WO2018043653A1 - リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 - Google Patents

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 Download PDF

Info

Publication number
WO2018043653A1
WO2018043653A1 PCT/JP2017/031392 JP2017031392W WO2018043653A1 WO 2018043653 A1 WO2018043653 A1 WO 2018043653A1 JP 2017031392 W JP2017031392 W JP 2017031392W WO 2018043653 A1 WO2018043653 A1 WO 2018043653A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
cross
electrode active
lithium secondary
Prior art date
Application number
PCT/JP2017/031392
Other languages
English (en)
French (fr)
Inventor
健二 高森
孝 有村
恭崇 飯田
Original Assignee
住友化学株式会社
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社田中化学研究所 filed Critical 住友化学株式会社
Priority to EP17846657.9A priority Critical patent/EP3509142A4/en
Priority to CN201780051656.8A priority patent/CN109716565B/zh
Priority to KR1020197005641A priority patent/KR102436594B1/ko
Priority to US16/328,657 priority patent/US11417879B2/en
Publication of WO2018043653A1 publication Critical patent/WO2018043653A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a lithium secondary battery.
  • the lithium composite oxide is used as a positive electrode active material for a lithium secondary battery.
  • Lithium secondary batteries have already been put into practical use not only for small power supplies for mobile phones and laptop computers, but also for medium and large power supplies for automobiles and power storage.
  • Patent Documents 1 to 4 In order to improve the performance of lithium secondary batteries such as battery capacity, attempts have been made focusing on the porosity of the positive electrode active material for lithium secondary batteries (for example, Patent Documents 1 to 4).
  • the positive electrode active material of lithium secondary batteries is required to further improve the capacity retention rate.
  • the positive electrode active materials for lithium secondary batteries as described in Patent Documents 1 to 4 have room for improvement from the viewpoint of improving the capacity retention rate in a high-temperature cycle.
  • the present invention has been made in view of the above circumstances, and is a positive electrode active material for a lithium secondary battery that has an excellent capacity retention rate in a high-temperature cycle, and a lithium secondary battery using the positive electrode active material for a lithium secondary battery. It is an object of the present invention to provide a lithium secondary battery having a positive electrode and the positive electrode for a lithium secondary battery.
  • the present invention includes the following [1] to [10].
  • a positive electrode active material for a lithium secondary battery comprising a lithium composite metal oxide containing secondary particles in which primary particles are aggregated, wherein the secondary particles have voids in the cross section of the secondary particles.
  • a positive electrode active material for a lithium secondary battery wherein the number of void cross sections per 1 ⁇ m 2 is 0.3 or more and 15 or less.
  • the center of the particle and the surface of the particle each have a center of gravity of one or more void cross sections, and the area of the cross section of the surface of the secondary particle in the surface of the secondary particle
  • the positive electrode active material for lithium secondary batteries according to [1], wherein the void cross-section is 0.75% or more and 50% or less (wherein the positive electrode active material for lithium secondary batteries obtained by laser diffraction particle size distribution measurement)
  • the average particle diameter (D 50 ) of the whole substance is set to A
  • the gravity center position of the void cross section existing in the cross section of the secondary particle is calculated by image processing
  • the radius is A / around the gravity center of the cross section of the secondary particle.
  • NMP retention rate (%) [C / B] ⁇ 100 (1)
  • composition formula (I) is the following composition formula (I) -1.
  • Li [Li x (Ni a Co b Mn c M d ) 1-x ] O 2 (I) -1 (Where -0.1 ⁇ x ⁇ 0.2, 0 ⁇ a ⁇ 0.7, 0 ⁇ b ⁇ 0.4, 0 ⁇ c ⁇ 0.4, 0 ⁇ d ⁇ 0.1, a + b + c + d 1
  • M represents one or more elements selected from the group consisting of Fe, Cr, Cu, Ti, B, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, and V.
  • a positive electrode for a lithium secondary battery comprising the positive electrode active material for a lithium secondary battery according to any one of [1] to [8].
  • a positive electrode active material for a lithium secondary battery excellent in capacity retention rate at a high temperature cycle a positive electrode for a lithium secondary battery using the positive electrode active material for a lithium secondary battery, and the positive electrode for the lithium secondary battery A lithium secondary battery having the above can be provided.
  • the present invention is a positive electrode active material for a lithium secondary battery comprising a lithium composite metal oxide containing secondary particles in which primary particles are aggregated, and has a void inside the secondary particles, and a cross section of the secondary particles
  • the positive electrode active material for a lithium secondary battery (hereinafter sometimes referred to as “positive electrode active material”), wherein the number of void cross sections per ⁇ m 2 is 0.3 or more and 15 or less. is there.
  • the positive electrode active material of the present embodiment is characterized in that there are voids in the central part and surface part of the secondary particles, and the number of void cross sections in the substantially central cross section of the secondary particles is a specific number.
  • the positive electrode active material of this embodiment is excellent in capacity retention rate in a high temperature cycle.
  • the “primary particle” is a minimum unit observed as an independent particle by SEM, and the particle is a single crystal or a polycrystal composed of crystallites.
  • “secondary particles” are particles formed by aggregating primary particles and can be observed by SEM.
  • the positive electrode active material is processed to obtain a cross section.
  • a method of obtaining a cross section a method of obtaining a cross section by processing a positive electrode active material with a focused ion beam processing apparatus can be mentioned.
  • a part of the positive electrode produced using the positive electrode active material may be cut out and processed with an ion milling device to obtain a cross section of the positive electrode active material contained in the electrode mixture layer.
  • the positive electrode active material powder and the electrode not only the positive electrode active material powder and the electrode but also a material obtained by solidifying the positive electrode active material powder with a resin can be appropriately selected. Further, as a method for manufacturing the cross section, not only the ion beam method but also polishing or the like can be selected as appropriate.
  • a cross section of the positive electrode active material obtained by the processing is observed with a secondary electron image.
  • a secondary electron image is taken at the maximum magnification that allows the positive electrode active material secondary particles to be contained within the frame, and the secondary particle cross-sectional image is obtained.
  • the “maximum diameter” means the longest diameter among the diameters (lengths) of the respective parts when the cross section of the secondary particles of the positive electrode active material is observed with an SEM.
  • the “minimum diameter” means the shortest diameter among the diameters (lengths) of the respective parts when the cross section of the secondary particles of the positive electrode active material is observed with an SEM.
  • the cross section of the positive electrode active material having the maximum diameter close to 50% cumulative volume particle size D 50 ( ⁇ m) is specifically the maximum diameter having a length in the range of 50 to 200% of the value of D 50 ( ⁇ m). It is a cross section of the positive electrode active material which has this.
  • An example of a secondary particle cross-sectional image is shown in FIG. 3A.
  • the D 50 ( ⁇ m) of the positive electrode active material refers to a value measured by the following (laser diffraction scattering method).
  • a laser diffraction particle size distribution analyzer manufactured by HORIBA, Ltd., model number: LA-950
  • 0.1 g of lithium metal composite oxide powder was put into 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution, and the powder was dispersed. A dispersion was obtained. The particle size distribution of the obtained dispersion is measured to obtain a volume-based cumulative particle size distribution curve. In the obtained cumulative particle size distribution curve, the particle diameter (D 50 ) viewed from the fine particle side at 50% accumulation is the value of D 50 ( ⁇ m).
  • the cross-sectional image into a computer, using image analysis software, performing binarization processing at an intermediate value between the maximum luminance and the minimum luminance in the secondary particle cross-sectional image, black the inside of the cross-section of the secondary particles, A binarized image obtained by converting the void cross section existing inside the cross section of the secondary particles as white is obtained.
  • the cross-sectional image is visually checked to confirm that there are no defects between the cross-section inside and the gap cross-section. If wrinkles are seen, the threshold value for performing binarization is adjusted.
  • gap cross section which exists in the said cross section shall have an area of 0.01 micrometer ⁇ 2 > or more.
  • Image analysis software such as Image J or Photoshop can be selected as appropriate.
  • the secondary particle cross-sectional image shown in FIG. 3A is taken into a computer and processed by the above method using image analysis software to obtain the binarized image shown in FIG. 3B.
  • the gravity center position and area of the secondary particle cross section are calculated using image analysis software. Further, the number of void cross sections existing inside the cross section of the secondary particles, the center of gravity position, the area, and the maximum diameter of each void cross section are also calculated.
  • the cross section of secondary particles refers to a region surrounded by the outer periphery of the secondary particles, that is, all cross-sectional portions of the secondary particles, and includes both a black portion and a white portion.
  • the center of gravity position is a position that is the center of the weight of the pixels included in the region surrounded by the outer periphery with the weight of the pixels constituting the image being uniform.
  • FIG. 3B The code
  • Reference numeral 42 in FIG. 2 indicates the position of the center of gravity of the gap cross section.
  • the ratio of the number of void cross sections to the area of the secondary particle cross section calculated above (the number of void cross sections / the black part of the secondary particle cross section) The sum of the areas of the white portions).
  • the number of void cross sections per 1 ⁇ m 2 of the cross-sectional area of the secondary particles (the total area of the black portion and the white portion shown in FIG. 3B) is 0.3 or more and 15 or less. 0.5 or more and 14 or less are preferable, 0.7 or more and 13 or less are more preferable, and 1.0 or more and 12 or less are particularly preferable.
  • the number of void cross-sections per 1 ⁇ m 2 is equal to or greater than the above lower limit value, it can be inferred that voids are dispersed in the central part and the surface part of the secondary particles, and the capacity retention rate in the high-temperature cycle Can provide a positive electrode active material for a lithium secondary battery that is excellent in performance. Moreover, the positive electrode active material for lithium secondary batteries with a high volumetric energy density can be provided as it is below the said upper limit.
  • the upper limit value and the lower limit value of the number of void cross sections per 1 ⁇ m 2 can be arbitrarily combined. As one aspect of the present invention, the number of void cross sections per 1 ⁇ m 2 is preferably 2.0 or more and 11 or less, more preferably 2.5 or more and 10 or less.
  • the number is from 0.0 to 9.0.
  • the content of the positive electrode active material for lithium secondary battery having the number of void cross sections per 1 ⁇ m 2 described above with respect to the total mass of the positive electrode active material for lithium secondary battery is not particularly limited.
  • the mass is preferably from 100% by mass to 100% by mass, more preferably from 30% by mass to 100% by mass, and still more preferably from 50% by mass to 100% by mass.
  • Said preferable content can be used as preferable content with respect to the gross mass of the positive electrode active material for lithium secondary batteries of the positive electrode active material for lithium secondary batteries of other embodiment demonstrated below.
  • a 50% cumulative volume particle size D 50 ( ⁇ m) obtained by laser diffraction particle size distribution measurement is A, and a circle with a radius of A / 4 is drawn around the center of gravity of the secondary particle cross section calculated by image analysis.
  • the inside of the circle is the particle center, and the outside of the circle is the particle surface.
  • FIG. 2 the schematic diagram of the cross section of a secondary particle is shown.
  • A be the 50% cumulative volume particle size D 50 ( ⁇ m) obtained by laser diffraction particle size distribution measurement in the secondary particle cross section 40.
  • a circle 50 having a radius of A / 4 indicated by reference numeral 44 is drawn around the center of gravity 41 of the cross section of the secondary particle calculated by image analysis. At this time, the inside of the circle 50 is the particle central portion, and the outside of the circle 50 is the particle surface portion.
  • reference numeral 43 indicates the gap cross section
  • reference numeral 42 indicates the center of gravity of the gap cross section.
  • the cross section 40 of the secondary particles in order to obtain a positive electrode active material for a lithium secondary battery that has an excellent capacity retention rate in a high-temperature cycle, one or more void cross sections in the particle central portion and the particle surface portion, respectively. It is preferable to have a center of gravity. Further, in order to obtain a positive electrode active material for a lithium secondary battery having a high discharge capacity at a high current rate, the void cross-sectional ratio with respect to the cross-sectional area of the secondary particle surface portion in the secondary particle surface portion is 0.75% or more. Preferably, it is 1% or more, more preferably 1.2% or more.
  • the void cross-sectional ratio with respect to the cross-sectional area of the secondary particle surface portion in the secondary particle surface portion is preferably 50% or less, and 40% More preferably, it is more preferably 30% or less.
  • the upper limit value and the lower limit value of the void cross-section ratio with respect to the cross-sectional area of the secondary particle surface portion in the secondary particle surface portion can be arbitrarily combined.
  • the void cross-sectional ratio with respect to the cross-sectional area of the secondary particle surface portion in the secondary particle surface portion is preferably 0.75% or more and 50% or less, and more preferably 1% or more and 40% or less.
  • the content is 1.2% or more and 30% or less.
  • the void cross-sectional ratio with respect to the area of the cross section of the secondary particle surface portion in the secondary particle surface portion is the ratio of the area of the void cross section existing in the particle surface portion to the area of the secondary particle cross section of the particle surface portion (particle surface portion Area of the white portion / the sum of the areas of the black portion and the white portion of the particle surface portion ⁇ 100).
  • the void cross-section ratio with respect to the cross-sectional area of the secondary particle surface portion in the secondary particle surface portion is preferably 10% or more and 40% or less, and 15% or more and 30% or less. It is more preferable that
  • the void cross-sectional ratio with respect to the cross-sectional area of the secondary particle central portion in the secondary particle central portion is 0. It is preferably 1% or more, more preferably 1% or more, and particularly preferably 5% or more.
  • the void cross-sectional ratio with respect to the area of the cross section of the secondary particle central part in the secondary particle central part is preferably 65% or less. % Or less is more preferable, and 55% or less is particularly preferable.
  • the upper limit value and the lower limit value of the void cross-section ratio with respect to the cross-sectional area of the secondary particle central portion in the secondary particle central portion can be arbitrarily combined.
  • the void cross-section ratio with respect to the cross-sectional area of the secondary particle central portion in the secondary particle central portion is preferably 0.1% or more and 65% or less, and more preferably 1% or more and 60% or less. Preferably, it is 5% or more and 55% or less.
  • “high cycle characteristics” means that the discharge capacity retention ratio is high.
  • a high discharge capacity maintenance rate means that the discharge capacity maintenance rate in a cycle test of an example described later is 75% or more.
  • the void cross-sectional ratio with respect to the cross-sectional area of the secondary particle central portion in the secondary particle central portion is the ratio of the area of the void cross-sectional portion existing in the particle central portion to the area of the secondary particle cross-section in the particle central portion (particle central portion Of the white portion / the sum of the area of the black portion and the white portion at the center of the particle ⁇ 100).
  • the void cross-sectional ratio in the secondary particle central portion relative to the void cross-sectional ratio in the secondary particle surface portion is preferably 0.1 or more, more preferably 0.15 or more, and particularly preferably 0.2 or more. Similarly, it is preferably 25 or less, more preferably 20 or less, and particularly preferably 15 or less in the sense of obtaining a positive electrode active material for a lithium secondary battery that has an excellent capacity retention rate in a high-temperature cycle. .
  • the upper limit value and the lower limit value of the ratio of the void cross-section ratio in the central portion of the secondary particles to the void cross-section ratio in the secondary particle surface portion can be arbitrarily combined.
  • the ratio of the void cross-sectional area at the central part of the secondary particle to the cross-sectional area of the void at the surface part of the secondary particle is within the specific range, the surface part and the central part of the secondary particle are appropriately A positive electrode active material for a lithium secondary battery that is presumed to have dispersed voids and has an excellent capacity retention rate in a high-temperature cycle can be provided.
  • the ratio of the void cross-sectional area at the central part of the secondary particle to the void cross-sectional area at the surface part of the secondary particle is preferably 0.1 or more and 25 or less, and preferably 0.15 or more and 20 or less. Is more preferably 0.2 or more and 15 or less.
  • the void cross-sectional ratio with respect to the cross-sectional area of the secondary particles in the cross-section of the secondary particles is 1% or more. Preferably, it is 5% or more, more preferably 10% or more.
  • the void cross-sectional ratio is preferably 50% or less, more preferably 40% or less, and particularly preferably 30% or less.
  • the void cross-sectional ratio with respect to the cross-sectional area of the secondary particles in the cross-section of the secondary particles is preferably 1% or more and 50% or less, more preferably 5% or more and 40% or less, and more preferably 10%. More preferably, it is 30% or less.
  • the void cross-sectional ratio with respect to the area of the secondary particle cross section in the secondary particle cross section is the ratio of the area of the void cross section existing in the secondary particle cross section to the area of the secondary particle cross section (the area of the white portion of the secondary particle cross section). / The value calculated as the sum of the areas of the black part and the white part of the cross section of the secondary particle ⁇ 100).
  • the positive electrode active material in order to obtain a positive electrode active material for a lithium secondary battery that has an excellent capacity retention rate in a high-temperature cycle, has an NMP liquid retention rate of 18% or more measured by the following measurement method. Preferably, it is 20% or more, more preferably 25% or more.
  • the NMP liquid retention is preferably 18% or more and 80% or less, more preferably 20% or more and 75% or less, and 25% or more and 70% or less. Is more preferable.
  • the NMP retention rate is preferably 30% to 80%, more preferably 40% to 70%, and more preferably 50% to 60%. Further preferred.
  • NMP N-methylpyrrolidone
  • Said B can be obtained by calculating the difference between the mass of the positive electrode active material for lithium secondary batteries after oil absorption and the mass of the positive electrode active material for lithium secondary batteries before oil absorption.
  • the C can be obtained by calculating the difference between the mass of the positive electrode active material for a lithium secondary battery after drying and the mass of the positive electrode active material for a lithium secondary battery before oil absorption.
  • the porosity of the secondary particles is high, the NMP oil absorption is increased. Furthermore, it is presumed that NMP is difficult to desorb from the inside of the secondary particle to the outside when the surface part and the center part of the secondary particle have a communicating void. For this reason, in the case of such a particle structure, the NMP retention rate becomes high. Since the positive electrode active material of the present embodiment has moderately dispersed voids in the surface part and the center part of the secondary particles, the above-described high NMP liquid retention rate is obtained.
  • the positive electrode active material is preferably represented by the following general formula (I).
  • Li [Li x (Ni a Co b Mn c M d ) 1-x ] O 2 (I) (Where -0.1 ⁇ x ⁇ 0.2, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.4, 0 ⁇ c ⁇ 0.4, 0 ⁇ d ⁇ 0.1, a + b + c + d 1,
  • M represents one or more elements selected from the group consisting of Fe, Cr, Cu, Ti, B, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga and V.
  • x in the composition formula (I) is preferably more than 0, more preferably 0.01 or more, and 0.02 or more. More preferably. Further, x in the composition formula (I) is preferably 0.1 or less, more preferably 0.08 or less, in order to obtain a positive electrode active material for a lithium secondary battery having higher initial Coulomb efficiency. More preferably, it is 0.06 or less.
  • the upper limit value and the lower limit value of x can be arbitrarily combined. For example, x is preferably more than 0 and 0.1 or less, more preferably 0.01 or more and 0.08 or less, and further preferably 0.02 or more and 0.06 or less.
  • a in the composition formula (I) is preferably 0.10 or more, more preferably 0.20 or more, and 0 More preferably, it is 30 or more.
  • a in the composition formula (I) is preferably 0.90 or less, and more preferably 0.80 or less. More preferably, it is 0.70 or less.
  • the upper limit value and lower limit value of a can be arbitrarily combined. For example, a is preferably 0.10 or more and 0.90 or less, more preferably 0.21 or more and 0.80 or less, and further preferably 0.30 or more and 0.70 or less.
  • b in the said composition formula (I) is 0.05 or more, and it is 0.10 or more. More preferably, it is more preferably 0.20 or more.
  • b in the composition formula (I) is preferably 0.35 or less, more preferably 0.30 or less, and 0 More preferably, it is .25 or less.
  • the upper limit value and lower limit value of b can be arbitrarily combined.
  • b is preferably 0.05 or more and 0.35 or less, more preferably 0.10 or more and 0.30 or less, and further preferably 0.20 or more and 0.25 or less.
  • c in the composition formula (I) is preferably 0.05 or more, more preferably 0.10 or more, and 0 More preferably, it is 15 or more.
  • c in the said composition formula (I) is 0.35 or less. It is more preferably 30 or less, and further preferably 0.25 or less.
  • the upper limit value and lower limit value of c can be arbitrarily combined.
  • c is preferably from 0.05 to 0.35, more preferably from 0.10 to 0.30, and still more preferably from 0.15 to 0.25.
  • d in the composition formula (I) is preferably more than 0, more preferably 0.001 or more, and further preferably 0.005 or more. Moreover, in the meaning which obtains the positive electrode active material for lithium secondary batteries with high discharge capacity in a high current rate, it is preferable that d in the said composition formula (I) is 0.09 or less, and is 0.08 or less. Is more preferable and 0.07 or less is still more preferable.
  • the upper limit value and the lower limit value of d can be arbitrarily combined. For example, d is preferably more than 0 and 0.09 or less, more preferably from 0.001 to 0.08, and even more preferably from 0.005 to 0.07.
  • M in the composition formula (I) is one or more elements selected from the group consisting of Fe, Cr, Cu, Ti, B, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga and V Represents.
  • M in the composition formula (I) is preferably Ti, B, Mg, Al, W, Zr, and has a thermal stability.
  • B, Al, W, and Zr are preferable.
  • the composition formula (I) is preferably the following composition formula (I) -1.
  • Li [Li x (Ni a Co b Mn c M d ) 1-x ] O 2 (I) -1 (Where -0.1 ⁇ x ⁇ 0.2, 0 ⁇ a ⁇ 0.7, 0 ⁇ b ⁇ 0.4, 0 ⁇ c ⁇ 0.4, 0 ⁇ d ⁇ 0.1, a + b + c + d 1
  • M represents one or more elements selected from the group consisting of Fe, Cr, Cu, Ti, B, Mg, Al, W, Mo, Nb, Zn, Sn, Zr, Ga, and V.
  • the BET specific surface area (m 2 / g) of the positive electrode active material is 0.5 m 2 / g or more in order to obtain a positive electrode active material for a lithium secondary battery having a high discharge capacity at a high current rate. Is preferably 0.8 m 2 / g or more, and more preferably 1.0 m 2 / g or more.
  • the BET specific surface area (m 2 / g) of the positive electrode active material is preferably 3.0 m 2 / g or less, preferably 2.8 m 2 / g or less. More preferably, it is 2.6 m 2 / g or less.
  • the upper limit value and the lower limit value of the BET specific surface area (m 2 / g) of the positive electrode active material can be arbitrarily combined.
  • the BET specific surface area is preferably 0.5 m 2 / g or more and 3.0 m 2 / g or less, more preferably 0.8 m 2 / g or more and 2.8 m 2 / g or less. More preferably, it is 0 m 2 / g or more and 2.6 m 2 / g or less.
  • the BET specific surface area (m 2 / g) in the present embodiment is measured using 1 m of lithium metal composite oxide powder at 105 ° C. for 30 minutes in a nitrogen atmosphere, and then using Macsorb (registered trademark). Can do.
  • the crystal structure of the positive electrode active material is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, P-
  • the monoclinic crystal structure is P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, C2 / It belongs to any one space group selected from the group consisting of c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a single crystal belonging to C2 / m. Particularly preferred is an oblique crystal structure.
  • metals other than lithium that is, essential metals composed of Ni, Co, and Mn, and Fe, Cr, Cu, Ti, B, Mg, Al, W
  • metal composite compound containing any one or more optional elements of Mo, Nb, Zn, Sn, Zr, Ga and V is preferable.
  • a metal complex compound a metal complex hydroxide or a metal complex oxide is preferable.
  • the metal complex compound can be produced by a generally known batch coprecipitation method or continuous coprecipitation method.
  • the manufacturing method will be described in detail by taking a metal composite hydroxide containing nickel, cobalt, and manganese as an example.
  • a nickel salt solution, a cobalt salt solution, a manganese salt solution, and a complexing agent are reacted by a coprecipitation method, in particular, a continuous method described in JP-A-2002-201028, and Ni a Co b Mn c (OH) 2
  • nickel salt which is the solute of the said nickel salt solution For example, any one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used.
  • cobalt salt that is a solute of the cobalt salt solution for example, any one of cobalt sulfate, cobalt nitrate, and cobalt chloride can be used.
  • manganese salt that is a solute of the manganese salt solution for example, any one of manganese sulfate, manganese nitrate, and manganese chloride can be used.
  • the above metal salt is used in a proportion corresponding to the composition ratio of Ni a Co b Mn c (OH) 2 . That is, each metal salt is defined so that the molar ratio of nickel, cobalt, and manganese in the mixed solution containing the metal salt is a: b: c.
  • water is used as a solvent.
  • the complexing agent is capable of forming a complex with nickel, cobalt, and manganese ions in an aqueous solution, such as an ammonium ion supplier (ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.), hydrazine, Examples include ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine.
  • the complexing agent may not be used in the production of the metal composite hydroxide. When the complexing agent is used, for example, the molar ratio of the complexing agent to the total number of moles of the metal salt is greater than 0 and 2.0 or less. .
  • the complexing agent may be mixed with the metal salt in advance, or may be added separately from the metal salt solution.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • the temperature of the reaction vessel is controlled within a range of, for example, 20 ° C. or more and 80 ° C. or less, preferably 30 to 70 ° C.
  • the substance in the reaction vessel is appropriately stirred.
  • the reaction vessel is of a type that causes the formed reaction precipitate to overflow for separation.
  • the inside of the reaction tank may be an inert atmosphere.
  • the inert atmosphere When the inert atmosphere is used, it is possible to suppress aggregation of elements that are more easily oxidized than nickel, and a uniform metal composite hydroxide can be obtained.
  • the inert gas include nitrogen, argon, carbon dioxide and the like.
  • the inside of the reaction tank is in an appropriate oxygen-containing atmosphere or in the presence of an oxidizing agent while maintaining an inert atmosphere.
  • the transition metal is appropriately oxidized to control the structure of the metal composite hydroxide, and the size and dispersion of the voids in the secondary particles in the positive electrode material produced using the metal composite hydroxide are controlled. This is because it becomes possible to control.
  • the oxygen and the oxidizing agent in the oxygen-containing gas need only have sufficient oxygen atoms to oxidize the transition metal. Unless a large amount of oxygen atoms is introduced, an inert atmosphere in the reaction vessel can be maintained.
  • an oxygen-containing gas may be introduced into the reaction tank.
  • the oxygen concentration (volume%) in the oxygen-containing gas is preferably 1 or more and 15 or less.
  • an oxygen-containing gas may be bubbled.
  • the oxygen-containing gas include oxygen gas, air, or a mixed gas of these and an oxygen-free gas such as nitrogen gas. From the viewpoint of easy adjustment of the oxygen concentration in the oxygen-containing gas, a mixed gas is preferable among the above.
  • an oxidizing agent may be added to the reaction vessel.
  • the oxidizing agent include hydrogen peroxide, chlorate, hypochlorite, perchlorate, and permanganate. Hydrogen peroxide is preferably used from the viewpoint of hardly bringing impurities into the reaction system.
  • nickel cobalt manganese composite hydroxide is manufactured, but nickel cobalt manganese composite oxide may be prepared.
  • a step of bringing the coprecipitate slurry into contact with an oxidizing agent or a step of heat treating the nickel cobalt manganese composite oxide may be performed.
  • the metal composite oxide or metal composite hydroxide is dried and then mixed with the lithium compound.
  • the drying conditions are not particularly limited.
  • the metal composite oxide or the metal composite hydroxide is not oxidized / reduced (oxide ⁇ oxide, hydroxide ⁇ hydroxide), and the metal composite hydroxide is oxidized.
  • the conditions may be any of the conditions under which the metal composite oxide is reduced (oxides ⁇ hydroxides).
  • An inert gas such as nitrogen, helium, or an inert gas such as argon may be used for conditions where oxidation / reduction is not performed.
  • oxygen or air may be used in an atmosphere. good.
  • a reducing agent such as hydrazine or sodium sulfite may be used in an inert gas atmosphere.
  • the lithium compound any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, or a mixture of two or more can be used.
  • Classification may be appropriately performed after the metal composite oxide or metal composite hydroxide is dried.
  • the above lithium salt and metal composite hydroxide are used in consideration of the composition ratio of the final object.
  • a lithium-nickel cobalt manganese composite oxide is obtained by firing a mixture of a nickel cobalt manganese metal composite hydroxide and a lithium compound. For the firing, dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are performed if necessary.
  • the firing temperature of the metal composite oxide or metal composite hydroxide and a lithium compound such as lithium hydroxide or lithium carbonate is not particularly limited, but the number of void cross sections of the positive electrode active material is not limited to a specific value of the present invention. In order to make it into a range, it is preferable that it is 600 degreeC or more and 1100 degrees C or less, It is more preferable that it is 750 degreeC or more and 1050 degrees C or less, It is further more preferable that they are 800 degreeC or more and 1025 degrees C or less.
  • the firing time is preferably 3 hours to 50 hours.
  • the firing time exceeds 50 hours, there is no problem in battery performance, but the battery performance tends to be substantially inferior due to volatilization of Li.
  • the firing time is less than 3 hours, the crystal growth is poor and the battery performance tends to be poor. That is, when the firing time is within 50 hours, the volatilization of Li can be suppressed and deterioration of battery performance can be prevented.
  • the firing time is 3 hours or more, the development of crystals proceeds well, the lithium carbonate component and the lithium hydroxide component contained in the lithium composite oxide powder can be reduced, and the battery performance can be improved. it can.
  • the firing temperature means a time from when the target temperature is reached to when the temperature holding is completed, a so-called holding time.
  • the heating rate to the target temperature is preferably 30 ° C./hour or more and 1200 ° C./hour or less, more preferably 60 ° C./hour or more and 600 ° C./hour or less, and further 75 ° C./hour or more and 500 ° C./hour or less. preferable.
  • the temperature for such preliminary firing is preferably in the range of 300 ° C. to 850 ° C. for 1 hour to 10 hours.
  • the lithium metal composite oxide obtained by firing is appropriately classified after pulverization, and is used as a positive electrode active material applicable to a lithium secondary battery.
  • Lithium secondary battery> a positive electrode using the positive electrode active material for a lithium secondary battery of the present invention as a positive electrode active material of the lithium secondary battery, and a lithium secondary battery having the positive electrode will be described. To do.
  • An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of the lithium secondary battery of the present embodiment.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • a shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
  • IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
  • cylindrical shape, square shape, etc. can be mentioned.
  • the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode of this embodiment can be manufactured by first adjusting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • thermoplastic resin As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used. This thermoplastic resin is sometimes referred to as polyvinylidene fluoride (hereinafter referred to as PVdF). ), Polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, propylene hexafluoride / vinylidene fluoride copolymer, tetrafluoroethylene Fluorine resins such as fluorinated ethylene / perfluorovinyl ether copolymers; Polyolefin resins such as polyethylene and polypropylene.
  • PVdF polyvinylidene fluoride
  • PTFE Polytetrafluoroethylene
  • PTFE Polytetrafluoroethylene / hexafluoropropylene / vinylidene fluoride cop
  • thermoplastic resins may be used as a mixture of two or more.
  • a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total mass of the positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less.
  • a positive electrode mixture having both high adhesion to the positive electrode current collector and high bonding strength inside the positive electrode mixture can be obtained.
  • a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used as the positive electrode current collector included in the positive electrode of the present embodiment.
  • a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
  • usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • a positive electrode can be manufactured by the method mentioned above.
  • the negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
  • Negative electrode active material examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
  • the oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc.
  • Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2
  • Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3). And lithium-containing nitrides.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
  • examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
  • carbon materials containing graphite as a main component such as natural graphite and artificial graphite, are preferably used.
  • the shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • the negative electrode current collector of the negative electrode examples include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
  • Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a nonwoven fabric, a woven fabric, and the like made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. A material having the following can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
  • the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117: 2009 is 50 seconds / 100 cc or more, 300 seconds. / 100 cc or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the volume of the separator.
  • the separator may be a laminate of separators having different porosity.
  • the electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salt such as lower aliphatic carboxylic acid lithium salt, LiAlCl 4, and a mixture of two or more of these May be used.
  • BOB bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide)
  • lithium salt such as lower aliphatic
  • the electrolyte at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
  • Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; Carbamates such as 3-methyl-2-oxazolidone;
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of a cyclic carbonate and an acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • the electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
  • an electrolytic solution containing a lithium compound containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing one or more of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • maintained the non-aqueous electrolyte in the high molecular compound can also be used.
  • Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
  • the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
  • the life of the lithium secondary battery using the positive electrode active material can be extended.
  • the positive electrode having the above-described configuration has the above-described positive electrode active material for a lithium secondary battery according to this embodiment, the life of the lithium secondary battery can be extended.
  • the lithium secondary battery having the above-described configuration has the above-described positive electrode, it becomes a lithium secondary battery having a longer life than before.
  • evaluation of a positive electrode active material for a lithium secondary battery and production evaluation of a positive electrode for a lithium secondary battery and a lithium secondary battery were performed as follows.
  • (1) Evaluation of positive electrode active material for lithium secondary battery [Measurement of average particle diameter] The average particle size was measured using a laser diffraction particle size distribution analyzer (LA-950, manufactured by HORIBA, Ltd.), 0.1 g of a positive electrode active material powder for a lithium secondary battery, and 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution. And a dispersion liquid in which the powder was dispersed was obtained. The particle size distribution of the obtained dispersion is measured to obtain a volume-based cumulative particle size distribution curve. In the obtained cumulative particle size distribution curve, the value of the particle diameter (D 50 ) viewed from the fine particle side at 50% accumulation was taken as the average particle diameter of the positive electrode active material for lithium secondary batteries.
  • the cross section of the positive electrode active material powder for a lithium secondary battery is processed by a focused ion beam processing apparatus (manufactured by Hitachi High-Technologies Corporation, FB2200), and the cross section of the positive electrode active material is scanned using the focused ion beam processing apparatus. It was observed as an ion microscope image (SIM image) or as a scanning electron microscope image (SEM image) using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, S-4800).
  • the positive electrode active material powder was processed with an ion milling device (manufactured by Hitachi High-Technologies Corporation, IM4000) to produce a cross section, and the positive electrode active material powder cross section was observed as an SEM image using a scanning electron microscope. It has a maximum diameter with a length in the range of 50 to 200% of the value of 50% cumulative volume particle size D 50 ( ⁇ m) obtained by laser diffraction particle size distribution measurement, and the minimum diameter / maximum diameter value is A cross section of the positive electrode active material exceeding 0.5 was selected and photographed at the maximum magnification at which the particles of the positive electrode active material fit within the frame.
  • an ion milling device manufactured by Hitachi High-Technologies Corporation, IM4000
  • the above calculation was carried out assuming that the void cross section existing inside the cross section had an area of 0.01 ⁇ m 2 or more.
  • a 50% cumulative volume particle size D 50 ( ⁇ m) obtained by laser diffraction particle size distribution measurement is A, and a circle with a radius of A / 4 is drawn around the center of gravity of the secondary particle cross section calculated by image analysis. The inside of the circle was the particle center, and the outside of the circle was the particle surface.
  • NMP retention rate [C / B] ⁇ 100 (1) Specifically, 1 g of dried positive electrode material for a lithium secondary battery was impregnated with NMP, and 1 g was subtracted from the mass of the positive electrode active material for lithium secondary battery after oil absorption to obtain B as the oil absorption amount. The said C which is NMP content when the said 1g was subtracted and dried from the mass after drying the positive electrode active material for lithium secondary batteries of an oil absorption state for 30 minutes at 60 degreeC was obtained.
  • composition analysis The composition analysis of the lithium metal composite oxide powder produced by the method described below is performed by dissolving the obtained lithium metal composite oxide powder in hydrochloric acid and then using an inductively coupled plasma emission spectrometer (SII Nanotechnology, Inc.). Manufactured by SPS3000).
  • a positive electrode active material for lithium secondary battery, a conductive material (acetylene black), and a binder (PVdF) obtained by the production method described later are used as a positive electrode active material for lithium secondary battery:
  • N-methyl-2-pyrrolidone was used as the organic solvent.
  • the obtained positive electrode mixture was applied to an Al foil having a thickness of 40 ⁇ m serving as a current collector and vacuum-dried at 150 ° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of the positive electrode for the lithium secondary battery was 1.65 cm 2 .
  • the obtained negative electrode mixture was applied to a 12 ⁇ m thick Cu foil serving as a current collector and vacuum dried at 60 ° C. for 8 hours to obtain a negative electrode for a lithium secondary battery.
  • the electrode area of the negative electrode for a lithium secondary battery was 1.77 cm 2 .
  • the electrolyte was 16:10 of ethylene carbonate (hereinafter sometimes referred to as EC), dimethyl carbonate (hereinafter sometimes referred to as DMC), and ethyl methyl carbonate (hereinafter sometimes referred to as EMC).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • VC vinylene carbonate
  • LiPF 6 LiPF 6
  • the negative electrode for lithium secondary battery prepared in “(3) Preparation of negative electrode for lithium secondary battery” is placed on the upper side of the laminated film separator, the upper lid is covered through a gasket, and the lithium secondary battery is caulked with a caulking machine.
  • a battery coin-type full cell R2032, hereinafter sometimes referred to as “full cell” was produced.
  • Example 1 Manufacture of positive electrode active material 1 for lithium secondary battery After putting water in the reaction tank provided with the stirrer and the overflow pipe, the sodium hydroxide aqueous solution was added and liquid temperature was hold
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.315: 0.33: 0.355. It was adjusted.
  • this mixed raw material solution and ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction vessel, and air was mixed with nitrogen gas so that the oxygen concentration was 4.9%. An oxygen-containing gas was continuously vented.
  • a sodium hydroxide aqueous solution is added dropwise at an appropriate time so that the pH of the solution in the reaction vessel becomes 11.9 to obtain nickel cobalt manganese composite hydroxide particles, washed with a sodium hydroxide solution, and then dehydrated with a centrifuge.
  • the nickel cobalt manganese composite hydroxide 1 was obtained by isolating and drying at 105 ° C.
  • the nickel cobalt manganese composite hydroxide 1 had a BET specific surface area of 21.0 m 2 / g.
  • 50% cumulative volume particle size D 50 of the positive electrode active material 1 for a lithium secondary battery was 6.1 [mu] m.
  • the BET specific surface area of the positive electrode active material 1 for a lithium secondary battery was 1.7 m 2 / g.
  • the number of void cross sections per 1 ⁇ m 2 was 0.60.
  • the center of gravity of the void cross section was present on the surface of the secondary particle of the positive electrode active material 1 for a lithium secondary battery, and the void cross-sectional ratio relative to the cross-sectional area of the surface of the secondary particle was 16.9%. Further, the center of the secondary particle has a center of gravity of the void cross section, the void cross-sectional ratio with respect to the cross-sectional area of the secondary particle central portion is 61.2%, The ratio of the void cross-sectional ratio in the central part of the next particle (void cross-sectional ratio in the particle central part / void cross-sectional ratio in the particle surface part) was 3.6.
  • the void cross-sectional ratio with respect to the cross-sectional area of the secondary particles in the cross-section of the secondary particles of the positive electrode active material 1 for a lithium secondary battery was 25.8%.
  • the NMP liquid retention rate of the positive electrode active material 1 for a lithium secondary battery was 43.6%.
  • the capacity retention rate of the positive electrode active material 1 for lithium secondary batteries was as high as 79.4%.
  • Example 2 Production of Positive Electrode Active Material 2 for Lithium Secondary Battery After water was put in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to keep the liquid temperature at 30 ° C.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.34: 0.33: 0.33. It was adjusted.
  • the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent to the reaction vessel, and air was mixed with nitrogen gas so that the oxygen concentration was 4.2%.
  • An oxygen-containing gas was continuously vented.
  • a sodium hydroxide aqueous solution is dropped in a timely manner so that the pH of the solution in the reaction tank becomes 12.5 to obtain nickel cobalt manganese composite hydroxide particles, washed with a sodium hydroxide solution, dehydrated with a centrifuge, The nickel cobalt manganese composite hydroxide 2 was obtained by isolating and drying at 105 ° C.
  • the nickel cobalt manganese composite hydroxide 2 had a BET specific surface area of 34.4 m 2 / g.
  • 50% cumulative volume particle size D 50 of the positive electrode active material 2 for a lithium secondary battery was 3.9 .mu.m.
  • the BET specific surface area of the positive electrode active material 2 for a lithium secondary battery was 1.6 m 2 / g.
  • the number of void cross sections per 1 ⁇ m 2 was 4.35.
  • the center of gravity of the void cross section was present on the surface of the secondary particle of the positive electrode active material 2 for a lithium secondary battery, and the void cross-sectional ratio relative to the cross-sectional area of the surface of the secondary particle was 0.9%.
  • the center of the secondary particle has a center of gravity of the void cross section, the void cross-sectional ratio with respect to the cross-sectional area of the secondary particle central portion is 21.2%,
  • the ratio of the void cross section at the center of the next particle was 25.0.
  • the void cross-sectional ratio with respect to the cross-sectional area of the secondary particles in the cross-section of the secondary particles of the positive electrode active material 2 for a lithium secondary battery was 13.1%.
  • the NMP liquid retention rate of the positive electrode active material 2 for a lithium secondary battery was 25.4%.
  • the capacity retention rate of the positive electrode active material 2 for lithium secondary batteries was as high as 77.5%.
  • Example 3 Manufacture of positive electrode active material 3 for lithium secondary battery After putting water in the reaction tank provided with the stirrer and the overflow pipe, the sodium hydroxide aqueous solution was added and liquid temperature was hold
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.55: 0.21: 0.24. It was adjusted.
  • the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent to the reaction vessel, and air was mixed with nitrogen gas so that the oxygen concentration was 12.3%.
  • An oxygen-containing gas was continuously vented.
  • a sodium hydroxide aqueous solution is dropped in a timely manner so that the pH of the solution in the reaction vessel becomes 12.7 to obtain nickel cobalt manganese composite hydroxide particles, washed with a sodium hydroxide solution, and then dehydrated with a centrifuge.
  • the nickel cobalt manganese composite hydroxide 3 was obtained by isolation and drying at 105 ° C.
  • the nickel cobalt manganese composite hydroxide 3 had a BET specific surface area of 58.9 m 2 / g.
  • 50% cumulative volume particle size D 50 of the positive electrode active material 3 for a lithium secondary battery was 6.0 .mu.m.
  • the BET specific surface area of the positive electrode active material 3 for a lithium secondary battery was 1.6 m 2 / g.
  • the number of void cross sections per 1 ⁇ m 2 was 2.26.
  • the center of gravity of the void cross section was present on the surface of the secondary particle of the positive electrode active material 3 for a lithium secondary battery, and the void cross-sectional ratio with respect to the area of the cross section of the surface of the secondary particle was 10.9%. Further, the center of the secondary particle has a center of gravity of the void cross section, the void cross-sectional ratio with respect to the cross-sectional area of the secondary particle central portion is 17.7%, The ratio of the void cross-sectional ratio in the central part of the next particle (void cross-sectional ratio in the particle central part / void cross-sectional ratio in the particle surface part) was 1.6.
  • the void cross-sectional ratio with respect to the cross-sectional area of the secondary particles in the cross-section of the secondary particles of the positive electrode active material 3 for a lithium secondary battery was 14.3%.
  • the NMP retention rate of the positive electrode active material 3 for a lithium secondary battery was 59.0%.
  • the capacity retention rate of the positive electrode active material 3 for lithium secondary batteries was as high as 82.5%.
  • Example 4 Manufacture of positive electrode active material 4 for lithium secondary battery After putting water in the reaction tank provided with the stirrer and the overflow pipe, the sodium hydroxide aqueous solution was added and liquid temperature was hold
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.55: 0.21: 0.24. It was adjusted.
  • this mixed raw material solution and ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction vessel, and air was mixed with nitrogen gas so that the oxygen concentration was 7.0%.
  • An oxygen-containing gas was continuously vented.
  • a sodium hydroxide aqueous solution is added dropwise at an appropriate time so that the pH of the solution in the reaction vessel becomes 12.1 to obtain nickel cobalt manganese composite hydroxide particles, washed with a sodium hydroxide solution, dehydrated with a centrifuge, The nickel cobalt manganese composite hydroxide 4 was obtained by isolating and drying at 105 ° C.
  • the nickel cobalt manganese composite hydroxide 4 had a BET specific surface area of 82.5 m 2 / g.
  • 50% cumulative volume particle size D 50 of the positive electrode active material 4 for a lithium secondary battery was 4.0 .mu.m.
  • the BET specific surface area of the positive electrode active material 4 for a lithium secondary battery was 2.0 m 2 / g.
  • the number of void cross sections per 1 ⁇ m 2 was 2.59.
  • the center of gravity of the void cross section was present on the surface of the secondary particle of the positive electrode active material 4 for a lithium secondary battery, and the void cross-sectional ratio relative to the area of the cross section of the surface of the secondary particle was 10.4%. Further, the center of the secondary particle has a center of gravity of the void cross section, the void cross-sectional ratio with respect to the area of the cross section of the secondary particle central portion is 55.6%, The ratio of the void cross-sectional ratio at the center (the void cross-sectional ratio at the particle central portion / the void cross-sectional ratio at the particle surface portion) was 5.4.
  • the void cross-sectional ratio with respect to the cross-sectional area of the secondary particles in the cross-section of the secondary particles of the positive electrode active material 4 for a lithium secondary battery was 20.6%.
  • the NMP retention rate of the positive electrode active material 4 for a lithium secondary battery was 56.0%.
  • the capacity retention rate of the positive electrode active material 4 for lithium secondary batteries was as high as 78.7%.
  • Example 5 Manufacture of positive electrode active material 5 for lithium secondary battery After putting water in the reaction tank provided with the stirrer and the overflow pipe, the sodium hydroxide aqueous solution was added and liquid temperature was hold
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.510: 0.225: 0.265. It was adjusted.
  • this mixed raw material solution and ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction vessel, and air was mixed with nitrogen gas so that the oxygen concentration was 8.8%.
  • An oxygen-containing gas was continuously vented.
  • a sodium hydroxide aqueous solution is dropped in a timely manner so that the pH of the solution in the reaction vessel becomes 11.8 to obtain nickel cobalt manganese composite hydroxide particles, washed with a sodium hydroxide solution, and then dehydrated with a centrifuge.
  • the nickel cobalt manganese composite hydroxide 5 was obtained by isolating and drying at 105 ° C.
  • the nickel cobalt manganese composite hydroxide 5 had a BET specific surface area of 42.8 m 2 / g.
  • 50% cumulative volume particle size D 50 of the positive electrode active material 5 for a lithium secondary battery was 5.0 .mu.m.
  • the BET specific surface area of the positive electrode active material 5 for a lithium secondary battery was 1.9 m 2 / g.
  • the number of void cross sections per 1 ⁇ m 2 was 1.33.
  • the center of gravity of the void cross section was present on the surface of the secondary particle of the positive electrode active material 5 for lithium secondary battery, and the void cross-sectional ratio with respect to the area of the cross section of the secondary particle surface was 7.5%.
  • the center of the secondary particle has a center of gravity of the void cross section, the void cross-sectional ratio with respect to the area of the cross section of the secondary particle central part is 38.7%,
  • the ratio of the above-mentioned void cross-sectional ratio in the central part of the next particle was 5.2.
  • the void cross-sectional ratio with respect to the cross-sectional area of the secondary particles in the cross-section of the secondary particles of the positive electrode active material 5 for a lithium secondary battery was 11.2%.
  • the NMP liquid retention rate of the positive electrode active material 5 for a lithium secondary battery was 38.1%.
  • the capacity retention rate of the positive electrode active material 5 for lithium secondary batteries was as high as 80.8%.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.34: 0.33: 0.33. It was adjusted.
  • this mixed raw material solution and ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction vessel, and air was mixed with nitrogen gas so that the oxygen concentration was 2.7%. An oxygen-containing gas was continuously vented.
  • a sodium hydroxide aqueous solution was dropped in a timely manner so that the pH of the solution in the reaction vessel was 11.7 to obtain nickel cobalt manganese composite hydroxide particles, washed with a sodium hydroxide solution, dehydrated with a centrifuge, The nickel cobalt manganese composite hydroxide 6 was obtained by isolating and drying at 105 ° C.
  • the nickel cobalt manganese composite hydroxide 6 had a BET specific surface area of 13.9 m 2 / g.
  • 50% cumulative volume particle size D 50 of the positive electrode active material 6 for a lithium secondary battery was 4.5 [mu] m.
  • the BET specific surface area of the positive electrode active material 6 for a lithium secondary battery was 1.1 m 2 / g.
  • the number of void cross sections per 1 ⁇ m 2 was 0.29.
  • the center of gravity of the void cross section was present on the surface of the secondary particle surface of the positive electrode active material 6 for a lithium secondary battery, and the void cross-sectional ratio relative to the cross-sectional area of the surface of the secondary particle was 0.7%. Further, the center of the secondary particle has a center of gravity of the void cross section, the void cross-sectional ratio with respect to the cross-sectional area of the central part of the secondary particle is 20.2%, The ratio of the above-mentioned void cross-sectional ratio in the central part of the next particle (the void cross-sectional ratio in the particle central part / the void cross-sectional ratio in the particle surface part) was 28.1.
  • the void cross-sectional ratio with respect to the area of the cross section of the secondary particles in the cross section of the secondary particles of the positive electrode active material 6 for a lithium secondary battery was 9.6%.
  • the NMP retention rate of the positive electrode active material 6 for a lithium secondary battery was 16.8%.
  • the capacity retention rate of the positive electrode active material 6 for a lithium secondary battery was 74.1%.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.60: 0.20: 0.20. It was adjusted.
  • the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent, and nitrogen gas was continuously passed through the reaction vessel.
  • a sodium hydroxide aqueous solution is dropped in a timely manner so that the pH of the solution in the reaction vessel becomes 12.8 to obtain nickel cobalt manganese composite hydroxide particles, washed with a sodium hydroxide solution, and then dehydrated with a centrifuge.
  • the nickel cobalt manganese composite hydroxide 7 was obtained by isolating and drying at 105 ° C.
  • the nickel cobalt manganese composite hydroxide 7 had a BET specific surface area of 10.3 m 2 / g.
  • 50% cumulative volume particle size D 50 of the positive electrode active material 7 for a lithium secondary battery was 6.0 .mu.m.
  • the BET specific surface area of the positive electrode active material 7 for a lithium secondary battery was 0.7 m 2 / g.
  • the NMP liquid retention rate of the positive electrode active material 7 for a lithium secondary battery was 16.4%.
  • the capacity retention rate of the positive electrode active material 7 for a lithium secondary battery was 47.7%.
  • Table 1 below shows the D 50 , BET specific surface area, the number of void cross sections per 1 ⁇ m 2 of the positive electrode active materials for lithium secondary batteries of Examples 1 to 5 and Comparative Examples 1 and 2, and the void cross section of the secondary particle surface portion.
  • FIG. 5 shows an SEM image of the secondary particle cross section of Comparative Example 1
  • FIG. 6 shows an SIM image of the secondary particle cross section of Comparative Example 2. .
  • the positive electrode active materials for lithium secondary batteries of Examples 1 to 5 to which the present invention was applied had a high capacity retention rate of 77% or more.
  • the positive electrode active material for lithium secondary batteries to which the present invention was applied was in a state in which the void cross section was dispersed in the cross section of the secondary particles.
  • the NMP retention rate was as high as 25% or more. From this, it was confirmed that, when the present invention was applied, there were communicating voids in the surface portion and the central portion of the secondary particles.
  • Comparative Examples 1 and 2 to which the present invention was not applied were the results in which the capacity retention rate was less than 75%.
  • the void cross section was not dispersed, and the particle shape was hollow. Further, as shown in the SIM image shown in FIG. 6, there was almost no void cross section, and the particle shape was dense. In the positive electrode active materials for lithium secondary batteries of Comparative Examples 1 and 2, the NMP retention rate was much less than 20%.
  • a positive electrode active material for a lithium secondary battery having an excellent capacity retention rate in a high temperature cycle a positive electrode for a lithium secondary battery using the positive electrode active material for a lithium secondary battery, and the positive electrode for a lithium secondary battery are provided. Since the lithium secondary battery can be provided, it is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、一次粒子が凝集した二次粒子を含むリチウム複合金属酸化物であって、前記二次粒子内部に空隙を有し、前記二次粒子の断面において、1μm当たりの空隙断面の数が0.3個以上15個以下であることを特徴とするリチウム二次電池用正極活物質に関する。

Description

リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
 本発明は、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池に関する。
 本願は、2016年8月31日に、日本に出願された特願2016-169817号に基づき優先権を主張し、その内容をここに援用する。
 リチウム複合酸化物は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。
 電池電容量等のリチウム二次電池の性能を向上させるために、リチウム二次電池用正極活物質の空隙率に着目した試みがされている(例えば特許文献1~4)。
特開2007-258187号公報 国際公開第2015/108163号公報 特開2016-25041号公報 特開2010-80394号公報
 リチウム二次電池の応用分野の拡大が進む中、リチウム二次電池の正極活物質にはさらなる容量維持率の向上が求められる。
 しかしながら、前記特許文献1~4に記載のようなリチウム二次電池用正極活物質においては、高温サイクルでの容量維持率を向上させる観点から改良の余地がある。
 本発明は上記事情に鑑みてなされたものであって、高温サイクルでの容量維持率に優れるリチウム二次電池用正極活物質、前記リチウム二次電池用正極活物質を用いたリチウム二次電池用正極及び前記リチウム二次電池用正極を有するリチウム二次電池を提供することを課題とする。
 すなわち、本発明は、下記[1]~[10]の発明を包含する。
[1]一次粒子が凝集した二次粒子を含むリチウム複合金属酸化物からなるリチウム二次電池用正極活物質であって、前記二次粒子内部に空隙を有し、前記二次粒子の断面において、1μm当たりの空隙断面の数が0.3個以上15個以下であるリチウム二次電池用正極活物質。
[2]前記二次粒子の断面において、粒子中心部及び粒子表面部にそれぞれ一つ以上の空隙断面の重心を有し、前記二次粒子表面部における前記二次粒子表面部の断面の面積に対する空隙断面率が0.75%以上50%以下である[1]に記載のリチウム二次電池用正極活物質(ここで、レーザー回折式粒度分布測定によって得られる、前記リチウム二次電池用正極活物質全体の平均粒子径(D50)をAとし、前記二次粒子の断面に存在する空隙断面の重心位置を画像処理によって算出し、前記二次粒子の断面の重心を中心として半径がA/4となる円の領域を粒子中心部としたときの、それ以外の領域を粒子表面部とする)。
[3]前記二次粒子中心部における前記二次粒子中心部の断面の面積に対する空隙断面率が0.1%以上65%以下である[2]に記載のリチウム二次電池用正極活物質。
[4] 前記二次粒子表面部における前記空隙断面率に対する前記粒子中心部における前記空隙断面率の比が、0.1以上25以下である[2]又は[3]に記載のリチウム二次電池用正極活物質。
[5]前記二次粒子の断面において、前記二次粒子の断面の面積に対する空隙断面率が1%以上50%以下である[1]~[4]のいずれか1項に記載のリチウム二次電池用正極活物質。
[6]下記の測定方法で測定されるN-メチルピロリドン(以下、「NMP」と記載する)保液率が18%以上である、[1]~[5]のいずれか1項に記載のリチウム二次電池用正極活物質。
[NMP保液率の測定方法]
 乾燥したリチウム二次電池用正極活物質に、NMPを含浸させたときのNMP吸油量をBとし、吸油状態のリチウム二次電池用正極活物質を60℃で30分間乾燥させたときのNMP含有量をCとしたとき、以下の式(1)にて算出される値。
 NMP保液率(%)=[C/B]×100 ・・・(1)
[7]下記組成式(I)で表される、[1]~[6]のいずれか1項に記載のリチウム二次電池用正極活物質。
   Li[Li(NiCoMn1-x]O ・・・(I)
(ここで、-0.1≦x≦0.2、0<a≦1、0≦b≦0.4、0≦c≦0.4、0≦d≦0.1、a+b+c+d=1、MはFe、Cr、Cu、Ti、B、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
[8]前記組成式(I)が、下記組成式(I)-1である、[7]に記載のリチウム二次電池用正極活物質。
   Li[Li(NiCoMn1-x]O ・・・(I)-1
(ここで、-0.1≦x≦0.2、0<a≦0.7、0≦b≦0.4、0≦c≦0.4、0≦d≦0.1、a+b+c+d=1、MはFe、Cr、Cu、Ti、B、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
[9][1]~[8]のいずれか1項に記載のリチウム二次電池用正極活物質を有するリチウム二次電池用正極。
[10][9]に記載のリチウム二次電池用正極を有するリチウム二次電池。
 本発明によれば、高温サイクルでの容量維持率に優れるリチウム二次電池用正極活物質、前記リチウム二次電池用正極活物質を用いたリチウム二次電池用正極及び前記リチウム二次電池用正極を有するリチウム二次電池を提供することができる。
リチウムイオン二次電池の一例を示す概略構成図である。 リチウムイオン二次電池の一例を示す概略構成図である。 二次粒子の断面の模式図である。 二次粒子断面を走査型電子顕微鏡(以下、SEMともいう)で観察した画像(以下、SEM画像ともいう)である。 二次粒子断面の模式図である。 実施例3の二次粒子断面のSEM画像である。 比較例1の二次粒子断面のSEM画像である。 比較例2の二次粒子断面を走査イオン顕微鏡(以下、SIMともいう)で観察した画像(以下、SIM画像ともいう)である。
<リチウム二次電池用正極活物質>
 本発明は、一次粒子が凝集した二次粒子を含むリチウム複合金属酸化物からなるリチウム二次電池用正極活物質であって、前記二次粒子内部に空隙を有し、前記二次粒子の断面において、1μm当たりの空隙断面の数が0.3個以上15個以下であることを特徴とするリチウム二次電池用正極活物質(以下、「正極活物質」と記載することがある)である。
 本実施形態の正極活物質は、二次粒子の中心部と表面部に空隙を有し、二次粒子の概ね中心の断面における空隙断面の数が特定の個数であることを特徴とする。二次粒子の概ね中心の断面における空隙断面の数が特定の個数であると、複数の空隙が二次粒子内部に分散して存在していると推測できる。表面部と中心部とに、適度に分散した空隙を有することで、電解液との接触面積が大きくなる。このためリチウムイオンの脱離(充電)と挿入(放電)が、二次粒子の内部で進行しやすい。従って、本実施形態の正極活物質は、高温サイクルでの容量維持率に優れる。
 本明細書において「一次粒子」とは、SEMにより独立した粒子として観察される最小単位であり、前記粒子は単結晶又は結晶子が集合した多結晶である。
 本明細書において「二次粒子」とは一次粒子が集合して形成された粒子であり、SEMにより観察することができる。
≪二次粒子断面構造の測定方法≫
 本実施形態において、正極活物質の二次粒子断面構造の測定方法を以下に説明する。
 初めに、正極活物質を加工し、断面を得る。断面を得る方法としては、正極活物質を集束イオンビーム加工装置で加工して、断面を得る方法が挙げられる。また、正極活物質を用いて作製した正極の一部を切り取り、イオンミリング装置で加工し、電極の合材層に含まれる正極活物質の断面を得てもよい。
 断面加工を行う試料は、正極活物質粉体や電極だけでなく、正極活物質粉体を樹脂で固めたもの等を適宜選択することができる。また、断面の作製方法は、イオンビーム法だけでなく、研磨等を適宜選択することができる。
 次に走査型電子顕微鏡又は集束イオンビーム加工装置を用いて、前記加工によって得た正極活物質の断面を二次電子像で観察する。レーザー回折式粒度分布測定で得られた50%累積体積粒度D50(μm)に近い最大径を有し、かつ最小径/最大径の値が0.5超である正極活物質の断面を選択し、前記正極活物質二次粒子が枠内に納まる最大の倍率で二次電子像を撮影し、前記二次粒子断面像を取得する。
 本明細書において「最大径」とは、SEMで正極活物質の二次粒子の断面を観察した時の各部の径(長さ)の内、最も長い径を意味する。
 本明細書において「最小径」とは、SEMで正極活物質の二次粒子の断面を観察した時の各部の径(長さ)の内、最も短い径を意味する。
 50%累積体積粒度D50(μm)に近い最大径を有する正極活物質の断面とは、具体的には、前記D50(μm)の値の50~200%の範囲の長さの最大径を有する正極活物質の断面である。
 二次粒子断面像の一例を、図3Aに示す。
 本明細書において正極活物質の前記D50(μm)は以下(レーザー回折散乱法)によって測定される値を指す。
 レーザー回折粒度分布計(株式会社堀場製作所製、型番:LA-950)を用い、リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得た。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)が前記D50(μm)の値である。
 前記断面像をコンピュータに取り込み、画像解析ソフトを用い、前記二次粒子断面画像中における最大輝度及び最小輝度の中間値で二値化処理を行い、前記二次粒子の断面内部を黒色とし、前記二次粒子の断面内部に存在する空隙断面部分を白色として変換した二値化処理済み画像を得る。このとき、断面像を目視し、断面内部及び空隙断面部分との齟齬がないことを確認する。齟齬が見られた場合は、二値化処理を行う閾値の調整を行う。
 なお、前記断面内部に存在する空隙断面は、面積が0.01μm以上であるものとする。画像解析ソフトは、Image JやPhotoshop等を適宜選択することができる。
 より具体的には、図3Aに示す二次粒子断面像を、コンピュータに取り込み、画像解析ソフトを用いて上記の方法により処理し、図3Bに示す二値化処理済み画像を得る。
 前記二値化処理済み画像について、画像解析ソフトを用いて、前記二次粒子断面の重心位置及び面積を算出する。また、前記二次粒子断面の内部に存在する空隙断面の個数と、各空隙断面の重心位置、面積及び最大径についても算出する。
 本実施形態において、二次粒子断面とは、二次粒子の外周で囲まれた領域、即ち、二次粒子の断面部分全てを指し、黒色部分と白色部分の両方を含めることとする。また、重心位置とは、画像を構成するピクセルの重さを均一として、外周で囲まれる領域に含まれるピクセルの重さの中心となる位置のこととする。
 より具体的に、図3Bを用いて説明する。図3Bの符号41は、二次粒子断面の重心位置を示す。図2の符号42は、空隙断面の重心位置を示す。図3Bは、符号46、47で表される2つの空隙断面が存在する。
 二次粒子断面における1μm当たりの空隙断面の個数を求める方法としては、上記において算出した二次粒子断面の面積に対する空隙断面の個数の比(空隙断面の個数/二次粒子断面の黒色部分と白色部分の面積の和)で算出する。
 本実施形態においては、二次粒子の断面の面積(図3Bに示す、黒色部分と白色部分の合計面積)の、1μm当たりの空隙断面の数が0.3個以上15個以下であり、0.5個以上14個以下が好ましく、0.7個以上13個以下がより好ましく、1.0個以上12個以下が特に好ましい。
 1μm当たりの空隙断面の数が、上記下限値以上であると、二次粒子の中心部と表面部とに空隙が分散した状態で存在していると推察でき、高温サイクルでの容量維持率に優れるリチウム二次電池用正極活物質を提供できる。また、上記上限値以下であると、体積エネルギー密度が高いリチウム二次電池用正極活物質を提供できる。
 1μm当たりの空隙断面の数の上限値と下限値は任意に組み合わせることができる。
 本発明の一つの側面としては、前記1μm当たりの空隙断面の数は、2.0個以上11個以下であることが好ましく、2.5個以上10個以下であることがより好ましく、4.0個以上9.0個以下であることがさらに好ましい。
 本実施形態において、リチウム二次電池用正極活物質の総質量に対する、上述の1μm当たりの空隙断面の数を有するリチウム二次電池用正極活物質の含有量は、特に限定されないが、例えば10質量%以上100質量%以下であることが好ましく、30質量%以上100質量%以下であることがより好ましく、50質量%以上100質量%以下であることがさらに好ましい。
 上記の好ましい含有量は、以下で説明する他の実施形態のリチウム二次電池用正極活物質のリチウム二次電池用正極活物質の総質量に対する、好ましい含有量として援用することができる。
 次に二次粒子断面における粒子中心部及び粒子表面部について説明する。レーザー回折式粒度分布測定で得られた50%累積体積粒度D50(μm)をAとし、画像解析によって算出した二次粒子断面の重心位置を中心として、半径がA/4となる円を描き、円の内部を粒子中心部とし、円の外部を粒子表面部とする。
 図2に、二次粒子の断面の模式図を示す。二次粒子断面40における、レーザー回折式粒度分布測定で得られた50%累積体積粒度D50(μm)をAとする。画像解析によって算出した二次粒子断面の重心位置41を中心として、符号44に示す半径がA/4となる円50を描く。このとき、円50の内部を粒子中心部とし、円50の外部を粒子表面部とする。図2中、符号43は空隙断面を示し、符号42は空隙断面の重心を示す。
 本実施形態においては、高温サイクルでの容量維持率に優れるリチウム二次電池用正極活物質を得る意味で二次粒子の断面40において、粒子中心部及び粒子表面部にそれぞれ一つ以上の空隙断面の重心を有することが好ましい。また、高い電流レートにおける放電容量が高いリチウム二次電池用正極活物質を得る意味で、前記二次粒子表面部における前記二次粒子表面部の断面の面積に対する空隙断面率が0.75%以上であることが好ましく、1%以上であることがより好ましく、1.2%以上であることが特に好ましい。体積エネルギー密度が高いリチウム二次電池用正極活物質を得る意味で前記二次粒子表面部における前記二次粒子表面部の断面の面積に対する空隙断面率は50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることが特に好ましい。
前記二次粒子表面部における前記二次粒子表面部の断面の面積に対する空隙断面率の上限値と下限値は任意に組み合わせることができる。
 例えば、前記二次粒子表面部における前記二次粒子表面部の断面の面積に対する空隙断面率は0.75%以上50%以下であることが好ましく、1%以上40%以下であることがより好ましく、1.2%以上30%以下であることがさらに好ましい。
 二次粒子表面部における前記二次粒子表面部の断面の面積に対する空隙断面率は、粒子表面部の二次粒子断面の面積に対する粒子表面部に存在する空隙断面部分の面積の比(粒子表面部の白色部分の面積/粒子表面部の黒色部分と白色部分の面積の和×100)として算出される値である。
 本発明の一つの側面としては、前記二次粒子表面部における前記二次粒子表面部の断面の面積に対する空隙断面率は、10%以上40%以下であることが好ましく、15%以上30%以下であることがより好ましい。
 本実施形態においては、高い電流レートにおける放電容量が高いリチウム二次電池用正極活物質を得る意味で、前記二次粒子中心部における前記二次粒子中心部の断面の面積に対する空隙断面率が0.1%以上であることが好ましく、1%以上であることがより好ましく、5%以上であることが特に好ましい。また、サイクル特性が高いリチウム二次電池用正極活物質を得る意味で前記二次粒子中心部における前記二次粒子中心部の断面の面積に対する空隙断面率が65%以下であることが好ましく、60%以下であることがより好ましく、55%以下であることが特に好ましい。
前記二次粒子中心部における前記二次粒子中心部の断面の面積に対する空隙断面率の上限値と下限値は任意に組み合わせることができる。
 例えば、前記二次粒子中心部における前記二次粒子中心部の断面の面積に対する空隙断面率は、0.1%以上65%以下であることが好ましく、1%以上60%以下であることがより好ましく、5%以上55%以下であることがさらに好ましい。
本明細書において、「サイクル特性が高い」とは、放電容量維持率が高いことを意味する。本実施形態において、放電容量維持率が高いとは、後述する実施例のサイクル試験における放電容量維持率が、75%以上であることを意味する。
 二次粒子中心部における前記二次粒子中心部の断面の面積に対する空隙断面率は、粒子中心部の二次粒子断面の面積に対する粒子中心部に存在する空隙断面部分の面積の比(粒子中心部の白色部分の面積/粒子中心部の黒色部分と白色部分の面積の和×100)として算出される値である。
 本実施形態においては、高温サイクルでの容量維持率に優れるリチウム二次電池用正極活物質を得る意味で前記二次粒子表面部における前記空隙断面率に対する前記二次粒子中心部における前記空隙断面率の比が、0.1以上であることが好ましく、0.15以上であることがより好ましく、0.2以上であることが特に好ましい。また、同様に高温サイクルでの容量維持率に優れるリチウム二次電池用正極活物質を得る意味で25以下であることが好ましく、20以下であることがより好ましく、15以下であることが特に好ましい。前記二次粒子表面部における前記空隙断面率に対する前記二次粒子中心部における前記空隙断面率の比の上限値と下限値は任意に組み合わせることができる。
 前記二次粒子表面部における前記空隙断面率に対する前記二次粒子中心部における前記空隙断面率の比が、上記特定の範囲内であると、二次粒子の表面部と中心部とに、適度に分散した空隙を有すると推察され、高温サイクルでの容量維持率に優れるリチウム二次電池用正極活物質を提供することができる。
 例えば、前記二次粒子表面部における前記空隙断面率に対する前記二次粒子中心部における前記空隙断面率の比は、0.1以上25以下であることが好ましく、0.15以上20以下であることがより好ましく、0.2以上15以下であることがさらに好ましい。
 本実施形態においては、低温環境下における放電容量が高いリチウム二次電池用正極活物質を得る意味で、前記二次粒子の断面における前記二次粒子の断面の面積に対する空隙断面率は1%以上であることが好ましく、5%以上であることがより好ましく、10%以上であることが特に好ましい。また、正極活物質の吸湿性を低くする意味で前記空隙断面率は50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることが特に好ましい。
 例えば、前記二次粒子の断面における前記二次粒子の断面の面積に対する空隙断面率は、1%以上50%以下であることが好ましく、5%以上40%以下であることがより好ましく、10%以上30%以下であることがさらに好ましい。
 二次粒子断面における前記二次粒子の断面の面積に対する空隙断面率は、二次粒子断面の面積に対する二次粒子断面に存在する空隙断面部分の面積の比(二次粒子断面の白色部分の面積/二次粒子断面の黒色部分と白色部分の面積の和×100)として算出される値である。
 本実施形態において、高温サイクルでの容量維持率に優れるリチウム二次電池用正極活物質を得る意味で正極活物質は下記の測定方法で測定されるNMP保液率が18%以上であることが好ましく、20%以上であることがより好ましく、25%以上であることが特に好ましい。
 本発明の一つの側面としては、前記NMP保液率は、18%以上80%以下であることが好ましく、20%以上75%以下であることがより好ましく、25%以上70%以下であることがさらに好ましい。
 本発明の別の側面としては、前記NMP保液率は、30%以上80以下であることが好ましく、40%以上70%以下であることがより好ましく、50%以上60%以下であることがさらに好ましい。
 [NMP保液率の測定方法]
 乾燥した本実施形態のリチウム二次電池用正極活物質を、N-メチルピロリドン(以下、「NMP」と記載する)に含浸させたときのNMP吸油量をBとし、吸油状態のリチウム二次電池用正極活物質を60℃で30分間乾燥させたときのNMP含有量をCとしたとき、以下の式(1)にて算出される値である。
 NMP保液率(%)=[C/B]×100 ・・・(1)
 前記Bは吸油後のリチウム二次電池用正極活物質の質量と吸油前のリチウム二次電池用正極活物質の質量の差を計算することによって得ることができる。
 前記Cは乾燥後のリチウム二次電池用正極活物質の質量と吸油前のリチウム二次電池用正極活物質の質量の差を計算することによって得ることができる。
 二次粒子の空隙率が高いとNMP吸油量が高くなる。さらに、二次粒子の表面部と中心部とに、連通した空隙を有すると、NMPが二次粒子の内部から外部へ脱離しにくくなると推測される。このため、このような粒子構造の場合、NMP保液率が高くなる。本実施形態の正極活物質は、二次粒子の表面部と中心部とに、適度に分散した空隙を有するため、上述のような高いNMP保液率となる。
 本実施形態において、正極活物質は下記一般式(I)で表されるものが好ましい。
  Li[Li(NiCoMn1-x]O ・・・(I)
(ここで、-0.1≦x≦0.2、0<a≦1、0≦b≦0.4、0≦c≦0.4、0≦d≦0.1、a+b+c+d=1、MはFe、Cr、Cu、Ti、B、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
 サイクル特性が高いリチウム二次電池用正極活物質を得る意味で、前記組成式(I)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池用正極活物質を得る意味で、前記組成式(I)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。
 xの上限値と下限値は任意に組み合わせることができる。
 例えば、前記xは、0超0.1以下であることが好ましく、0.01以上0.08以下であることがより好ましく、0.02以上0.06以下であることがさらに好ましい。
 また、放電容量が高いリチウム二次電池用正極活物質を得る意味で、前記組成式(I)におけるaは0.10以上であることが好ましく、0.20以上であることがより好ましく、0.30以上であることがさらに好ましい。また、熱的安定性が高いリチウム二次電池用正極活物質を得る意味で、前記組成式(I)におけるaは0.90以下であることが好ましく、0.80以下であることがより好ましく、0.70以下であることがさらに好ましい。
 aの上限値と下限値は任意に組み合わせることができる。
 例えば、前記aは、0.10以上0.90以下であることが好ましく、0.21以上0.80以下であることがより好ましく、0.30以上0.70以下であることがさらに好ましい。
 また、高い電流レートにおける放電容量が高いリチウム二次電池用正極活物質を得る意味で、前記組成式(I)におけるbは0.05以上であることが好ましく、0.10以上であることがより好ましく、0.20以上であることがさらに好ましい。また、放電容量が高いリチウム二次電池用正極活物質を得る意味で、前記組成式(I)におけるbは0.35以下であることが好ましく、0.30以下であることがより好ましく、0.25以下であることがさらに好ましい。
 bの上限値と下限値は任意に組み合わせることができる。
 例えば、前記bは、0.05以上0.35以下であることが好ましく、0.10以上0.30以下であることがより好ましく、0.20以上0.25以下であることがさらに好ましい。
 また、サイクル特性が高いリチウム二次電池用正極活物質を得る意味で、前記組成式(I)におけるcは0.05以上であることが好ましく、0.10以上であることがより好ましく、0.15以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存特性が高いリチウム二次電池用正極活物質を得る意味で、前記組成式(I)におけるcは0.35以下であることが好ましく、0.30以下であることがより好ましく、0.25以下であることがさらに好ましい。
 cの上限値と下限値は任意に組み合わせることができる。
 例えば、前記cは、0.05以上0.35以下であることが好ましく、0.10以上0.30以下であることがより好ましく、0.15以上0.25以下であることがさらに好ましい。
 正極活物質のハンドリング性を高める意味で、前記組成式(I)におけるdは0を超えることが好ましく、0.001以上であることがより好ましく、0.005以上であることがさらに好ましい。また、高い電流レートでの放電容量が高いリチウム二次電池用正極活物質を得る意味で、前記組成式(I)におけるdは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
 dの上限値と下限値は任意に組み合わせることができる。
 例えば、前記dは、0超0.09以下であることが好ましく、0.001以上0.08以下であることがより好ましく、0.005以上0.07以下であることがさらに好ましい。
 前記組成式(I)におけるMはFe、Cr、Cu、Ti、B、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。
 また、サイクル特性が高いリチウム二次電池用正極活物質を得る意味で、組成式(I)におけるMは、Ti、B、Mg、Al、W、Zrであることが好ましく、熱的安定性が高いリチウム二次電池用正極活物質を得る意味では、B、Al、W、Zrであることが好ましい。
 本実施形態において、前記組成式(I)は、下記組成式(I)-1であることが好ましい。
  Li[Li(NiCoMn1-x]O ・・・(I)-1
 (ここで、-0.1≦x≦0.2、0<a≦0.7、0≦b≦0.4、0≦c≦0.4、0≦d≦0.1、a+b+c+d=1、MはFe、Cr、Cu、Ti、B、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
(BET比表面積)
 本実施形態において、高い電流レートでの放電容量が高いリチウム二次電池用正極活物質を得る意味で正極活物質のBET比表面積(m/g)は、0.5m/g以上であることが好ましく、0.8m/g以上であることがより好ましく、1.0m/g以上であることがさらに好ましい。また、正極活物質の吸湿性を低くする意味で、正極活物質のBET比表面積(m/g)は、3.0m/g以下であることが好ましく、2.8m/g以下であることがより好ましく、2.6m/g以下であることがさらに好ましい。
 正極活物質のBET比表面積(m/g)の上限値と下限値は任意に組み合わせることができる。
 例えば、前記BET比表面積は0.5m/g以上3.0m/g以下であることが好ましく、0.8m/g以上2.8m/g以下であることがより好ましく、1.0m/g以上2.6m/g以下であることがさらに好ましい。
 本実施形態におけるBET比表面積(m/g)は、リチウム金属複合酸化物粉末1gを、窒素雰囲気中105℃で30分間乾燥させた後、マウンテック社Macsorb(登録商標)を用いて測定することができる。
(層状構造)
 正極活物質の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、P6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
 これらのうち、放電容量が高いリチウム二次電池用正極活物質を得る意味で、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
 [正極活物質の製造方法]
 本発明の正極活物質を製造するにあたって、まず、リチウム以外の金属、すなわち、Ni、Co及びMnから構成される必須金属、並びに、Fe、Cr、Cu、Ti、B、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVのうちいずれか1種以上の任意元素を含む金属複合化合物を調製し、前記金属複合化合物を適当なリチウム化合物と焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、正極活物質の製造方法の一例を、金属複合化合物の製造工程と、リチウム金属複合酸化物の製造工程とに分けて説明する。
(金属複合化合物の製造工程)
 金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
 まず共沈殿法、特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、NiCoMn(OH)(式中、a+b+c=1)で表される金属複合水酸化物を製造する。
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れかを使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、及び塩化コバルトのうちの何れかを使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、及び塩化マンガンのうちの何れかを使用することができる。以上の金属塩は、上記NiCoMn(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるニッケル、コバルト、マンガンのモル比がa:b:cとなるよう各金属塩を規定する。また、溶媒として水が使用される。
 錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。
 錯化剤は金属複合水酸化物の製造に用いなくてもよく、錯化剤を用いる場合、例えば金属塩のモル数の合計に対する錯化剤のモル比は0より大きく2.0以下である。錯化剤は予め金属塩と混合してもよいし、金属塩溶液とは別個に添加してもよい。
 沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、NiCoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30~70℃の範囲内で制御され、反応槽内のpH値は例えばpH9以上pH13以下、好ましくはpH11~13の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。
 反応槽内は不活性雰囲気であってもよい。不活性雰囲気であると、ニッケルよりも酸化されやすい元素が凝集してしまうことを抑制し、均一な金属複合水酸化物を得ることができる。不活性ガスとしては、窒素、アルゴン、二酸化炭素等が例として挙げられる。
 また、反応槽内は、不活性雰囲気を保ちつつも、適度な酸素含有雰囲気又は酸化剤存在下が好ましい。これは遷移金属を適度に酸化させることで、金属複合水酸化物の構造を制御し、前記金属複合水酸化物を用いて作製した正極材における二次粒子内部の空隙の大きさ、分散度を制御することが可能となるためである。酸素含有ガス中の酸素や酸化剤は、遷移金属を酸化させるために十分な酸素原子があればよい。多量の酸素原子を導入しなければ、反応槽内の不活性雰囲気を保つことができる。
 反応槽内を酸素含有雰囲気とするには、反応槽内に酸素含有ガスを導入すればよい。酸素含有ガス中の酸素濃度(体積%)が1以上15以下であることが好ましい。反応槽内の溶液の均一性を高めるために、酸素含有ガスをバブリングさせてもよい。酸素含有ガスとしては、酸素ガス、空気、又はこれらと窒素ガスなどの酸素非含有ガスとの混合ガスが挙げられる。酸素含有ガス中の酸素濃度を調整しやすい観点から、上記の中でも混合ガスであることが好ましい。
 反応槽内を酸化剤存在下とするには、反応槽内に酸化剤を添加すればよい。酸化剤としては過酸化水素、塩素酸塩、次亜塩素酸塩、過塩素酸塩、過マンガン酸塩などを挙げることができる。反応系内に不純物を持ち込みにくい観点から過酸化水素が好ましく用いられる。
 以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン水酸化物を単離する。また、必要に応じて弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄しても良い。
なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製しても良い。ニッケルコバルトマンガン複合酸化物を調製する場合は、例えば、前記共沈物スラリーと酸化剤を接触させる工程や、ニッケルコバルトマンガン複合酸化物を熱処理する工程を行えばよい。
(リチウム金属複合酸化物の製造工程)
 上記金属複合酸化物又は金属複合水酸化物を乾燥した後、リチウム化合物と混合する。乾燥条件は、特に制限されないが、例えば、金属複合酸化物又は金属複合水酸化物が酸化・還元されない条件(酸化物→酸化物、水酸化物→水酸化物)、金属複合水酸化物が酸化される条件(水酸化物→酸化物)、金属複合酸化物が還元される条件(酸化物→水酸化物)のいずれの条件でもよい。酸化・還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の希ガス等の不活性ガスを使用すれば良く、水酸化物が酸化される条件では、酸素又は空気を雰囲気下として行えば良い。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すれば良い。リチウム化合物としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。
 金属複合酸化物又は金属複合水酸化物の乾燥後に、適宜分級を行っても良い。以上のリチウム塩と金属複合水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム化合物と前記金属複合水酸化物は、LiNiCoMn(式中、a+b+c=1)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン金属複合水酸化物及びリチウム化合物の混合物を焼成することによって、リチウム-ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
 上記金属複合酸化物又は金属複合水酸化物と、水酸化リチウム、炭酸リチウム等のリチウム化合物との焼成温度としては、特に制限はないが、正極活物質の空隙断面の数を本発明の特定の範囲とするために、600℃以上1100℃以下であることが好ましく、750℃以上1050℃以下であることがより好ましく、800℃以上1025℃以下であることがさらに好ましい。
 焼成時間は、3時間~50時間が好ましい。焼成時間が50時間を超えると、電池性能上問題はないが、Liの揮発によって実質的に電池性能に劣る傾向となる。焼成時間が3時間より少ないと、結晶の発達が悪く、電池性能が悪くなる傾向となる。すなわち、焼成時間が50時間以内であると、Liの揮発が抑制され、電池性能の劣化を防止することができる。焼成時間が3時間以上であると、結晶の発達が良好に進行するとともに、リチウム複合酸化物粉末に含まれる炭酸リチウム成分及び水酸化リチウム成分を低減することができ、電池性能を向上させることができる。本実施形態において焼成温度とは、目的の温度に達温してから温度保持が終了するまでの時間、いわゆる保持時間を意味する。目的の温度までの昇温速度としては、30℃/時間以上1200℃/時間以下が好ましく、60℃/時間以上600℃/時間以下がより好ましく、75℃/時間以上500℃/時間以下がさらに好ましい。
 なお、上記の焼成の前に、仮焼成を行うことも有効である。この様な仮焼成の温度は、300℃~850℃の範囲で、1時間~10時間行うことが好ましい。
 焼成によって得たリチウム金属複合酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。
<リチウム二次電池>
 次いで、リチウム二次電池の構成を説明しながら、本発明のリチウム二次電池用正極活物質を、リチウム二次電池の正極活物質として用いた正極、及びこの正極を有するリチウム二次電池について説明する。
 本実施形態のリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
 図1A及び図1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
 本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。
この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。
)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体の質量に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
 本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。
 負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
 負極活物質として使用可能な窒化物としては、LiN、Li3-xN(ここで、AはNi及びCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117:2009で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
 また、セパレータの空孔率は、好ましくはセパレータの体積に対して30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム化合物及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
 以上のような構成の正極活物質は、上述した本実施形態のリチウム含有複合金属酸化物を用いているため、正極活物質を用いたリチウム二次電池の寿命を延ばすことができる。
 また、以上のような構成の正極は、上述した本実施形態のリチウム二次電池用正極活物質を有するため、リチウム二次電池の寿命を延ばすことができる。
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、従来よりも寿命の長いリチウム二次電池となる。
  次に、本発明の態様を実施例によりさらに詳細に説明する。
 本実施例においては、リチウム二次電池用正極活物質の評価、リチウム二次電池用正極及びリチウム二次電池の作製評価を、次のようにして行った。
 (1)リチウム二次電池用正極活物質の評価
[平均粒子径の測定]
 平均粒子径の測定は、レーザー回折粒度分布計(株式会社堀場製作所製、LA-950)を用い、リチウム二次電池用正極活物質粉末0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得た。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、リチウム二次電池用正極活物質の平均粒子径とした。
 [BET比表面積測定]
 リチウム二次電池用正極活物質粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、マウンテック社製Macsorb(登録商標)を用いて測定した。
 [リチウム二次電池用正極活物質の断面観察]
 リチウム二次電池用正極活物質の粉末を集束イオンビーム加工装置(株式会社日立ハイテクノロジーズ製、FB2200)で加工し断面を作製し、前記正極活物質の断面を集束イオンビーム加工装置を用いて走査イオン顕微鏡像(SIM像)として観察、又は走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、S-4800)を用いて走査電子顕微鏡像(SEM像)として観察した。若しくは、正極活物質の粉末をイオンミリング装置(株式会社日立ハイテクノロジーズ製、IM4000)で加工し断面を作製し、前記正極活物質の粉末の断面を走査電子顕微鏡を用いてSEM像として観察した。なお、レーザー回折式粒度分布測定で得られた50%累積体積粒度D50(μm)の値の50~200%の範囲の長さの最大径を有し、かつ最小径/最大径の値が0.5超の正極活物質の断面を選択し、前記正極活物質の粒子が枠内に納まる最大の倍率で撮影した。
 [1μm当たりの空隙断面の数の測定方法]
前記断面像をコンピュータに取り込み、画像解析ソフトImage Jを用い、前記二次粒子画像中における最大輝度及び最小輝度の中間値で二値化処理を行い、前記二次粒子の断面内部を黒色とし、前記二次粒子の断面内部に存在する空隙断面部分を白色として変換した二値化処理済み画像を得た。前記二値化処理済み画像について、前記二次粒子断面の重心位置及び面積を算出した。また、前記二次粒子断面の内部に存在する空隙断面の個数と、各空隙断面の重心位置、面積及び最大径についても算出した。なお、前記断面内部に存在する空隙断面は、面積が0.01μm以上であるものとして、上記算出を実施した。
 1μm当たりの空隙断面の数は以下のようにして測定した。
  1μm当たりの空隙断面の数(個/μm) = 二次粒子断面の内部に存在する空隙断面の個数/二次粒子断面の面積
 [空隙断面率の測定方法]
 レーザー回折式粒度分布測定で得られた50%累積体積粒度D50(μm)をAとし、画像解析によって算出した二次粒子断面の重心位置を中心として、半径がA/4となる円を描き、円の内部を粒子中心部とし、円の外部を粒子表面部とした。
 二次粒子表面部における前記二次粒子表面部の断面の面積に対する空隙断面率は、以下のようにして算出した。
  二次粒子表面部における前記二次粒子表面部の断面の面積に対する空隙断面率(%) = 粒子表面部に存在する空隙断面部分の面積/粒子表面部の二次粒子断面の面積×100
 二次粒子中心部における前記二次粒子中心部の断面の面積に対する空隙断面率は、以下のようにして算出した。
  二次粒子中心部における前記二次粒子中心部の断面における粒子中心部の空隙断面率(%) = 粒子中心部に存在する空隙断面部分の面積/粒子中心部の二次粒子断面の面積×100
 二次粒子表面部における前記空隙断面率に対する二次粒子中心部における前記空隙断面率の比は、以下のようにして算出した。
  二次粒子表面部における前記空隙断面率に対する二次粒子中心部における前記空隙断面率の比 = 二次粒子中心部における前記空隙断面率(%)/二次粒子表面部における前記空隙断面率(%)
 二次粒子断面における前記二次粒子の断面の面積に対する空隙断面率は、以下のようにして算出した。
  二次粒子断面における前記二次粒子の断面の面積に対する空隙断面率(%) = 二次粒子断面に存在する空隙断面部分の面積/二次粒子断面の面積×100
 [NMP保液率の測定方法]
 乾燥したリチウム二次電池用正極活物質に、NMPを含浸させたときのNMP吸油量をBとし、吸油状態のリチウム二次電池用正極活物質を60℃で30分間乾燥させたときのNMP含有量をCとしたとき、以下の式(1)にて算出した。
  NMP保液率(%)=[C/B]×100 ・・・(1)
 具体的には乾燥したリチウム二次電池用正極物質1gに、NMPを含浸させ、吸油後のリチウム二次電池用正極活物質の質量から前記1gを引いて吸油量である前記Bを得た。吸油状態のリチウム二次電池用正極活物質を60℃で30分間乾燥させた後の質量から前記1gを引いて乾燥させたときのNMP含有量である前記Cを得た。
 [組成分析]
 後述の方法で製造されるリチウム金属複合酸化物粉末の組成分析は、得られたリチウム金属複合酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
(2)リチウム二次電池用正極の作製
 後述する製造方法で得られるリチウム二次電池用正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得た。このリチウム二次電池用正極の電極面積は1.65cmとした。
(3)リチウム二次電池用負極の作製
 次に、負極活物質として人造黒鉛(日立化成株式会社製MAGD)と、バインダーとしてCMC(第一工業薬製株式会社製)とSBR(日本エイアンドエル株式会社製)とを、負極活物質:CMC:SRR=98:1:1(質量比)の組成となるように加えて混練することにより、ペースト状の負極合剤を調製した。負極合剤の調製時には、溶媒としてイオン交換水を用いた。
 得られた負極合剤を、集電体となる厚さ12μmのCu箔に塗布して60℃で8時間真空乾燥を行い、リチウム二次電池用負極を得た。このリチウム二次電池用負極の電極面積は1.77cmとした。
(4)リチウム二次電池(コイン型フルセル)の作製
 以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
 「(2)リチウム二次電池用正極の作製」で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECと称することがある。)とジメチルカーボネート(以下、DMCと称することがある。)とエチルメチルカーボネート(以下、EMCと称することがある。)の16:10:74(体積比)混合液にビニレンカーボネート(以下、VCと称することがある。)を1体積%加え、そこにLiPF6を1.3mol/lとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)を用いた。
 次に、「(3)リチウム二次電池用負極の作製」で作製したリチウム二次電池用負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型フルセルR2032。以下、「フルセル」と称することがある。)を作製した。
(5)初回充放電試験
 「(4)リチウム二次電池(コイン型フルセル)の作製」で作製したフルセルを用いて、以下に示す条件で初回充放電試験を実施した。
 <サイクル試験>
  上記で作製したフルセルを用いて、以下に示す条件にて、200回のサイクル試験にて寿命評価を実施し、200回後の放電容量維持率を以下の式にて算出した。なお、200回後の放電容量維持率が高いほど、寿命特性がよいことを示している。
 200回後の放電容量維持率(%)=200回目の放電容量/1回目の放電容量×100
<サイクル試験条件>
 試験温度:60℃  
 充電時条件:充電時最大電圧4.1V、充電時間0.5時間、充電電流2.0CA
 充電後休止時間:10分
 放電時条件:放電時最小電圧3.0V、放電時間0.5時間、放電電流2.0CA
 放電後休止時間:10分
 本試験において、充電、充電休止、放電、放電休止を順に実施した工程を1回としている。
(実施例1)
1.リチウム二次電池用正極活物質1の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.315:0.33:0.355となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が4.9%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが11.9になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、水酸化ナトリウム溶液で洗浄した後、遠心分離機で脱水、単離し、105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物1を得た。このニッケルコバルトマンガン複合水酸化物1のBET比表面積は、21.0m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物1と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.13となるように秤量して混合した後、大気雰囲気下925℃で6時間焼成し、目的のリチウム二次電池用正極活物質1を得た。
2.リチウム二次電池用正極活物質1の評価
 得られたリチウム二次電池用正極活物質1の組成分析を行い、組成式(I)に対応させたところ、x=0.06、a=0.315、b=0.330、c=0.355、d=0であった。
 リチウム二次電池用正極活物質1の50%累積体積粒度D50は、6.1μmであった。
 リチウム二次電池用正極活物質1のBET比表面積は、1.7m/gであった。
 リチウム二次電池用正極活物質1の二次粒子の断面において、1μm当たりの空隙断面の数は0.60個であった。
 リチウム二次電池用正極活物質1の二次粒子表面部に空隙断面の重心が存在し、前記二次粒子表面部の断面の面積に対する空隙断面率は16.9%であった。また、二次粒子中心部に空隙断面の重心が存在し、前記二次粒子中心部の断面の面積に対する空隙断面率は61.2%であり、二次粒子表面部の前記空隙断面率に対する二次粒子中心部の前記空隙断面率の比(粒子中心部の空隙断面率/粒子表面部の空隙断面率)は3.6であった。
 リチウム二次電池用正極活物質1の二次粒子の断面における前記二次粒子の断面の面積に対する空隙断面率は25.8%であった。
 リチウム二次電池用正極活物質1のNMP保液率は43.6%であった。
 リチウム二次電池用正極活物質1の容量維持率は79.4%と高かった。
(実施例2)
1.リチウム二次電池用正極活物質2の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を30℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.34:0.33:0.33となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が4.2%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが12.5になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、水酸化ナトリウム溶液で洗浄した後、遠心分離機で脱水、単離し、105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物2を得た。このニッケルコバルトマンガン複合水酸化物2のBET比表面積は、34.4m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物2と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.13となるように秤量して混合した後、大気雰囲気下925℃で8時間焼成し、目的のリチウム二次電池用正極活物質2を得た。
2.リチウム二次電池用正極活物質2の評価
 得られたリチウム二次電池用正極活物質2の組成分析を行い、組成式(I)に対応させたところ、x=0.05、a=0.34、b=0.33、c=0.33、d=0であった。
 リチウム二次電池用正極活物質2の50%累積体積粒度D50は、3.9μmであった。
 リチウム二次電池用正極活物質2のBET比表面積は、1.6m/gであった。
 リチウム二次電池用正極活物質2の二次粒子の断面において、1μm当たりの空隙断面の数は4.35個であった。
 リチウム二次電池用正極活物質2の二次粒子表面部に空隙断面の重心が存在し、前記二次粒子表面部の断面の面積に対する空隙断面率は0.9%であった。また、二次粒子中心部に空隙断面の重心が存在し、前記二次粒子中心部の断面の面積に対する空隙断面率は21.2%であり、二次粒子表面部の前記空隙断面率に対する二次粒子中心部の空隙断面率の比(粒子中心部の空隙断面率/粒子表面部の空隙断面率)は25.0であった。
 リチウム二次電池用正極活物質2の二次粒子の断面における前記二次粒子の断面の面積に対する空隙断面率は13.1%であった。
 リチウム二次電池用正極活物質2のNMP保液率は25.4%であった。
 リチウム二次電池用正極活物質2の容量維持率は77.5%と高かった。
(実施例3)
1.リチウム二次電池用正極活物質3の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.55:0.21:0.24となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が12.3%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが12.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、水酸化ナトリウム溶液で洗浄した後、遠心分離機で脱水、単離し、105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物3を得た。このニッケルコバルトマンガン複合水酸化物3のBET比表面積は、58.9m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物3と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.08となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、さらに、大気雰囲気下850℃で10時間焼成し、目的のリチウム二次電池用正極活物質3を得た。
2.リチウム二次電池用正極活物質3の評価
 得られたリチウム二次電池用正極活物質3の組成分析を行い、組成式(I)に対応させたところ、x=0.04、a=0.55、b=0.21、c=0.24、d=0であった。
 リチウム二次電池用正極活物質3の50%累積体積粒度D50は、6.0μmであった。
 リチウム二次電池用正極活物質3のBET比表面積は、1.6m/gであった。
 リチウム二次電池用正極活物質3の二次粒子の断面において、1μm当たりの空隙断面の数は2.26個であった。
 リチウム二次電池用正極活物質3の二次粒子表面部に空隙断面の重心が存在し、前記二次粒子表面部の断面の面積に対する空隙断面率は10.9%であった。また、二次粒子中心部に空隙断面の重心が存在し、前記二次粒子中心部の断面の面積に対する空隙断面率は17.7%であり、二次粒子表面部の前記空隙断面率に対する二次粒子中心部の前記空隙断面率の比(粒子中心部の空隙断面率/粒子表面部の空隙断面率)は1.6であった。
 リチウム二次電池用正極活物質3の二次粒子の断面における前記二次粒子の断面の面積に対する空隙断面率は14.3%であった。
 リチウム二次電池用正極活物質3のNMP保液率は59.0%であった。
 リチウム二次電池用正極活物質3の容量維持率は82.5%と高かった。
(実施例4)
1.リチウム二次電池用正極活物質4の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.55:0.21:0.24となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が7.0%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが12.1になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、水酸化ナトリウム溶液で洗浄した後、遠心分離機で脱水、単離し、105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物4を得た。このニッケルコバルトマンガン複合水酸化物4のBET比表面積は、82.5m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物4と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.08となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、さらに、大気雰囲気下850℃で10時間焼成し、目的のリチウム二次電池用正極活物質4を得た。
2.リチウム二次電池用正極活物質4の評価
 得られたリチウム二次電池用正極活物質4の組成分析を行い、組成式(I)に対応させたところ、x=0.04、a=0.55、b=0.21、c=0.24、d=0であった。
 リチウム二次電池用正極活物質4の50%累積体積粒度D50は、4.0μmであった。
 リチウム二次電池用正極活物質4のBET比表面積は、2.0m/gであった。
 リチウム二次電池用正極活物質4の二次粒子の断面において、1μm当たりの空隙断面の数は2.59個であった。
 リチウム二次電池用正極活物質4の二次粒子表面部に空隙断面の重心が存在し、前記二次粒子表面部の断面の面積に対する空隙断面率は10.4%であった。また、二次粒子中心部に空隙断面の重心が存在し、前記二次粒子中心部の断面の面積に対する空隙断面率は55.6%であり、二次粒子表面部の前記空隙断面率に対する粒子中心部の前記空隙断面率の比(粒子中心部の空隙断面率/粒子表面部の空隙断面率)は5.4であった。
 リチウム二次電池用正極活物質4の二次粒子の断面における前記二次粒子の断面の面積に対する空隙断面率は20.6%であった。
 リチウム二次電池用正極活物質4のNMP保液率は56.0%であった。
 リチウム二次電池用正極活物質4の容量維持率は78.7%と高かった。
(実施例5)
1.リチウム二次電池用正極活物質5の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.510:0.225:0.265となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が8.8%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが11.8になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、水酸化ナトリウム溶液で洗浄した後、遠心分離機で脱水、単離し、105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物5を得た。このニッケルコバルトマンガン複合水酸化物5のBET比表面積は、42.8m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物5と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.08となるように秤量して混合した後、大気雰囲気下690℃で3時間焼成し、さらに、大気雰囲気下850℃で10時間焼成し、目的のリチウム二次電池用正極活物質5を得た。
2.リチウム二次電池用正極活物質5の評価
 得られたリチウム二次電池用正極活物質5の組成分析を行い、組成式(I)に対応させたところ、x=0.03、a=0.510、b=0.225、c=0.265、d=0であった。
 リチウム二次電池用正極活物質5の50%累積体積粒度D50は、5.0μmであった。
 リチウム二次電池用正極活物質5のBET比表面積は、1.9m/gであった。
 リチウム二次電池用正極活物質5の二次粒子の断面において、1μm当たりの空隙断面の数は1.33個であった。
 リチウム二次電池用正極活物質5の二次粒子表面部に空隙断面の重心が存在し、前記二次粒子表面部断面の面積に対する空隙断面率は7.5%であった。また、二次粒子中心部に空隙断面の重心が存在し、前記二次粒子中心部の断面の面積に対する空隙断面率は38.7%であり、二次粒子表面部の前記空隙断面率に対する二次粒子中心部の前記空隙断面率の比(粒子中心部の空隙断面率/粒子表面部の空隙断面率)は5.2であった。
 リチウム二次電池用正極活物質5の二次粒子の断面における前記二次粒子の断面の面積に対する空隙断面率は11.2%であった。
 リチウム二次電池用正極活物質5のNMP保液率は38.1%であった。
 リチウム二次電池用正極活物質5の容量維持率は80.8%と高かった。
(比較例1)
1.リチウム二次電池用正極活物質6の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を30℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.34:0.33:0.33となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が2.7%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが11.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、水酸化ナトリウム溶液で洗浄した後、遠心分離機で脱水、単離し、105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物6を得た。このニッケルコバルトマンガン複合水酸化物6のBET比表面積は、13.9m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物6と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.08となるように秤量して混合した後、大気雰囲気下925℃で8時間焼成し、目的のリチウム二次電池用正極活物質6を得た。
2.リチウム二次電池用正極活物質6の評価
 得られたリチウム二次電池用正極活物質6の組成分析を行い、組成式(I)に対応させたところ、x=0.04、a=0.34、b=0.33、c=0.33、d=0であった。
 リチウム二次電池用正極活物質6の50%累積体積粒度D50は、4.5μmであった。
 リチウム二次電池用正極活物質6のBET比表面積は、1.1m/gであった。
 リチウム二次電池用正極活物質6の二次粒子の断面において、1μm当たりの空隙断面の数は0.29個であった。
 リチウム二次電池用正極活物質6の二次粒子表面部に空隙断面の重心が存在し、前記二次粒子表面部の断面の面積に対する空隙断面率は0.7%であった。また、二次粒子中心部に空隙断面の重心が存在し、前記二次粒子中心部の断面の面積に対する空隙断面率は20.2%であり、二次粒子表面部の前記空隙断面率に対する二次粒子中心部の前記空隙断面率の比(粒子中心部の空隙断面率/粒子表面部の空隙断面率)は28.1であった。
 リチウム二次電池用正極活物質6の二次粒子の断面における前記二次粒子の断面の面積に対する空隙断面率は9.6%であった。
 リチウム二次電池用正極活物質6のNMP保液率は16.8%であった。
 リチウム二次電池用正極活物質6の容量維持率は74.1%であった。
(比較例2)
1.リチウム二次電池用正極活物質7の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を30℃に保持した。
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.60:0.20:0.20となるように混合して、混合原料液を調整した。
 次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを連続通気させた。反応槽内の溶液のpHが12.8になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、水酸化ナトリウム溶液で洗浄した後、遠心分離機で脱水、単離し、105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物7を得た。このニッケルコバルトマンガン複合水酸化物7のBET比表面積は、10.3m/gであった。
 以上のようにして得られたニッケルコバルトマンガン複合水酸化物7と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.04となるように秤量して混合した後、大気雰囲気下760℃で5時間焼成し、さらに、大気雰囲気下850℃で10時間焼成し、目的のリチウム二次電池用正極活物質7を得た。
2.リチウム二次電池用正極活物質7の評価
 得られたリチウム二次電池用正極活物質7の組成分析を行い、組成式(I)に対応させたところ、x=0.02、a=0.60、b=0.20、c=0.20、d=0であった。
 リチウム二次電池用正極活物質7の50%累積体積粒度D50は、6.0μmであった。
 リチウム二次電池用正極活物質7のBET比表面積は、0.7m/gであった。
 リチウム二次電池用正極活物質7の二次粒子の断面においては、空隙断面が存在せず、1μm当たりの空隙断面の数は0個であった。空隙断面の数が0個であったため、空隙断面率に関する評価を行うことができなかった。
 リチウム二次電池用正極活物質7のNMP保液率は16.4%であった。
 リチウム二次電池用正極活物質7の容量維持率は47.7%であった。
 下記表1に、実施例1~5、比較例1~2のリチウム二次電池用正極活物質のD50、BET比表面積、1μm当たりの空隙断面の数、二次粒子表面部の空隙断面率、二次粒子中心部の空隙断面率、粒子中心部の空隙断面率/粒子表面部の空隙断面率、二次粒子の断面全体の空隙断面率、NMP保液率、容量維持率の結果をまとめて記載する。
 また、図4に実施例3の二次粒子断面のSEM画像を、図5に比較例1の二次粒子断面のSEM画像を、図6に比較例2の二次粒子断面のSIM画像を示す。
Figure JPOXMLDOC01-appb-T000001
 上記結果に示したとおり、本発明を適用した実施例1~5のリチウム二次電池用正極活物質は、容量維持率がいずれも77%以上と、高いものであった。また、図4に示すSEM画像のとおり、本発明を適用したリチウム二次電池用正極活物質は、二次粒子の断面において空隙断面が分散した状態であった。また、本発明を適用した実施例1~5は、NMP保液率がいずれも25%以上と高かった。このことからも、本発明を適用すると、二次粒子の表面部と中心部とに、連通した空隙を有することが確認できた。
 これに対し、本発明を適用しない比較例1及び2は、容量維持率がいずれも75%を下回る結果であった。また、図5に示すSEM画像の通り、空隙断面が分散しておらず、中空状の粒子形状であった。さらに図6に示すSIM画像の通り、空隙断面がほとんどなく、緻密な粒子形状であった。比較例1及び2のリチウム二次電池用正極活物質は、NMP保液率も20%を大きく下回る結果であった。
 本発明によれば高温サイクルでの容量維持率に優れるリチウム二次電池用正極活物質、前記リチウム二次電池用正極活物質を用いたリチウム二次電池用正極及び前記リチウム二次電池用正極を有するリチウム二次電池を提供することができるため、産業上有用である。
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード、40…二次粒子の断面、41…二次粒子の断面の重心位置、42…空隙断面の重心位置、43…空隙断面、44…円の半径(4/A)、45…二次粒子の断面、46…空隙断面、47…空隙断面、50…半径4/Aの円

Claims (10)

  1.  一次粒子が凝集した二次粒子を含むリチウム複合金属酸化物からなるリチウム二次電池用正極活物質であって、前記二次粒子内部に空隙を有し、前記二次粒子の断面において、1μm当たりの空隙断面の数が0.3個以上15個以下であるリチウム二次電池用正極活物質。
  2.  前記二次粒子の断面において、粒子中心部及び粒子表面部にそれぞれ一つ以上の空隙断面の重心を有し、前記二次粒子表面部における前記二次粒子表面部の断面の面積に対する空隙断面率が0.75%以上50%以下である請求項1に記載のリチウム二次電池用正極活物質(ここで、レーザー回折式粒度分布測定によって得られる、前記リチウム二次電池用正極活物質全体の平均粒子径(D50)をAとし、前記二次粒子の断面に存在する空隙断面の重心位置を画像処理によって算出し、前記二次粒子の断面の重心を中心として半径がA/4となる円の領域を粒子中心部としたときの、それ以外の領域を粒子表面部とする)。
  3.  前記二次粒子中心部における前記二次粒子中心部の断面の面積に対する空隙断面率が0.1%以上65%以下である請求項2に記載のリチウム二次電池用正極活物質。
  4.  前記二次粒子表面部における前記空隙断面率に対する前記粒子中心部における前記空隙断面率の比が、0.1以上25以下である請求項2又は3に記載のリチウム二次電池用正極活物質。
  5.  前記二次粒子の断面において、前記二次粒子の断面の面積に対する空隙断面率が1%以上50%以下である請求項1~4のいずれか1項に記載のリチウム二次電池用正極活物質。
  6.  下記の測定方法で測定されるNMP保液率が18%以上である、請求項1~5のいずれか1項に記載のリチウム二次電池用正極活物質。
    [NMP保液率の測定方法]
     乾燥したリチウム二次電池用正極活物質に、NMPを含浸させたときのNMP吸油量をBとし、吸油状態のリチウム二次電池用正極活物質を60℃で30分間乾燥させたときのNMP含有量をCとしたとき、以下の式(1)にて算出される値。
     NMP保液率(%)=[C/B]×100 ・・・(1)
  7.  下記組成式(I)で表される、請求項1~6のいずれか1項に記載のリチウム二次電池用正極活物質。
       Li[Li(NiCoMn1-x]O ・・・(I)
    (ここで、-0.1≦x≦0.2、0<a≦1、0≦b≦0.4、0≦c≦0.4、0≦d≦0.1、a+b+c+d=1、MはFe、Cr、Cu、Ti、B、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
  8.  前記組成式(I)が、下記組成式(I)-1である、請求項7に記載のリチウム二次電池用正極活物質。
       Li[Li(NiCoMn1-x]O ・・・(I)-1
    (ここで、-0.1≦x≦0.2、0<a≦0.7、0≦b≦0.4、0≦c≦0.4、0≦d≦0.1、a+b+c+d=1、MはFe、Cr、Cu、Ti、B、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素を表す。)
  9.  請求項1~8のいずれか1項に記載のリチウム二次電池用正極活物質を有するリチウム二次電池用正極。
  10.  請求項9に記載のリチウム二次電池用正極を有するリチウム二次電池。
PCT/JP2017/031392 2016-08-31 2017-08-31 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 WO2018043653A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17846657.9A EP3509142A4 (en) 2016-08-31 2017-08-31 ACTIVE POSITIVE ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERIES, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, AND LITHIUM SECONDARY BATTERY
CN201780051656.8A CN109716565B (zh) 2016-08-31 2017-08-31 锂二次电池用正极活性物质、锂二次电池用正极和锂二次电池
KR1020197005641A KR102436594B1 (ko) 2016-08-31 2017-08-31 리튬 2 차 전지용 정극 활물질, 리튬 2 차 전지용 정극 및 리튬 2 차 전지
US16/328,657 US11417879B2 (en) 2016-08-31 2017-08-31 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016169817A JP6500001B2 (ja) 2016-08-31 2016-08-31 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2016-169817 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043653A1 true WO2018043653A1 (ja) 2018-03-08

Family

ID=61300882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031392 WO2018043653A1 (ja) 2016-08-31 2017-08-31 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Country Status (6)

Country Link
US (1) US11417879B2 (ja)
EP (1) EP3509142A4 (ja)
JP (1) JP6500001B2 (ja)
KR (1) KR102436594B1 (ja)
CN (1) CN109716565B (ja)
WO (1) WO2018043653A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092931A (ja) * 2016-11-30 2018-06-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含んだ正極を含んだリチウム二次電池
CN110085843A (zh) * 2019-05-10 2019-08-02 北京理工大学 一种添加MOFs材料的高镍三元正极、制备方法和应用
CN112447967A (zh) * 2019-09-02 2021-03-05 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
JP7435394B2 (ja) 2020-10-06 2024-02-21 トヨタ自動車株式会社 負極活物質、負極活物質の製造方法およびリチウムイオン電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343753B2 (ja) 2016-12-07 2018-06-20 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2022140180A (ja) * 2021-03-10 2022-09-26 茂 佐野 正極及び蓄電池
WO2023204077A1 (ja) * 2022-04-21 2023-10-26 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259605A (ja) 2008-04-17 2009-11-05 Toyota Motor Corp 正極活物質及びその製造方法ならびに該正極活物質を備えた電池
JP2011119092A (ja) * 2009-12-02 2011-06-16 Toyota Motor Corp 活物質粒子およびその利用
JP2011192445A (ja) 2010-03-12 2011-09-29 Panasonic Corp リチウムイオン電池用正極活物質粒子およびリチウムイオン電池
WO2014142279A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69700735T2 (de) 1996-08-29 2000-03-02 Murata Manufacturing Co Lithium-Sekundärbatterie
JP3296204B2 (ja) * 1996-08-29 2002-06-24 株式会社村田製作所 リチウム二次電池
KR100653170B1 (ko) * 1999-07-07 2006-12-04 쇼와 덴코 가부시키가이샤 정극활물질, 그 제조방법 및 2차전지
JP2002075365A (ja) * 2000-08-31 2002-03-15 Matsushita Battery Industrial Co Ltd 正極活物質及びリチウム二次電池
JP4254267B2 (ja) * 2002-02-21 2009-04-15 東ソー株式会社 リチウムマンガン複合酸化物顆粒二次粒子及びその製造方法並びにその用途
CN100344543C (zh) 2002-02-21 2007-10-24 东曹株式会社 锂-锰复合氧化物的粒状二级颗粒、其制备方法和其用途
JP4096754B2 (ja) * 2003-02-18 2008-06-04 日亜化学工業株式会社 非水電解液二次電池用正極活物質
JP2005158624A (ja) * 2003-11-28 2005-06-16 Shin Kobe Electric Mach Co Ltd リチウム二次電池用正極材及びリチウム二次電池
JP4740415B2 (ja) 2007-05-25 2011-08-03 株式会社日立製作所 電気自動車或いはハイブリッド自動車用リチウム二次電池
JP5251401B2 (ja) 2008-09-29 2013-07-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質及びその製造方法、並びに非水系電解質二次電池
US9023526B2 (en) 2010-06-13 2015-05-05 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101309150B1 (ko) * 2010-06-13 2013-09-17 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP5481325B2 (ja) * 2010-09-06 2014-04-23 日立ビークルエナジー株式会社 リチウムイオン二次電池及びその物性評価方法
JP5035712B2 (ja) * 2010-09-30 2012-09-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP6026997B2 (ja) 2011-04-07 2016-11-16 日本碍子株式会社 リチウム二次電池の正極活物質及びリチウム二次電池
CN102779991A (zh) * 2011-05-10 2012-11-14 日本化学工业株式会社 锂二次电池用正极活性物质粉体、其制造方法及锂二次电池
JP5971109B2 (ja) 2011-12-20 2016-08-17 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP5701343B2 (ja) * 2013-07-10 2015-04-15 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
JP6196175B2 (ja) * 2013-10-11 2017-09-13 日本碍子株式会社 リチウム二次電池用正極活物質の製造方法及びそれに用いられる活物質前駆体粉末
JP6467352B2 (ja) 2014-01-20 2019-02-13 住友化学株式会社 正極活物質およびその製造方法
JP6377983B2 (ja) * 2014-07-23 2018-08-22 住友化学株式会社 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
KR101593401B1 (ko) * 2014-10-14 2016-02-12 주식회사 이엔에프테크놀로지 다공성 구조를 갖는 리튬전지용 양극활물질 및 제조방법
CN107112582A (zh) * 2015-03-26 2017-08-29 三洋电机株式会社 非水电解质二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259605A (ja) 2008-04-17 2009-11-05 Toyota Motor Corp 正極活物質及びその製造方法ならびに該正極活物質を備えた電池
JP2011119092A (ja) * 2009-12-02 2011-06-16 Toyota Motor Corp 活物質粒子およびその利用
JP2011192445A (ja) 2010-03-12 2011-09-29 Panasonic Corp リチウムイオン電池用正極活物質粒子およびリチウムイオン電池
WO2014142279A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3509142A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092931A (ja) * 2016-11-30 2018-06-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含んだ正極を含んだリチウム二次電池
CN110085843A (zh) * 2019-05-10 2019-08-02 北京理工大学 一种添加MOFs材料的高镍三元正极、制备方法和应用
CN112447967A (zh) * 2019-09-02 2021-03-05 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
CN112447967B (zh) * 2019-09-02 2022-03-08 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
JP7435394B2 (ja) 2020-10-06 2024-02-21 トヨタ自動車株式会社 負極活物質、負極活物質の製造方法およびリチウムイオン電池

Also Published As

Publication number Publication date
EP3509142A1 (en) 2019-07-10
JP6500001B2 (ja) 2019-04-10
US20200411854A1 (en) 2020-12-31
KR20190040219A (ko) 2019-04-17
KR102436594B1 (ko) 2022-08-25
EP3509142A4 (en) 2020-04-15
US11417879B2 (en) 2022-08-16
CN109716565B (zh) 2023-01-17
JP2018045759A (ja) 2018-03-22
CN109716565A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
JP6495997B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6343753B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6256956B1 (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6337360B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2016060105A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2015182665A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6500001B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6368022B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6388978B1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2019003955A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2018181402A1 (ja) リチウムニッケル複合酸化物の製造方法
WO2017078136A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
WO2018079821A1 (ja) リチウム二次電池用正極及びリチウム二次電池
WO2018021453A1 (ja) リチウムニッケル複合酸化物の製造方法
JP2018172256A (ja) リチウム複合金属酸化物の製造方法
WO2018105481A1 (ja) リチウム二次電池用正極活物質の製造方法
JP2018174161A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018081937A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018095546A (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018098217A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2019110136A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6381606B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005641

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017846657

Country of ref document: EP

Effective date: 20190401