Al)=1.02となるように秤量して混合した後、酸素雰囲気下750℃で5時間焼成し、さらに酸素雰囲気下800℃で5時間焼成して、目的のリチウム二次電池用正極活物質8を得た。
2.リチウム二次電池用正極活物質8の評価
 リチウム二次電池用正極活物質8の組成分析を行い、一般式(1)に対応させたところ、MがAl、x=0.01、y=0.142、z=0.095、w=0.05であった。
 リチウム二次電池用正極活物質8の平均圧壊強度は30.1MPa、BET比表面積は1.5m/g、平均粒子径D50は6.2μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.018、半値幅Aが0.134、半値幅Bが0.138であった。
 リチウム二次電池用正極活物質8の残留リチウム定量を行い、炭酸リチウムが0.36質量%、水酸化リチウムが0.34質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質8を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ205.4mAh/g、197.6mAh/g、96.2%であった。
 リチウム二次電池用正極活物質8を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ301Ω、262Ωであった。
(比較例1)
1.リチウム二次電池用正極活物質9の製造
 実施例1と同様にしてニッケルコバルトマンガン複合水酸化物1を得た。
 ニッケルコバルトマンガン複合水酸化物1と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.00となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに大気雰囲気下850℃で6時間焼成して、目的のリチウム二次電池用正極活物質9を得た。
2.リチウム二次電池用正極活物質9の評価
 リチウム二次電池用正極活物質9の組成分析を行い、一般式(1)に対応させたところ、x=0.00、y=0.328、z=0.356、w=0であった。
 リチウム二次電池用正極活物質9の平均圧壊強度は7.5MPa、BET比表面積は3.6m/g、平均粒子径D50は3.0μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.031、半値幅Aが0.165、半値幅Bが0.185であった。
 リチウム二次電池用正極活物質9の残留リチウム定量を行い、炭酸リチウムが0.41質量%、水酸化リチウムが0.45質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質9を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ172.4mAh/g、153.3mAh/g、88.9%であった。
 リチウム二次電池用正極活物質9を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ710Ω、651Ωであった。
(比較例2)
1.リチウム二次電池用正極活物質10の製造
 実施例1と同様にしてニッケルコバルトマンガン複合水酸化物1を得た。
 ニッケルコバルトマンガン複合水酸化物1と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.00となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに大気雰囲気下980℃で6時間焼成して、目的のリチウム二次電池用正極活物質10を得た。
2.リチウム二次電池用正極活物質10の評価
 リチウム二次電池用正極活物質10の組成分析を行い、一般式(1)に対応させたところ、x=0、y=0.329、z=0.356、w=0であった。
 リチウム二次電池用正極活物質10平均圧壊強度は62.1MPa、BET比表面積は0.8m/g、平均粒子径D50は3.2μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.017、半値幅Aが0.128、半値幅Bが0.132であった。
 リチウム二次電池用正極活物質10の残留リチウム定量を行い、炭酸リチウムが0.18質量%、水酸化リチウムが0.11質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質10を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ172.9mAh/g、154.4mAh/g、89.3%であった。
 リチウム二次電池用正極活物質10を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ621Ω、532Ωであった。
(比較例3)
1.リチウム二次電池用正極活物質11の製造
 反応槽内の酸素濃度を6.2%、反応槽内の溶液のpHを12.4としたこと以外は、実施例5と同様にして、ニッケルコバルトマンガン複合水酸化物6を得た。
 ニッケルコバルトマンガン複合水酸化物6と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.00となるように秤量して混合した後、大気雰囲気下720℃で3時間焼成し、さらに大気雰囲気下875℃で10時間焼成して、目的のリチウム二次電池用正極活物質11を得た。
2.リチウム二次電池用正極活物質11の評価
 リチウム二次電池用正極活物質11の組成分析を行い、一般式(1)に対応させたところ、x=0、y=0.222、z=0.266、w=0であった。
 リチウム二次電池用正極活物質11の平均圧壊強度は105.3MPa、BET比表面積は1.4m/g、平均粒子径D50は5.2μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.019、半値幅Aが0.133、半値幅Bが0.144であった。
 リチウム二次電池用正極活物質11の残留リチウム定量を行い、炭酸リチウムが0.21質量%、水酸化リチウムが0.18質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質11を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ192.7mAh/g、171.6mAh/g、89.1%であった。
 リチウム二次電池用正極活物質11を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ532Ω、503Ωであった。
(比較例4)
1.リチウム二次電池用正極活物質12の製造
 反応槽内の液温を60℃、酸素濃度を0%、反応槽内の溶液のpHを11.5としたこと以外は実施例5と同様にして、ニッケルコバルトマンガン複合水酸化物7を得た。
 ニッケルコバルトマンガン複合水酸化物7と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.04となるように秤量して混合した後、大気雰囲気下720℃で3時間焼成し、さらに大気雰囲気下900℃で10時間焼成して、目的のリチウム二次電池用正極活物質12を得た。
2.リチウム二次電池用正極活物質12の評価
 リチウム二次電池用正極活物質12の組成分析を行い、一般式(1)に対応させたところ、x=0.02、y=0.221、z=0.265、w=0であった。
 リチウム二次電池用正極活物質12平均圧壊強度は146.2MPa、BET比表面積は0.2m/g、平均粒子径D50は11.2μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.014、半値幅Aが0.116、半値幅Bが0.121であった。
 リチウム二次電池用正極活物質12の残留リチウム定量を行い、炭酸リチウムが0.18質量%、水酸化リチウムが0.26質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質12を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ194.7mAh/g、169.2mAh/g、86.9%であった。
 リチウム二次電池用正極活物質12を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ854Ω、621Ωであった。
(比較例5)
1.リチウム二次電池用正極活物質13の製造
 反応槽内の液温を60℃、酸素濃度を0%、反応槽内の溶液のpHを11.5としたこと以外は実施例6と同様にして、ニッケルコバルトマンガン複合水酸化物8を得た。
 ニッケルコバルトマンガン複合水酸化物8と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.04となるように秤量して混合した後、大気雰囲気下790℃で3時間焼成し、さらに酸素雰囲気下850℃で10時間焼成して、目的のリチウム二次電池用正極活物質13を得た。
2.リチウム二次電池用正極活物質13の評価
 リチウム二次電池用正極活物質13の組成分析を行い、一般式(1)に対応させたところ、x=0.02、y=0.209、z=0.241、w=0であった。
 リチウム二次電池用正極活物質13の平均圧壊強度は115.6MPa、BET比表面積は3.2m/g、平均粒子径D50は10.8μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.015、半値幅Aが0.119、半値幅Bが0.123であった。
 リチウム二次電池用正極活物質13の残留リチウム定量を行い、炭酸リチウムが0.23質量%、水酸化リチウムが0.27質量%であった。
3.リチウム二次電池の評価
 リチウム二次電池用正極活物質13を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ195.5mAh/g、172.4mAh/g、88.2%であった。
 リチウム二次電池用正極活物質13を用いて、コイン型フルセルを作製し、-15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ583Ω、552Ωであった。
 下記表1に、実施例1~8、比較例1~5の正極活物質の組成、平均圧壊強度、BET比表面積、粉末X線回折ピークの半値幅、残存リチウム量、初回充放電容量、初回放電容量、初回放電効率、-15℃直流抵抗の値をまとめて記載する。
Figure JPOXMLDOC01-appb-T000001
 実施例2の二次粒子断面SEM像を図3に示す。
 比較例4の二次粒子断面SEM像を図4に示す。
 上記結果に示したとおり、本発明を適用した実施例1~8は、初回充放電効率がいずれも90%以上と高い結果であった。これに加え、本発明を適用した実施例1~8は、低温放電試験の結果において、低温時でも直流抵抗が低かった。
 図3に示す結果の通り、本発明を適用した実施例2の二次粒子は、断面図を観察すると、空隙の多い粒子であることが明らかであった。
 これに対し、本発明を適用しない比較例1~5は、初回充放電効率がいずれも90%以下と低い結果であった。また、低温放電試験において、低温時では直流抵抗が高くなってしまった。
 図4に示す結果のとおり、本発明を適用しない比較例4の二次粒子は、断面図を観察すると、空隙がほとんどなく、緻密な粒子であることが明らかであった。
 本発明によれば初回充放電効率に優れるリチウム二次電池用正極活物質、前記リチウム二次電池用正極活物質を用いたリチウム二次電池用正極及び前記リチウム二次電池用正極を有するリチウム二次電池を提供することができるため、産業上有用である。
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード

Claims (10)

  1.  一般式(1)で表されるリチウム金属複合酸化物粉末を含むリチウム二次電池用正極活物質であって、
     前記リチウム金属複合酸化物粉末が一次粒子と、前記一次粒子が凝集して形成された二次粒子と、から構成され、
    前記リチウム二次電池用正極活物質のBET比表面積が1m/g以上3m/g以下であり、
     前記二次粒子の平均圧壊強度が10MPa以上100MPa以下であるリチウム二次電池用正極活物質。
       Li[Li(Ni(1-y-z-w)CoMn1-x]O2  (1)
    (ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0<y≦0.4、0<z≦0.4、0≦w≦0.1、0.25<y+z+wを満たす。)
  2.  前記一般式(1)において、y<zである請求項1記載のリチウム二次電池用正極活物質。
  3.  前記リチウム二次電池用正極活物質の平均粒子径が2μm以上10μm以下である請求項1又は2記載のリチウム二次電池用正極活物質。
  4.  CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内の回折ピークの半値幅をA、2θ=44.4±1°の範囲内の回折ピークの半値幅をBとしたとき、AとBの積が0.014以上0.030以下である請求項1~3のいずれか1項に記載のリチウム二次電池用正極活物質。
  5.  前記半値幅Aの範囲が0.115以上0.165以下である請求項4に記載のリチウム二次電池用正極活物質。
  6.  前記半値幅Bの範囲が0.120以上0.180以下である請求項4又は5に記載のリチウム二次電池用正極活物質。
  7.  前記リチウム二次電池用正極活物質に含まれる炭酸リチウム成分が前記リチウム二次電池用正極活物質の総質量に対して0.4質量%以下である請求項1~6のいずれか1項に記載のリチウム二次電池用正極活物質。
  8.  前記リチウム二次電池用正極活物質に含まれる水酸化リチウム成分が前記リチウム二次電池用正極活物質の総質量に対して0.35質量%以下である請求項1~7のいずれか1項に記載のリチウム二次電池用正極活物質。
  9.  請求項1~8のいずれか1項に記載のリチウム二次電池用正極活物質を有するリチウム二次電池用正極。
  10.  請求項9に記載のリチウム二次電池用正極を有するリチウム二次電池。
PCT/JP2017/031443 2016-08-31 2017-08-31 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 WO2018043671A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780051802.7A CN109643798B (zh) 2016-08-31 2017-08-31 锂二次电池用正极活性物质、锂二次电池用正极和锂二次电池
EP17846675.1A EP3509143A4 (en) 2016-08-31 2017-08-31 ACTIVE POSITIVE ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERIES, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, AND LITHIUM SECONDARY BATTERY
KR1020197005642A KR102437198B1 (ko) 2016-08-31 2017-08-31 리튬 2 차 전지용 정극 활물질, 리튬 2 차 전지용 정극 및 리튬 2 차 전지
US16/328,612 US20210028453A1 (en) 2016-08-31 2017-08-31 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169816 2016-08-31
JP2016169816A JP6337360B2 (ja) 2016-08-31 2016-08-31 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Publications (1)

Publication Number Publication Date
WO2018043671A1 true WO2018043671A1 (ja) 2018-03-08

Family

ID=61301049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031443 WO2018043671A1 (ja) 2016-08-31 2017-08-31 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Country Status (6)

Country Link
US (1) US20210028453A1 (ja)
EP (1) EP3509143A4 (ja)
JP (1) JP6337360B2 (ja)
KR (1) KR102437198B1 (ja)
CN (1) CN109643798B (ja)
WO (1) WO2018043671A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100541A (ja) * 2018-12-20 2020-07-02 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2020134781A1 (zh) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 一种高压实密度正极材料及电化学储能装置
EP3767717A4 (en) * 2018-03-13 2021-12-15 Sumitomo Chemical Company Limited LITHIUM METAL COMPOSITE OXIDE POWDER, POSITIVE ELECTRODE ACTIVE SUBSTANCE FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE, AND LITHIUM SECONDARY BATTERY
EP3767718A4 (en) * 2018-03-13 2021-12-15 Sumitomo Chemical Company, Limited LITHIUM METAL COMPOSITE OXIDE POWDER, POSITIVE ELECTRODE ACTIVE SUBSTANCE FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE, AND LITHIUM SECONDARY BATTERY
US11296318B2 (en) * 2020-01-17 2022-04-05 Sumitomo Chemical Company, Limited Positive electrode active material for all-solid-state lithium-ion battery, electrode, and all-solid-state lithium-ion battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343753B2 (ja) 2016-12-07 2018-06-20 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR102357941B1 (ko) * 2018-01-29 2022-02-03 삼성에스디아이 주식회사 리튬이차전지용 양극 활물질, 이를 포함하는 양극, 및 이를 포함하는 리튬이차전지
JPWO2019193873A1 (ja) * 2018-04-06 2021-04-08 パナソニックIpマネジメント株式会社 非水電解質二次電池の正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
KR102225892B1 (ko) * 2018-08-22 2021-03-11 주식회사 에코프로비엠 리튬 복합 산화물, 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN111864182A (zh) * 2019-04-26 2020-10-30 丰田自动车株式会社 全固体电池及其制造方法
JP7405655B2 (ja) * 2020-03-17 2023-12-26 パナソニックホールディングス株式会社 非水電解質二次電池用正極及び非水電解質二次電池
CN114684783B (zh) * 2022-04-11 2023-04-14 浙江大学 可改善锂镁氮氢化物储氢性能的添加剂及其制备和应用
WO2024014558A1 (ja) * 2022-07-15 2024-01-18 株式会社田中化学研究所 金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080920A (ja) 1999-09-07 2001-03-27 Nippon Chem Ind Co Ltd 凝集粒状リチウム複合酸化物、その製造方法及びリチウム二次電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
WO2002086993A1 (fr) * 2001-04-20 2002-10-31 Yuasa Corporation Matiere active anodique et son procede de production, anode pour pile secondaire a electrolyte non aqueux et pile secondaire a electrolyte non aqueux
JP2004335152A (ja) 2003-04-30 2004-11-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質および非水系電解質二次電池
WO2005124898A1 (ja) 2004-06-16 2005-12-29 Seimi Chemical Co., Ltd. リチウム二次電池用正極活物質粉末
JP2007257985A (ja) 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
JP2009059710A (ja) * 2001-03-14 2009-03-19 Gs Yuasa Corporation:Kk 正極活物質およびこれを用いた非水電解質二次電池
JP2011119092A (ja) 2009-12-02 2011-06-16 Toyota Motor Corp 活物質粒子およびその利用
JP2013143358A (ja) * 2012-01-12 2013-07-22 Toyota Motor Corp リチウム二次電池
JP2013232318A (ja) 2012-04-27 2013-11-14 Mitsui Mining & Smelting Co Ltd 層構造を有するリチウム金属複合酸化物
JP2016076470A (ja) * 2014-10-06 2016-05-12 日立金属株式会社 リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2016169816A (ja) 2015-03-13 2016-09-23 テイ・エス テック株式会社 軸受ブッシュ及びこの軸受ブッシュを備えた連結機構

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100629129B1 (ko) * 2003-03-14 2006-09-27 세이미 케미칼 가부시끼가이샤 리튬 2차 전지용 양극활물질 분말
US20050220700A1 (en) * 2003-03-14 2005-10-06 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
JP2009283354A (ja) * 2008-05-23 2009-12-03 Panasonic Corp 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池
JP2011113792A (ja) * 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2013055000A (ja) * 2011-09-06 2013-03-21 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウム遷移金属系化合物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP5601337B2 (ja) * 2012-03-27 2014-10-08 Tdk株式会社 活物質及びリチウムイオン二次電池
KR20150030656A (ko) * 2012-07-12 2015-03-20 미쓰이금속광업주식회사 리튬 금속 복합 산화물
KR101785262B1 (ko) * 2013-07-08 2017-10-16 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 이를 채용한 양극 및 리튬이차전지
US10439224B2 (en) * 2013-07-24 2019-10-08 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5999208B2 (ja) * 2014-04-25 2016-09-28 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP6422133B2 (ja) * 2014-08-28 2018-11-14 ユミコア ニッケルリチウム金属複合酸化物粉体及びその製造方法
US11228034B2 (en) * 2014-12-09 2022-01-18 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery
WO2017082268A1 (ja) * 2015-11-13 2017-05-18 日立金属株式会社 リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池
CN108028375B (zh) * 2016-05-30 2020-12-18 日立金属株式会社 正极活性物质、正极、以及锂离子二次电池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080920A (ja) 1999-09-07 2001-03-27 Nippon Chem Ind Co Ltd 凝集粒状リチウム複合酸化物、その製造方法及びリチウム二次電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2009059710A (ja) * 2001-03-14 2009-03-19 Gs Yuasa Corporation:Kk 正極活物質およびこれを用いた非水電解質二次電池
WO2002086993A1 (fr) * 2001-04-20 2002-10-31 Yuasa Corporation Matiere active anodique et son procede de production, anode pour pile secondaire a electrolyte non aqueux et pile secondaire a electrolyte non aqueux
JP2004335152A (ja) 2003-04-30 2004-11-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質および非水系電解質二次電池
WO2005124898A1 (ja) 2004-06-16 2005-12-29 Seimi Chemical Co., Ltd. リチウム二次電池用正極活物質粉末
JP2007257985A (ja) 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
JP2011119092A (ja) 2009-12-02 2011-06-16 Toyota Motor Corp 活物質粒子およびその利用
JP2013143358A (ja) * 2012-01-12 2013-07-22 Toyota Motor Corp リチウム二次電池
JP2013232318A (ja) 2012-04-27 2013-11-14 Mitsui Mining & Smelting Co Ltd 層構造を有するリチウム金属複合酸化物
JP2016076470A (ja) * 2014-10-06 2016-05-12 日立金属株式会社 リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2016169816A (ja) 2015-03-13 2016-09-23 テイ・エス テック株式会社 軸受ブッシュ及びこの軸受ブッシュを備えた連結機構

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIRAMATSU ET AL., JOURNAL OF THE MINING AND METALLURGICAL INSTITUTE OF JAPAN, vol. 81, 1965
See also references of EP3509143A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3767717A4 (en) * 2018-03-13 2021-12-15 Sumitomo Chemical Company Limited LITHIUM METAL COMPOSITE OXIDE POWDER, POSITIVE ELECTRODE ACTIVE SUBSTANCE FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE, AND LITHIUM SECONDARY BATTERY
EP3767718A4 (en) * 2018-03-13 2021-12-15 Sumitomo Chemical Company, Limited LITHIUM METAL COMPOSITE OXIDE POWDER, POSITIVE ELECTRODE ACTIVE SUBSTANCE FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE, AND LITHIUM SECONDARY BATTERY
US11990617B2 (en) 2018-03-13 2024-05-21 Sumitomo Chemical Company, Limited Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
JP2020100541A (ja) * 2018-12-20 2020-07-02 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2020134781A1 (zh) * 2018-12-29 2020-07-02 宁德时代新能源科技股份有限公司 一种高压实密度正极材料及电化学储能装置
CN111384372A (zh) * 2018-12-29 2020-07-07 宁德时代新能源科技股份有限公司 一种高压实密度正极材料及电化学储能装置
CN111384372B (zh) * 2018-12-29 2021-03-23 宁德时代新能源科技股份有限公司 一种高压实密度正极材料及电化学储能装置
US11177468B2 (en) 2018-12-29 2021-11-16 Contemporary Amperex Technology Co., Limited High-compacted-density positive electrode material and electrochemical energy storage apparatus
US11296318B2 (en) * 2020-01-17 2022-04-05 Sumitomo Chemical Company, Limited Positive electrode active material for all-solid-state lithium-ion battery, electrode, and all-solid-state lithium-ion battery

Also Published As

Publication number Publication date
CN109643798A (zh) 2019-04-16
JP6337360B2 (ja) 2018-06-06
JP2018045758A (ja) 2018-03-22
KR102437198B1 (ko) 2022-08-26
US20210028453A1 (en) 2021-01-28
EP3509143A4 (en) 2020-04-15
CN109643798B (zh) 2022-07-05
KR20190040220A (ko) 2019-04-17
EP3509143A1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6412094B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6337360B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6256956B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6108141B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
WO2016060105A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6343753B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2015182665A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018079816A1 (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
JP2019003955A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2019177032A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
JP6368022B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018181530A1 (ja) リチウム金属複合酸化物の製造方法
JP6500001B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018181402A1 (ja) リチウムニッケル複合酸化物の製造方法
JP6388978B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2019177023A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池
WO2018021453A1 (ja) リチウムニッケル複合酸化物の製造方法
JP6799551B2 (ja) リチウム二次電池用正極活物質の製造方法
JP6843732B2 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018174161A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6360374B2 (ja) リチウム含有複合金属酸化物の製造方法
JP2019172573A (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
JP2018098217A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005642

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017846675

Country of ref document: EP

Effective date: 20190401