WO2024014558A1 - 金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法 - Google Patents

金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法 Download PDF

Info

Publication number
WO2024014558A1
WO2024014558A1 PCT/JP2023/026156 JP2023026156W WO2024014558A1 WO 2024014558 A1 WO2024014558 A1 WO 2024014558A1 JP 2023026156 W JP2023026156 W JP 2023026156W WO 2024014558 A1 WO2024014558 A1 WO 2024014558A1
Authority
WO
WIPO (PCT)
Prior art keywords
mch
less
mpa
lithium secondary
secondary battery
Prior art date
Application number
PCT/JP2023/026156
Other languages
English (en)
French (fr)
Inventor
凌大 坂井田
Original Assignee
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社田中化学研究所 filed Critical 株式会社田中化学研究所
Publication of WO2024014558A1 publication Critical patent/WO2024014558A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a metal composite hydroxide and a positive electrode active material for lithium secondary batteries.
  • a method for producing a positive electrode active material for a lithium secondary battery for example, there is a method in which a lithium compound and a metal composite compound containing a metal element other than Li are mixed and fired.
  • Patent Document 1 describes secondary particles formed by aggregating a plurality of plate-shaped primary particles and fine primary particles smaller than the plate-shaped primary particles as a precursor of a positive electrode active material for a lithium ion secondary battery.
  • a nickel manganese cobalt-containing composite hydroxide is disclosed. It has been disclosed that a lithium ion secondary battery manufactured using a positive electrode active material for a lithium ion secondary battery using the nickel manganese cobalt-containing composite hydroxide as a precursor has high durability and excellent output characteristics. There is.
  • the present invention has been made in view of the above circumstances, and provides a metal composite hydroxide used as a precursor of a positive electrode active material for a lithium secondary battery, which can provide a lithium secondary battery with high initial efficiency, and a metal composite hydroxide of the metal.
  • An object of the present invention is to provide a method for producing a positive electrode active material for a lithium secondary battery using a composite hydroxide.
  • the present invention includes the following [1] to [4].
  • a metal composite hydroxide used as a precursor of a positive electrode active material for lithium secondary batteries which contains Ni, Co, and Mn and satisfies all of the following requirements (1) to (4). oxide.
  • (1) Average particle strength is 10 MPa or more and less than 45 MPa.
  • (2) The molar ratio of manganese to cobalt (Mn/Co) is more than 1.0.
  • BET specific surface area is less than 40 m 2 /g.
  • Average particle diameter D50 is 4.0 ⁇ m or less.
  • the metal composite hydroxide according to [1] which is represented by the following compositional formula (I).
  • a method for producing a positive electrode active material for a lithium secondary battery which includes a firing step of firing at a temperature of °C or less.
  • a metal composite hydroxide used as a precursor of a positive electrode active material for a lithium secondary battery and a lithium secondary battery using the metal composite hydroxide, which provides a lithium secondary battery with high initial efficiency.
  • a method for producing a positive electrode active material for a next battery can be provided.
  • MCH Metal Composite Hydroxide
  • CAM cathode active material for lithium secondary batteries
  • Ni indicates not nickel metal alone but the Ni element. The same applies to other elements such as Co and Mn.
  • Primary particles refer to particles that do not have grain boundaries in their appearance when observed using a scanning electron microscope or the like with a field of view of 10,000 times or more and 30,000 times or less.
  • Secondary particles are particles in which the primary particles are aggregated. That is, the secondary particles are aggregates of primary particles.
  • a or more and B or less is written as “A to B”. For example, when a numerical range is described as “1 to 10 MPa”, it means a range from 1 MPa to 10 MPa, and a numerical range including a lower limit of 1 MPa and an upper limit of 10 MPa.
  • the average particle strength (unit: MPa) of MCH can be measured and calculated as follows. First, 20 secondary particles are randomly selected from the MCH. The particle size and particle strength of each of the selected secondary particles are measured using a micro compression tester (for example, MCT-510, manufactured by Shimadzu Corporation).
  • the particle strength Cs (unit: MPa) is determined by the following formula (A).
  • P is the test force (unit: N)
  • d is the particle diameter (unit: mm).
  • P is a pressure value at which the amount of displacement becomes maximum while the test pressure remains approximately constant when the test pressure is gradually increased.
  • d is a value obtained by measuring the diameters in the X direction and Y direction in the observation image of the micro compression tester, and calculating the average value thereof.
  • Cs 2.8P/ ⁇ d 2 ...(A)
  • the average value of Cs of the obtained 20 secondary particles is the average particle strength. Since particle strength is standardized by particle diameter, if each particle has the same structure, particles with different particle diameters will have the same particle strength (average particle strength ⁇ 5%). On the other hand, if the particle strengths differ between particles, it can be said that the structures of the respective particles differ.
  • the standard deviation of the particle strength of MCH can be calculated from the average particle strength determined above (average particle strength) and Cs of the 20 secondary particles.
  • the average particle diameter D 50 (unit: ⁇ m) of MCH or CAM can be determined from the particle size distribution of MCH or CAM measured by laser diffraction scattering method. Specifically, 0.1 g of powder of the object to be measured, for example, MCH or CAM, is added to 50 mL of a 0.2% by mass sodium hexametaphosphate aqueous solution to obtain a dispersion in which the powder is dispersed. Next, the particle size distribution of the obtained dispersion liquid is measured using a laser diffraction scattering particle size distribution measuring device (for example, Microtrac MT3300EXII manufactured by Microtrac Bell Co., Ltd.) to obtain a volume-based cumulative particle size distribution curve. . In the obtained cumulative particle size distribution curve, the value of the particle size at the time of 50% accumulation from the fine particle side is the average particle size (hereinafter sometimes referred to as D50 ).
  • D50 Average particle size
  • the BET specific surface area (unit: m 2 /g) of MCH can be measured by the BET (Brunauer, Emmett, Teller) method.
  • nitrogen gas is used as the adsorption gas.
  • the measurement can be performed using a BET specific surface area meter (for example, Macsorb (registered trademark) manufactured by Mountech).
  • composition The composition of each metal element in MCH can be measured by inductively coupled plasma emission spectrometry (ICP). For example, after dissolving MCH in hydrochloric acid, the amount of each metal element can be measured using an inductively coupled plasma emission spectrometer (for example, SPS3000, manufactured by SII Nano Technology Co., Ltd.).
  • ICP inductively coupled plasma emission spectrometry
  • the evaluation method of CAM in this specification is as follows.
  • MCH ⁇ Metal composite hydroxide ⁇ MCH of this embodiment can be used as a precursor of CAM.
  • MCH contains Ni, Co, and Mn, and satisfies all of the following requirements (1) to (4).
  • Average particle strength is 10 MPa or more and less than 45 MPa.
  • the molar ratio of manganese to cobalt (Mn/Co) is more than 1.0.
  • BET specific surface area is less than 40 m 2 /g.
  • Average particle diameter D50 is 4.0 ⁇ m or less.
  • MCH is an aggregate of multiple particles.
  • MCH is in powder form.
  • the aggregate of a plurality of particles may contain only secondary particles, or may be a mixture of primary particles and secondary particles.
  • the average particle strength of MCH is 10 MPa or more and less than 45 MPa.
  • the average particle strength is 10 MPa or more, preferably 15 MPa or more, and more preferably 20 MPa or more.
  • the average particle strength is less than 45 MPa, preferably 44 MPa or less.
  • the lower limit value and upper limit value can be arbitrarily combined.
  • the average particle strength is preferably 15 to 44 MPa, more preferably 20 to 44 MPa.
  • the ratio of D 50 of CAM to D 50 of MCH is preferably 0.8 or more, more preferably 0.9 or more, and even more preferably 1.0 or more.
  • the ratio of D 50 of CAM to D 50 of MCH is preferably 1.4 or less, more preferably 1.3 or less, and even more preferably 1.2 or less.
  • the lower limit value and upper limit value can be arbitrarily combined.
  • the ratio of D 50 of CAM to D 50 of MCH is preferably 0.8 to 1.4, more preferably 0.9 to 1.3, and 1.0 to 1.2. It is even more preferable that there be.
  • An MCH that satisfies requirement (1) is an MCH with low particle strength.
  • Particle strength is determined by multiple factors related to the state of agglomeration of primary particles, such as the density of primary particles in secondary particles, orientation of primary particles, contact area between primary particles, and strength of adhesion between primary particles. it is conceivable that. Further, the above factors are also influenced by characteristics derived from the primary particles, such as the size and shape of the primary particles. For example, even if MCH has a low density of primary particles in secondary particles, depending on the other factors mentioned above, the average particle strength of MCH will be 45 MPa or more, and it is considered that the above requirement (1) will not be satisfied.
  • primary particles having a sufficiently grown anisotropic shape are preferred.
  • "Anisotropic shape” means a shape obtained as a result of growth biased toward at least one of the a-axis, b-axis, and c-axis crystal axes.
  • An example of an anisotropic shape is a rod-like shape obtained as a result of growth biased toward one axis.
  • the density of the primary particles in the secondary particles becomes lower than that of the primary particles that have an isotropic shape.
  • "Isotropic shape” means a shape obtained as a result of growth that is relatively uniform in the directions of the a-axis, b-axis, and c-axis crystal axes.
  • the aggregation state of primary particles in secondary particles is that the density of the primary particles is low, the orientation of the primary particles is uniform, the contact area between the primary particles is small, and the strength of adhesion between the primary particles is small. is preferred.
  • Such secondary particles tend to have low particle strength and easily satisfy the requirement (1).
  • the primary particles are aligned with each other.
  • cracks in the secondary particles are likely to occur due to sliding between adjacent primary particles. Therefore, such secondary particles tend to have low particle strength and easily satisfy the requirement (1).
  • the primary particles and the aggregation state of the primary particles in the secondary particles can be confirmed by observation using a scanning electron microscope.
  • Mn/Co The molar ratio of manganese to cobalt in MCH (hereinafter also referred to as "Mn/Co") is more than 1.0, preferably 1.1 or more, and more preferably 1.2 or more. . Mn/Co may be 4.0 or less, 3.0 or less, or 2.0 or less. The lower limit value and upper limit value can be arbitrarily combined. Mn/Co is preferably more than 1.0 and 4.0 or less, more preferably 1.1 to 3.0, and even more preferably 1.2 to 2.0. When Mn/Co exceeds (or exceeds) the lower limit value, it is possible to reduce the amount of cobalt, which is relatively expensive, compared to manganese, which is relatively cheap, which is economical.
  • Mn/Co is more than (or more than) the lower limit value
  • the initial efficiency of the obtained lithium secondary battery is likely to be improved.
  • Mn/Co is within the above range, changes in the average particle diameter are suppressed when producing CAM from MCH.
  • the BET specific surface area of MCH is less than 40 m 2 /g, preferably 38 m 2 /g or less, more preferably 30 m 2 /g or less, even more preferably 20 m 2 /g or less.
  • the BET specific surface area may be 5 m 2 /g or more, 7 m 2 /g or more, or 9 m 2 /g or more.
  • the lower limit value and upper limit value can be arbitrarily combined.
  • the BET specific surface area of MCH is preferably 5 m 2 /g or more and less than 40 m 2 /g, more preferably 5 to 38 m 2 /g, even more preferably 7 to 30 m 2 /g, and 9 It is particularly preferred that the area is 20 m 2 /g.
  • the BET specific surface area is equal to or greater than the lower limit value, the crystallinity is prevented from becoming excessively high and the requirement (1) is easily satisfied.
  • the BET specific surface area is less than or equal to the upper limit value, a change in the average particle diameter is suppressed when producing CAM from MCH.
  • the D 50 of MCH is 4.0 ⁇ m or less, preferably 1.0 to 4.0 ⁇ m, more preferably 1.5 to 4.0 ⁇ m, and 2.0 to 4.0 ⁇ m. is even more preferable.
  • D50 is at least the lower limit of the above range, when producing CAM from MCH, an increase in the BET specific surface area can be suppressed, and gas generation due to side reactions with the electrolytic solution can be suppressed.
  • D50 is below the upper limit of the above range, changes in the average particle diameter are suppressed when CAM is produced from MCH.
  • MCH preferably satisfies the following physical properties.
  • the standard deviation of the particle strength of MCH is preferably 2 to 12 MPa.
  • the standard deviation is preferably 2 MPa or more, more preferably 3 MPa or more, and even more preferably 4 MPa or more.
  • the standard deviation is preferably 12 MPa or less, more preferably 11 MPa or less.
  • the lower limit value and upper limit value can be arbitrarily combined.
  • the standard deviation is more preferably 3 to 11 MPa, and even more preferably 4 to 11 MPa.
  • the standard deviation of the particle strength is at least the lower limit of the above range, particle cracking due to contact between particles is less likely to occur and handling properties tend to be improved. If the standard deviation of the particle strength is below the upper limit of the above range, the uniformity of the precursor will be high, and the cycle characteristics of the resulting battery using the CAM will tend to be high.
  • the MCH of this embodiment has Mn/Co of more than 1.0. It is known that MCH with an Mn/Co ratio of more than 1.0 is easily oxidized during MCH production, and the crystallinity decreases accordingly. In the MCH of this embodiment, by optimizing the manufacturing conditions as described below, the crystallinity is maintained at a high level even when Mn/Co exceeds 1.0. The inventors of the present application have discovered that when the crystallinity of MCH with an Mn/Co ratio of more than 1.0 increases, the primary particles grow into a rod-like shape.
  • the density of the primary particles in the secondary particles is considered to be lower than that of a primary particle having an isotropic shape.
  • the high degree of crystallinity is considered to be one of the factors that satisfies the requirement (1).
  • compositional formula ⁇ MCH is preferably a compound represented by the following compositional formula (I). Ni 1-x-y-w Co x Mn y M w (OH) 2+ ⁇ ...Formula (I) In the compositional formula (I), 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0 ⁇ w ⁇ 0.5, x ⁇ y, 0 ⁇ x+y+w ⁇ 1, 0 ⁇ , and M is One or more elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, Zn, Sn, Zr, Nb, Ga, W, Mo, B, and Si.
  • M is selected from the group consisting of Ti, Mg, Al, Zr, Nb, W, Mo, B, and Si, from the viewpoint that the cycle characteristics of the battery using the obtained CAM tend to be high. It is preferably one or more elements, and more preferably one or more elements selected from the group consisting of Al, Zr, Nb, and W.
  • x is preferably 0.01 or more, more preferably 0.02 or more, particularly preferably 0.03 or more. x is preferably 0.44 or less, more preferably 0.42 or less, particularly preferably 0.40 or less.
  • the above upper limit value and lower limit value of x can be arbitrarily combined.
  • the above compositional formula (I) preferably satisfies 0.01 ⁇ x ⁇ 0.44, more preferably satisfies 0.02 ⁇ x ⁇ 0.42, and satisfies 0.03 ⁇ x ⁇ 0.40. It is particularly preferable.
  • y is preferably 0.02 or more, more preferably 0.03 or more, and particularly preferably 0.04 or more. y is preferably 0.45 or less, more preferably 0.43 or less, particularly preferably 0.41 or less.
  • the above upper limit value and lower limit value of y can be arbitrarily combined.
  • the above compositional formula (I) preferably satisfies 0.02 ⁇ y ⁇ 0.45, more preferably satisfies 0.03 ⁇ y ⁇ 0.43, and satisfies 0.04 ⁇ y ⁇ 0.41. It is particularly preferable.
  • x+y+w is preferably 0.20 or more, more preferably 0.30 or more, and particularly preferably 0.40 or more.
  • x+y+w is preferably 0.70 or less, more preferably 0.66 or less, particularly preferably 0.60 or less.
  • the above upper limit value and lower limit value of x+y+w can be arbitrarily combined.
  • compositional formula (I) preferably satisfies 0 ⁇ 1.2.
  • the above ⁇ is appropriately adjusted depending on the chemical composition that the hydroxide of each metal element can have.
  • the method for manufacturing MCH of the present embodiment includes supplying a solution of a metal salt of Ni, a solution of a metal salt of Co, a solution of a metal salt of Mn, a complexing agent, and an alkaline solution to a reaction tank. It includes a reaction step of performing a coprecipitation reaction.
  • MCH can be produced by a known batch coprecipitation method or continuous coprecipitation method.
  • MCH containing Ni, Co, and Mn a method for manufacturing MCH containing Ni, Co, and Mn will be described as an example.
  • a nickel salt solution, a cobalt salt solution, a manganese salt solution, a complexing agent, and an alkaline solution are reacted to form Ni (1-x MCH represented by '-y') Cox'Mny ' (OH) 2 is produced.
  • x' and y' correspond to x and y in the compositional formula (I), respectively.
  • the nickel salt that is the solute of the nickel salt solution is not particularly limited, but for example, at least one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used.
  • cobalt salt that is the solute of the cobalt salt solution
  • at least one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used.
  • manganese salt that is the solute of the manganese salt solution
  • at least one of manganese sulfate, manganese nitrate, manganese chloride, and manganese acetate can be used.
  • MCH containing a metal other than Ni, Co, and Mn a sulfate, nitrate, chloride, or acetate of the metal can be used as a solute.
  • the metal salt is used in a proportion corresponding to the composition ratio of Ni (1-x'-y') C x' Mn y' (OH) 2 . That is, the amount of each metal salt is adjusted so that the molar ratio of Ni, Co, and Mn in the mixed solution containing the metal salts corresponds to (1-x'-y'):x':y' of the composition formula. stipulates. Also, water is used as a solvent.
  • the complexing agent is one that can form a complex with nickel ions, cobalt ions, and manganese ions in an aqueous solution, such as ammonium ions such as ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, or ammonium fluoride.
  • the donors include hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid and uracil diacetic acid and glycine, with ammonium ion donors being preferred.
  • the amount of the complexing agent contained in a mixed solution containing a nickel salt solution, a cobalt salt solution, a manganese salt solution, and a complexing agent is, for example, the amount of the complexing agent based on the total number of moles of the metal salts (nickel salt, cobalt salt, and manganese salt). It is preferable that the ratio is greater than 0 and less than or equal to 2.0.
  • the ammonia concentration relative to the total volume of the solution in the reaction tank is preferably 0.8 to 3.9 g/L, and 1.0 to 3.9 g/L. It is more preferably L, and even more preferably 1.0 to 3.0 g/L.
  • the ammonia concentration is within the above range, requirements (1) and (4) are easily satisfied.
  • the mixed solution in order to adjust the pH value of the mixed solution containing the nickel salt solution, cobalt salt solution, manganese salt solution, and complexing agent, the mixed solution should be adjusted before the pH of the mixed solution changes from alkaline to neutral.
  • alkaline solution examples include aqueous solutions of alkali metal hydroxides.
  • alkali metal hydroxide examples include sodium hydroxide and potassium hydroxide.
  • the pH value in this specification is defined as a value measured when the temperature of the liquid mixture is 40°C.
  • the pH of the mixed solution is measured when the temperature of the mixed solution sampled from the reaction tank reaches 40°C. If the temperature of the sampled liquid mixture is lower than 40°C, the mixed liquid is heated to 40°C and the pH is measured. If the temperature of the sampled mixed liquid exceeds 40°C, the mixed liquid is cooled to 40°C and the pH is measured.
  • Ni, Co, and Mn react, and Ni (1-x'-y') Co x ' Mny ' (OH) 2 is generated.
  • the reaction temperature is preferably 50 to 80°C, more preferably 50 to 75°C, even more preferably 65 to 75°C.
  • the reaction temperature is equal to or higher than the lower limit, MCH crystals grow easily, crystallinity improves, and as a result, the requirement (1) is easily satisfied.
  • the reaction temperature is below the upper limit value, the reaction can be easily controlled.
  • the pH value in the reaction tank is preferably pH 10.0 to 12.1, more preferably pH 10.0 to 11.9, even more preferably pH 11.5 to 11.9, and pH 11. More preferably, it is between .5 and 11.8.
  • the pH is within the above range, the crystallinity and crystal anisotropy of MCH are controlled, and as a result, the above requirement (1) is easily satisfied.
  • the time for neutralizing the reaction precipitate is, for example, 1 to 24 hours.
  • an overflow type reaction tank can be used to separate the formed reaction precipitate.
  • the reaction tank When producing MCH by the batch co-precipitation method, the reaction tank is equipped with a reaction tank without an overflow pipe and a concentration tank connected to the overflow pipe, and the overflowing reaction precipitate is concentrated in the concentration tank and then recycled again.
  • Examples include devices having a mechanism for circulating to a reaction tank.
  • a gas containing oxygen it is preferable to supply a gas containing oxygen to the solution in the reaction tank.
  • a gas containing oxygen is supplied to the solution in the reaction tank, primary particles grow while part of the MCH is oxidized. It is known that primary particles of MCH generally grow isotropically, but when primary particles grow while a part of MCH is oxidized, the primary particles grow anisotropically.
  • the oxygen concentration relative to the total volume of the oxygen-containing gas is preferably 0.01 to 1.0% by volume. When the oxygen concentration is equal to or higher than the lower limit, anisotropic growth of primary particles is promoted. When the oxygen concentration is below the upper limit value, a decrease in crystallinity is suppressed. As a result, it becomes easier to satisfy the above requirement (1).
  • This effect is particularly large when the composition satisfies requirement (2). Therefore, in order to satisfy the requirements (1), (3), and (4), it is preferable to adjust various conditions as appropriate.
  • the composition satisfies requirement (2) the crystallinity of MCH decreases as described above. When the crystallinity decreases, it becomes particularly difficult to satisfy the above requirement (1).
  • the manufacturing method of this embodiment by optimizing various conditions, the crystallinity and anisotropy are maintained high even when the composition satisfies the requirement (2), and as a result, the requirement (1) is satisfied. It becomes easier.
  • the reaction temperature is 50 to 80°C
  • the pH is 10.0 to 11.9
  • the ammonia concentration is 0.8 to 3.9 g/L with respect to the total volume of the solution in the reaction tank
  • the reaction temperature is 50 to 80°C.
  • the oxygen concentration of the gas containing oxygen gas supplied to the solution in the tank is 0.01 to 1.0% by volume
  • the reaction temperature is 65 to 75°C
  • the pH is 11.5 to 11.8.
  • the ammonia concentration relative to the total volume of the solution in the reaction tank is 1.0 to 3.0 g/L
  • the oxygen concentration of the gas containing oxygen gas supplied to the solution in the reaction tank is 0.02 to 0.05% by volume. It is more preferable that Such reaction conditions make it easier to obtain MCH that satisfies the requirements (1), (3), and (4).
  • reaction precipitate is washed and isolated.
  • a method is used in which, for example, a slurry containing a reaction precipitate (that is, a coprecipitate slurry) is dehydrated by centrifugation, suction filtration, or the like.
  • the isolated reaction precipitate is washed, dehydrated, dried and sieved to obtain MCH containing Ni, Co and Mn.
  • the reaction precipitate is preferably washed with water, weakly acidic water, or alkaline washing liquid.
  • it is preferable to wash with an alkaline cleaning liquid, and more preferably to wash with an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
  • the temperature of the water, weakly acidic water, and alkaline cleaning liquid used is preferably 30°C or higher. Furthermore, it is preferable to perform washing one or more times. Note that after washing with a solution other than water, it is preferable to further wash with water so that compounds derived from the solution do not remain in the reaction precipitate.
  • the drying temperature is preferably 80 to 250°C, more preferably 90 to 230°C.
  • the drying time is preferably 0.5 to 30 hours, preferably 1 to 25 hours.
  • the drying pressure may be normal pressure or reduced pressure.
  • MCH can be manufactured.
  • the method for manufacturing CAM includes a mixing step of mixing MCH and a lithium compound, and a firing step of firing the resulting mixture at a temperature of 500° C. or higher and 1000° C. or lower in an oxygen-containing atmosphere.
  • CAM which is a lithium metal composite oxide, can be manufactured by the method described above.
  • the above-mentioned MCH is used in the CAM manufacturing method.
  • [Mixing process] Mix MCH and a lithium compound.
  • the lithium compound used in this embodiment at least one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide (including hydrates), lithium oxide, lithium chloride, and lithium fluoride can be used. .
  • lithium hydroxide or lithium carbonate or a mixture thereof is preferred.
  • the content of lithium carbonate in the lithium hydroxide is preferably 5% by mass or less.
  • a lithium compound and MCH are mixed in consideration of the composition ratio of the final target product to obtain a mixture of the lithium compound and MCH.
  • the amount (molar ratio) of lithium to the total amount of metals contained in MCH is preferably 0.98 to 1.20, more preferably 1.04 to 1.10, particularly preferably 1.05 to 1.10. .
  • the obtained mixture is fired at a firing temperature of 500°C or more and 1000°C or less in an oxygen-containing atmosphere. By firing the mixture, crystals of the lithium metal composite oxide grow.
  • the firing temperature in this specification is the temperature of the atmosphere in the firing furnace, and means the highest temperature of the holding temperature (maximum holding temperature).
  • the firing temperature means the temperature at which heating is performed at the highest holding temperature of each firing stage.
  • the firing temperature is, for example, preferably 650 to 900°C, more preferably 680 to 850°C, and particularly preferably 700 to 820°C.
  • the firing temperature is equal to or higher than the lower limit of the above range, a CAM having a strong crystal structure can be obtained. Further, when the firing temperature is below the upper limit of the above range, volatilization of lithium on the surface of the CAM particles can be reduced.
  • the holding time during firing is preferably 3 to 50 hours, more preferably 4 to 20 hours.
  • the retention time during firing is equal to or less than the upper limit of the above range, volatilization of lithium is suppressed and deterioration of battery performance is suppressed.
  • the holding time during firing is at least the lower limit of the above range, crystal growth is promoted and deterioration in battery performance is suppressed.
  • the temperature increase rate in the firing step to reach the maximum holding temperature is preferably 80°C/hour or more, more preferably 100°C/hour or more, and particularly preferably 150°C/hour or more.
  • the rate of temperature increase in the heating step at which the maximum holding temperature is reached is calculated from the time from when the temperature rise starts until the holding temperature is reached in the baking device.
  • the firing process has a plurality of firing stages at different firing temperatures.
  • the firing atmosphere air, oxygen, nitrogen, argon, or a mixed gas thereof is used depending on the desired composition, and if necessary, multiple firing steps are performed.
  • the firing atmosphere is preferably an oxygen-containing atmosphere.
  • the mixture of MCH and lithium compound may be calcined in the presence of an inert melting agent.
  • the inert melting agent is added to an extent that does not impair the initial capacity of a battery using CAM, and may remain in the fired product.
  • the inert melting agent for example, those described in WO2019/177032A1 can be used.
  • the firing device used during firing is not particularly limited, and for example, either a continuous firing furnace or a fluidized fluidized firing furnace may be used.
  • Continuous firing furnaces include tunnel furnaces and roller hearth kilns.
  • a rotary kiln may be used as the fluidized firing furnace.
  • CAM is obtained by firing the mixture of MCH and lithium compound as described above.
  • the D 50 of the CAM is preferably 3.0 to 6.0 ⁇ m, more preferably 3.0 to 5.0 ⁇ m, and even more preferably 3.5 to 5.0 ⁇ m.
  • Measurements of various parameters of MCH and CAM produced by the method described below are as follows: (average particle strength), (standard deviation of particle strength), (average particle diameter D 50 ), (composition), (BET specific surface area) This was carried out using the measurement method described in .
  • the obtained positive electrode mixture was applied to a 40 ⁇ m thick Al foil serving as a current collector and vacuum dried at 150° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of this positive electrode for a lithium secondary battery was 1.65 cm 2 .
  • the electrolytic solution used was a liquid obtained by dissolving LiPF 6 at 1 mol/l in a mixture of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate at a ratio of 30:35:35 (volume ratio).
  • metal lithium is used as the negative electrode, placed on top of the separator, covered with a gasket, and crimped with a crimping machine to form a lithium secondary battery (coin-shaped half cell R2032.
  • coin-shaped half cell coin-shaped half cell
  • Example 1 After putting water into a reaction tank equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added and the liquid temperature was maintained at 70°C.
  • Mixed raw material liquid 1 was prepared by mixing a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution so that the molar ratio of Ni:Co:Mn was 0.5:0.2:0.3.
  • the reaction precipitate 1 was washed using a 5% by mass aqueous sodium hydroxide solution that was 20 times the mass of the reaction precipitate 1. After washing, it was dehydrated with a centrifuge, washed with water, dehydrated, isolated, and dried at 105° C. for 20 hours to obtain MCH1 containing Ni, Co, and Mn.
  • MCH1 containing Ni, Co, and Mn.
  • Table 1 Various parameters of MCH1 are shown in Table 1 (hereinafter, Examples 2 and 3 and Comparative Examples 1 and 2 are also shown in the same way). Note that 1-x-y-w, x, y, and w in the composition in Table 1 are values corresponding to the above formula (I).
  • Lithium carbonate was weighed so that the amount of Li (molar ratio) to the total amount of Ni, Co, and Mn contained in MCH1 was 1.07.
  • Mixture 1 was obtained by mixing MCH1 and lithium carbonate.
  • the obtained mixture 1 was fired at 750° C. for 6 hours in an oxygen atmosphere to obtain a lithium metal composite oxide powder.
  • the obtained powder and pure water whose liquid temperature was adjusted to 5°C were mixed so that the ratio of the mass of the powder to the total amount was 0.3, and the slurry was stirred for 20 minutes and then dehydrated.
  • CAM1 was obtained by rinsing with twice the mass of the above powder in pure water whose temperature was adjusted to 5°C, isolation, and drying at 150°C.
  • Table 1 hereinafter, Examples 2 and 3 and Comparative Examples 1 and 2 are also shown in the same way).
  • a lithium secondary battery was produced using the obtained CAM1, and the initial efficiency was measured.
  • the results are shown in Table 1 (hereinafter, Examples 2 and 3 and Comparative Examples 1 and 2 are also shown in the same manner).
  • Example 2 MCH2 and CAM2 were prepared in the same manner as in Example 1, except that the pH of the solution in the reaction tank during MCH production was 11.55 (measurement temperature: 40°C) and the ammonium concentration in the tank was 1.1 g/L. I got it. A lithium secondary battery was produced using the obtained CAM2, and the initial efficiency was measured.
  • Example 3 During MCH production, a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, a manganese sulfate aqueous solution, and a zirconium sulfate aqueous solution are mixed with a Ni:Co:Mn:Zr molar ratio of 0.548:0.199:0.248:0.005. Except that the liquid temperature in the reaction tank was 50°C, the pH of the solution in the reaction tank was 11.94 (measurement temperature: 40°C), and the ammonium concentration in the tank was 2.6 g/L. MCH3 and CAM3 were obtained in the same manner as in Example 1. A lithium secondary battery was produced using the obtained CAM3, and the initial efficiency was measured.
  • Example 1 Example 1 except that the liquid temperature in the reaction tank during MCH production was 30°C, the pH in the reaction tank was 11.95 (measurement temperature: 40°C), and the ammonium concentration in the tank was 4.0g/L. MCH4 and CAM4 were obtained in the same manner as above. A lithium secondary battery was produced using the obtained CAM4, and the initial efficiency was measured.
  • lithium secondary batteries using CAMs for lithium secondary batteries in which MCH of Examples 1 to 3, which satisfies requirements (1) to (4), is a precursor have high initial efficiency. Furthermore, in Examples 1 to 3, D 50 (CAM)/D 50 (MCH) was within the range of 1.1 to 1.2, and the change in average particle diameter was suppressed when producing CAM from MCH. It turns out that

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、リチウム二次電池用正極活物質の前駆体として用いられる金属複合水酸化物であって、Ni、Co、及びMnを含み、下記要件(1)~(4)をすべて満たす金属複合水酸化物に関する。 (1)平均粒子強度が、10MPa以上45MPa未満である。 (2)コバルトに対するマンガンのモル比(Mn/Co)が1.0超である。 (3)BET比表面積が40m/g未満である。 (4)平均粒子径D50が、4.0μm以下である。

Description

金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法
 本発明は、金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法に関する。
 本願は、2022年7月15日に、日本に出願された特願2022-114311号に基づき優先権を主張し、その内容をここに援用する。
 リチウム二次電池用正極活物質の製造方法としては、例えば、リチウム化合物と、Li以外の金属元素を含む金属複合化合物とを混合して焼成する方法がある。
 リチウム二次電池の性能向上を目的として、前記金属複合化合物の検討が行われている。例えば、特許文献1には、リチウムイオン二次電池用正極活物質の前駆体として、複数の板状一次粒子および前記板状一次粒子よりも小さな微細一次粒子が凝集して形成された二次粒子からなる、ニッケルマンガンコバルト含有複合水酸化物が開示されている。前記ニッケルマンガンコバルト含有複合水酸化物を前駆体とするリチウムイオン二次電池用正極活物質を用いて製造されたリチウムイオン二次電池は、耐久性が高く、出力特性に優れることが開示されている。
JP-A-2020-177860
 リチウム二次電池の応用分野が進む中、リチウム二次電池には、さらなる初回効率の向上が求められる。
 本発明は上記事情に鑑みてなされたものであって、初回効率が高いリチウム二次電池が得られる、リチウム二次電池用正極活物質の前駆体として用いられる金属複合水酸化物、及び前記金属複合水酸化物を用いたリチウム二次電池用正極活物質の製造方法を提供することを課題とする。
 本発明は、下記[1]~[4]である。
[1] リチウム二次電池用正極活物質の前駆体として用いられる金属複合水酸化物であって、Ni、Co、及びMnを含み、下記要件(1)~(4)をすべて満たす金属複合水酸化物。
(1)平均粒子強度が、10MPa以上45MPa未満である。
(2)コバルトに対するマンガンのモル比(Mn/Co)が1.0超である。
(3)BET比表面積が40m/g未満である。
(4)平均粒子径D50が、4.0μm以下である。
[2] 下記組成式(I)で表される、[1]に記載の金属複合水酸化物。
 Ni1-x-y-wCoMn(OH)2+α ・・・式(I)
(前記組成式(I)中、0<x<0.5、0<y≦0.5、0≦w≦0.5、x<y、0<x+y+w<1、0≦αを満たし、MはFe、Cu、Ti、Mg、Al、Zn、Sn、Zr、Nb、Ga、W、Mo、B、及びSiからなる群より選ばれる1種以上の元素である。)
[3] 粒子強度の標準偏差が2MPa以上12MPa以下である、[1]又は[2]に記載の金属複合水酸化物。
[4] [1]~[3]のいずれか一項に記載の金属複合水酸化物と、リチウム化合物と、を混合する混合工程と、得られた混合物を酸素含有雰囲気下、500℃以上1000℃以下の温度で焼成する焼成工程を有する、リチウム二次電池用正極活物質の製造方法。
 本発明によれば、初回効率が高いリチウム二次電池が得られる、リチウム二次電池用正極活物質の前駆体として用いられる金属複合水酸化物、及び前記金属複合水酸化物を用いたリチウム二次電池用正極活物質の製造方法を提供することができる。
 本明細書における用語の定義は以下の通りである。
 金属複合水酸化物(Metal Composite Hydroxide)を以下「MCH」ともいう。
 リチウム二次電池用正極活物質(Cathode Active Material for lithium secondary batteries)を以下「CAM」ともいう。
 「Ni」とは、ニッケル金属単体ではなく、Ni元素であることを示す。Co、Mn等の他の元素の表記も同様である。
 「一次粒子」とは、走査型電子顕微鏡などを用いて10000倍以上30000倍以下の視野にて観察した際に、外観上に粒界が存在しない粒子を意味する。
 「二次粒子」とは、前記一次粒子が凝集している粒子である。即ち、二次粒子は一次粒子の凝集体である。
 数値範囲について、「A以上B以下」を「A~B」と表記する。数値範囲が例えば「1~10MPa」と記載されている場合、1MPaから10MPaまでの範囲を意味し、下限値である1MPaと上限値である10MPaを含む数値範囲を意味する。
 本明細書におけるMCHの各パラメータの測定方法は以下の通りである。
(平均粒子強度)
 MCHの平均粒子強度(単位:MPa)は、以下のように測定及び算出することができる。まず、MCHから無作為に20個の二次粒子を選択する。微小圧縮試験機(例えば、島津製作所社製、MCT-510)を用いて、選択された二次粒子それぞれについて粒子径及び粒子強度を測定する。ここで、粒子強度Cs(単位:MPa)は、下記式(A)により求められる。下記式(A)中、Pは試験力(単位:N)であり、dは粒子径(単位:mm)である。Pは、試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値である。dは、微小圧縮試験機の観察画像におけるX方向とY方向の径を測定し、その平均値を算出した値)である。
 Cs=2.8P/πd・・・(A)
 得られた20個の二次粒子のCsの平均値が平均粒子強度である。
 粒子強度は、粒子径で規格化されているため、各粒子の構造が同じであれば粒子径が異なる粒子であって同等(平均粒子強度±5%)の粒子強度となる。一方で、粒子間で粒子強度が異なれば、それぞれの粒子の構造が異なるといえる。
(粒子強度の標準偏差)
 MCHの粒子強度の標準偏差は、上記(平均粒子強度)で求めた平均粒子強度及び20個の二次粒子のCsにより算出することができる。
(平均粒子径D50
 MCH又はCAMの平均粒子径D50(単位:μm)は、レーザー回折散乱法によって測定されるMCH又はCAMの粒度分布から求めることができる。具体的には、測定対象、例えばMCH又はCAMの粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mLに投入し、前記粉末を分散させた分散液を得る。次に、得られた分散液についてレーザー回折散乱粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、マイクロトラックMT3300EXII)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、微小粒子側から50%累積時の粒子径の値が平均粒子径(以下、D50と記載することがある)である。
(BET比表面積)
 MCHのBET比表面積(単位:m/g)は、BET(Brunauer,Emmett,Teller)法によって測定することができる。BET比表面積の測定では、吸着ガスとして窒素ガスを用いる。例えば、測定対象粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(例えば、マウンテック社製、Macsorb(登録商標))を用いて測定することができる。
(組成)
 MCHの各金属元素の組成は、誘導結合プラズマ発光分析法(ICP)により測定することができる。例えば、MCHを塩酸に溶解させた後、誘導結合プラズマ発光分析装置(例えば、エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて、各金属元素量の測定を行うことができる。
 本明細書におけるCAMの評価方法は以下の通りである。
(初回効率)
 後述の実施例に記載の方法により、CAMを用いてリチウム二次電池を製造する。製造されたリチウム二次電池を用いて以下の方法で初回効率試験を実施し、初回効率を算出する。
・初回効率試験
 リチウム二次電池を室温で12時間静置することでセパレータ及び正極合剤層に充分電解液を含浸させる。
 次に、試験温度25℃において、充電及び放電ともに電流設定値0.2CAとし、それぞれ定電流定電圧充電と定電流放電を行う。充電最大電圧は、4.3V、放電最小電圧は2.5Vとする。充電時間は6時間、放電時間は5時間とする。充電容量を測定し、得られた値を「初回充電容量」(mAh/g)とする。さらに放電容量を測定し、得られた値を「初回放電容量」(mAh/g)とする。
 初回放電容量の値と、初回充電容量の値を用い、下記の式で初回効率を算出する。
 初回効率(%)=初回放電容量(mAh/g)/初回充電容量(mAh/g)×100
≪金属複合水酸化物≫
 本実施形態のMCHは、CAMの前駆体として用いることができる。MCHは、Ni、Co、及びMnを含み、下記要件(1)~(4)をすべて満たす。
(1)平均粒子強度が、10MPa以上45MPa未満である。
(2)コバルトに対するマンガンのモル比(Mn/Co)が1.0超である。
(3)BET比表面積が40m/g未満である。
(4)平均粒子径D50が、4.0μm以下である。
 MCHは、複数の粒子の集合体である。言い換えれば、MCHは、粉末状である。複数の粒子の集合体は、二次粒子のみを含んでいてもよく、一次粒子と二次粒子の混合物であってもよい。
<要件(1)>
 MCHの平均粒子強度は、10MPa以上45MPa未満である。平均粒子強度は、10MPa以上であり、15MPa以上であることが好ましく、20MPa以上であることがより好ましい。平均粒子強度は、45MPa未満であり、44MPa以下であることが好ましい。
 前記下限値及び上限値は任意に組み合わせることができる。
 例えば、平均粒子強度は、15~44MPaであることが好ましく、20~44MPaであることがより好ましい。平均粒子強度が前記範囲内であると、得られるリチウム二次電池用正極が好適な電極構造を作りやすく、その結果、得られるリチウム二次電池の初回効率が向上しやすい。
 MCHからCAMを製造する際に、粒子の平均粒子径が大きく変化することがある。平均粒子径が変化するとCAMの粒子設計に大きく影響を及ぼすため、MCHからCAMを製造する際に、粒子の平均粒子径が変化しにくいことも求められる。平均粒子強度が前記範囲内であると、MCHからCAMを製造する際、平均粒子径の変化が抑制される。
 MCHのD50に対するCAMのD50の割合は、0.8以上であることが好ましく、0.9以上であることがより好ましく、1.0以上であることがさらに好ましい。MCHのD50に対するCAMのD50の割合は、1.4以下であることが好ましく、1.3以下であることがより好ましく、1.2以下であることがさらに好ましい。
 前記下限値及び上限値は任意に組み合わせることができる。
 例えば、MCHのD50に対するCAMのD50の割合は、0.8~1.4であることが好ましく、0.9~1.3であることがより好ましく、1.0~1.2であることがさらに好ましい。
 要件(1)を充足するMCHは、粒子強度が低いMCHである。粒子強度は、二次粒子中の一次粒子の密度、一次粒子同士の配向、一次粒子間の接触面積、一次粒子間の接着の強さ等の一次粒子の凝集状態に関する複数の因子により決定されると考えられる。また、前記因子は、一次粒子の大きさ、形状等の一次粒子由来の特性にも影響される。例えば、二次粒子中の一次粒子の密度が低いMCHでも、前記その他の因子によっては、MCHの平均粒子強度は45MPa以上となり、前記要件(1)を充足しなくなると考えられる。
 一次粒子としては、充分に成長した異方性の形状を有する一次粒子が好ましい。「異方性の形状」とは、a軸、b軸、c軸の結晶軸のうち、少なくとも一つの軸の方向に偏って成長した結果得られる形状を意味する。異方性の形状としては例えば、一つの軸の方向に偏って成長した結果得られる棒状の形状が挙げられる。一次粒子が充分に成長すると、一次粒子が比較的大きくなる。大きい一次粒子は、小さい一次粒子に比べ、単位体積当たりの外表面積が小さくなる。したがって、大きい一次粒子は小さい一次粒子に比べ、一次粒子が凝集する際に、一次粒子同士の接触面積が小さくなりやすいと考えられる。また、一次粒子が異方性の形状を有すると、等方性の形状を有する一次粒子と比較し、二次粒子中の一次粒子の密度が低くなると考えられる。「等方性の形状」とは、a軸、b軸、c軸の結晶軸の方向に対し、比較的等しく成長した結果得られる形状を意味する。
 二次粒子中の一次粒子の凝集状態としては、一次粒子の密度が低く、一次粒子同士の配向がそろっており、一次粒子間の接触面積が小さく、一次粒子間の接着の強さが小さいことが好ましい。このような二次粒子は、粒子強度が低くなりやすく、前記要件(1)を充足しやすい。
 また、二次粒子中の一次粒子の凝集状態としては、一次粒子同士の配向がそろっていることが好ましい。このような場合、隣り合う一次粒子同士が滑ることにより、二次粒子の割れが生じやすい。したがって、このような二次粒子は、粒子強度が低くなりやすく、前記要件(1)を充足しやすい。
 一次粒子、及び二次粒子中の一次粒子の凝集状態は、走査型電子顕微鏡による観察により確認することができる。
<要件(2)>
 MCH中のコバルトに対するマンガンのモル比(以下、「Mn/Co」ともいう。)は、1.0超であり、1.1以上であることが好ましく、1.2以上であることがより好ましい。Mn/Coは、4.0以下であってもよく、3.0以下であってもよく、2.0以下であってもよい。
 前記下限値及び上限値は任意に組み合わせることができる。
 Mn/Coは、1.0超4.0以下であることが好ましく、1.1~3.0であることがより好ましく、1.2~2.0であることがさらに好ましい。
 Mn/Coが前記下限値超(以上)であると、相対的に安価なマンガンに対する相対的に高価なコバルトの使用量を削減することができ、経済的である。また、Mn/Coが前記下限値超(以上)であると、得られるリチウム二次電池の初回効率が向上しやすい。さらに、Mn/Coが前記範囲内であると、MCHからCAMを製造する際、平均粒子径の変化が抑制される。
<要件(3)>
 MCHのBET比表面積は、40m/g未満であり、38m/g以下であることが好ましく、30m/g以下であることがより好ましく、20m/g以下であることがさらに好ましい。BET比表面積は、5m/g以上であってもよく、7m/g以上であってもよく、9m/g以上であってもよい。
 前記下限値及び上限値は任意に組み合わせることができる。
 MCHのBET比表面積は、5m/g以上40m/g未満であることが好ましく、5~38m/gであることがより好ましく、7~30m/gであることがさらに好ましく、9~20m/gであることが特に好ましい。
 BET比表面積が前記下限値以上であると、結晶度が過度に高くなるのを抑え要件(1)を充足しやすくなる。BET比表面積が前記上限値以下であると、MCHからCAMを製造する際、平均粒子径の変化が抑制される。
<要件(4)>
 MCHのD50は、4.0μm以下であり、1.0~4.0μmであることが好ましく、1.5~4.0μmであることがより好ましく、2.0~4.0μmであることがさらに好ましい。
 D50が前記範囲の下限値以上であると、MCHからCAMを製造する際、BET比表面積の増加を抑制することができ、電解液との副反応によるガス発生が抑制される。D50が前記範囲の上限値以下であると、MCHからCAMを製造する際、平均粒子径の変化が抑制される。
 MCHは、前記要件(1)~(4)の他、以下の物性を満たすことが好ましい。
 MCHの粒子強度の標準偏差は2~12MPaであることが好ましい。標準偏差は、2MPa以上であることが好ましく、3MPa以上であることがより好ましく、4MPa以上であることがさらに好ましい。標準偏差は、12MPa以下であることが好ましく、11MPa以下であることがより好ましい。
 前記下限値及び上限値は任意に組み合わせることができる。
 例えば、標準偏差は、3~11MPaであることがより好ましく、4~11MPaであることがさらに好ましい。粒子強度の標準偏差が前記範囲の下限値以上であると、粒子同士の接触による粒子割れが生じにくくハンドリング性が高くなりやすい。粒子強度の標準偏差が前記範囲の上限値以下であると、前駆体の均一性が高くなり、得られるCAMを用いた電池のサイクル特性が高くなりやすい。
 本実施形態のMCHは、Mn/Coが1.0超である。Mn/Coが1.0超のMCHにおいては、MCH製造の際に酸化されやすく、それに伴い、結晶度が低下することが知られている。本実施形態のMCHにおいては、後述のように製造条件を最適化することにより、Mn/Coが1.0超であっても結晶度が高く維持される。Mn/Coが1.0超であるMCHの結晶度が高くなると、一次粒子が棒状の形状に成長することを本願の発明者らは見出した。上述したように一次粒子が棒状の形状のような異方性の形状を有すると、等方性の形状を有する一次粒子と比較し、二次粒子中の一次粒子の密度が低くなると考えられる。本実施形態のMCHにおいては、結晶度の高さが前記要件(1)を充足する要因の一つになっていると考えられる。
≪組成式≫
 MCHは、下記組成式(I)で表される化合物であることが好ましい。
 Ni1-x-y-wCoMn(OH)2+α ・・・式(I)
 前記組成式(I)中、0<x<0.5、0<y≦0.5、0≦w≦0.5、x<y、0<x+y+w<1、0≦αを満たし、MはFe、Cu、Ti、Mg、Al、Zn、Sn、Zr、Nb、Ga、W、Mo、B、及びSiからなる群より選ばれる1種以上の元素である。
 wが0超の場合、得られるCAMを用いた電池のサイクル特性が高くなりやすい観点からMはTi、Mg、Al、Zr、Nb、W、Mo、B、及びSiからなる群より選ばれる1種以上の元素であることが好ましく、Al、Zr、Nb、及びWからなる群より選ばれる1種以上の元素であることがより好ましい。
 xは、0.01以上が好ましく、0.02以上がより好ましく、0.03以上が特に好ましい。
 xは、0.44以下が好ましく、0.42以下がより好ましく、0.40以下が特に好ましい。
 xの上記上限値及び下限値は任意に組み合わせることができる。
 上記組成式(I)は、0.01≦x≦0.44を満たすことが好ましく、0.02≦x≦0.42を満たすことがより好ましく、0.03≦x≦0.40を満たすことが特に好ましい。
 yは、0.02以上が好ましく、0.03以上がより好ましく、0.04以上が特に好ましい。
 yは、0.45以下が好ましく、0.43以下がより好ましく、0.41以下が特に好ましい。
 yの上記上限値及び下限値は任意に組み合わせることができる。
 上記組成式(I)は、0.02≦y≦0.45を満たすことが好ましく、0.03≦y≦0.43を満たすことがより好ましく、0.04≦y≦0.41を満たすことが特に好ましい。
 x+y+wは、0.20以上が好ましく、0.30以上がより好ましく、0.40以上が特に好ましい。
 x+y+wは、0.70以下が好ましく、0.66以下がより好ましく、0.60以下が特に好ましい。
 x+y+wの上記上限値及び下限値は任意に組み合わせることができる。
 上記組成式(I)は、0≦α≦1.2を満たすことが好ましい。前記αは各金属元素の水酸化物がとりうる化学組成によって適宜調整される。
<金属複合水酸化物の製造方法>
 本実施形態のMCHの製造方法は、Niの金属塩の溶液と、Coの金属塩の溶液と、Mnの金属塩の溶液と、錯化剤と、アルカリ溶液と、を反応槽に供給して共沈反応を行う反応工程を含む。MCHは、公知のバッチ式共沈殿法又は連続式共沈殿法により製造することが可能である。
 以下、Ni、Co、及びMnを含むMCHの製造方法を一例として説明する。具体的には、JP-A-2002-201028に記載された連続式共沈殿法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、錯化剤、アルカリ溶液を反応させ、Ni(1-x’-y’)Cox’Mny’(OH)で表されるMCHを製造する。例えば、前記組成式(I)で表されるMCHを製造する場合、x’、y’は前記組成式(I)におけるx、yにそれぞれ対応させる。
 ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの少なくとも1種を使用することができる。
 コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト及び酢酸コバルトのうちの少なくとも1種を使用することができる。
 マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン及び酢酸マンガンのうちの少なくとも1種を使用することができる。
 なお、Ni、Co、及びMn以外の金属を含むMCHを製造する場合も、当該金属の硫酸塩、硝酸塩、塩化物、又は酢酸塩を溶質として使用することができる。
 金属塩は、前記Ni(1-x’-y’)Cox’Mny’(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合液中におけるNi、Co及びMnのモル比が、前記組成式の(1-x’-y’):x’:y’と対応するように各金属塩の量を規定する。また、溶媒として水が使用される。
 錯化剤としては、水溶液中で、ニッケルイオン、コバルトイオン及びマンガンイオンと錯体を形成可能なものであり、例えば、水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、又は弗化アンモニウム等のアンモニウムイオン供給体、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸及びウラシル二酢酸及びグリシンが挙げられ、アンモニウムイオン供給体が好ましい。
 ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩(ニッケル塩、コバルト塩、及びマンガン塩)のモル数の合計に対するモル比が0より大きく2.0以下であることが好ましい。
 錯化剤として、アンモニウムイオン供給体を使用する場合、反応槽内の溶液の総体積に対するアンモニア濃度は、0.8~3.9g/Lであることが好ましく、1.0~3.9g/Lであることがより好ましく、1.0~3.0g/Lであることがさらに好ましい。アンモニア濃度が前記範囲内にあると要件(1)及び要件(4)を充足しやすい。
 共沈殿法に際しては、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を含む混合液のpH値を調整するため、混合液のpHがアルカリ性から中性になる前に、混合液にアルカリ溶液を添加する。アルカリ溶液としては、例えば、アルカリ金属水酸化物の水溶液が例として挙げられる。また、アルカリ金属水酸化物としては、例えば水酸化ナトリウム又は水酸化カリウムが例として挙げられる。
 なお、本明細書におけるpHの値は、混合液の温度が40℃の時に測定された値であると定義する。混合液のpHは、反応槽からサンプリングした混合液の温度が、40℃になったときに測定する。サンプリングした混合液が40℃未満である場合には、混合液を40℃まで加温してpHを測定する。サンプリングした混合液が40℃を超える場合には、混合液を40℃まで冷却してpHを測定する。
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給すると、Ni、Co及びMnが反応し、Ni(1-x’-y’)Cox’Mny’(OH)が生成する。
 反応温度は、50~80℃であることが好ましく、50~75℃であることがより好ましく、65~75℃であることがさらに好ましい。反応温度が前記下限値以上であると、MCHの結晶が成長しやすく、結晶度が向上し、結果として前記要件(1)を充足しやすくなる。反応温度が前記上限値以下であると、反応の制御がしやすい。
 反応槽内のpH値は、pH10.0~12.1であることが好ましく、pH10.0~11.9であることがより好ましく、pH11.5~11.9であることがさらに好ましく、pH11.5~11.8であることがさらに好ましい。pHが前記範囲内にあるとMCHの結晶度と結晶の異方性が制御され、結果として前記要件(1)を充足しやすくなる。
 反応槽内で形成された反応沈殿物を撹拌しながら中和する。反応沈殿物の中和の時間は、例えば1~24時間である。
 連続式共沈殿法で用いる反応槽は、形成された反応沈殿物を分離するためオーバーフローさせるタイプの反応槽を用いることができる。
 バッチ式共沈殿法によりMCHを製造する場合、反応槽としては、オーバーフローパイプを備えない反応槽、及びオーバーフローパイプに連結された濃縮槽を備え、オーバーフローした反応沈殿物を濃縮槽で濃縮し、再び反応槽へ循環させる機構を有する装置等が挙げられる。
 反応槽中の溶液に、酸素を含むガスを供給することが好ましい。反応槽中の溶液に、酸素を含むガスを供給すると、MCHの一部が酸化されながら一次粒子が成長する。MCHの一次粒子は一般的に等方的に成長することが知られているが、MCHの一部が酸化されながら一次粒子が成長する場合、一次粒子は異方的に成長する。一方、酸素の供給量が多すぎると、過剰な酸化が進行し、MCHの結晶度が低下する。酸素を含むガスの総体積に対する酸素濃度は、0.01~1.0体積%であることが好ましい。酸素濃度が前記下限値以上であると、一次粒子の異方的な成長が促進される。酸素濃度が前記上限値以下であると、結晶度の低下が抑制される。結果として、前記要件(1)を充足しやすくなる。
 上述した反応槽内の温度やpH、反応槽内の溶液の総体積に対するアンモニア濃度、反応槽内の溶液に供給する酸素ガスを含むガスの酸素濃度は、得られるMCHの粒子強度、BET比表面積、粒子径に大きく影響する。組成が要件(2)を充足する下ではその影響は特に大きい。このため、前記要件(1)、(3)、(4)を充足するために、各種条件を適宜調整することが好ましい。特に、組成が要件(2)を充足する下では、上述したように、MCHの結晶度が低下することが知られている。結晶度が低下すると、特に前記要件(1)を充足しにくくなる。本実施形態の製造方法では、各種条件を最適化することにより、組成が要件(2)を充足する下でも、結晶度および異方性が高く維持され、結果として前記要件(1)を充足しやすくなる。
 本実施形態においては、反応温度を50~80℃とし、pHを10.0~11.9とし、反応槽内の溶液の総体積に対するアンモニア濃度を0.8~3.9g/Lとし、反応槽内の溶液に供給する酸素ガスを含むガスの酸素濃度を0.01~1.0体積%とすることが好ましく、反応温度を65~75℃とし、pHを11.5~11.8とし、反応槽内の溶液の総体積に対するアンモニア濃度を1.0~3.0g/Lとし、反応槽内の溶液に供給する酸素ガスを含むガスの酸素濃度を0.02~0.05体積%とすることがより好ましい。
 このような反応条件とすることで、前記要件(1)、(3)、(4)を充足するMCHが得られやすくなる。
 以上の反応後、中和された反応沈殿物を洗浄した後に、単離する。単離には、例えば反応沈殿物を含むスラリー(つまり、共沈物スラリー)を遠心分離や吸引ろ過などで脱水する方法が用いられる。
 単離された反応沈殿物を洗浄、脱水、乾燥及び篩別し、Ni、Co及びMnを含むMCHが得られる。
 反応沈殿物の洗浄は、水、弱酸水、アルカリ性洗浄液で行うことが好ましい。本実施形態においては、アルカリ性洗浄液で洗浄することが好ましく、水酸化ナトリウム水溶液又は水酸化カリウム水溶液で洗浄することがより好ましい。
 反応沈殿物の質量に対して10質量倍以上の水、弱酸水、アルカリ性洗浄液で洗浄することが好ましい。また、使用する水、弱酸水、アルカリ性洗浄液の温度は30℃以上とすることが好ましい。さらに、洗浄は1回以上行うことが好ましい。
 なお、水以外の溶液で洗浄を行った後は、さらに水で洗浄を行い、前記溶液由来の化合物が反応沈殿物に残存しないようにすることが好ましい。
 乾燥温度は、80~250℃であることが好ましく、90~230℃であることがより好ましい。乾燥時間は0.5~30時間であることが好ましく、1~25時間であることが好ましい。乾燥圧力は、常圧、減圧でもよい。
 以上の工程により、MCHを製造することができる。
≪リチウム二次電池用正極活物質の製造方法≫
 CAMの製造方法は、MCHと、リチウム化合物と、を混合する混合工程と、得られた混合物を酸素含有雰囲気下、500℃以上1000℃以下の温度で焼成する焼成工程を有する。前記方法によってリチウム金属複合酸化物であるCAMを製造することができる。
 CAMの製造方法には、上述したMCHを用いる。
[混合工程]
 MCHと、リチウム化合物と、を混合する。
 本実施形態に用いるリチウム化合物は、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム(水和物を含む)、酸化リチウム、塩化リチウム及びフッ化リチウムの少なくとも何れか一つを使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又はその混合物が好ましい。また、水酸化リチウムを含む原料(試薬等)が炭酸リチウムを含む場合には、水酸化リチウム中の炭酸リチウムの含有量は、5質量%以下であることが好ましい。
 リチウム化合物とMCHとを、最終目的物の組成比を勘案して混合し、リチウム化合物とMCHとの混合物を得る。MCHに含まれる金属の合計量1に対するリチウムの量(モル比)は、0.98~1.20が好ましく、1.04~1.10がより好ましく、1.05~1.10が特に好ましい。
[焼成工程]
 得られた混合物を酸素含有雰囲気下、500℃以上1000℃以下の焼成温度で焼成する。混合物を焼成することにより、リチウム金属複合酸化物の結晶が成長する。
 本明細書における焼成温度とは、焼成炉内の雰囲気の温度であって、保持温度の最高温度(最高保持温度)を意味する。
 焼成工程が、複数の焼成段階を有する場合、焼成温度とは、各焼成段階のうち最高保持温度で加熱した際の温度を意味する。
 焼成温度は、例えば650~900℃であることが好ましく、680~850℃であることがより好ましく、700℃~820℃であることが特に好ましい。焼成温度が前記範囲の下限値以上であると、強固な結晶構造を有するCAMを得ることができる。また、焼成温度が前記範囲の上限値以下であると、CAMの粒子表面のリチウムの揮発を低減できる。
 焼成における保持時間は、3~50時間が好ましく、4~20時間がより好ましい。焼成における保持時間が前記範囲の上限値以下であると、リチウムの揮発が抑制され、電池性能の低下が抑制される。焼成における保持時間が前記範囲の下限値以上であると、結晶の発達が促進され、電池性能の低下が抑制される。
 本実施形態において、最高保持温度に達する焼成工程の昇温速度は80℃/時間以上が好ましく、100℃/時間以上がより好ましく、150℃/時間以上が特に好ましい。最高保持温度に達する加熱工程の昇温速度は、焼成装置において、昇温を開始した時間から保持温度に到達するまでの時間から算出される。
 焼成工程は、焼成温度が異なる複数の焼成段階を有することが好ましい。例えば、第1の焼成段階と、第1の焼成段階よりも高温で焼成する第2の焼成段階を有することが好ましい。さらに焼成温度及び焼成時間が異なる焼成段階を有していてもよい。
 焼成雰囲気として、所望の組成に応じて大気、酸素、窒素、アルゴン又はこれらの混合ガス等が用いられ、必要ならば複数の焼成工程が実施される。焼成雰囲気は、酸素含有雰囲気が好ましい。
 MCHとリチウム化合物との混合物は、不活性溶融剤の存在下で焼成されてもよい。不活性溶融剤は、CAMを使用した電池の初期容量が損なわれない程度に添加され、焼成物に残留してもよい。不活性溶融剤としては、例えばWO2019/177032A1に記載のものを使用することができる。
 焼成時に用いる焼成装置は、特に限定されず、例えば、連続焼成炉又は流動式焼成炉の何れを用いて行ってもよい。連続焼成炉としては、トンネル炉又はローラーハースキルンが挙げられる。流動式焼成炉としては、ロータリーキルンを用いてもよい。
 以上のようにMCHとリチウム化合物との混合物を焼成することによりCAMが得られる。
 CAMのD50は、3.0~6.0μmであることが好ましく、3.0~5.0μmであることがより好ましく、3.5~5.0μmであることがさらに好ましい。
 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<MCH及びCAMの各種パラメータの測定>
 後述の方法で製造されるMCH及びCAMの各種パラメータの測定は、上述の(平均粒子強度)、(粒子強度の標準偏差)、(平均粒子径D50)、(組成)、(BET比表面積)で説明した測定方法等により行った。
<リチウム二次電池用正極の作製>
 後述する製造方法で得られるCAMと導電材(アセチレンブラック)とバインダー(PVdF)とを、CAM:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得た。このリチウム二次電池用正極の電極面積は1.65cmとした。
<リチウム二次電池(コイン型ハーフセル)の作製>
 以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
 上述のリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上にポリエチレン製多孔質フィルムの上に耐熱多孔層を積層した積層フィルムセパレータ(厚み16μm)を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートを30:35:35(体積比)で混合した混合液にLiPF6を1mol/lとなるように溶解した液体を用いた。
 次に、負極として金属リチウムを用いて、セパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032。以下、「コイン型ハーフセル」と称することがある。)を作製した。
<初回効率の測定>
 上述の方法で作成したリチウム二次電池の初回放電容量及び初回効率は、上述の(初回効率)で説明した測定方法等により行った。初回効率が90.0%超の場合、初回効率が高いと評価する。
[実施例1]
 撹拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を70℃に保持した。
 硫酸ニッケル水溶液、硫酸コバルト水溶液、硫酸マンガン水溶液をNi:Co:Mnのモル比が0.5:0.2:0.3になるように混合して、混合原料液1を調製した。
 酸素を含むガスを流通しながら、反応槽内に、撹拌下、混合原料液1及び硫酸アンモニウム水溶液を錯化剤として連続的に添加した。反応槽内の溶液のpHが11.8(測定温度:40℃)になるように水酸化ナトリウム水溶液を適時滴下し、槽内アンモニウム濃度が2.5g/Lとなるように硫酸アンモニウム水溶液の滴下速度を調整し、反応沈殿物1を得た。なお、酸素を含むガスの総体積に対する酸素濃度を0.04体積%とした。
 反応沈殿物1の質量に対して、20倍の質量の5質量%の水酸化ナトリウム水溶液を用いて、反応沈殿物1の洗浄を行った。洗浄後、遠心分離機で脱水し、水で洗浄、脱水、単離して、105℃で20時間乾燥することにより、Ni、Co、及びMnを含むMCH1を得た。MCH1の各種パラメータについて表1に示す(以下、実施例2、3、比較例1~2も同様に示す。)。なお、表1の組成の1-x-y-w、x、y、wは前記式(I)に対応する値である。
 MCH1に含まれるNi、Co、及びMnの合計量1に対するLiの量(モル比)が1.07となるように炭酸リチウムを秤量した。MCH1と炭酸リチウムを混合して混合物1を得た。
 次いで、得られた混合物1を、酸素雰囲気下、750℃、6時間で焼成し、リチウム金属複合酸化物粉末を得た。得られた粉末と液温を5℃に調整した純水とを、全体量に対して上記粉末質量の割合が0.3になるように混合し作製したスラリーを20分間撹拌させた後、脱水し、さらに上記粉末の2倍の質量の液温を5℃に調整した純水でリンス後、単離し、150℃で乾燥することでCAM1を得た。CAM1の各種パラメータについて表1に示す(以下、実施例2、3、比較例1~2も同様に示す。)。
 得られたCAM1を用いて、リチウム二次電池を作製し、初回効率の測定を行った。結果を表1に示す(以下、実施例2、3、比較例1~2も同様に示す)。
[実施例2]
 MCH製造の際の反応槽内の溶液のpHを11.55(測定温度:40℃)、槽内アンモニウム濃度を1.1g/Lとした以外は、実施例1と同様にして、MCH2及びCAM2を得た。得られたCAM2を用いて、リチウム二次電池を作製し、初回効率の測定を行った。
[実施例3]
 MCH製造の際に、硫酸ニッケル水溶液、硫酸コバルト水溶液、硫酸マンガン水溶液、硫酸ジルコニウム水溶液をNi:Co:Mn:Zrのモル比が0.548:0.199:0.248:0.005になるように混合したこと、反応槽内の液温を50℃、反応槽内の溶液のpHを11.94(測定温度:40℃)、槽内アンモニウム濃度を2.6g/Lとした以外は、実施例1と同様にして、MCH3及びCAM3を得た。得られたCAM3を用いて、リチウム二次電池を作製し、初回効率の測定を行った。
[比較例1]
 MCH製造の際の反応槽内の液温を30℃、反応槽内のpHを11.95(測定温度:40℃)、槽内アンモニウム濃度を4.0g/Lとした以外は、実施例1と同様にして、MCH4及びCAM4を得た。得られたCAM4を用いて、リチウム二次電池を作製し、初回効率の測定を行った。
[比較例2]
 MCH製造の際に、硫酸ニッケル水溶液、硫酸コバルト水溶液、硫酸マンガン水溶液をNi:Co:Mnのモル比が0.6:0.2:0.2になるように混合したこと、反応槽内の液温を60℃、反応槽内のpHを12.2(測定温度:40℃)、槽内アンモニウム濃度を5.0g/Lとした以外は、実施例1と同様にして、MCH5及びCAM5を得た。
得られたCAM5を用いて、リチウム二次電池を作製し、初回効率の測定を行った。
Figure JPOXMLDOC01-appb-T000001
 要件(1)~(4)を充足する実施例1~3のMCHが前駆体であるリチウム二次電池用CAMを用いたリチウム二次電池では、初回効率が高くなることがわかった。また、実施例1~3においては、D50(CAM)/D50(MCH)が1.1~1.2の範囲内となり、MCHからCAMを製造する際、平均粒子径の変化が抑制されることがわかった。

Claims (4)

  1.  リチウム二次電池用正極活物質の前駆体として用いられる金属複合水酸化物であって、
     Ni、Co、及びMnを含み、
     下記要件(1)~(4)をすべて満たす金属複合水酸化物。
    (1)平均粒子強度が、10MPa以上45MPa未満である。
    (2)コバルトに対するマンガンのモル比(Mn/Co)が1.0超である。
    (3)BET比表面積が40m/g未満である。
    (4)平均粒子径D50が、4.0μm以下である。
  2.  下記組成式(I)で表される、請求項1に記載の金属複合水酸化物。
     Ni1-x-y-wCoMn(OH)2+α ・・・式(I)(前記組成式(I)中、0<x<0.5、0<y≦0.5、0≦w≦0.5、x<y、0<x+y+w<1、0≦αを満たし、MはFe、Cu、Ti、Mg、Al、Zn、Sn、Zr、Nb、Ga、W、Mo、B、及びSiからなる群より選ばれる1種以上の元素である。)
  3.  粒子強度の標準偏差が2MPa以上12MPa以下である、請求項1又は2に記載の金属複合水酸化物。
  4.  請求項1又は2に記載の金属複合水酸化物と、リチウム化合物と、を混合する混合工程と、得られた混合物を酸素含有雰囲気下、500℃以上1000℃以下の温度で焼成する焼成工程を有する、リチウム二次電池用正極活物質の製造方法。
PCT/JP2023/026156 2022-07-15 2023-07-14 金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法 WO2024014558A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-114311 2022-07-15
JP2022114311 2022-07-15

Publications (1)

Publication Number Publication Date
WO2024014558A1 true WO2024014558A1 (ja) 2024-01-18

Family

ID=89536948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026156 WO2024014558A1 (ja) 2022-07-15 2023-07-14 金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法

Country Status (1)

Country Link
WO (1) WO2024014558A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130781A (ja) * 2012-12-28 2014-07-10 Jgc Catalysts & Chemicals Ltd リチウム複合酸化物の製造装置および製造方法、その製造方法によって得られるリチウム複合酸化物、それを含む二次電池用正極活物質、それを含む二次電池用正極、ならびにそれを正極として用いるリチウムイオン二次電池
JP2018045758A (ja) * 2016-08-31 2018-03-22 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130781A (ja) * 2012-12-28 2014-07-10 Jgc Catalysts & Chemicals Ltd リチウム複合酸化物の製造装置および製造方法、その製造方法によって得られるリチウム複合酸化物、それを含む二次電池用正極活物質、それを含む二次電池用正極、ならびにそれを正極として用いるリチウムイオン二次電池
JP2018045758A (ja) * 2016-08-31 2018-03-22 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Similar Documents

Publication Publication Date Title
JP6665060B2 (ja) Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5614513B2 (ja) 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
KR101842823B1 (ko) 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
JP4894969B1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
KR101644258B1 (ko) 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
JP5963745B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5590337B2 (ja) マンガン複合水酸化物粒子、非水系電解質二次電池用正極活物質、および非水系電解質二次電池と、それらの製造方法
KR102024962B1 (ko) 정극 활물질 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
WO2011067935A1 (ja) ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2015108163A1 (ja) 正極活物質およびその製造方法
WO2012131779A1 (ja) ニッケル複合水酸化物粒子および非水系電解質二次電池
JP6252383B2 (ja) マンガンコバルト複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
JP2011116580A5 (ja)
JP2007242288A (ja) 非水系電解質二次電池用正極活物質及びその製造方法
WO2017033895A1 (ja) マンガンニッケル複合水酸化物及びその製造方法、リチウムマンガンニッケル複合酸化物及びその製造方法、並びに非水系電解質二次電池
JP2006219323A (ja) リチウムマンガンニッケルアルミニウム複合酸化物およびその製造方法
JP6988370B2 (ja) ニッケル複合水酸化物、ニッケル複合水酸化物の製造方法
JP7452570B2 (ja) 非水系電解質二次電池用正極活物質
KR100668050B1 (ko) 망간복합산화물, 이를 이용한 리튬이차전지 스피넬형양극활물질 및 그 제조방법
JP2022504835A (ja) リチウム遷移金属複合酸化物およびその製造方法
JP7119302B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
WO2024014558A1 (ja) 金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法
JP7412485B1 (ja) 金属複合水酸化物粒子及びリチウム二次電池用正極活物質の製造方法
JP7359911B1 (ja) 前駆体及びリチウム二次電池用正極活物質の製造方法
JP7417675B1 (ja) 金属複合水酸化物粒子、金属複合化合物の製造方法、及びリチウム二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839725

Country of ref document: EP

Kind code of ref document: A1