WO2019177023A1 - リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池 - Google Patents

リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池 Download PDF

Info

Publication number
WO2019177023A1
WO2019177023A1 PCT/JP2019/010275 JP2019010275W WO2019177023A1 WO 2019177023 A1 WO2019177023 A1 WO 2019177023A1 JP 2019010275 W JP2019010275 W JP 2019010275W WO 2019177023 A1 WO2019177023 A1 WO 2019177023A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
composite oxide
metal composite
oxide powder
positive electrode
Prior art date
Application number
PCT/JP2019/010275
Other languages
English (en)
French (fr)
Inventor
健二 高森
友也 黒田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020207025841A priority Critical patent/KR20200131236A/ko
Priority to EP19768101.8A priority patent/EP3767719A4/en
Priority to CN201980018098.4A priority patent/CN111837267A/zh
Priority to US16/979,463 priority patent/US20210013506A1/en
Publication of WO2019177023A1 publication Critical patent/WO2019177023A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium metal composite oxide powder, a positive electrode active material for a lithium secondary battery, a positive electrode, and a lithium secondary battery.
  • This application claims priority on March 13, 2018 based on Japanese Patent Application No. 2018-045954 for which it applied to Japan, and uses the content here.
  • the lithium metal composite oxide powder is used as a positive electrode active material for a lithium secondary battery.
  • Lithium secondary batteries have already been put into practical use not only for small power supplies for mobile phones and laptop computers, but also for medium and large power supplies for automobiles and power storage.
  • the lithium metal complex oxide powder contains impurities derived from raw materials.
  • this impurity can cause problems such as poor coatability and battery swelling.
  • Patent Document 1 describes a positive electrode active material that reduces the amount of impurities that do not contribute to the charge / discharge reaction and is excellent in thermal stability.
  • Patent Document 1 describes a positive electrode active material having a sulfate radical content of 0.2% by mass or less and a chlorine content of 0.1% by mass or less.
  • Patent Document 2 describes a lithium nickel cobalt manganese-based composite oxide that has a small amount of residual alkali present in the surface layer portion of primary particles and is excellent in cycle characteristics.
  • the present invention has been made in view of the above circumstances, and is a lithium metal composite oxide powder containing impurities derived from raw materials at a certain ratio, a positive electrode active material for a lithium secondary battery using the same, a positive electrode, and lithium It is an object to provide a secondary battery.
  • the present invention includes the following [1] to [8].
  • M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V, ⁇ 0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1.
  • the BET specific surface area is less than 2 m 2 / g.
  • B) The average particle diameter of the primary particles is 1 ⁇ m or more.
  • the ratio of the alkali metal content (mass%) other than lithium to the total mass of the lithium metal composite oxide powder is 0 with respect to the sulfate radical content (mass%) with respect to the total mass of the lithium metal composite oxide powder. 1 or more and less than 50.
  • the content of lithium carbonate contained in the remaining alkali of the lithium metal composite oxide powder measured by neutralization titration is 0.7% by mass or less based on the total mass of the lithium metal composite oxide powder.
  • the content of lithium hydroxide contained in the residual alkali of the lithium metal composite oxide powder measured by neutralization titration is 0.7% by mass or less with respect to the total mass of the lithium metal composite oxide powder.
  • the value obtained by dividing the water content (% by mass) with respect to the total mass of the lithium metal composite oxide powder by the BET specific surface area (m 2 / g) is 0.005 or more and 0.5 or less.
  • a positive electrode active material for a lithium secondary battery comprising the lithium metal composite oxide powder according to any one of [1] to [5].
  • [8] A lithium secondary battery having the positive electrode according to [7].
  • the present invention it is possible to provide a lithium metal composite oxide powder with few impurities derived from raw materials, a positive electrode active material for a lithium secondary battery, a positive electrode and a lithium secondary battery using the same.
  • the present embodiment is a lithium metal composite oxide powder composed of only primary particles or secondary particles that are aggregates of the primary particles and the primary particles.
  • the lithium metal composite oxide of this embodiment is represented by the following composition formula (1) and satisfies all the following requirements (A), (B), and (C).
  • M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V, ⁇ 0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1.
  • the BET specific surface area is less than 2 m 2 / g.
  • B) The average particle diameter of the primary particles is 1 ⁇ m or more.
  • the ratio of the alkali metal content (mass%) other than lithium to the total mass of the lithium metal composite oxide powder is 0 with respect to the sulfate radical content (mass%) with respect to the total mass of the lithium metal composite oxide powder. 1 or more and less than 50.
  • the lithium metal composite oxide powder of the present embodiment may be composed only of primary particles, or may be composed of primary particles and secondary particles that are aggregates of the primary particles.
  • primary particles are independent particles by electron microscope observation (for example, scanning electron microscope (hereinafter also referred to as “SEM”), transmission electron microscope (hereinafter also referred to as “TEM”)). It is the smallest unit observed, and the particles are single crystals or polycrystals assembled with crystallites.
  • “secondary particles” are particles that are aggregates of primary particles, and can be confirmed by observation with an electron microscope.
  • the lithium metal composite oxide of the present embodiment is represented by the following composition formula (1).
  • M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V, ⁇ 0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1.
  • x in the composition formula (1) is preferably more than 0, more preferably 0.01 or more, and further preferably 0.02 or more. . Further, from the viewpoint of obtaining a lithium secondary battery with higher initial Coulomb efficiency, x in the composition formula (1) is preferably 0.1 or less, more preferably 0.08 or less, and 0.06. More preferably, it is as follows. The upper limit value and the lower limit value of x can be arbitrarily combined. For example, x is preferably more than 0 and 0.1 or less, more preferably 0.01 or more and 0.08 or less, and further preferably 0.02 or more and 0.06 or less.
  • y in the composition formula (1) is preferably more than 0, more preferably 0.005 or more, and 0.01 or more. Is more preferable, and 0.05 or more is particularly preferable. Further, from the viewpoint of obtaining a lithium secondary battery having high thermal stability, y in the composition formula (1) is more preferably 0.35 or less, and further preferably 0.33 or less. The upper limit value and the lower limit value of y can be arbitrarily combined.
  • y is preferably more than 0 and not more than 0.35, more preferably not less than 0.005 and not more than 0.35, still more preferably not less than 0.01 and not more than 0.33, It is especially preferable that it is 0.33 or less.
  • z in the composition formula (1) is preferably 0.01 or more, more preferably 0.02 or more, and 0.1 or more. More preferably it is. Further, from the viewpoint of obtaining a lithium secondary battery having high storage stability at a high temperature (for example, in an environment of 60 ° C.), z in the composition formula (1) is preferably 0.4 or less, and is 0.38 or less. Is more preferable, and it is still more preferable that it is 0.35 or less.
  • the upper limit value and lower limit value of z can be arbitrarily combined. For example, z is preferably 0.01 or more and 0.4 or less, more preferably 0.02 or more and 0.38 or less, and further preferably 0.1 or more and 0.35 or less.
  • w in the composition formula (1) is preferably more than 0, more preferably 0.0005 or more, and 0.001 or more. More preferably. Further, from the viewpoint of obtaining a lithium secondary battery having a high discharge capacity at a high current rate, w in the composition formula (1) is preferably 0.09 or less, more preferably 0.08 or less, and 0 More preferably, it is 0.07 or less.
  • the upper limit value and the lower limit value of w can be arbitrarily combined. For example, w is preferably more than 0 and 0.09 or less, more preferably from 0.0005 to 0.08, and even more preferably from 0.001 to 0.07.
  • y + z + w is preferably less than 0.5, and more preferably 0.3 or less.
  • the lower limit of y + z + w is not particularly limited, but is preferably 0.03 or more, and more preferably 0.05 or more.
  • the upper limit value and the lower limit value of y + z + w can be arbitrarily combined.
  • the y + z + w is preferably 0.01 or more and less than 0.5, and more preferably 0.05 or more and 0.3 or less.
  • M in the composition formula (1) is one or more metals selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V. Represents.
  • M in the composition formula (1) is one or more metals selected from the group consisting of Ti, Mg, Al, W, B, and Zr. From the viewpoint of obtaining a lithium secondary battery with high thermal stability, it is preferably one or more metals selected from the group consisting of Ti, Al, W, B, and Zr.
  • w, x, y, and z in the composition formula (1) are obtained by dissolving a powder of a lithium composite metal compound in hydrochloric acid, and then using an inductively coupled plasma emission spectrometer (SII NanoTechnology Corporation). It can be determined by conducting an analysis using SPS3000).
  • BET specific surface area is less than 2m 2 / g, preferably 1.8 m 2 / g or less, more preferably 1.6m 2 / g, 1.4m 2 / Particularly preferred is g or less.
  • the lower limit value of the BET specific surface area for example, 0.05m is preferably not less than 2 / g, more preferably at least 0.08m 2 / g, 0.1m 2 / g or more More preferably, 0.12 m 2 / g or more is particularly preferable.
  • the upper limit value and the lower limit value of the BET specific surface area can be arbitrarily combined.
  • the BET specific surface area is more preferably 0.05m less than 2 / g or more 2m 2 / g is preferably 0.08 m 2 / g or more 1.8 m 2 / g or less, 1.0 m 2 / g or more 1 more preferably .6m 2 / g or less, even more preferably at most 0.12 m 2 / g or more 1.4 m 2 / g.
  • the BET specific surface area can be measured by N 2 adsorption as described in Examples described later.
  • the average particle diameter of primary particles is 1 ⁇ m or more, preferably 1.1 ⁇ m or more, and more preferably 1.2 ⁇ m or more.
  • the upper limit of a primary particle diameter is not specifically limited.
  • the average particle diameter of the primary particles may be 5.0 ⁇ m or less, 4.0 ⁇ m or less, or 3.0 ⁇ m or less.
  • the upper limit value and lower limit value of the average particle diameter can be arbitrarily combined.
  • the average particle diameter is preferably 1 ⁇ m or more and 5.0 ⁇ m or less, more preferably 1.1 ⁇ m or more and 4.0 ⁇ m or less, and further preferably 1.2 ⁇ m or more and 3.0 ⁇ m or less.
  • a lithium metal composite oxide powder is placed on a conductive sheet affixed on a sample stage, and an accelerating voltage using a scanning electron microscope (JSM-5510, manufactured by JEOL Ltd.) Is irradiated with an electron beam of 20 kV to perform SEM observation.
  • 50 primary particles were randomly extracted from an image (SEM photograph) obtained by SEM observation, and the distance between the parallel lines of each primary particle sandwiched by parallel lines obtained by drawing a projected image of the primary particles from a certain direction. (Constant direction diameter) is measured as the particle diameter of the primary particles.
  • the arithmetic average value of the particle diameter of the obtained primary particles is the average primary particle diameter of the lithium metal composite oxide powder.
  • the lithium metal composite oxide powder according to the present embodiment satisfying the above requirements (A) and (B) has few grain boundaries, and has an excellent effect that the cracking of the particles is less likely to occur during the pressing operation at the time of molding the positive electrode material. Play. Moreover, with respect to the sulfate group content (mass%) with respect to the total mass of the lithium metal composite oxide powder described in the requirement (C), the alkali metal content other than lithium with respect to the total mass of the lithium metal composite oxide powder ( (Mass%) can be easily adjusted to a predetermined range.
  • the lithium metal composite oxide powder of the present embodiment contains an alkali metal other than lithium with respect to the total mass of the lithium metal composite oxide powder with respect to the sulfate radical content (% by mass) with respect to the total mass of the lithium metal composite oxide powder.
  • the ratio of the amount (mass%) is from 0.1 to less than 50, preferably from 0.5 to 40, and more preferably from 0.7 to 30.
  • “sulfate radical” means SO 4 2 ⁇ contained in the lithium metal composite oxide powder after the firing step.
  • the lithium metal oxide powder of this embodiment contains the lithium metal composite oxide represented by the formula (1) as a main component.
  • the lithium metal oxide powder of the present embodiment includes impurities derived from substances used in the production process of the lithium metal oxide powder such as raw materials and solvents. May be included in trace amounts.
  • Impurities include, for example, a compound containing no alkali metal other than lithium and containing a sulfate group, a compound containing no sulfate group and containing an alkali metal other than lithium, an alkali metal other than lithium, and a sulfate group. Examples thereof include compounds containing lithium carbonate, lithium hydroxide, and water.
  • Na, K, Rb, and Cs are mentioned as alkali metals other than lithium.
  • the content of the compound represented by the formula (1) with respect to the total mass of the lithium metal oxide powder of the present embodiment is preferably 97.00 to 99.99% by mass, and 98.00 to 99.99%. It is more preferably 98% by mass, and further preferably 98.50 to 99.97% by mass.
  • the ratio of the alkali metal other than lithium contained and the sulfate radical is within a certain range. Since the lithium metal composite oxide powder of this embodiment satisfies the above-mentioned requirements (A) and (B) and the average particle diameter of the primary particles is a certain value or more, the content of sulfate radicals is adjusted by washing. Cheap. On the other hand, when the average particle diameter of the primary particles is a certain value or less, the secondary particles composed of the primary particles have many grain boundaries, and it is difficult to adjust the sulfate radical content by washing. Many remain easily. The lithium metal composite oxide powder of the present embodiment is presumed to have a small amount of sulfate radicals on the particle surface because there are few secondary particle grain boundaries.
  • Sulfate radicals are highly hygroscopic. Further, when SO 4 2 ⁇ is large and counter ions (alkali metal) are small, SO 4 2 ⁇ becomes unstable and the hygroscopicity tends to be high. For this reason, when a lithium metal composite oxide powder in which a large amount of sulfate radicals remain is used as the positive electrode active material, the positive electrode active material absorbs moisture. This moisture reacts with the alkali component in the positive electrode material, the pH increases, the binder component of the positive electrode material changes, and causes gelation.
  • the ratio of the alkali metal content (mass%) other than lithium to the sulfate radical content (mass%) can be measured by the following method. After the lithium metal composite oxide powder is dissolved in hydrochloric acid, inductively coupled plasma emission spectrometry (ICP) is performed to measure the amount of sulfur atoms and the amount of alkali metal atoms other than lithium. Next, from the measured amount of sulfur atoms, all sulfur is converted to sulfate radicals as being derived from sulfate radicals.
  • ICP inductively coupled plasma emission spectrometry
  • the alkali metal content (mass%) and sulfate radical content (mass%) other than lithium contained in the lithium metal composite oxide powder are calculated.
  • the content of alkali metal other than lithium (mass%) is divided by the value of sulfate radical content (mass%), and the content of alkali metal other than lithium (mass%) relative to the sulfate radical content (mass%) The ratio is calculated.
  • the sulfate group content (% by mass) with respect to the total mass of the lithium metal composite oxide powder is preferably 0.0001 to 3% by mass, more preferably 0.0002 to 2% by mass, and 0.0001 to More preferably, it is 1% by mass.
  • the lithium metal composite oxide powder of the present embodiment has a 10% cumulative diameter (D 10 ), a 50% cumulative diameter (D 50 ) and a 50% cumulative diameter determined from the measured particle size distribution.
  • the 50% cumulative diameter (D 50 ) is preferably 2 ⁇ m or more and 15 ⁇ m or less, and further preferably satisfies the relationship of the following formula (D). 0.8 ⁇ (D 90 ⁇ D 10 ) / D 50 ⁇ 3.5 (D)
  • the 50% cumulative diameter (D 50 ) is preferably 2.2 ⁇ m or more, more preferably 2.5 ⁇ m or more, and further preferably 3.0 ⁇ m or more.
  • the 50% cumulative diameter (D 50 ) is preferably 10 ⁇ m or less, more preferably 8.0 ⁇ m or less, and even more preferably 5.0 ⁇ m or less.
  • the upper limit value and the lower limit value of the 50% cumulative diameter (D 50 ) can be arbitrarily combined. In this embodiment, it is preferably 2.2 ⁇ m or more and 10 ⁇ m or less, more preferably 2.5 ⁇ m or more and 8.0 ⁇ m or less, and further preferably 3.0 ⁇ m or more and 5.0 ⁇ m or less.
  • (D 90 -D 10 ) / D 50 is preferably 1.0 or more, more preferably 1.5 or more, and particularly preferably 2.0 or more.
  • (D 90 -D 10 ) / D 50 is preferably 3.4 or less, more preferably 3.2 or less, and particularly preferably 3.0 or less.
  • the upper limit value and the lower limit value of (D 90 -D 10 ) / D 50 can be arbitrarily combined. In the present embodiment, 1.0 or more and 3.4 or less are preferable, 1.5 or more and 3.2 or less are more preferable, and 2.0 or more and 3.0 or less are particularly preferable.
  • D 90 , D 50 , and D 10 can be obtained by measuring the particle size distribution using a laser diffraction / scattering particle size distribution measuring device as described in the Examples.
  • the lithium metal composite oxide powder of the present embodiment has a BET specific surface area (m 2 / g) of the water content (% by mass) relative to the total mass of the lithium metal composite oxide powder from the viewpoint of enhancing the coatability at the time of electrode preparation.
  • Is preferably 0.005 ((mass% ⁇ g) / m 2 ) or more and 0.5 ((mass% ⁇ g) / m 2 ) or less, and 0.005 ((mass% ⁇ g ) / M 2 ) or more and 0.3 ((mass% ⁇ g) / m 2 ) or less, more preferably 0.008 ((mass% ⁇ g) / m 2 ) or more and 0.2 ((mass%).
  • ⁇ G) / m 2 ) or less is more preferable, and 0.010 ((mass% ⁇ g) / m 2 ) or more and 0.05 ((mass% ⁇ g) / m 2
  • the content of lithium carbonate contained in the remaining alkali of the lithium metal composite oxide powder measured by neutralization titration is based on the total mass of the lithium metal composite oxide powder.
  • the content of lithium hydroxide contained in the residual alkali of the lithium metal composite oxide powder measured by neutralization titration is 0.7% by mass or less with respect to the total mass of the lithium metal composite oxide powder. It is preferable that it is 0.7 mass% or less.
  • content of lithium carbonate 0.69 mass% or less is more preferable, and 0.68 or less is further more preferable.
  • the content of lithium carbonate is most preferably 0, but is usually 0.01% by mass or more, preferably 0.02% by mass or more, and more preferably 0.03% by mass.
  • the upper limit value and the lower limit value of the lithium carbonate content can be arbitrarily combined.
  • the lithium carbonate content is preferably 0 to 0.7% by mass, more preferably 0.01 to 0.69% by mass, and 0.03 to 0% by mass. More preferably, it is at most 68% by mass.
  • the content of lithium hydroxide is more preferably 0.5% by mass or less, and further preferably 0.2% by mass or less.
  • the content of lithium hydroxide is most preferably 0, but is usually 0.01% or more, preferably 0.02% by mass or more, and more preferably 0.03% by mass.
  • the upper limit value and the lower limit value of the lithium hydroxide content can be arbitrarily combined.
  • the lithium hydroxide content is preferably 0% by mass or more and 0.7% by mass or less, more preferably 0.01% by mass or more and 0.69% by mass or less, and more preferably 0.03% by mass or more. More preferably, it is 0.68 mass% or less.
  • the contents of lithium carbonate and lithium hydroxide contained in the lithium metal composite oxide powder can be measured by neutralization titration described in Examples.
  • the lithium metal composite oxide powder of the present embodiment has an alkali metal content other than lithium with respect to the total mass of the lithium metal composite oxide powder.
  • 0.001% by mass to 0.05% by mass is preferable, 0.0012% by mass to 0.03% by mass is more preferable, 0.0014% by mass to 0.01% by mass is further preferable, and 0.0016 As mentioned above, 0.005 or less is especially preferable.
  • the crystal structure of the positive electrode active material is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, P-
  • the monoclinic crystal structure is P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, C2 / It belongs to any one space group selected from the group consisting of c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m, or a monoclinic crystal belonging to C2 / m.
  • a structure is particularly preferred.
  • ⁇ Method for producing lithium metal composite oxide powder In producing the lithium metal composite oxide powder of the present embodiment, first, metals other than lithium, that is, Ni that is an essential metal, Co, Mn, Fe, Cu, Ti, Mg, Al, W, B , Mo, Nb, Zn, Sn, Zr, Ga, La, and V, a metal composite compound containing any one or more arbitrary metals is prepared, and the metal composite compound is mixed with an appropriate lithium salt and an inert melting agent. It is preferable to fire together. As a metal complex compound, a metal complex hydroxide or a metal complex oxide is preferable. Below, an example of the manufacturing method of lithium metal complex oxide powder is divided and demonstrated to the manufacturing process of a metal complex compound, and the manufacturing process of lithium metal complex oxide.
  • the metal complex compound can be produced by a generally known batch coprecipitation method or continuous coprecipitation method.
  • the manufacturing method will be described in detail by taking a metal composite hydroxide containing nickel, cobalt, and manganese as an example.
  • Ni (1-yzw) Co y Mn z is reacted by reacting a nickel salt solution, a cobalt salt solution, a manganese salt solution, and a complexing agent by a continuous method described in JP-A-2002-201028.
  • a metal composite hydroxide represented by (OH) 2 (wherein 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, 0 ⁇ w ⁇ 0.1) is produced by a coprecipitation method.
  • nickel salt which is a solute of the said nickel salt solution For example, any 1 type, or 2 or more types in nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used.
  • cobalt salt which is a solute of the cobalt salt solution for example, any one or more of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used.
  • manganese salt that is the solute of the manganese salt solution for example, any one or more of manganese sulfate, manganese nitrate, manganese chloride, and manganese acetate can be used.
  • the above metal salt is used in a proportion corresponding to the composition ratio of Ni (1-yzw) Co y Mn z (OH) 2 . That is, the molar ratio of nickel, cobalt, and manganese in the mixed solution containing the metal salt corresponds to (1-yzw): y: z in the composition formula (I) of the lithium metal composite oxide. Stipulate the amount of each metal salt. Moreover, water is used as a solvent.
  • the complexing agent can form a complex with nickel, cobalt, and manganese ions in an aqueous solution.
  • an ammonium ion supplier (ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.) Ammonium salt), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine.
  • the amount of the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the manganese salt solution, and the complexing agent is, for example, a molar ratio with respect to the total number of moles of the metal salt is greater than 0. It is preferable that it is 2.0 or less.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • Ni (1-yzw) 2 when a complexing agent is continuously supplied to the reaction vessel, nickel, cobalt, and manganese react to form Ni (1-yzw).
  • Co y Mn z (OH) 2 is produced.
  • the temperature of the reaction vessel is controlled within a range of 20 ° C. or more and 80 ° C. or less, preferably 30 to 70 ° C.
  • the pH value in the reaction vessel is, for example, pH 9 or more and pH 13 or less, preferably 40 ° C. It is controlled within the range of pH 11 or more and pH 13 or less, and the substance in the reaction vessel is appropriately stirred.
  • the reaction vessel is of a type that causes the formed reaction precipitate to overflow for separation.
  • the secondary particle diameter of the lithium metal composite oxide finally obtained in the following steps by appropriately controlling the concentration of metal salt to be supplied to the reaction tank, the stirring speed, the reaction temperature, the reaction pH, the firing conditions described later, etc.
  • Various physical properties such as pore radius can be controlled.
  • various gases for example, an inert gas such as nitrogen, argon, carbon dioxide, an oxidizing gas such as air, oxygen, or a mixed gas thereof may be supplied into the reaction vessel.
  • Use peroxides such as hydrogen peroxide, peroxides such as permanganate, perchlorates, hypochlorites, nitric acid, halogens, ozone, etc. to promote the oxidation state in addition to gases. be able to.
  • organic acids such as oxalic acid and formic acid, sulfites, hydrazine and the like can be used to promote the reduced state.
  • reaction pH in the reaction vessel when the reaction pH in the reaction vessel is increased, a metal composite compound having a small secondary particle size is easily obtained. On the other hand, when the reaction pH is lowered, a metal composite compound having a large secondary particle size is easily obtained. Moreover, when the oxidation state in the reaction vessel is increased, a metal composite compound having many voids is easily obtained. On the other hand, when the oxidation state is lowered, a dense metal composite compound is easily obtained. Since the reaction conditions depend on the size of the reaction tank to be used and the like, the reaction conditions may be optimized while monitoring various physical properties of the finally obtained lithium composite oxide.
  • nickel cobalt manganese composite hydroxide is manufactured, but nickel cobalt manganese composite oxide may be prepared.
  • it can prepare by performing the process of making the said coprecipitate slurry and an oxidizing agent contact, and the process of heat-treating nickel cobalt manganese complex hydroxide, for example.
  • the metal composite compound (metal composite oxide or metal composite hydroxide) is dried and then mixed with a lithium salt to obtain a mixture. Moreover, in this embodiment, it is preferable to mix an inert melting agent simultaneously with this mixing. By firing an inert melt-containing mixture containing a metal composite oxide or metal composite hydroxide, a lithium salt and an inert melt, the mixture is fired in the presence of the inert melt. By firing in the presence of an inert melting agent, primary particles can be prevented from sintering to produce secondary particles. Moreover, primary particles with high crystallinity can be obtained.
  • the drying conditions are not particularly limited.
  • the metal composite oxide or the metal composite hydroxide is not oxidized / reduced (that is, the oxide is maintained as an oxide, and the hydroxide is hydroxylated).
  • Conditions under which the metal composite hydroxide is oxidized ie, conditions under which the hydroxide is oxidized into an oxide
  • conditions under which the metal composite oxide is reduced ie, the oxide is hydroxylated
  • Any condition of (reduction condition to product) may be used.
  • An inert gas such as nitrogen, helium and argon may be used for conditions where oxidation / reduction is not performed, and oxygen or air may be used for conditions where the metal composite hydroxide is oxidized.
  • a reducing agent such as hydrazine or sodium sulfite may be used in an inert gas atmosphere.
  • the lithium salt any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, or a mixture of two or more can be used.
  • Classification may be appropriately performed after drying the metal composite oxide or metal composite hydroxide.
  • the above lithium salt and metal composite hydroxide are used in consideration of the composition ratio of the final object.
  • the lithium salt and the metal composite hydroxide are LiNi (1- yzw ) Co y Mn z O 2 (where 0 ⁇ y ⁇ 0. 4, 0 ⁇ z ⁇ 0.4, 0 ⁇ w ⁇ 0.1).
  • a lithium-nickel cobalt manganese composite oxide is obtained by firing a mixture of a nickel cobalt manganese metal composite hydroxide and a lithium salt. For the firing, dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are performed if necessary.
  • the crystallization reaction of the mixture can be promoted by firing the mixture in the presence of an inert melting agent.
  • the inert melting agent may remain in the fired lithium metal composite oxide powder, or may be removed by washing with water or the like after firing.
  • a method in which a cleaning solution in which sulfate radical or an alkali metal other than lithium is previously contained in water used for cleaning is prepared, and cleaning using the cleaning solution is preferably used.
  • the particle diameter of the primary particles and the particle diameter of the secondary particles obtained can be controlled within the preferred range of the present embodiment.
  • the higher the holding temperature the larger the primary particle diameter and the secondary particle diameter, and the BET specific surface area tends to decrease.
  • the holding temperature may be set in consideration of the melting point of the inert melting agent described later, and is set in the range of the melting point of the inert melting agent minus 200 ° C. or higher and the melting point of the inert melting agent plus 200 ° C. or lower. It is preferable.
  • Specific examples of the holding temperature include a range of 200 ° C. to 1150 ° C., preferably 300 ° C. to 1050 ° C., and more preferably 500 ° C. to 1000 ° C.
  • the holding time at the holding temperature may be 0.1 hour or more and 20 hours or less, preferably 0.5 hour or more and 10 hours or less.
  • the temperature rising rate to the holding temperature is usually 50 ° C./hour or more and 400 ° C./hour or less, and the temperature lowering rate from the holding temperature to room temperature is usually 10 ° C./hour or more and 400 ° C./hour or less.
  • As the firing atmosphere air, oxygen, nitrogen, argon, or a mixed gas thereof can be used.
  • the lithium metal composite oxide obtained by firing is appropriately classified after pulverization, and is used as a positive electrode active material applicable to a lithium secondary battery.
  • washing is performed by mixing the fired lithium metal composite oxide powder and pure water, preparing a slurry, and stirring.
  • the mass of the powder in the slurry is such that the ratio of the powder and pure water to the total mass (that is, the mass of the slurry) is less than 0.5, preferably 0.45 or less, and 0.40 or less. It is more preferable that When the ratio is less than (or less than) the upper limit, the requirements (B) and the content of lithium carbonate and lithium hydroxide contained in the residual alkali of the lithium metal composite oxide powder are adjusted to suitable ranges. It becomes possible to do. After the washing, it is preferable to appropriately perform dehydration, isolation, drying and the like.
  • the inert melting agent that can be used in the present embodiment is not particularly limited as long as it is difficult to react with the mixture during firing.
  • a fluoride of one or more elements selected from the group consisting of Na, K, Rb and Cs (hereinafter referred to as “A”), a chloride of A, a carbonate of A, Examples thereof include one or more selected from the group consisting of sulfate, A nitrate, A phosphate, A hydroxide, A molybdate and A tungstate.
  • Examples of the fluoride of A include NaF (melting point: 993 ° C.), KF (melting point: 858 ° C.), RbF (melting point: 795 ° C.) and CsF (melting point: 682 ° C.).
  • Examples of the chloride of A include NaCl (melting point: 801 ° C.), KCl (melting point: 770 ° C.), RbCl (melting point: 718 ° C.) and CsCl (melting point: 645 ° C.).
  • Na 2 SO 4 (melting point: 884 ° C.), K 2 SO 4 (melting point: 1069 ° C.), Rb 2 SO 4 (melting point: 1066 ° C.) and Cs 2 SO 4 (melting point: 1005 ° C.)can be mentioned.
  • Examples of the nitrate of A include NaNO 3 (melting point: 310 ° C.), KNO 3 (melting point: 337 ° C.), RbNO 3 (melting point: 316 ° C.) and CsNO 3 (melting point: 417 ° C.).
  • Examples of the phosphate of A include Na 3 PO 4 , K 3 PO 4 (melting point: 1340 ° C.), Rb 3 PO 4 and Cs 3 PO 4 .
  • hydroxide of A examples include NaOH (melting point: 318 ° C.), KOH (melting point: 360 ° C.), RbOH (melting point: 301 ° C.) and CsOH (melting point: 272 ° C.).
  • Examples of the tungstate of A include Na 2 WO 4 (melting point: 687 ° C.), K 2 WO 4 (melting point: 933 ° C.), Rb 2 WO 4 and Cs 2 WO 4 .
  • the inert melting agent for obtaining a lithium metal composite oxide powder with higher crystallinity is either one or both of A carbonate and A chloride. It is preferable. Moreover, as A, it is preferable that they are any one or both of sodium (Na) and potassium (K). That is, among the above, the particularly preferable inert melting agent is at least one selected from the group consisting of NaCl, KCl, Na 2 CO 3 , K 2 CO 3, Na 2 SO 4, and K 2 SO 4. .
  • the requirements (A) and (B) can be controlled within the preferred range of the present embodiment for the obtained lithium metal composite oxide.
  • the average particle of the primary particles and secondary particles of the obtained lithium metal composite oxide can be controlled within the preferred range of this embodiment.
  • the amount of the inert melting agent at the time of firing may be appropriately selected.
  • the amount of the inert melting agent is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the lithium salt. More preferably, it is at least part.
  • the molar ratio of the inert melting agent to the total molar ratio of the inert melting agent and the lithium salt is 0.01 to 1.0. Preferably, it is 0.015 to 0.3, more preferably 0.02 to 0.2.
  • the melting agent include ammonium salts such as NH 4 Cl and NH 4 F.
  • the present embodiment is a positive electrode active material for a lithium secondary battery containing the lithium metal composite oxide powder of the present embodiment.
  • An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of the lithium secondary battery of the present embodiment.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • a shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
  • IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
  • cylindrical shape, square shape, etc. can be mentioned.
  • the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode of the present embodiment can be produced by first preparing a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • thermoplastic resin As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used.
  • the thermoplastic resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • fluororesins such as copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene.
  • thermoplastic resins may be used as a mixture of two or more.
  • a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less.
  • a positive electrode mixture having both high adhesion to the current collector and high bonding strength inside the positive electrode mixture can be obtained.
  • a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used as the positive electrode current collector included in the positive electrode of the present embodiment.
  • a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
  • organic solvents that can be used include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • a positive electrode can be manufactured by the method mentioned above.
  • the negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
  • Negative electrode active material examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
  • the oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc.
  • Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2
  • Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3). And lithium-containing nitrides.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
  • examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
  • carbon materials containing graphite as a main component such as natural graphite and artificial graphite, are preferably used.
  • the shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • the negative electrode current collector of the negative electrode examples include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
  • Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a nonwoven fabric, a woven fabric, and the like made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. A material having the following can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
  • the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117: 2009 is 50 seconds / 100 cc or more, 300 seconds. / 100 cc or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the total volume of the separator.
  • the separator may be a laminate of separators having different porosity.
  • the electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salt such as lower aliphatic carboxylic acid lithium salt, LiAlCl 4, and a mixture of two or more of these May be used.
  • BOB bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide)
  • lithium salt such as lower aliphatic
  • the electrolyte at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
  • Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; Carbamates such as 3-methyl-2-oxazolidone;
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of a cyclic carbonate and an acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • the electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
  • an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • maintained the non-aqueous electrolyte in the high molecular compound can also be used.
  • Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
  • the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
  • the positive electrode active material having the above-described configuration uses the above-described lithium-containing composite metal oxide of the present embodiment, side reactions occurring inside the battery of a lithium secondary battery using the positive electrode active material are suppressed. be able to.
  • the positive electrode having the above-described configuration has the above-described positive electrode active material for a lithium secondary battery according to the present embodiment, side reactions occurring inside the battery of the lithium secondary battery can be suppressed.
  • the lithium secondary battery having the above-described configuration has the above-described positive electrode, it becomes a lithium secondary battery in which side reactions occurring inside the battery are suppressed as compared with the related art.
  • the lithium metal composite oxide powder was evaluated by the following method.
  • composition analysis of the lithium metal composite oxide produced by the method described below is performed by dissolving the obtained powder of the lithium composite metal compound in hydrochloric acid, and then using an inductively coupled plasma emission spectrometer (made by SII Nano Technology, SPS3000).
  • Macsorb registered trademark manufactured by Mountec Co., Ltd.
  • Lithium metal composite oxide powder is placed on a conductive sheet affixed on a sample stage and irradiated with an electron beam having an acceleration voltage of 20 kV using a scanning electron microscope (JSM-5510, manufactured by JEOL Ltd.). SEM observation was performed. 50 primary particles were randomly extracted from an image (SEM photograph) obtained by SEM observation, and the distance between the parallel lines of each primary particle sandwiched by parallel lines obtained by drawing a projected image of the primary particles from a certain direction. (Constant direction diameter) was measured as the particle diameter of the primary particles. The arithmetic average value of the particle diameter of the obtained primary particles was defined as the average primary particle diameter of the lithium metal composite oxide powder.
  • the alkali metal content (mass%) and sulfate radical content (mass%) other than lithium contained in the lithium metal composite oxide powder were calculated.
  • the content of alkali metal other than lithium (mass%) is divided by the content of sulfate radical content (mass%), and the content of alkali metal other than lithium (mass%) relative to the sulfate radical content (mass%). The ratio of was calculated.
  • the volume particle size at 10% cumulative 10% cumulative volume particle size D 10 of the lithium-metal composite oxide powder was the volume particle size at 10% cumulative 10% cumulative volume particle size D 10 of the lithium-metal composite oxide powder. Furthermore, in the obtained cumulative particle size distribution curve, the volume particle size at the time of 90% accumulation was defined as 90% cumulative volume particle size D 90 of the lithium metal composite oxide powder.
  • the binder (PVdF) N-methyl-2-pyrrolidone was used as a solvent and the binder was adjusted so that the binder concentration was 5% by mass.
  • the obtained paste-like positive electrode mixture was applied to an Al foil having a thickness of 40 ⁇ m as a current collector using an auto applicator, dried at 60 ° C. for 5 hours, and pressed at a linear pressure of 120 kN / m. went. Then, it vacuum-dried at 150 degreeC for 8 hours, and obtained the positive electrode for lithium secondary batteries. Electrode area of the lithium secondary battery positive electrode and 1.65 cm 2, a positive electrode mixture amount applied to the electrodes was adjusted coating thickness of the paste-like positive electrode mixture so that 10 ⁇ 1mg / cm 2.
  • the film thickness of the obtained electrode was measured with a micrometer at five points.
  • the film thickness measurement points were selected so that they were uniformly dispersed within the same electrode surface.
  • the average electrode film thickness is calculated from the obtained five electrode film thicknesses, and when there is no measurement point exceeding ⁇ 2 ⁇ m from the average electrode film thickness, the electrode coatability is high, and there are measurement points exceeding ⁇ 2 ⁇ m. In this case, it was judged that the electrode coatability was low.
  • Table 1 “A” is indicated when the electrode coatability is high, and “B” is indicated when the electrode coatability is low.
  • Example 1 Production of Positive Electrode Active Material 1 After water was put in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to keep the liquid temperature at 50 ° C.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.60: 0.20: 0.20. Prepared.
  • this mixed raw material solution and ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction vessel, and nitrogen gas was continuously passed through the reaction vessel.
  • a sodium hydroxide aqueous solution is dropped in a timely manner so that the pH of the solution in the reaction tank becomes 11.7 to obtain nickel cobalt manganese composite hydroxide particles, washed, dehydrated with a centrifuge, washed, dehydrated, The nickel cobalt manganese composite hydroxide 1 was obtained by isolating and drying at 105 ° C.
  • the slurry prepared by mixing the powder and pure water so that the weight ratio of the powder is 0.3 with respect to the total amount was stirred for 20 minutes, then dehydrated, isolated, and dried at 105 ° C. A positive electrode active material 1 was obtained.
  • BET specific surface area of positive electrode active material 1 average primary particle diameter (described as “primary particle diameter” in Table 1), ratio of alkali metal content (mass%) other than lithium to sulfate radical content (mass%) , Lithium carbonate content (mass%), lithium hydroxide content (mass%), alkali metal contents other than lithium (mass%), D 50 , (D 90 -D 10 ) / D 50 , moisture content
  • the value divided by the BET specific surface area ((mass% ⁇ g) / m 2 ) and the electrode coatability (described as “coatability” in Table 1) are listed in Table 1 (Examples 2 to 3 and Comparative Examples 1 to 3 are also shown in Table 1).
  • the slurry prepared by mixing the powder and pure water so that the weight ratio of the powder is 0.3 with respect to the total amount was stirred for 20 minutes, then dehydrated, isolated, and dried at 105 ° C.
  • a positive electrode active material 2 was obtained.
  • Example 3 Production of Positive Electrode Active Material 3 After water was put in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to keep the liquid temperature at 50 ° C.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and an aluminum sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and aluminum atoms is 0.90: 0.07: 0.03. Prepared.
  • this mixed raw material solution and ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction vessel, and nitrogen gas was continuously passed through the reaction vessel.
  • a sodium hydroxide aqueous solution is dropped in a timely manner so that the pH of the solution in the reaction vessel becomes 11.4, nickel cobalt aluminum composite hydroxide particles are obtained and washed, then dehydrated with a centrifuge, washed, dehydrated, The nickel cobalt aluminum composite hydroxide 2 was obtained by isolation and drying at 105 ° C.

Abstract

一次粒子のみ、若しくは前記一次粒子と前記一次粒子の凝集体である二次粒子と、から構成されたリチウム金属複合酸化物粉末であって、前記リチウム金属複合酸化物は下記組成式(1)で表され、下記(A)、(B)及び(C)の要件を全て満たすことを特徴とするリチウム金属複合酸化物粉末。 Li[Li(Ni(1-y-z-w)CoMn1-x]O (1)(MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1。) (A)BET比表面積が2m/g未満。 (B)前記一次粒子の平均粒子径が1μm以上。 (C)硫酸根含有量(質量%)に対するリチウム以外のアルカリ金属含有量(質量%)の比が0.1以上50未満。

Description

リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池
 本発明は、リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池に関する。
 本願は、2018年3月13日に、日本に出願された特願2018-045954号に基づき優先権を主張し、その内容をここに援用する。
 リチウム金属複合酸化物粉末は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。
 リチウム金属複合酸化物粉末は、原料由来の不純物を含む。リチウム金属複合酸化物粉末を正極活物質として用いたリチウム二次電池において、この不純物は塗工性の低下や電池の膨れ等の不具合を引き起こす原因となりうる。
 例えば特許文献1には、充放電反応に寄与しない不純物量を低減させ、熱安定性に優れた正極活物質が記載されている。具体的には、特許文献1では、硫酸根含有量が0.2質量%以下、かつ塩素含有量が0.1質量%以下の正極活物質が記載されている。
 特許文献2には、一次粒子の表層部に存在している残存アルカリ量が少なく、かつ、サイクル特性に優れるリチウムニッケルコバルトマンガン系複合酸化物が記載されている。
特開2015-122269号公報 特開2011-124086号公報
 リチウム二次電池の応用分野の拡大が進む中、リチウム二次電池の正極活物質には、さらなる電池特性の向上に加え、リチウム二次電池の生産性を高めるための易加工性が求められる。
 本発明は上記事情に鑑みてなされたものであって、原料由来の不純物が一定の比率で含有されたリチウム金属複合酸化物粉末、これを用いたリチウム二次電池用正極活物質、正極及びリチウム二次電池を提供することを課題とする。
 すなわち、本発明は、下記[1]~[8]の発明を包含する。
[1]一次粒子のみ、若しくは前記一次粒子と前記一次粒子の凝集体である二次粒子と、から構成されたリチウム金属複合酸化物粉末であって、前記リチウム金属複合酸化物は下記組成式(1)で表され、下記(A)、(B)及び(C)の要件を全て満たすことを特徴とするリチウム金属複合酸化物粉末。
Li[Li(Ni(1-y-z-w)CoMn1-x]O   (1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
(A)BET比表面積が2m/g未満である。
(B)前記一次粒子の平均粒子径が1μm以上である。
(C)リチウム金属複合酸化物粉末の総質量に対する硫酸根含有量(質量%)に対して、リチウム金属複合酸化物粉末の総質量に対するリチウム以外のアルカリ金属含有量(質量%)の比が0.1以上50未満である。
[2]中和滴定により測定される前記リチウム金属複合酸化物粉末の残存アルカリに含まれる炭酸リチウムの含有量が、リチウム金属複合酸化物粉末の総質量に対して0.7質量%以下であり、かつ、中和滴定により測定される前記リチウム金属複合酸化物粉末の残存アルカリに含まれる水酸化リチウムの含有量が、リチウム金属複合酸化物粉末の総質量に対して0.7質量%以下である[1]に記載のリチウム金属複合酸化物粉末。
[3]リチウム以外のアルカリ金属含有量が、リチウム金属複合酸化物粉末の総質量に対して0.001質量%以上0.05質量%以下である、[1]又は[2]に記載のリチウム金属複合酸化物粉末。
[4]粒度分布測定値から求めた10%累積径(D10)、50%累積径(D50)及び90%累積径(D90)において、50%累積径(D50)が2μm以上15μm以下であり、さらに、下記式(D)の関係を満たす[1]~[3]のいずれか1つに記載のリチウム金属複合酸化物粉末。
     0.8≦(D90-D10)/D50≦3.5・・・(D)
[5]リチウム金属複合酸化物粉末の総質量に対する水分含有量(質量%)をBET比表面積(m/g)で除した値が0.005以上0.5以下である[1]~[4]のいずれか1つに記載のリチウム金属複合酸化物粉末。
[6][1]~[5]のいずれか1つに記載のリチウム金属複合酸化物粉末を含有する、リチウム二次電池用正極活物質。
[7][6]に記載のリチウム二次電池用正極活物質を含有する正極。
[8][7]に記載の正極を有するリチウム二次電池。
 本発明によれば、原料由来の不純物が少ないリチウム金属複合酸化物粉末、これを用いたリチウム二次電池用正極活物質、正極及びリチウム二次電池を提供することができる。
リチウムイオン二次電池の一例を示す概略構成図である。 リチウムイオン二次電池の一例を示す概略構成図である。
<リチウム金属複合酸化物粉末>
 本実施形態は、一次粒子のみ、若しくは前記一次粒子と前記一次粒子の凝集体である二次粒子と、から構成されたリチウム金属複合酸化物粉末である。本実施形態のリチウム金属複合酸化物は、下記組成式(1)で表され、下記(A)、(B)及び(C)の要件を全て満たす。
  Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
(A)BET比表面積が2m/g未満である。
(B)前記一次粒子の平均粒子径が1μm以上である。
(C)リチウム金属複合酸化物粉末の総質量に対する硫酸根含有量(質量%)に対して、リチウム金属複合酸化物粉末の総質量に対するリチウム以外のアルカリ金属含有量(質量%)の比が0.1以上50未満である。
 本実施形態のリチウム金属複合酸化物粉末は、一次粒子のみから構成されていてもよく、一次粒子と、前記一次粒子の凝集体である二次粒子とから構成されていてもよい。
 本明細書において「一次粒子」とは、電子顕微鏡観察(例えば、走査型電子顕微鏡(以下、「SEM」ともいう)、透過型電子顕微鏡(以下、「TEM」ともいう))により独立した粒子として観察される最小単位であり、前記粒子は単結晶又は結晶子が集合した多結晶である。
 本明細書において「二次粒子」とは、一次粒子の凝集体である粒子であり、電子顕微鏡観察により確認することができる。
≪組成式(1)≫
 本実施形態のリチウム金属複合酸化物は、下記組成式(1)で表される。
  Li[Li(Ni(1-y-z-w)CoMn1-x]O ・・・(1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
 サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(1)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記組成式(1)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。
 xの上限値と下限値は任意に組み合わせることができる。
 例えば、前記xは0超0.1以下であることが好ましく、0.01以上0.08以下であることがより好ましく、0.02以上0.06以下であることがさらに好ましい。
 また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(1)におけるyは0を超えることが好ましく、0.005以上であることがより好ましく、0.01以上であることがさらに好ましく、0.05以上であることが特に好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、前記組成式(1)におけるyは0.35以下であることがより好ましく、0.33以下であることがさらに好ましい。
 yの上限値と下限値は任意に組み合わせることができる。
 例えば、前記yは0超0.35以下であることが好ましく、0.005以上0.35以下であることがより好ましく、0.01以上0.33以下であることがさらに好ましく、0.05以上0.33以下であることが特に好ましい。
 また、サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(1)におけるzは0.01以上であることが好ましく、0.02以上であることがより好ましく、0.1以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存性が高いリチウム二次電池を得る観点から、前記組成式(1)におけるzは0.4以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることがさらに好ましい。
 zの上限値と下限値は任意に組み合わせることができる。
 例えば、前記zは0.01以上0.4以下であることが好ましく、0.02以上0.38以下であることがより好ましく、0.1以上0.35以下であることがさらに好ましい。
 また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(1)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が高いリチウム二次電池を得る観点から、前記組成式(1)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
 wの上限値と下限値は任意に組み合わせることができる。
 例えば、前記wは0超0.09以下であることが好ましく、0.0005以上0.08以下であることがより好ましく、0.001以上0.07以下であることがさらに好ましい。
 前記組成式(1)におけるy+z+wは0.5未満が好ましく、0.3以下がより好ましい。本発明の効果を有する限り、y+z+wの下限値は特に限定されないが、例えば0.03以上が好ましく、0.05以上がより好ましい。
 前記y+z+wの上限値と下限値は任意に組み合わせることができる。
 例えば、前記y+z+wは0.01以上0.5未満であることが好ましく、0.05以上0.3以下であることがより好ましい。
 前記組成式(1)におけるMはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属を表す。
 また、サイクル特性が高いリチウム二次電池を得る観点から、組成式(1)におけるMは、Ti、Mg、Al、W、B、及びZrからなる群より選択される1種以上の金属であることが好ましく、熱的安定性が高いリチウム二次電池を得る観点から、Ti、Al、W、B、及びZrからなる群より選択される1種以上の金属であることが好ましい。
 本実施形態において、前記組成式(1)中のw、x、y、zは、リチウム複合金属化合物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて分析を行うことにより求めることができる。
・要件(A)
 本実施形態のリチウム金属複合酸化物粉末は、BET比表面積が2m/g未満であり、1.8m/g以下が好ましく、1.6m/g以下がより好ましく、1.4m/g以下が特に好ましい。本発明の効果を有する限り、BET比表面積の下限値は特に限定されないが、例えば0.05m/g以上が好ましく、0.08m/g以上がより好ましく、0.1m/g以上がさらに好ましく、0.12m/g以上が特に好ましい。
 前記BET比表面積の上限値と下限値は任意に組み合わせることができる。
 例えば、前記BET比表面積は0.05m/g以上2m/g未満が好ましく0.08m/g以上1.8m/g以下であることがより好ましく、1.0m/g以上1.6m/g以下であることがさらに好ましく、0.12m/g以上1.4m/g以下であることが特に好ましい。
 BET比表面積は、後述の実施例に記載されている通り、N吸着により測定することができる。
・要件(B)
 本実施形態のリチウム金属複合酸化物粉末は、一次粒子の平均粒子径が1μm以上であり、1.1μm以上が好ましく、1.2μm以上がより好ましい。
 また、一次粒子径の上限値は特に限定されない。一例を挙げると、一次粒子の平均粒子径は5.0μm以下であってもよく、4.0μm以下であってもよく、3.0μm以下であってもよい。
 前記平均粒子径の上限値と下限値は任意に組み合わせることができる。
 例えば、前記平均粒子径は1μm以上5.0μm以下であることが好ましく、1.1μm以上4.0μm以下であることがより好ましく、1.2μm以上3.0μm以下であることがさらに好ましい。
・一次粒子の平均粒子径
 まず、リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、走査型電子顕微鏡(日本電子株式会社製JSM-5510)を用いて、加速電圧が20kVの電子線を照射してSEM観察を行う。SEM観察により得られた画像(SEM写真)から無作為に50個の一次粒子を抽出し、それぞれの一次粒子について、一次粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を一次粒子の粒子径として測定する。得られた一次粒子の粒子径の算術平均値が、リチウム金属複合酸化物粉末の平均一次粒子径である。
 上記要件(A)及び(B)を満たすような本実施形態のリチウム金属複合酸化物粉末は、粒界が少なく、正極材の成型時の加圧操作で粒子の割れが生じにくいという優れた効果を奏する。また、要件(C)にて説明するリチウム金属複合酸化物粉末の総質量に対する硫酸根含有量(質量%)に対して、リチウム金属複合酸化物粉末の総質量に対するリチウム以外のアルカリ金属含有量(質量%)の比を所定の範囲に調整しやすいという効果も有する。
・要件(C)
 本実施形態のリチウム金属複合酸化物粉末は、リチウム金属複合酸化物粉末の総質量に対する硫酸根含有量(質量%)に対して、リチウム金属複合酸化物粉末の総質量に対するリチウム以外のアルカリ金属含有量(質量%)の比が0.1以上50未満であり、0.5以上40以下が好ましく、0.7以上30以下がより好ましい。
 本明細書において、「硫酸根」とは、焼成工程後のリチウム金属複合酸化物粉末に含まれるSO 2-を意味する。
 本実施形態のリチウム金属酸化物粉末は、前記式(1)で表されるリチウム金属複合酸化物を主成分として含む。本実施形態のリチウム金属酸化物粉末は、前記式(1)で表されるリチウム金属複合酸化物の他に、原料、溶媒等のリチウム金属酸化物粉末の製造工程で使用された物質由来の不純物を微量含むことがある。
 不純物としては、例えば、リチウム以外のアルカリ金属を含まず、かつ硫酸根を含む化合物、硫酸根を含まず、かつリチウム以外のアルカリ金属を含む化合物、リチウム以外のアルカリ金属を含み、かつ硫酸根を含む化合物、炭酸リチウム、水酸化リチウム、水等が例として挙げられる。また、リチウム以外のアルカリ金属としては、Na、K、Rb及びCsが挙げられる。
 本実施形態のリチウム金属酸化物粉末の総質量に対する、前記式(1)で表される化合物の含有量は、97.00~99.99質量%であることが好ましく、98.00~99.98質量%であることがより好ましく、98.50~99.97質量%であることがさらに好ましい。
 要件(C)を満たす本実施形態のリチウム金属複合酸化物粉末は、含有するリチウム以外のアルカリ金属と硫酸根との比が一定の範囲内である。本実施形態のリチウム金属複合酸化物粉末は、前述の要件(A)及び(B)を満たし、一次粒子の平均粒子径が一定以上の値であるため、硫酸根の含有量を洗浄により調整しやすい。一方、一次粒子の平均粒子径が一定以下の値である場合、前記一次粒子により構成される二次粒子には粒界が多く、洗浄により硫酸根の含有量を調整することは難しく、硫酸根が多く残留しやすい。
 本実施形態のリチウム金属複合酸化物粉末は、二次粒子の粒界が少ないため、粒子表面の硫酸根の存在量が少ないと推察される。
 硫酸根は吸湿性が高い。また、SO 2-が多く、カウンターイオン(アルカリ金属)が少ないと、SO 2-が不安定となり、吸湿性が高くなりやすい。そのため硫酸根が多く残留するリチウム金属複合酸化物粉末を正極活物質として用いると、前記正極活物質は水分を吸収してしまう。この水分は、正極材中のアルカリ成分と反応し、pHが増大して、正極材が有するバインダー成分が変化し、ゲル化する原因となる。
 一方、SO 2-が少なく、カウンターイオン(アルカリ金属)が多すぎると、リチウム金属複合酸化物粉末の結晶構造において、本来、リチウムイオンが存在するサイトにリチウム以外のアルカリ金属が存在する割合が高まり、電池の内部抵抗が高くなる。
 本実施形態において、硫酸根含有量(質量%)に対するリチウム以外のアルカリ金属含有量(質量%)の比は下記の方法により測定できる。
 リチウム金属複合酸化物粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析法(ICP)を行い、硫黄原子の量及びリチウム以外のアルカリ金属原子の量を測定する。次いで、測定した硫黄原子の量から硫黄は全て硫酸根由来として硫酸根に換算する。測定したリチウム以外のアルカリ金属原子の量及び硫酸根の量からリチウム金属複合酸化物粉末に含有されているリチウム以外のアルカリ金属含有量(質量%)及び硫酸根含有量(質量%)を算出し、リチウム以外のアルカリ金属含有量(質量%)の値を、硫酸根含有量(質量%)の値で除し、硫酸根含有量(質量%)に対するリチウム以外のアルカリ金属含有量(質量%)の比を算出する。
 リチウム金属複合酸化物粉末の総質量に対する硫酸根含有量(質量%)は0.0001~3質量%であることが好ましく、0.0002~2質量%であることがより好ましく、0.0001~1質量%であることがさらに好ましい。
 本実施形態のリチウム金属複合酸化物粉末は、サイクル特性が高いリチウム二次電池を得る観点から、粒度分布測定値から求めた10%累積径(D10)、50%累積径(D50)及び90%累積径(D90)において、50%累積径(D50)が2μm以上15μm以下であり、さらに、下記式(D)の関係を満たすことが好ましい。
     0.8≦(D90-D10)/D50≦3.5・・・(D)
 前記50%累積径(D50)は、2.2μm以上が好ましく、2.5μm以上がより好ましく、3.0μm以上がさらに好ましい。
 前記50%累積径(D50)は、10μm以下が好ましく、8.0μm以下がより好ましく、5.0μm以下がさらに好ましい。
 50%累積径(D50)の上限値及び下限値は任意に組み合わせることができる。本実施形態においては、2.2μm以上10μm以下が好ましく、2.5μm以上8.0μm以下がより好ましく、3.0μm以上5.0μm以下がさらに好ましい。
 (D90-D10)/D50は、1.0以上が好ましく、1.5以上がより好ましく、2.0以上が特に好ましい。
 (D90-D10)/D50は、3.4以下が好ましく、3.2以下がより好ましく、3.0以下が特に好ましい。
 (D90-D10)/D50の上限値及び下限値は任意に組み合わせることができる。本実施形態においては、1.0以上3.4以下が好ましく、1.5以上3.2以下がより好ましく、2.0以上3.0以下が特に好ましい。
 本実施形態において、D90、D50、D10は、実施例に記載されている通り、レーザー回折散乱粒度分布測定装置を用いて、粒度分布を測定することにより得ることができる。
 本実施形態のリチウム金属複合酸化物粉末は、電極作成時の塗工性を高める観点からリチウム金属複合酸化物粉末の総質量に対する水分含有量(質量%)をBET比表面積(m/g)で除した値が0.005((質量%・g)/m)以上0.5((質量%・g)/m)以下であることが好ましく、0.005((質量%・g)/m)以上0.3((質量%・g)/m)以下であることがより好ましく、0.008((質量%・g)/m)以上0.2((質量%・g)/m)以下がさらに好ましく、0.010((質量%・g)/m)以上0.05((質量%・g)/m)以下が特に好ましい。
 本実施形態において、リチウム金属複合酸化物粉末の水分含有量は、実施例に記載されている通り、電量法カールフィッシャー水分計を用いて測定することができる。
 本実施形態のリチウム金属複合酸化物粉末は、中和滴定により測定される前記リチウム金属複合酸化物粉末の残存アルカリに含まれる炭酸リチウムの含有量が、リチウム金属複合酸化物粉末の総質量に対して0.7質量%以下であり、かつ、中和滴定により測定される前記リチウム金属複合酸化物粉末の残存アルカリに含まれる水酸化リチウムの含有量がリチウム金属複合酸化物粉末の総質量に対して0.7質量%以下であることが好ましい。
 炭酸リチウムの含有量は、0.69質量%以下がより好ましく、0.68以下がさらに好ましい。炭酸リチウムの含有量は0であることが最も好ましいが、通常は0.01質量以上であり、0.02質量%以上が好ましく、0.03質量%がより好ましい。
 炭酸リチウムの含有量の上限値と下限値は任意に組み合わせることができる。
 例えば、前記炭酸リチウムの含有量は0質量%以上0.7質量%以下であることが好ましく、0.01質量以上0.69質量%以下であることがより好ましく、0.03質量%以上0.68質量%以下であることがさらに好ましい。
 水酸化リチウムの含有量は、0.5質量%以下がより好ましく、0.2質量%以下がさらに好ましい。水酸化リチウムの含有量は0であることが最も好ましいが、通常は0.01質量以上であり、0.02質量%以上が好ましく、0.03質量%がより好ましい。
 水酸化リチウムの含有量の上限値と下限値は任意に組み合わせることができる。
 例えば、前記水酸化リチウムの含有量は0質量%以上0.7質量%以下であることが好ましく、0.01質量以上0.69質量%以下であることがより好ましく、0.03質量%以上0.68質量%以下であることがさらに好ましい。
 本実施形態において、リチウム金属複合酸化物粉末に含まれる炭酸リチウム及び水酸化リチウムの含有量は、実施例に記載の中和滴定により測定することができる。
 本実施形態のリチウム金属複合酸化物粉末は、放電容量が高く、内部抵抗が低いリチウム二次電池を得る観点から、リチウム以外のアルカリ金属含有量がリチウム金属複合酸化物粉末の総質量に対して0.001質量%以上0.05質量%以下が好ましく、0.0012質量%以上0.03質量%以下がより好ましく、0.0014質量%以上0.01質量%以下がさらに好ましく、0.0016以上、0.005以下が特に好ましい。
(層状構造)
 本実施形態において、正極活物質の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、P6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
 これらのうち、放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
<リチウム金属複合酸化物粉末の製造方法>
 本実施形態のリチウム金属複合酸化物粉末を製造するにあたって、まず、リチウム以外の金属、すなわち、必須金属であるNi、並びに、Co、Mnと、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVのうちいずれか1種以上の任意金属を含む金属複合化合物を調製し、前記金属複合化合物を適当なリチウム塩と、不活性溶融剤と共に焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、リチウム金属複合酸化物粉末の製造方法の一例を、金属複合化合物の製造工程と、リチウム金属複合酸化物の製造工程とに分けて説明する。
(金属複合化合物の製造工程)
 金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
 特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、Ni(1-y-z-w)CoMn(OH)(式中、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1)で表される金属複合水酸化物を共沈法により製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れか1種又は2種以上を使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れか1種又は2種以上を使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン、及び酢酸マンガンのうちの何れか1種又は2種以上を使用することができる。以上の金属塩は、上記Ni(1-y-z-w)CoMn(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるニッケル、コバルト、マンガンのモル比が、リチウム金属複合酸化物の組成式(I)の(1-y-z-w):y:zと対応するように各金属塩の量を規定する。
 また、溶媒として水が使用される。
 錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等のアンモニウム塩)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。錯化剤は、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩のモル数の合計に対するモル比が0より大きく2.0以下であることが好ましい。
 沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、Ni(1-y-z-w)CoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30~70℃の範囲内で制御され、反応槽内のpH値は例えば40℃測定時においてpH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。
 反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、下記工程で最終的に得られるリチウム金属複合酸化物の二次粒子径、細孔半径等の各種物性を制御することが出来る。上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等の酸化性ガス、あるいはそれらの混合ガスを反応槽内に供給してもよい。気体以外に酸化状態を促すものとして、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン、オゾンなどを使用することができる。気体以外に還元状態を促すものとして、シュウ酸、ギ酸などの有機酸、亜硫酸塩、ヒドラジンなどを使用する事ができる。
 例えば、反応槽内の反応pHを高くすると、二次粒子径が小さい金属複合化合物が得られやすい。一方、反応pHを低くすると、二次粒子径が大きい金属複合化合物が得られやすい。また、反応槽内の酸化状態を高くすると、空隙を多く有する金属複合化合物が得られやすい。一方、酸化状態を低くすると、緻密な金属複合化合物が得られやすい。反応条件については、使用する反応槽のサイズ等にも依存することから、最終的に得られるリチウム複合酸化物の各種物性をモニタリングしつつ、反応条件を最適化すればよい。
 以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン水酸化物を単離する。また、必要に応じて得られた反応沈殿物を弱酸水や、水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄してもよい。
 なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。ニッケルコバルトマンガン複合酸化物を調製する場合は、例えば、前記共沈物スラリーと酸化剤を接触させる工程や、ニッケルコバルトマンガン複合水酸化物を熱処理する工程を行うことにより調製することができる。
(リチウム金属複合酸化物の製造工程)
 上記金属複合化合物(金属複合酸化物又は金属複合水酸化物)を乾燥した後、リチウム塩と混合し混合物を得る。また、本実施形態において、この混合と同時に不活性溶融剤を混合することが好ましい。
 金属複合酸化物若しくは金属複合水酸化物、リチウム塩及び不活性溶融剤を含む、不活性溶融剤含有混合物を焼成することにより、不活性溶融剤の存在下で、混合物を焼成することになる。不活性溶融剤の存在下で焼成することにより、一次粒子同士が焼結して二次粒子が生成することを抑制できる。また、結晶性の高い一次粒子を得ることができる。
 本実施形態において、乾燥条件は特に制限されないが、例えば、金属複合酸化物又は金属複合水酸化物が酸化・還元されない条件(すなわち酸化物が酸化物のまま維持される、水酸化物が水酸化物のまま維持される条件)、金属複合水酸化物が酸化される条件(すなわち水酸化物が酸化物に酸化される条件)、金属複合酸化物が還元される条件(すなわち酸化物が水酸化物に還元される条件)のいずれの条件でもよい。酸化・還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の不活性ガスを使用すればよく、金属複合水酸化物が酸化される条件では、酸素又は空気を使用すればよい。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すればよい。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。
 金属複合酸化物又は金属複合水酸化物の乾燥後に、適宜分級を行ってもよい。以上のリチウム塩と金属複合水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と前記金属複合水酸化物は、LiNi(1-y-z-w)CoMn(式中、0≦y≦0.4、0≦z≦0.4、0≦w≦0.1)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン金属複合水酸化物及びリチウム塩の混合物を焼成することによって、リチウム-ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
 本実施形態においては、不活性溶融剤の存在下で混合物の焼成を行うことで、混合物の結晶化反応を促進させることができる。不活性溶融剤は、焼成後のリチウム金属複合酸化物粉末に残留していてもよいし、焼成後に水などで洗浄すること等により除去されていてもよい。本実施形態においては、要件(C)に制御するため、焼成後のリチウム複合金属酸化物は水などを用いて洗浄することが好ましく、洗浄に用いる水の量を調整することが好ましいい。また、洗浄に用いる水にあらかじめ硫酸根、若しくはリチウム以外のアルカリ金属を含有させた洗浄液を調整し、前記洗浄液を用いた洗浄を行う方法も好ましく用いられる。
 焼成における保持温度を調整することにより、得られるリチウム金属複合酸化物の一次粒子の粒子径、二次粒子の粒子径を本実施形態の好ましい範囲に制御できる。
 通常、保持温度が高くなればなるほど、一次粒子の粒子径及び二次粒子の粒子径は大きくなり、BET比表面積は小さくなる傾向にある。焼成における保持温度は、用いる遷移金属元素の種類、沈殿剤、不活性溶融剤の種類、量に応じて適宜調整すればよい。
 本実施形態においては、保持温度の設定は、後述する不活性溶融剤の融点を考慮すればよく、不活性溶融剤の融点マイナス200℃以上不活性溶融剤の融点プラス200℃以下の範囲で行うことが好ましい。
 保持温度として、具体的には、200℃以上1150℃以下の範囲を挙げることができ、300℃以上1050℃以下が好ましく、500℃以上1000℃以下がより好ましい。
 また、前記保持温度で保持する時間は、0.1時間以上20時間以下が挙げられ、0.5時間以上10時間以下が好ましい。前記保持温度までの昇温速度は、通常50℃/時間以上400℃/時間以下であり、前記保持温度から室温までの降温速度は、通常10℃/時間以上400℃/時間以下である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴン又はこれらの混合ガスを用いることができる。
 保持温度、保持温度で保持する時間及び焼成の雰囲気を適切に設定することで、要件(A)、(B)及びリチウム金属複合酸化物粉末の残存アルカリに含まれる炭酸リチウムの含有量、水酸化リチウムの含有量を好適な範囲に調整することが可能となる。
 焼成によって得たリチウム金属複合酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。
 本実施形態においては、焼成後のリチウム金属複合酸化物粉末と純水とを混合し、スラリーを作製し、撹拌することによって洗浄を行う。前記スラリー中の前記粉末の質量は、前記粉末と純水の総質量(すなわち、スラリーの質量)に対する割合が、0.5未満であり、0.45以下であることが好ましく、0.40以下であることがより好ましい。前記割合が前記上限値未満(以下)であると、前記要件(B)及びリチウム金属複合酸化物粉末の残存アルカリに含まれる炭酸リチウムの含有量、水酸化リチウムの含有量を好適な範囲に調整することが可能となる。
 上記洗浄後は、適宜、脱水、単離、乾燥等を行うことが好ましい。
 本実施形態に使用することができる不活性溶融剤は、焼成の際に混合物と反応し難いものであれば特に限定されない。本実施形態においては、Na、K、Rb及びCsからなる群より選ばれる1種以上の元素(以下、「A」と称する。)のフッ化物、Aの塩化物、Aの炭酸塩、Aの硫酸塩、Aの硝酸塩、Aのリン酸塩、Aの水酸化物、Aのモリブデン酸塩及びAのタングステン酸塩からなる群より選ばれる1種以上が挙げられる。
 Aのフッ化物としては、NaF(融点:993℃)、KF(融点:858℃)、RbF(融点:795℃)及びCsF(融点:682℃)を挙げることができる。
 Aの塩化物としては、NaCl(融点:801℃)、KCl(融点:770℃)、RbCl(融点:718℃)及びCsCl(融点:645℃)を挙げることができる。
 Aの炭酸塩としては、NaCO(融点:854℃)、KCO(融点:899℃)、RbCO(融点:837℃)及びCsCO(融点:793℃)を挙げることができる。
 Aの硫酸塩としては、NaSO(融点:884℃)、KSO(融点:1069℃)、RbSO(融点:1066℃)及びCsSO(融点:1005℃)を挙げることができる。
 Aの硝酸塩としては、NaNO(融点:310℃)、KNO(融点:337℃)、RbNO(融点:316℃)及びCsNO(融点:417℃)を挙げることができる。
 Aのリン酸塩としては、NaPO、KPO(融点:1340℃)、RbPO及びCsPOを挙げることができる。
 Aの水酸化物としては、NaOH(融点:318℃)、KOH(融点:360℃)、RbOH(融点:301℃)及びCsOH(融点:272℃)を挙げることができる。
 Aのモリブデン酸塩としては、NaMoO(融点:698℃)、KMoO(融点:919℃)、RbMoO(融点:958℃)及びCsMoO(融点:956℃)を挙げることができる。
 Aのタングステン酸塩としては、NaWO(融点:687℃)、KWO(融点:933℃)、RbWO及びCsWOを挙げることができる。
 本実施形態においては、これらの不活性溶融剤を2種以上用いることもできる。2種以上用いる場合は、融点が下がることもある。また、これらの不活性溶融剤の中でも、より結晶性が高いリチウム金属複合酸化物粉末を得るための不活性溶融剤としては、Aの炭酸塩及びAの塩化物のいずれか一方又は両方であることが好ましい。また、Aとしては、ナトリウム(Na)及びカリウム(K)のいずれか一方又は両方であることが好ましい。すなわち、上記の中で、とりわけ好ましい不活性溶融剤は、NaCl、KCl、NaCO、KCO3、NaSO4、及びKSOからなる群より選ばれる1種以上である。
 これらの不活性溶融剤を用いることにより、得られるリチウム金属複合酸化物について、要件(A)及び要件(B)を本実施形態の好ましい範囲に制御できる。
 本実施形態において、不活性溶融剤として、KSO及びNaSOのいずれか一方又は両方を用いた場合には、得られるリチウム金属複合酸化物の一次粒子と二次粒子の平均粒子径を本実施形態の好ましい範囲に制御できる。
 本実施形態において、焼成時の不活性溶融剤の存在量は適宜選択すればよい。得られるリチウム金属複合酸化物の要件(B)の範囲とするためには、不活性溶融剤の存在量はリチウム塩100質量部に対して0.1質量部以上であることが好ましく、1質量部以上であることがより好ましい。また、不活性溶融剤とリチウム塩の総モル比に対する不活性溶融剤のモル比[不活性溶融剤/(不活性溶融剤+リチウム塩)]は、0.01~1.0であることが好ましく、0.015~0.3であることがより好ましく、0.02~0.2であることがさらに好ましい。また、必要に応じて、上記に挙げた不活性溶融剤以外の不活性溶融剤を併せて用いてもよい。前記溶融剤としては、NHCl、NHFなどのアンモニウム塩等を挙げることができる。
<リチウム二次電池用正極活物質>
 本実施形態は、前記本実施形態のリチウム金属複合酸化物粉末を含有するリチウム二次電池用正極活物質である。
<リチウム二次電池>
 次いで、リチウム二次電池の構成を説明しながら、本実施形態のリチウム二次電池用正極活物質の製造方法により製造されたリチウム二次電池用正極活物質を用いた正極、及びこの正極を有するリチウム二次電池について説明する。
 本実施形態のリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1A、図1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調製し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。
 この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N-ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。
 負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
 負極活物質として使用可能な窒化物としては、LiN、Li3-xN(ここで、AはNi及びCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117:2009で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、セパレータの総体積に対して好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
 以上のような構成の正極活物質は、上述した本実施形態のリチウム含有複合金属酸化物を用いているため、正極活物質を用いたリチウム二次電池の、電池内部で生じる副反応を抑制することができる。
 また、以上のような構成の正極は、上述した本実施形態のリチウム二次電池用正極活物質を有するため、リチウム二次電池の、電池内部で生じる副反応を抑制することができる。
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、従来よりも電池内部で生じる副反応を抑制したリチウム二次電池となる。
 次に、本発明を実施例によりさらに詳細に説明する。
 本実施例においては、リチウム金属複合酸化物粉末の評価を下記の方法により実施した。
<組成分析>
 後述の方法で製造されるリチウム金属複合酸化物の組成分析は、得られたリチウム複合金属化合物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
<BET比表面積測定>
 リチウム金属複合酸化物粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、N吸着測定装置(マウンテック社製Macsorb(登録商標))を用いて測定した(単位:m/g)。
<平均一次粒子径の測定>
 リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、走査型電子顕微鏡(日本電子株式会社製JSM-5510)を用いて、加速電圧が20kVの電子線を照射してSEM観察を行った。SEM観察により得られた画像(SEM写真)から無作為に50個の一次粒子を抽出し、それぞれの一次粒子について、一次粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を一次粒子の粒子径として測定した。得られた一次粒子の粒子径の算術平均値を、リチウム金属複合酸化物粉末の平均一次粒子径とした。
<硫酸根含有量(質量%)に対するリチウム以外のアルカリ金属含有量(質量%)の比の測定>
 硫酸根含有量(質量%)に対するリチウム以外のアルカリ金属含有量(質量%)の比は下記の方法により測定した。
 リチウム金属複合酸化物粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析法(ICP)を行い、硫黄原子の量及びリチウム以外のアルカリ金属原子の量を測定した。次いで、測定した硫黄原子の量から硫黄は全て硫酸根由来として硫酸根に換算した。測定したリチウム以外のアルカリ金属原子の量及び硫酸根の量からリチウム金属複合酸化物粉末に含有されたリチウム以外のアルカリ金属含有量(質量%)及び硫酸根含有量(質量%)を算出し、リチウム以外のアルカリ金属の含有量(質量%)の値を、硫酸根含有量(質量%)の値で除し、硫酸根含有量(質量%)に対するリチウム以外のアルカリ金属含有量(質量%)の比を算出した。
<リチウム金属複合酸化物粉末に含まれる残留リチウム定量(中和滴定)>
 リチウム金属複合酸化物粉末20gと純水100gを500mlビーカーに入れ、5分間撹拌した。撹拌後、リチウム金属複合酸化物を濾過し、得られた濾液の60gに0.1mol/L塩酸を滴下し、pHメーターにて濾液の40℃におけるpHを測定した。pH=8.3±0.1時の塩酸の滴定量をAml、pH=4.5±0.1時の塩酸の滴定量をBmlとして、下記の計算式より、リチウム金属複合酸化物中に残存する炭酸リチウム及び水酸化リチウム濃度を算出した。下記の式中、炭酸リチウム及び水酸化リチウムの分子量は、各原子量を、H;1.000、Li;6.941、C;12、O;16、として算出した。
炭酸リチウム濃度(%)=0.1×(B-A)/1000×73.882/(20×60/100)×100
水酸化リチウム濃度(%)=0.1×(2A-B)/1000×23.941/(20×60/100)×100
<リチウム金属複合酸化物粉末の粒度分布測定>
 測定するリチウム金属複合酸化物の粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得た。得られた分散液についてマルバーン社製マスターサイザー2000(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得た。得られた累積粒度分布曲線において、50%累積時の体積粒度をリチウム金属複合酸化物粉末の50%累積体積粒度D50とした。さらに、得られた累積粒度分布曲線において、10%累積時の体積粒度をリチウム金属複合酸化物粉末の10%累積体積粒度D10とした。さらに、得られた累積粒度分布曲線において、90%累積時の体積粒度をリチウム金属複合酸化物粉末の90%累積体積粒度D90とした。
<水分含有量>
 測定するリチウム金属複合酸化物の粉末1gについて電量法カールフィッシャー水分計(831 Coulometer、Metrohm社製)を用い、リチウム金属複合酸化物の水分含有量を測定した。
<電極塗工性試験>
 後述の方法で製造されるリチウム金属複合酸化物粉末を正極活物質とし、前記正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。なお、バインダー(PVdF)はN-メチル-2-ピロリドンを溶媒とし、バインダー濃度が5質量%となるように調整したものを用いた。
 得られたペースト状の正極合剤を、集電体となる厚さ40μmのAl箔に、オートアプリケーターを用いて塗布して60℃で5時間乾燥し、線圧120kN/mの圧力でプレスを行った。その後、150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得た。
 このリチウム二次電池用正極の電極面積は1.65cmとし、電極に塗布された正極合剤量は10±1mg/cmとなるようにペースト状の正極合剤の塗布厚みを調整した。
 得られた電極の膜厚を、マイクロメーターで5点測定した。なお、膜厚の測定点は同一電極面内で均一に分散するように測定点を選定した。得られた5点の電極膜厚から平均電極膜厚を算出し、前記平均電極膜厚から±2μmを超える測定点がない場合に電極の塗工性が高く、±2μmを超える測定点がある場合には電極の塗工性が低いと判断した。
 表1中においては、電極塗工性が高ければ「A」とし、低ければ「B」とした。
≪実施例1≫
 1.正極活物質1の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.60:0.20:0.20となるように混合して、混合原料液を調製した。
 次いで、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを反応槽内に連続通気させた。反応槽内の溶液のpHが11.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物1を得た。
 ニッケルコバルトマンガン複合水酸化物粒子1と炭酸リチウム粉末と硫酸カリウム粉末を、Li/(Ni+Co+Mn)=1.20、KSO/(LiCO+KSO)=0.10(mоl比)となるように秤量して混合した後、大気雰囲気下900℃で8時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.3になるように混合し作製したスラリーを20分間撹拌させた後、脱水、単離し、105℃で乾燥することにより正極活物質1を得た。
 正極活物質1の評価
 得られた正極活物質1の組成分析を行い、組成式(1)に対応させたところ、x=0.03、y=0.20、z=0.20、w=0.00であった。
 正極活物質1のBET比表面積、平均一次粒子径(表1中、「一次粒子径」と記載する)、硫酸根含有量(質量%)に対するリチウム以外のアルカリ金属含有量(質量%)の比、炭酸リチウム含有量(質量%)、水酸化リチウム含有量(質量%)、リチウム以外のアルカリ金属含有量(質量%)、D50、(D90-D10)/D50、水分含有量をBET比表面積で除した値((質量%・g)/m)、電極塗工性(表1中、「塗工性」と記載する)の結果を表1に記載する(実施例2~3、比較例1~3についても同様に表1に示す)。
≪実施例2≫
 ニッケルコバルトマンガン複合水酸化物粒子1と炭酸リチウム粉末と硫酸カリウム粉末を、Li/(Ni+Co+Mn)=1.20、KSO/(LiCO+KSO)=0.10(mоl比)となるように秤量して混合した後、大気雰囲気下925℃で8時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.3になるように混合し作製したスラリーを20分間撹拌させた後、脱水、単離し、105℃で乾燥することにより正極活物質2を得た。
 正極活物質2の評価
 得られた正極活物質2の組成分析を行い、組成式(1)に対応させたところ、x=0.02、y=0.20、z=0.20、w=0.00であった。
≪実施例3≫
 1.正極活物質3の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸アルミニウム水溶液とを、ニッケル原子とコバルト原子とアルミニウム原子との原子比が0.90:0.07:0.03となるように混合して、混合原料液を調製した。
 次いで、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを反応槽内に連続通気させた。反応槽内の溶液のpHが11.4になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトアルミニウム複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトアルミニウム複合水酸化物2を得た。
 ニッケルコバルトアルミニウム複合水酸化物粒子2と水酸化リチウム一水和物粉末と硫酸カリウム粉末を、Li/(Ni+Co+Al)=1.20、KSO/(LiOH+KSO)=0.10(mоl比)となるように秤量して混合した後、酸素囲気下840℃で8時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.4になるように混合し作製したスラリーを20分間撹拌させた後、脱水、単離し、105℃で乾燥することにより正極活物質3を得た。
 正極活物質3の評価
 得られた正極活物質3の組成分析を行い、組成式(1)に対応させたところ、x=0.01、y=0.07、z=0.00、w=0.03であった。
≪比較例1≫
 1.正極活物質4の製造
 硫酸カリウム粉末を混合しなかった以外は実施例1と同様の方法で正極活物質4を得た。
2.正極活物質4の評価
 正極活物質4の組成分析を行い、組成式(1)に対応させたところ、x=0.02、y=0.20、z=0.20、w=0.00であった。
≪比較例2≫
 ニッケルコバルトマンガン複合水酸化物粒子1と炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.20となるように秤量して混合した後、大気雰囲気下925℃で8時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.2になるように混合し作製したスラリーを20分間撹拌させた後、脱水、単離し、105℃で乾燥することにより正極活物質5を得た。
 正極活物質5の評価
 得られた正極活物質5の組成分析を行い、組成式(1)に対応させたところ、x=0.02、y=0.20、z=0.20、w=0.00であった。
≪比較例3≫
 ニッケルコバルトアルミニウム複合水酸化物粒子2と水酸化リチウム一水和物粉末と硫酸カリウム粉末を、Li/(Ni+Co+Al)=1.20、KSO/(LiOH+KSO)=0.10(mоl比)となるように秤量して混合した後、酸素囲気下840℃で8時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と純水とを全体量に対して上記粉末重量の割合が0.5になるように混合し作製したスラリーを20分間撹拌させた後、脱水、単離し、105℃で乾燥することにより正極活物質6を得た。
 正極活物質6の評価
 得られた正極活物質6の組成分析を行い、組成式(1)に対応させたところ、x=0.12、y=0.07、z=0.00、w=0.03であった。
Figure JPOXMLDOC01-appb-T000001
 表1に記載の結果の通り、本発明を適用した実施例1~3は、塗工性がすべて「A」であった。
1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード

Claims (8)

  1.  一次粒子のみ、若しくは前記一次粒子と前記一次粒子の凝集体である二次粒子と、から構成されたリチウム金属複合酸化物粉末であって、
     前記リチウム金属複合酸化物は下記組成式(1)で表され、下記(A)、(B)及び(C)の要件を全て満たすことを特徴とするリチウム金属複合酸化物粉末。
    Li[Li(Ni(1-y-z-w)CoMn1-x]O   (1)(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の金属元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)(A)BET比表面積が2m/g未満である。
    (B)前記一次粒子の平均粒子径が1μm以上である。
    (C)リチウム金属複合酸化物粉末の総質量に対する硫酸根含有量(質量%)に対して、リチウム金属複合酸化物粉末の総質量に対するリチウム以外のアルカリ金属含有量(質量%)の比が0.1以上50未満である。
  2.  中和滴定により測定される前記リチウム金属複合酸化物粉末の残存アルカリに含まれる炭酸リチウムの含有量が、リチウム金属複合酸化物粉末の総質量に対して0.7質量%以下であり、かつ、中和滴定により測定される前記リチウム金属複合酸化物粉末の残存アルカリに含まれる水酸化リチウムの含有量が、リチウム金属複合酸化物粉末の総質量に対して0.7質量%以下である請求項1に記載のリチウム金属複合酸化物粉末。
  3.  リチウム以外のアルカリ金属含有量が、リチウム金属複合酸化物粉末の総質量に対して0.001質量%以上0.05質量%以下である、請求項1又は2に記載のリチウム金属複合酸化物粉末。
  4.  粒度分布測定値から求めた10%累積径(D10)、50%累積径(D50)及び90%累積径(D90)において、50%累積径(D50)が2μm以上15μm以下であり、さらに、下記式(D)の関係を満たす請求項1~3のいずれか1項に記載のリチウム金属複合酸化物粉末。
         0.8≦(D90-D10)/D50≦3.5・・・(D)
  5.  リチウム金属複合酸化物粉末の総質量に対する水分含有量(質量%)をBET比表面積(m/g)で除した値が0.005以上0.5以下である請求項1~4のいずれか1項に記載のリチウム金属複合酸化物粉末。
  6.  請求項1~5のいずれか1項に記載のリチウム金属複合酸化物粉末を含有する、リチウム二次電池用正極活物質。
  7.  請求項6に記載のリチウム二次電池用正極活物質を含有する正極。
  8.  請求項7に記載の正極を有するリチウム二次電池。
PCT/JP2019/010275 2018-03-13 2019-03-13 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池 WO2019177023A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207025841A KR20200131236A (ko) 2018-03-13 2019-03-13 리튬 금속 복합 산화물 분말, 리튬 이차 전지용 정극 활물질, 정극 및 리튬 이차 전지
EP19768101.8A EP3767719A4 (en) 2018-03-13 2019-03-13 LITHIUM METAL COMPOSITE OXIDE POWDER, POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE AND LITHIUM SECONDARY BATTERY
CN201980018098.4A CN111837267A (zh) 2018-03-13 2019-03-13 锂金属复合氧化物粉末、锂二次电池用正极活性物质、正极以及锂二次电池
US16/979,463 US20210013506A1 (en) 2018-03-13 2019-03-13 Lithium metal composite oxide powder, positive electrode active material for lithium secondary batteries, positive electrode, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018045954A JP6994990B2 (ja) 2018-03-13 2018-03-13 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池
JP2018-045954 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019177023A1 true WO2019177023A1 (ja) 2019-09-19

Family

ID=67907901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010275 WO2019177023A1 (ja) 2018-03-13 2019-03-13 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池

Country Status (6)

Country Link
US (1) US20210013506A1 (ja)
EP (1) EP3767719A4 (ja)
JP (1) JP6994990B2 (ja)
KR (1) KR20200131236A (ja)
CN (1) CN111837267A (ja)
WO (1) WO2019177023A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074658A4 (en) * 2019-12-13 2024-01-10 Sumitomo Chemical Co LITHIUM METAL COMPOSITE OXIDE, ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY
EP4079693A4 (en) * 2019-12-17 2024-01-17 Sumitomo Chemical Co LITHIUM-METAL COMPOSITE OXIDE POWDER, ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, AND LITHIUM SECONDARY BATTERY

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6880086B2 (ja) * 2019-01-21 2021-06-02 Jx金属株式会社 全固体リチウムイオン電池用酸化物系正極活物質、全固体リチウムイオン電池用酸化物系正極活物質の製造方法及び全固体リチウムイオン電池
JP6857752B1 (ja) * 2020-01-09 2021-04-14 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム金属複合酸化物の製造方法
EP4095102A1 (en) 2021-05-28 2022-11-30 Basf Se Process for making a particulate electrode active material, and electrode active material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456064A (ja) * 1990-06-20 1992-02-24 Sony Corp リチウム2次電池の正極活物質LiCoO2およびその製造方法、並びに、リチウム2次電池
JPH10208728A (ja) * 1997-01-21 1998-08-07 Nippon Chem Ind Co Ltd リチウム二次電池用正極剤組成物及びリチウム二次電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2011124086A (ja) 2009-12-10 2011-06-23 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2015026455A (ja) * 2013-07-24 2015-02-05 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
JP2015122269A (ja) 2013-12-25 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及びこれを用いた非水系電解質二次電池
WO2015182665A1 (ja) * 2014-05-29 2015-12-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2017228516A (ja) * 2016-03-24 2017-12-28 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
JP2018045954A (ja) 2016-09-16 2018-03-22 東芝ライテック株式会社 照明装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142056A (ja) * 1993-11-18 1995-06-02 Sanyo Electric Co Ltd 非水系電池
JP3595734B2 (ja) * 1999-02-15 2004-12-02 株式会社デンソー 非水電解液二次電池用正極活物質、その正極活物質の製法、及びその正極活物質を用いた二次電池
JP4767484B2 (ja) * 2002-08-08 2011-09-07 パナソニック株式会社 非水電解質二次電池用正極活物質の製造法および正極活物質
JP4768562B2 (ja) * 2005-09-27 2011-09-07 石原産業株式会社 リチウム・遷移金属複合酸化物及びその製造方法並びにそれを用いてなるリチウム電池
JP4211865B2 (ja) * 2006-12-06 2009-01-21 戸田工業株式会社 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR20100099594A (ko) * 2009-03-03 2010-09-13 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
JP5695373B2 (ja) * 2009-09-09 2015-04-01 日立マクセル株式会社 電気化学素子用電極及びそれを用いた電気化学素子
JP5742720B2 (ja) * 2009-10-29 2015-07-01 旭硝子株式会社 リチウムイオン二次電池用正極材料の製造方法
JP4937405B1 (ja) * 2009-12-28 2012-05-23 住友化学株式会社 リチウム複合金属酸化物の製造方法
TWI423504B (zh) * 2010-03-05 2014-01-11 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
JP5682151B2 (ja) * 2010-06-17 2015-03-11 住友化学株式会社 遷移金属複合水酸化物およびリチウム複合金属酸化物
JP2012099470A (ja) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd リチウム二次電池用正極材料前駆体の製造方法およびリチウム二次電池用正極材料の製造方法
WO2012133436A1 (ja) * 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5822708B2 (ja) * 2011-12-16 2015-11-24 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
WO2014136760A1 (ja) * 2013-03-04 2014-09-12 三井金属鉱業株式会社 リチウム金属複合酸化物粉体
KR101785262B1 (ko) * 2013-07-08 2017-10-16 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 이를 채용한 양극 및 리튬이차전지
JP6273115B2 (ja) * 2013-09-13 2018-01-31 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6167822B2 (ja) * 2013-10-03 2017-07-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池
WO2015115547A1 (ja) * 2014-01-31 2015-08-06 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP6335276B2 (ja) * 2014-09-03 2018-05-30 三井金属鉱業株式会社 リチウム二次電池用正極活物質
JP6407754B2 (ja) * 2015-02-12 2018-10-17 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、及び、リチウムイオン電池用正極活物質の製造方法
KR20170122731A (ko) * 2015-03-06 2017-11-06 코우리츠다이가쿠호우징 효고켄리츠다이가쿠 리튬니켈망간 복합 산화물 및 그 제조 방법 그리고 그것을 사용한 정극 및 축전 디바이스
WO2017078136A1 (ja) * 2015-11-05 2017-05-11 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
JP6250853B2 (ja) * 2016-03-31 2017-12-20 本田技研工業株式会社 非水系電解質二次電池用正極活物質
JP6341312B2 (ja) * 2016-03-31 2018-06-13 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456064A (ja) * 1990-06-20 1992-02-24 Sony Corp リチウム2次電池の正極活物質LiCoO2およびその製造方法、並びに、リチウム2次電池
JPH10208728A (ja) * 1997-01-21 1998-08-07 Nippon Chem Ind Co Ltd リチウム二次電池用正極剤組成物及びリチウム二次電池
JP2002201028A (ja) 2000-11-06 2002-07-16 Tanaka Chemical Corp 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法
JP2011124086A (ja) 2009-12-10 2011-06-23 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2015026455A (ja) * 2013-07-24 2015-02-05 住友金属鉱山株式会社 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
JP2015122269A (ja) 2013-12-25 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及びこれを用いた非水系電解質二次電池
WO2015182665A1 (ja) * 2014-05-29 2015-12-03 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2017228516A (ja) * 2016-03-24 2017-12-28 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
JP2018045954A (ja) 2016-09-16 2018-03-22 東芝ライテック株式会社 照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767719A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074658A4 (en) * 2019-12-13 2024-01-10 Sumitomo Chemical Co LITHIUM METAL COMPOSITE OXIDE, ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY
EP4079693A4 (en) * 2019-12-17 2024-01-17 Sumitomo Chemical Co LITHIUM-METAL COMPOSITE OXIDE POWDER, ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, AND LITHIUM SECONDARY BATTERY

Also Published As

Publication number Publication date
EP3767719A4 (en) 2021-12-15
CN111837267A (zh) 2020-10-27
JP6994990B2 (ja) 2022-01-14
KR20200131236A (ko) 2020-11-23
EP3767719A1 (en) 2021-01-20
JP2019160572A (ja) 2019-09-19
US20210013506A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP6412094B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6256956B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2015182665A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6343753B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2016060105A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6337360B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6600734B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
WO2018079816A1 (ja) リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法
WO2019177014A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
US11283073B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JPWO2016104488A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
WO2019177023A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池
WO2019177032A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池
WO2018181530A1 (ja) リチウム金属複合酸化物の製造方法
JP6388978B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018043653A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2019189425A1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池
US20210218022A1 (en) Lithium metal composite oxide, lithium secondary battery positive electrode active material, positive electrode, and lithium secondary battery
JP2018174161A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018081937A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018095546A (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6360374B2 (ja) リチウム含有複合金属酸化物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019768101

Country of ref document: EP

Effective date: 20201013