JP2009020933A - 発振装置、発振方法及びメモリ装置 - Google Patents

発振装置、発振方法及びメモリ装置 Download PDF

Info

Publication number
JP2009020933A
JP2009020933A JP2007181366A JP2007181366A JP2009020933A JP 2009020933 A JP2009020933 A JP 2009020933A JP 2007181366 A JP2007181366 A JP 2007181366A JP 2007181366 A JP2007181366 A JP 2007181366A JP 2009020933 A JP2009020933 A JP 2009020933A
Authority
JP
Japan
Prior art keywords
oscillation
signal
circuit
frequency division
division number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007181366A
Other languages
English (en)
Other versions
JP5018292B2 (ja
Inventor
Hiroyoshi Tomita
浩由 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2007181366A priority Critical patent/JP5018292B2/ja
Priority to EP08158490A priority patent/EP2015308B1/en
Priority to US12/147,061 priority patent/US8027220B2/en
Priority to KR1020080065537A priority patent/KR100954132B1/ko
Priority to CN201310395742.4A priority patent/CN103559908A/zh
Priority to CN200810126879.9A priority patent/CN101345080B/zh
Publication of JP2009020933A publication Critical patent/JP2009020933A/ja
Application granted granted Critical
Publication of JP5018292B2 publication Critical patent/JP5018292B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/023Detection or location of defective auxiliary circuits, e.g. defective refresh counters in clock generator or timing circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/12015Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising clock generation or timing circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/14Implementation of control logic, e.g. test mode decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C29/50012Marginal testing, e.g. race, voltage or current testing of timing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/406Refreshing of dynamic cells
    • G11C2211/4061Calibration or ate or cycle tuning

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

【課題】発振信号の周期のばらつきを考慮して発振信号の周期に適切なマージンを持たせることができる発振装置、発振方法及びメモリ装置を提供することを課題とする。
【解決手段】発振周期指示信号を出力する第1の設定部(102〜104)と、前記発振周期指示信号に対して演算する演算器(111)と、前記演算された発振周期指示信号に応じた周期の発振信号を生成する発振部(105,106)とを有することを特徴とする発振装置が提供される。
【選択図】図1

Description

本発明は、発振装置、発振方法及びメモリ装置に関する。
メモリには、セルフリフレッシュ要求信号を生成するための発振器が備えられる。その発振器は、プロセスばらつきによって発振周期にばらつきが生じてしまう。そのため、各半導体チップ毎に要求されるリフレッシュ時間が異なってしまう。これを解消するために、プロービングテストにおいて、半導体チップ毎にリフレッシュ要求信号の分周数を変更している。このようにすることで、リフレッシュ要求信号の周期を調整し、要求されるリフレッシュ要求信号の周期のチップ毎のばらつきを小さくしている。
メモリは、ノーマルメモリセル及び冗長メモリセルを有する。この場合に問題となるのが、ノーマルメモリセルを冗長メモリセルに置き換える前(以下、冗長前という)のプロービングテストとノーマルメモリセルを冗長メモリセルに置き換えた後(以下、冗長後という)のプロービングテストの関係である。冗長前のプロービングテストでは、冗長後のプロービングテストでリフレッシュ動作の実力不足で、フェイルが発生しないようにするため、冗長前のリフレッシュ要求信号の周期を冗長後のリフレッシュ要求信号の周期より長くする必要がある。しかし、外部から半導体チップ毎に異なる分周数を知ることができないので、半導体チップ毎に適切なマージンを用いて、冗長前のリフレッシュ要求信号の周期を冗長後のリフレッシュ要求信号の周期より長くことができない。
図12は、メモリ装置の構成例を示す図である。発振装置1201は、リフレッシュ要求信号S2を生成する。測定モードでは、テスト回路1203は、選択回路1204を介して、分周数を分周器1206に指示する。発振器1205は、発振信号S1を出力する。分周器1206は、指示された分周数で発振信号S1を分周し、リフレッシュ要求信号S2を出力する。リフレッシュ要求信号S2の周期を測定し、その周期のばらつきを補正した分周数をヒューズ回路1202に書き込む。ノーマルモードでは、ヒューズ回路1202は、選択回路1204を介して分周数を分周器1206に指示する。これにより、発振装置1201は、所望の周期のリフレッシュ要求信号S2を生成することができる。メモリ1208は、データを記憶する。メモリコントロール回路1207は、リフレッシュ要求信号S2を基にメモリ1208に対してリフレッシュ動作を行う。
ヒューズ回路1202の分周数設定をテストモードで再現できるようにしておき、冗長前の分周数設定を冗長後の分周数設定(ヒューズ回路1202の設定)に対してマージンを持った設定にして試験を行う必要がある。
各半導体チップ毎に発振器1205の発振周期が異なっているため、これを最適化した場合には、各半導体チップ毎に分周数が異なっていることになる。このような状態で、各半導体チップ毎に最適な分周数のマージンを持たせるためには、各半導体チップ毎にテストモード等で設定する分周数を変える必要がある。即ち、ヒューズ回路1202への分周数書き込み後にその分周数が分かっていることが必要である。しかし、ヒューズ回路1202の分周数は、半導体チップ外部に出力されていないため不明である。たとえヒューズ回路1202の分周数を読み出したとしても、各半導体チップ毎に分周数が異なっているため、各半導体チップ毎に異なった分周数を設定する必要がある。この設定をGO/NOGO(パス/フェイル)試験において実現することは非常に困難である。
図13は、冗長前のテストモードで分周数にマージンを持たせるためのメモリ装置の構成例を示す図である。以下、図13が図12と異なる点を説明する。選択回路1301は、冗長前のテストモードでは外部入力の発振信号SA1を選択して発振信号SA2として出力し、冗長後のテストモードでは発振器1205の発振信号S1を選択して発振信号SA2として出力する。分周器1206は、発振信号SA2を分周し、リフレッシュ要求信号SA3を出力する。メモリコントロール回路1207は、リフレッシュ要求信号SA3を基にメモリ1208に対してリフレッシュ動作を行う。しかし、この場合も、発振器1205の発振信号S1のばらつきに応じた分周数のマージンを持たせることができない。
図14は、冗長前のテストモードで分周数にマージンを持たせるための他のメモリ装置の構成例を示す図である。以下、図14が図12と異なる点を説明する。選択回路1401は、冗長前のテストモードでは外部入力のリフレッシュ要求信号SB1を選択してリフレッシュ要求信号SB2として出力し、冗長後のテストモードでは分周器1206が出力するリフレッシュ要求信号S2を選択してリフレッシュ要求信号SB2として出力する。メモリコントロール回路1207は、リフレッシュ要求信号SB2を基にメモリ1208に対してリフレッシュ動作を行う。しかし、この場合も、発振器1205の発振信号S1のばらつきに応じた分周数のマージンを持たせることができない。
また、下記の特許文献1には、セルリフレッシュモードを有する半導体記憶装置であって、セルフリフレッシュ期間可変手段を具備し、該セルフリフレッシュ期間可変手段は、所定の外部アドレス信号を入力し、該所定の外部アドレス信号を基に発振周期制御信号を生成し、該発振周期制御信号により発振回路の発振周期を可変とすることにより、セルフリフレッシュ期間を可変にしたことを特徴とする半導体記憶装置が記載されている。
また、下記の特許文献2には、データ保持のためにリフレッシュ動作を必要とする複数のメモリセルをアレイ状に含むメモリアレイと、前記メモリアレイ内の予め定められた複数のメモリセル(「モニタセル」という)に対して、所定のデータをそれぞれ書き込む制御を行う回路と、前記所定のデータを書き込んだ前記複数のモニタセルから、リフレッシュ周期又は前記リフレッシュ周期よりも短い所定期間経過した時にデータを読み出す制御を行う回路と、前記モニタセルからの読み出しデータと前記所定のデータとを比較してエラーカウント又はエラー率を測定し、前記エラーカウント又はエラー率の測定結果に基づき、リフレッシュ周期を可変に制御する回路と、を備えている、ことを特徴とする半導体記憶装置が記載されている。
特開2001−184860号公報 特開2006−4557号公報
冗長前のテストでは、冗長後のテストよりもリフレッシュ要求信号の周期を長くする(分周数を大きくする)必要がある。しかし、半導体チップ毎に分周数の設定が異なるため、半導体チップ毎に適切な分周数のマージンを用いて、冗長前の分周数を設定することが困難である。
本発明の目的は、発振信号の周期のばらつきを考慮して発振信号の周期に適切なマージンを持たせることができる発振装置、発振方法及びメモリ装置を提供することである。
本発明の発振装置は、発振周期指示信号を出力する第1の設定部と、前記発振周期指示信号に対して演算する演算器と、前記演算された発振周期指示信号に応じた周期の発振信号を生成する発振部とを有することを特徴とする。
発振周期指示信号に対して演算することにより、発振信号の周期のばらつきを考慮して発振信号の周期に適切なマージンを持たせることができる。
(第1の実施形態)
図1は本発明の第1の実施形態によるメモリ装置の構成例を示すブロック図であり、図2はその動作を説明するためのタイミングチャートである。発振装置101は、ヒューズ回路102、テスト回路103、選択回路104、発振器105、分周器106、比較回路107及び加算回路111を有し、リフレッシュ要求信号S2を生成する。発振装置101は、測定モード、テストモード及びノーマルモードを有し、その発振方法を説明する。まず、測定モードによるリフレッシュ要求信号S2の周期の調整方法を説明する。テスト回路103は、測定モードにおける分周数を出力する。例えば、外部からテスト回路103が出力する分周数を制御可能である。測定モードにおいて、選択回路104は、テスト回路103が出力する分周数を選択する。ヒューズ回路102、テスト回路103及び選択回路104は、分周器106の分周数を設定するための設定部である。測定モードでは、加算回路111は、加算を行わないか、0を加算する。発振部は、発振器105及び分周器106を含む。発振器105は、イネーブル信号STに応じて発振信号S1を生成する。具体的には、発振器105は、発振信号を生成し、イネーブル信号STがハイレベルになると発振信号S1の出力を開始する。第1の分周器106は、カウンタを含み、選択回路104が出力する分周数で発振信号S1を分周してリフレッシュ要求信号(第1の分周信号)S2を出力し、発振信号S1の発振数(パルス数)をカウントしてカウント値S3を出力する。また、分周器106は、イネーブル信号STがハイレベルになるとカウント値S3を0にリセットし、イネーブル信号STがローレベルになるとカウント値S3のカウントを停止してカウント値S3を保持する。なお、発振器105は、イネーブル信号STがローレベルになると、発振信号S1の出力を停止するようにしてもよい。
例えば、イネーブル信号STのハイレベル期間は20μsである。このハイレベル期間は変更可能である。分周器106は、イネーブル信号STがハイレベルの間、発振信号S1のカウント値S3をカウントする。例えば、イネーブル信号STがハイレベルである20μsの期間において、カウント値S3は24である。分周器(カウンタ)106は、テスト回路103により指定された分周数(第1の信号で指定された発振数)でリセットするかしないかの選択を行うことができる。測定モードではリセットしない方が選択され、テストモード及びノーマルモードではリセットする方が選択される。なお、テスト回路103は、24より大きい分周数を出力するようにしてもよい。発振信号S1の周期は、イネーブル信号STのハイレベル期間(20μs)をカウント値S3で割った値である。
しかし、カウント値S3は整数であるため、発振数が24〜25の間の時のカウント値S3は24となるため誤差が生じる。発振信号S1の発振数は、20μs/24から20μs/25までの間である。この場合、発振信号S1の最大誤差は、20μs/24−20μs/25=20μs/(24×25)である。
この誤差は、イネーブル信号STのハイレベル期間を長くすることにより小さくすることが可能である。例えば、イネーブル信号STのハイレベル期間を200μsとすれば、カウント値S3は約240となり、発振信号S1の周期の最大誤差は、200μs/240−200μs/241=200μs/(240×241)であり、イネーブル信号STのハイレベル期間が20μsの場合に比べて1桁小さくすることができる。これにより、1回の測定で、発振信号S1の周期を高精度で測定することができる。
比較回路(比較器)107は、カウント値S3及びリファレンス数CNTを比較し、比較結果信号S4を出力する。比較結果信号S4は、カウント値S3及びリファレンス数CNTが一致すれば一致信号となり、カウント値S3及びリファレンス数CNTが一致しなければ不一致信号となる。例えば、リファレンス数CNTは、外部信号であり、例えばアドレス線を用いてアドレスとして外部から入力可能である。出力回路108は、出力バッファであり、比較結果信号S4を外部に出力する。リファレンス数CNTを変化させ、比較結果信号S4が一致信号となるリファレンス数CNTを検出する。一致したリファレンス数CNTが発振信号S1の発振数(カウント値)として検出される。
外部アドレスをリファレンス数CNTとしてカウント値S3を検出するには、分周器106のカウンタをバイナリカウンタ(2進カウンタ)で構成する。上記の場合、カウント値S3が24=11000(2進数)であるため、このカウント値S3とアドレスA10〜A0(=LLL,LLLH,HLLL)と比較を行って検出可能である。ここで、L(ローレベル)は0を表し、H(ハイレベル)は1を表す。
図3は、分周器106のカウント値S3を基にヒューズ回路102の分周数を設定する方法を説明するためのグラフである。上記の方法により、分周器106のカウント値S3を検出することができる。図3の上段のグラフのように、イネーブル信号STのハイレベル期間をカウント値S3で割ることにより、発振信号S1の発振周期を得ることができる。次に、図3の下段のグラフのように、所望のリフレッシュ要求信号S2の周期を発振信号S1の発振周期で割ることにより、分周数を得ることができる。この分周数をヒューズ回路102に書き込む。ヒューズ回路102は、レーザヒューズ回路又は電気ヒューズ回路であり、分周数を記憶する。
また、実際には、分周器106のカウント値S3と分周数の対応表を用意しておき、対応表を用いて分周器106のカウント値S3から分周数を求め、ヒューズ切断によりヒューズ回路102に分周数を設定する。
次に、ノーマルモードによりリフレッシュ要求信号S2を生成する方法を説明する。ヒューズ回路102は、上記の書き込まれた分周数を出力する。ノーマルモードにおいて、選択回路104は、ヒューズ回路102が出力する分周数を選択する。ノーマルモードでは、加算回路111は、加算を行わないか、0を加算する。発振器105は、イネーブル信号STに応じて発振信号S1を生成する。分周器106は、選択回路104が出力する分周数で発振信号S1を分周してリフレッシュ要求信号S2を出力する。これにより、所望の周期のリフレッシュ要求信号S2を生成することができ、リフレッシュ要求信号S2の周期のばらつきを防止することができる。
メモリ110は、例えばリフレッシュ動作が必要なDRAM又は擬似SRAMであり、データを記憶する。メモリコントロール回路(メモリコントローラ)109は、リフレッシュ要求信号S2を基にメモリ110に対してリフレッシュ動作を行う。リフレッシュ動作は、DRAM等の記憶が失われないように電荷を補充する動作である。半導体メモリの一種であるDRAMは、コンデンサに電荷を蓄えることによって情報を保持する。この電荷は時間とともに減少するため、放っておくと一定時間で放電しきって情報を失ってしまう。これを防ぐため、DRAMには一定時間毎に再び電荷を注入するリフレッシュ動作を行う必要がある。
メモリ110は、複数のノーマルメモリセル及び複数の冗長メモリセルを有する。ノーマルメモリセル及び冗長メモリセルは、データを記憶するメモリセルである。上記の測定モード及びノーマルモードの間に、テストモードによる試験を行う。
まず、第1のプロービングテストは、冗長前(ノーマルメモリセルを冗長メモリセルに置き換える前)のメモリ装置のテストであり、ノーマルメモリセル及び冗長メモリセルに対してリフレッシュ動作試験等を行う。この試験において、フェイル(不合格)のノーマルメモリセルがある場合には、フェイルのノーマルメモリセルをパス(合格)の冗長メモリセルに置き換える。なお、上記のヒューズ回路102への書き込みは、第1のプロービングテストの後に行ってもよい。
次に、第2のプロービングテストを行う。第2のプロービングテストは、冗長後(ノーマルメモリセルを冗長メモリセルに置き換えた後)のメモリ装置のテストであり、ノーマルメモリセル及び置き換えられた冗長メモリセルに対してリフレッシュ動作試験等を行う。上記の第1及び第2のプロービングテストは、パッケージング前の半導体チップのメモリ装置のテストである。
次に、ファイナルテストを行う。ファイナルテストは、パッケージング後のメモリ装置のテストであり、ノーマルメモリセル及び置き換えられた冗長メモリセルに対してリフレッシュ動作試験等を行う。
ファイナルテストのモードでは、ノーマルモード時と同じ周期のリフレッシュ要求信号S2を用いてリフレッシュ動作試験を行う。例えば、ファイナルテスト及びノーマルモードでは、分周器106の分周数が20であり、リフレッシュ要求信号S2の周期は420μsである。この「20」の分周数は、上記の測定モードでヒューズ回路102に書き込まれた分周数である。また、選択回路104はヒューズ回路102の分周数を選択し、加算回路111は加算を行わないので、分周器106はヒューズ回路102の分周数で分周を行う。
ファイナルテストの前の第2のプロービングテストのモードでは、ファイナルテストよりも厳しい条件でリフレッシュ動作試験等を行う。仮に、ファイナルテストと同じ条件でファイナルテストを行うと、リフレッシュ動作試験のばらつきにより、第2のファイナルテストをぎりぎりパスしたものが、ファイナルテストではフェイルになることがある。このような効率の悪いテストを回避するため、第2のプロービングテストは、ファイナルテストよりも厳しい条件でリフレッシュ動作試験等を行う。具体的には、第2のプロービングテストのリフレッシュ要求信号S2の周期をファイナルテストのリフレッシュ要求信号S2の周期よりも長くする。リフレッシュ要求信号S2は周期が長いほど、リフレッシュ周期が長くなり、データが消失し易くなる。例えば、第2のプロービングテストでは、分周器106の分周数が21であり、リフレッシュ要求信号S2の周期は450μsである。ヒューズ回路102は「20」の分周数を記憶し、選択回路104はヒューズ回路102の分周数を選択する。加算回路111はヒューズ回路102の分周数(例えば20)に演算係数NM(例えば1)を加算し、分周器106に出力する。加算回路111は、実質的には減算を行う。分周器106は、加算器111が出力する分周数(例えば21)で分周を行い、リフレッシュ要求信号S2(例えば450μs)を出力する。
第2のプロービングテストの前の第1のプロービングテストのモードでは、上記と同様の理由により、第2のプロービングテストよりも厳しい条件でリフレッシュ動作試験等を行う。具体的には、第1のプロービングテストのリフレッシュ要求信号S2の周期を第2のプロービングテストのリフレッシュ要求信号S2の周期よりも長くする。例えば、第1のプロービングテストでは、分周器106の分周数が22であり、リフレッシュ要求信号S2の周期は500μsである。ヒューズ回路102は「20」の分周数を記憶し、選択回路104はヒューズ回路102の分周数を選択する。加算回路111はヒューズ回路102の分周数(例えば20)に演算係数NM(例えば2)を加算し、分周器106に出力する。分周器106は、加算器111が出力する分周数(例えば22)で分周を行い、リフレッシュ要求信号S2(例えば500μs)を出力する。
加算回路111は、冗長前のリフレッシュ要求信号S2の周期が冗長後のリフレッシュ要求信号S2の周期よりも長くなるように演算する。
以上のように、本実施形態は、1回の測定で、発振信号S1の周期を高精度で測定することができ、簡単にリフレッシュ要求信号S2の周期のばらつきを防止することができる。
また、プロセスばらつきにより発振器105の発振信号S1の周期にばらつきが生じるため、メモリ装置の半導体チップ毎にヒューズ回路102に書き込まれる分周数が異なる。第1及び第2のプロービングテストでは、加算回路111は、ヒューズ回路102の分周数に対して、適切なマージンとして演算係数NMを加算する。これにより、半導体チップ毎にヒューズ回路102の分周数が異なっていたとしても、各半導体チップのヒューズ回路102の分周数に対して適切なマージンを設定することができ、適切な第1及び第2のプロービングテストを行うことができる。
(第2の実施形態)
図4は、本発明の第2の実施形態によるメモリ装置の構成例を示すブロック図である。本実施形態(図4)は、第1の実施形態(図1)に対して、高温用設定部401、低温用設定部402及び温度検出器403を追加したものである。以下、本実施形態が第1の実施形態と異なる点を説明する。リフレッシュ要求信号S2の周期は、温度により変えることが好ましい。メモリ110は、高温では蓄積電荷の放電速度が速いため分周数を小さくしてリフレッシュ要求信号S2の周期を短くし、低温では蓄積電荷の放電速度が遅いため分周数を大きくしてリフレッシュ要求信号S2の周期を長くすることが好ましい。これにより、消費電力を小さくすることができる。高温用設定部401には高温時の小さい分周数を記憶させ、低温用設定部402には低温時の大きい分周数を記憶させる。高温設定部401及び低温設定部402は、それぞれ図1のヒューズ回路102及びテスト回路103を有する。温度検出器403は、温度を検出する。選択回路104は、温度検出器403により検出された温度が閾値よりも高温であるときには高温用設定部401が出力する分周数を選択し、温度検出器403により検出された温度が閾値よりも低温であるときには低温用設定部402が出力する分周数を選択する。高温用設定部401、低温設定部402及び選択回路104は、温度検出器403により検出された温度に応じて分周器106の分周数を設定するための設定部である。
まず、高温(第1の温度)において、第1の実施形態の測定モードの動作を行い、発振信号S1のカウント値S3を検出する。次に、上記の図3の説明のように、そのカウント値S3を基に高温における分周数を求める。ここで、高温時のリフレッシュ要求信号S2の周期は短い。次に、その分周数を高温用設定部401内のヒューズ回路102に書き込み設定する。
次に、低温(第2の温度)において、第1の実施形態の測定モードの動作を行い、発振信号S1のカウント値S3を検出する。次に、上記の図3の説明のように、そのカウント値S3を基に低温における分周数を求める。ここで、低温時のリフレッシュ要求信号S2の周期は長い。次に、その分周数を低温用設定部402内のヒューズ回路102に書き込み設定する。
なお、上記では、高温時の分周数と低温時の分周数の両方の測定を行う場合を例に説明したが、片方のみ測定を行うようにしてもよい。例えば、高温時の分周数のみを測定し、低温時の分周数は低温時の分周数に係数を乗じた分周数として低温用設定部402に書き込むようにしてもよい。また、高温及び低温の2個の温度領域に分けて、温度領域毎に分周数を設定する場合を説明したが、3個以上の温度領域毎に分周数を設定するようにしてもよい。
次に、テストモードについて説明する。テストモードは、第1の実施形態と同様である。第1のプロービングテストのモードでは、選択回路104は、温度検出器403により検出された温度が閾値よりも高温であるときには高温用設定部401内のヒューズ回路102が出力する分周数を選択し、温度検出器403により検出された温度が閾値よりも低温であるときには低温用設定部402内のヒューズ回路102が出力する分周数を選択する。加算回路111は、選択回路104が出力する分周数(例えば20)に対して演算係数NM(例えば2)を加算する。分周器106は、加算回路111が出力する分周数(例えば22)で発振信号S1を分周し、リフレッシュ要求信号S2(例えば500μs)を出力する。
次に、第2のプロービングテストのモードでは、選択回路104は、温度検出器403により検出された温度が閾値よりも高温であるときには高温用設定部401内のヒューズ回路102が出力する分周数を選択し、温度検出器403により検出された温度が閾値よりも低温であるときには低温用設定部402内のヒューズ回路102が出力する分周数を選択する。加算回路111は、選択回路104が出力する分周数(例えば20)に対して演算係数NM(例えば1)を加算する。分周器106は、加算回路111が出力する分周数(例えば21)で発振信号S1を分周し、リフレッシュ要求信号S2(例えば450μs)を出力する。
次に、ファイナルテストのモードでは、選択回路104は、温度検出器403により検出された温度が閾値よりも高温であるときには高温用設定部401内のヒューズ回路102が出力する分周数を選択し、温度検出器403により検出された温度が閾値よりも低温であるときには低温用設定部402内のヒューズ回路102が出力する分周数を選択する。加算回路111は、加算を行わないか、0を加算する。分周器106は、選択回路104が出力する分周数(例えば20)で発振信号S1を分周し、リフレッシュ要求信号S2(例えば420μs)を出力する。
次に、ノーマルモードでは、発振装置101は、第1の実施形態と同様に、リフレッシュ要求信号S2を生成する。選択回路104は、温度検出器403により検出された温度が閾値よりも高温であるときには高温用設定部401内のヒューズ回路102が出力する分周数を選択し、温度検出器403により検出された温度が閾値よりも低温であるときには低温用設定部402内のヒューズ回路102が出力する分周数を選択する。加算回路111は、加算を行わないか、0を加算する。分周器106は、選択回路104が出力する分周数(例えば20)で発振信号S1を分周し、リフレッシュ要求信号S2(例えば420μs)を出力する。
本実施形態は、第1の実施形態と同様に、1回の測定で、発振信号S1の周期を高精度で測定することができ、簡単にリフレッシュ要求信号S2の周期のばらつきを防止することができる。
また、プロセスばらつきにより発振器105の発振信号S1の周期にばらつきが生じるため、メモリ装置の半導体チップ毎にヒューズ回路102に書き込まれる分周数が異なる。第1及び第2のプロービングテストでは、加算回路111は、ヒューズ回路102の分周数に対して、適切なマージンとして演算係数NMを加算する。これにより、半導体チップ毎にヒューズ回路102の分周数が異なっていたとしても、各半導体チップのヒューズ回路102の分周数に対して適切なマージンを設定することができ、適切な第1及び第2のプロービングテストを行うことができる。
(第3の実施形態)
図5は、本発明の第3の実施形態によるメモリ装置の構成例を示すブロック図である。本実施形態(図5)は、第1の実施形態(図1)に対して、ヒューズ回路501、テスト回路502、選択回路503、分周器504及び温度検出器505を追加したものである。発振部は、発振器105、分周器106及び504を含む。以下、本実施形態が第1の実施形態と異なる点を説明する。
ヒューズ回路102、テスト回路103及び選択回路104は、第1の分周器106の分周数を設定するための第1の設定部である。ヒューズ回路501、テスト回路502及び選択回路503は、第2の分周器504の分周数を設定するための第2の設定部である。
ヒューズ回路102及びテスト回路103は、高温時の分周数を出力する。測定モードでは、選択回路104は、テスト回路103が出力する分周数を選択する。分周器106は、発振信号S1を発振数をカウントし、カウント値S3を出力する。第1の実施形態と同様に、検出されたカウント値S3を基に高温時の分周数を求め、ヒューズ回路102に書き込む。
ヒューズ回路501及びテスト回路502は、低温時の分周数を出力する。ヒューズ回路501には、ヒューズ回路102に書き込んだ分周数の係数倍の分周数を書き込む。選択回路503は、測定モードではテスト回路502が出力する分周数を選択し、ノーマルモードではヒューズ回路501が出力する分周数を選択し、分周器504に出力する。温度検出器505は、温度を検出する。第2の分周器504は、温度検出器505により検出された温度が閾値より低温であるときには、選択回路503が出力する分周数で第1の分周器106が出力するリフレッシュ要求信号(第1の分周信号)S2を分周し、リフレッシュ要求信号(第2の分周信号)S5を出力し、温度検出器505により検出された温度が閾値より高温であるときには、リフレッシュ要求信号S2をリフレッシュ要求信号S5として出力する。分周器504は、検出された温度に応じて、高温時のリフレッシュ要求信号又は低温時のリフレッシュ要求信号を出力する。高温時では、分周数が小さく、リフレッシュ要求信号S5の周期が短い。低温時では、分周数が大きく、リフレッシュ要求信号S5の周期が長い。メモリコントロール回路109は、リフレッシュ要求信号S5を基にメモリ110に対してリフレッシュ動作を行う。
加算回路111は、第1の実施形態と同様に、測定モード、ファイナルテストのモード及びノーマルモードでは加算を行わず、第1のプロービングテストのモードでは演算係数NM(例えば2)を加算し、第2のプロービングテストのモードでは演算係数NM(例えば1)を加算する。
なお、分周器504は、分周器106と同様に、リフレッシュ要求信号S2の発振数をカウントし、比較回路107が分周器504のカウント値及びリファレンス数CNTを比較し、比較結果信号を出力回路108に出力し、第1の実施形態と同様にして、分周器504のカウント値を基に低温時の分周数を求め、ヒューズ回路501に書き込むようにしてもよい。
(第4の実施形態)
図6は、本発明の第4の実施形態によるメモリ装置の構成例を示すブロック図である。本実施形態(図6)は、第1の実施形態(図1)に対して、制御回路601を追加したものである。以下、本実施形態が第1の実施形態と異なる点を説明する。第1の実施形態では、分周数を制御することにより、リフレッシュ要求信号S2の周期を調整していたが、本実施形態では、定電流値又は定電圧値を制御することにより、リフレッシュ要求信号S2の周期を調整する。
ヒューズ回路102及びテスト回路103は、定電流値又は定電圧値の指示信号を選択回路104を介して加算回路111に出力する。加算回路111は、第1の実施形態と同様に、測定モード、ファイナルテストのモード及びノーマルモードでは加算を行わず、第1及び第2のプロービングテストのモードでは選択回路104が出力する定電流値又は定電圧値の指示信号に対して演算係数NMを加算する。
制御回路(制御部)601は、加算回路111が出力する指示信号に応じて定電流又は定電圧を生成する。発振器105は、生成された定電流又は定電圧に応じた周期で発振信号S1を生成する。発振信号S1の周期は、定電流値又は定電圧値に応じて変化する。分周器106は、発振信号S1を分周してリフレッシュ要求信号S2を出力し、発振信号S3をカウントしてカウント値S3を出力する。その他の動作は、第1の実施形態と同様である。
図7は、制御回路601及び発振器105の構成例を示す回路図である。制御回路601は、定電圧生成回路である。電流源701及び可変抵抗702は、電源電圧及び基準電位間に直列に接続される。コンパレータ703は、可変抵抗702の電圧及び発振器105の電圧の比較結果を出力する。pチャネルMOS電界効果トランジスタ704は、ソースが電源電圧に接続され、ゲートがコンパレータ703の出力端子に接続され、ドレインが発振器105に接続される。可変抵抗702の抵抗値を変えることにより、発振器105に供給する定電圧値を制御することができる。発振器105は、定電圧値に応じた周期で発振信号を生成する。
図8は、他の制御回路601及び発振器105の構成例を示す回路図である。制御回路601は、定電流生成回路である。nチャネルMOS電界効果トランジスタ802は、ソースが基準電位に接続され、ゲート及びドレインが電流源801を介して電源電圧に接続される。nチャネルMOS電界効果トランジスタ803は、ソースが基準電位に接続され、ゲートがトランジスタ802のゲートに接続され、ドレインが発振器105を介して電源電圧に接続される。トランジスタ803のチャネル幅(ゲート幅)は、トランジスタ802のチャネル幅の整数倍であり、可変である。具体的には、トランジスタ803は、複数のトランジスタの並列接続で構成され、並列接続数を変えることにより、チャネル幅を制御することができる。トランジスタ803のチャネル幅を変えることにより、発振器105に供給する定電流値を制御することができる。発振器105は、定電流値に応じた周期で発振信号を生成する。
図9は、他の制御回路601及び発振器105の構成例を示す回路図である。制御回路601は、定電流生成回路である。pチャネルMOS電界効果トランジスタ901は、ソースが電源電圧に接続され、ゲート及びドレインが電流源903を介して基準電位に接続される。pチャネルMOS電界効果トランジスタ902は、ソースが電源電圧に接続され、ゲートがトランジスタ901のゲートに接続され、ドレインが発振器105を介して基準電位に接続される。トランジスタ902のチャネル幅は、トランジスタ901のチャネル幅の整数倍であり、可変である。具体的には、トランジスタ902は、複数のトランジスタの並列接続で構成され、並列接続数を変えることにより、チャネル幅を制御することができる。トランジスタ902のチャネル幅を変えることにより、発振器105に供給する定電流値を制御することができる。発振器105は、定電流値に応じた周期で発振信号を生成する。
発振器105は、複数のインバータをリング状に接続したものである。制御回路601は、定電流又は定電圧を制御する他に、発振器105内の各インバータの遅延時間を決定するように各インバータのノードの容量値を調整することにより、発振信号S1の周期を制御してもよい。その場合、ヒューズ回路102及びテスト回路103は、容量値指示信号を出力する。
加算回路111は、冗長前の発振信号S1及びリフレッシュ要求信号S2の周期が、冗長後の発振信号S1及びリフレッシュ要求信号S2の周期よりも長くなるように演算する。
本実施形態は、第1の実施形態と同様に、1回の測定で、発振信号S1の周期を高精度で測定することができ、簡単にリフレッシュ要求信号S2の周期のばらつきを防止することができる。
また、プロセスばらつきにより発振器105の発振信号S1の周期にばらつきが生じるため、メモリ装置の半導体チップ毎にヒューズ回路102に書き込まれる分周数が異なる。第1及び第2のプロービングテストでは、加算回路111は、ヒューズ回路102の分周数に対して、適切なマージンとして演算係数NMを加算する。これにより、半導体チップ毎にヒューズ回路102の分周数が異なっていたとしても、各半導体チップのヒューズ回路102の分周数に対して適切なマージンを設定することができ、適切な第1及び第2のプロービングテストを行うことができる。
(第5の実施形態)
図10は、本発明の第5の実施形態によるメモリ装置の構成例を示すブロック図である。本実施形態(図10)は、第1の実施形態(図1)に対して、ヒューズ回路1001、テスト回路1002及び選択回路1003を追加したものである。以下、本実施形態が第1の実施形態と異なる点を説明する。
測定モード及びテストモードでは、テスト回路1002は選択回路1003を介して演算係数NMを加算回路111に出力する。テストにパスした場合には、ヒューズ回路1001に「0」の演算係数を書き込む。ヒューズ回路1001は、レーザヒューズ回路又は電気ヒューズ回路であり、演算係数を記憶する。ノーマルモードでは、ヒューズ回路1001は、選択回路1003を介して、「0」の演算係数NMを加算回路111に出力する。加算回路111は、選択回路104が出力する分周数に対して、「0」の演算係数NMを加算する。以後、第1の実施形態と同様である。
第1の実施形態において、第2のプロービングテスト又はファイナルテストでフェイルになったメモリ装置を考える。この場合、より周期の短いリフレッシュ要求信号S2を使用すればパスする場合がある。また、製品仕様により、リフレッシュ要求信号S2が所定値より長くなければいけないものと短くてもよいものがある。そこで、リフレッシュ要求信号S2が短い製品仕様として使用するための再テストを行い、パスすれば、仕様緩和品として出荷する。
まず、再テストモードにおいて、テスト回路1002は、選択回路1003を介して、負の演算係数NM(例えば−1)を加算器111に出力する。選択回路104は、ヒューズ回路102の分周数(例えば20)を加算器111に出力する。加算器111は、ヒューズ回路102の分周数(例えば20)に演算係数NM(例えば−1)を加算し、小さい分周数(例えば19)を出力する。分周器106は、加算器111が出力する分周数で発振信号S1を分周し、周期の短いリフレッシュ要求信号S2を出力する。この状態で、メモリ110のリフレッシュ動作試験等を行う。試験にパスすれば、上記の試験に使用した演算係数NM(例えば−1)をヒューズ回路1001に書き込む。ヒューズ回路1001は、演算係数NMを固定値として加算回路111に出力するための演算係数出力部である。
製品出荷後は、ノーマルモードになる。ノーマルモードでは、選択回路1003はヒューズ回路1001の演算係数を選択し、選択回路104はヒューズ回路102の分周数を選択する。加算回路111は、ヒューズ回路102の分周数にヒューズ回路1001の演算係数NMを加算する。分周器106は、加算回路111が出力する分周数で発振信号S1を分周し、周期の短いリフレッシュ要求信号S2を出力する。
(第6の実施形態)
図11は、本発明の第6の実施形態によるメモリ装置の構成例を示すブロック図である。本実施形態(図11)は、第4の実施形態(図6)に対して、ヒューズ回路1001、テスト回路1002及び選択回路1003を追加したものである。以下、本実施形態が第4の実施形態と異なる点を説明する。本実施形態は、第4の実施形態に第5の実施形態を適用したものである。
測定モード及びテストモードでは、テスト回路1002は選択回路1003を介して演算係数NMを加算回路111に出力する。テストにパスした場合には、ヒューズ回路1001に「0」の演算係数を書き込む。ノーマルモードでは、ヒューズ回路1001は、選択回路1003を介して、「0」の演算係数NMを加算回路111に出力する。加算回路111は、選択回路104が出力する定電流値又は定電圧値の指示信号に対して、「0」の演算係数NMを加算する。以後、第4の実施形態と同様である。
第5の実施形態と同様に、第2のプロービングテスト又はファイナルテストでフェイルになったメモリ装置を考える。リフレッシュ要求信号S2が短い製品仕様として使用するための再テストを行い、パスすれば、仕様緩和品として出荷する。
まず、再テストモードにおいて、テスト回路1002は、選択回路1003を介して、発振信号S1の周期を短くするための演算係数NMを加算器111に出力する。選択回路104は、ヒューズ回路102の定電流値又は定電圧値の指示信号を加算器111に出力する。加算器111は、ヒューズ回路102の定電流値又は定電圧値の指示信号に演算係数NMを加算して制御回路601に出力する。制御回路601は、加算回路111が出力する指示信号に応じて定電流又は定電圧を生成する。発振器105は、生成された定電流又は定電圧に応じた短周期の発振信号S1を生成する。分周器106は、発振信号S1を分周し、周期が短いリフレッシュ要求信号S2を生成する。この状態で、メモリ110のリフレッシュ動作試験等を行う。試験にパスすれば、上記の試験に使用した演算係数NMをヒューズ回路1001に書き込む。ヒューズ回路1001は、演算係数NMを固定値として加算回路111に出力するための演算係数出力部である。
製品出荷後は、ノーマルモードになる。ノーマルモードでは、選択回路1003はヒューズ回路1001の演算係数を選択し、選択回路104はヒューズ回路102の指示信号を選択する。加算回路111は、ヒューズ回路102の指示信号にヒューズ回路1001の演算係数NMを加算する。制御回路601は、加算回路111が出力する指示信号に応じて定電流又は定電圧を生成する。発振器105は、生成された定電流又は定電圧に応じた周期の発振信号S1を生成する。分周器106は、発振信号S1を分周し、周期が短いリフレッシュ要求信号S2を生成する。
なお、第1〜第6の実施形態では、加算回路111は、加算又は減算を行う場合を例に説明したが、乗算又は除算等の演算を行う演算器でもよい。演算器111は、選択回路104が出力する発振周期指示信号(分周数、定電流値又は定電圧値の指示信号等)に対して演算係数NMを演算する。発振周期指示信号に対して演算することにより、発振信号の周期のばらつきを考慮して発振信号の周期に適切なマージンを持たせることができる。
上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
本発明の実施形態は、例えば以下のように種々の適用が可能である。
(付記1)
発振周期指示信号を出力する第1の設定部と、
前記発振周期指示信号に対して演算する演算器と、
前記演算された発振周期指示信号に応じた周期の発振信号を生成する発振部と
を有することを特徴とする発振装置。
(付記2)
前記発振部は、メモリのリフレッシュ要求信号を生成するための発振信号を生成することを特徴とする付記1記載の発振装置。
(付記3)
前記発振部は、
発振信号を生成する発振器と、
前記演算された発振周期指示信号に応じた分周数で前記発振信号を分周する第1の分周器とを有することを特徴とする付記1記載の発振装置。
(付記4)
前記発振部は、
前記演算された発振周期指示信号に応じた電流を生成する制御部と、
前記生成された電流に応じた周期の発振信号を生成する発振器とを有することを特徴とする付記1記載の発振装置。
(付記5)
前記発振部は、
前記演算された発振周期指示信号に応じた電圧を生成する制御部と、
前記生成された電圧に応じた周期の発振信号を生成する発振器とを有することを特徴とする付記1記載の発振装置。
(付記6)
さらに、演算係数を固定値として前記演算器に出力する演算係数出力部を有することを特徴とする付記1記載の発振装置。
(付記7)
前記発振器は、前記発振信号の発振数をカウントするカウンタを有し、
さらに、前記カウントされた発振数及びリファレンス数を比較する比較器を有することを特徴とする付記1記載の発振装置。
(付記8)
前記カウンタは、前記発振信号を分周した第1の分周信号を生成する第1の分周器を有することを特徴とする付記7記載の発振装置。
(付記9)
前記第1の設定部は、前記第1の分周器の分周数を前記発振周期指示信号として出力することを特徴とする付記8記載の発振装置。
(付記10)
前記第1の設定部は、温度に応じて前記第1の分周器の分周数を前記発振周期指示信号として出力することを特徴とする付記9記載の発振装置。
(付記11)
さらに、温度を検出する温度検出器を有し、
前記第1の設定部は、前記検出された温度に応じて前記第1の分周器の分周数を前記発振周期指示信号として出力することを特徴とする付記10記載の発振装置。
(付記12)
前記発振部は、前記第1の分周信号を分周した第2の分周信号を生成し、温度に応じて前記第1の分周信号又は前記第2の分周信号を出力する第2の分周器を有することを特徴とする付記8記載の発振装置。
(付記13)
前記第1の設定部は、前記第1の分周器の分周数を前記発振周期指示信号として出力し、
さらに、前記第2の分周器の分周数を設定するための第2の設定部を有することを特徴とする付記12記載の発振装置。
(付記14)
前記第1の設定部は、前記発振周期指示信号を記憶するヒューズ回路を有することを特徴とする付記1記載の発振装置。
(付記15)
前記演算器は、加算又は減算を行うことを特徴とする付記1記載の発振装置。
(付記16)
付記1記載の発振装置と、
データを記憶するメモリと、
前記発振信号を基に前記メモリに対してリフレッシュ動作を行うメモリコントローラと
を有することを特徴とするメモリ装置。
(付記17)
前記メモリは、ノーマルメモリセル及び冗長メモリセルを有し、
前記演算器は、前記ノーマルメモリセルを前記冗長メモリセルに置き換える前の発振信号の周期が前記ノーマルメモリセルを前記冗長メモリセルに置き換えた後の発振信号の周期よりも長くなるように演算することを特徴とする付記16記載のメモリ装置。
(付記18)
発振周期指示信号を出力する出力ステップと、
前記発振周期指示信号に対して演算する演算ステップと、
前記演算された発振周期指示信号に応じた周期の発振信号を生成する発振ステップと
を有することを特徴とする発振方法。
(付記19)
前記発振ステップは、
発振信号を発振器により生成するステップと、
前記演算された発振周期指示信号に応じた分周数で前記発振信号を分周するステップとを有することを特徴とする付記18記載の発振方法。
(付記20)
前記発振ステップは、
前記演算された発振周期指示信号に応じた周期の発振信号を生成するステップと、
前記発振信号を分周するステップとを有することを特徴とする付記18記載の発振方法。
本発明の第1の実施形態によるメモリ装置の構成例を示すブロック図である。 メモリ装置の動作を説明するためのタイミングチャートである。 分周器のカウント値を基にヒューズ回路の分周数を設定する方法を説明するためのグラフである。 本発明の第2の実施形態によるメモリ装置の構成例を示すブロック図である。 本発明の第3の実施形態によるメモリ装置の構成例を示すブロック図である。 本発明の第4の実施形態によるメモリ装置の構成例を示すブロック図である。 制御回路及び発振器の構成例を示す回路図である。 他の制御回路及び発振器の構成例を示す回路図である。 他の制御回路及び発振器の構成例を示す回路図である。 本発明の第5の実施形態によるメモリ装置の構成例を示すブロック図である。 本発明の第6の実施形態によるメモリ装置の構成例を示すブロック図である。 メモリ装置の構成例を示す図である。 冗長前のテストモードで分周数にマージンを持たせるためのメモリ装置の構成例を示す図である。 冗長前のテストモードで分周数にマージンを持たせるための他のメモリ装置の構成例を示す図である。
符号の説明
101 発振装置
102 ヒューズ回路
103 テスト回路
104 選択回路
105 発振器
106 分周器
107 比較回路
108 出力回路
109 メモリコントロール回路
110 メモリ
111 加算回路

Claims (10)

  1. 発振周期指示信号を出力する第1の設定部と、
    前記発振周期指示信号に対して演算する演算器と、
    前記演算された発振周期指示信号に応じた周期の発振信号を生成する発振部と
    を有することを特徴とする発振装置。
  2. 前記発振部は、メモリのリフレッシュ要求信号を生成するための発振信号を生成することを特徴とする請求項1記載の発振装置。
  3. 前記発振部は、
    発振信号を生成する発振器と、
    前記演算された発振周期指示信号に応じた分周数で前記発振信号を分周する第1の分周器とを有することを特徴とする請求項1記載の発振装置。
  4. 前記発振部は、
    前記演算された発振周期指示信号に応じた電流を生成する制御部と、
    前記生成された電流に応じた周期の発振信号を生成する発振器とを有することを特徴とする請求項1記載の発振装置。
  5. 前記発振部は、
    前記演算された発振周期指示信号に応じた電圧を生成する制御部と、
    前記生成された電圧に応じた周期の発振信号を生成する発振器とを有することを特徴とする請求項1記載の発振装置。
  6. さらに、演算係数を固定値として前記演算器に出力する演算係数出力部を有することを特徴とする請求項1記載の発振装置。
  7. 前記発振器は、前記発振信号の発振数をカウントするカウンタを有し、
    さらに、前記カウントされた発振数及びリファレンス数を比較する比較器を有することを特徴とする請求項1記載の発振装置。
  8. 請求項1記載の発振装置と、
    データを記憶するメモリと、
    前記発振信号を基に前記メモリに対してリフレッシュ動作を行うメモリコントローラと
    を有することを特徴とするメモリ装置。
  9. 前記メモリは、ノーマルメモリセル及び冗長メモリセルを有し、
    前記演算器は、前記ノーマルメモリセルを前記冗長メモリセルに置き換える前の発振信号の周期が前記ノーマルメモリセルを前記冗長メモリセルに置き換えた後の発振信号の周期よりも長くなるように演算することを特徴とする請求項8記載のメモリ装置。
  10. 発振周期指示信号を出力する出力ステップと、
    前記発振周期指示信号に対して演算する演算ステップと、
    前記演算された発振周期指示信号に応じた周期の発振信号を生成する発振ステップと
    を有することを特徴とする発振方法。
JP2007181366A 2007-07-10 2007-07-10 メモリ装置 Expired - Fee Related JP5018292B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007181366A JP5018292B2 (ja) 2007-07-10 2007-07-10 メモリ装置
EP08158490A EP2015308B1 (en) 2007-07-10 2008-06-18 Oscillation device, method of oscillation, and memory device
US12/147,061 US8027220B2 (en) 2007-07-10 2008-06-26 Oscillation device, method of oscillation, and memory device
KR1020080065537A KR100954132B1 (ko) 2007-07-10 2008-07-07 발진 장치, 발진 방법 및 메모리 장치
CN201310395742.4A CN103559908A (zh) 2007-07-10 2008-07-10 振荡装置、振荡方法以及存储器装置
CN200810126879.9A CN101345080B (zh) 2007-07-10 2008-07-10 振荡装置、振荡方法以及存储器装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181366A JP5018292B2 (ja) 2007-07-10 2007-07-10 メモリ装置

Publications (2)

Publication Number Publication Date
JP2009020933A true JP2009020933A (ja) 2009-01-29
JP5018292B2 JP5018292B2 (ja) 2012-09-05

Family

ID=39864893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181366A Expired - Fee Related JP5018292B2 (ja) 2007-07-10 2007-07-10 メモリ装置

Country Status (5)

Country Link
US (1) US8027220B2 (ja)
EP (1) EP2015308B1 (ja)
JP (1) JP5018292B2 (ja)
KR (1) KR100954132B1 (ja)
CN (2) CN103559908A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053530B1 (ko) * 2009-07-31 2011-08-03 주식회사 하이닉스반도체 반도체 메모리 장치의 온도 측정 범위 보정 회로
KR20150026227A (ko) * 2013-09-02 2015-03-11 에스케이하이닉스 주식회사 반도체 메모리 장치
KR102433093B1 (ko) 2016-06-01 2022-08-18 에스케이하이닉스 주식회사 리프레쉬 제어 장치 및 이를 포함하는 메모리 장치
CN107767895B (zh) * 2016-08-23 2021-02-19 中电海康集团有限公司 一种可调节工作频率的存储器及其调节方法
US20190378564A1 (en) * 2018-06-11 2019-12-12 Nanya Technology Corporation Memory device and operating method thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105389A (ja) * 1988-10-13 1990-04-17 Matsushita Electron Corp ダイナミック型記憶装置
JPH02165721A (ja) * 1988-12-19 1990-06-26 Nec Corp パルス出力装置
JPH05189960A (ja) * 1992-01-10 1993-07-30 Sharp Corp 半導体記憶装置
JPH06232699A (ja) * 1993-02-03 1994-08-19 Mazda Motor Corp パルス発生装置
JPH06259963A (ja) * 1991-11-20 1994-09-16 Oki Micro Design Miyazaki:Kk 半導体メモリ装置
JPH06259962A (ja) * 1991-11-20 1994-09-16 Oki Micro Design Miyazaki:Kk 半導体メモリ装置
JPH0823266A (ja) * 1994-07-11 1996-01-23 Mitsubishi Electric Corp 電圧制御発振装置
JPH08139575A (ja) * 1994-11-14 1996-05-31 Oki Electric Ind Co Ltd パルス出力回路
JPH0969288A (ja) * 1995-06-23 1997-03-11 Mitsubishi Electric Corp 半導体装置およびその試験装置
JPH0991961A (ja) * 1995-09-26 1997-04-04 Fujitsu Ltd 半導体集積回路装置
JPH09171682A (ja) * 1995-12-21 1997-06-30 Nec Corp 半導体記憶装置及びその製造方法
JP2001014896A (ja) * 1999-06-24 2001-01-19 Mitsubishi Electric Corp 半導体記憶装置
JP2001155482A (ja) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp 半導体記憶装置
JP2001184860A (ja) * 1999-12-24 2001-07-06 Nec Ic Microcomput Syst Ltd 半導体記憶装置
JP2002074994A (ja) * 2000-08-25 2002-03-15 Matsushita Electric Ind Co Ltd 半導体記憶装置及びその検査方法
JP2003030983A (ja) * 2001-07-13 2003-01-31 Mitsubishi Electric Corp ダイナミック型半導体記憶装置
JP2009021707A (ja) * 2007-07-10 2009-01-29 Fujitsu Microelectronics Ltd 発振装置、その調整方法及びメモリ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341119A (ja) 1999-05-31 2000-12-08 Nec Corp クロック発振回路
US6891404B2 (en) 2002-06-11 2005-05-10 Infineon Technologies Auto-adjustment of self-refresh frequency
US7242223B1 (en) * 2003-03-10 2007-07-10 National Semiconductor Corporation Clock frequency monitor
JP4237109B2 (ja) 2004-06-18 2009-03-11 エルピーダメモリ株式会社 半導体記憶装置及びリフレッシュ周期制御方法
JP4167632B2 (ja) 2004-07-16 2008-10-15 エルピーダメモリ株式会社 リフレッシュ周期発生回路及びそれを備えたdram
JP2006073062A (ja) * 2004-08-31 2006-03-16 Toshiba Corp 半導体記憶装置
KR100607352B1 (ko) 2004-12-30 2006-07-31 주식회사 하이닉스반도체 리프레쉬 오실레이터 제어 회로

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105389A (ja) * 1988-10-13 1990-04-17 Matsushita Electron Corp ダイナミック型記憶装置
JPH02165721A (ja) * 1988-12-19 1990-06-26 Nec Corp パルス出力装置
JPH06259963A (ja) * 1991-11-20 1994-09-16 Oki Micro Design Miyazaki:Kk 半導体メモリ装置
JPH06259962A (ja) * 1991-11-20 1994-09-16 Oki Micro Design Miyazaki:Kk 半導体メモリ装置
JPH05189960A (ja) * 1992-01-10 1993-07-30 Sharp Corp 半導体記憶装置
JPH06232699A (ja) * 1993-02-03 1994-08-19 Mazda Motor Corp パルス発生装置
JPH0823266A (ja) * 1994-07-11 1996-01-23 Mitsubishi Electric Corp 電圧制御発振装置
JPH08139575A (ja) * 1994-11-14 1996-05-31 Oki Electric Ind Co Ltd パルス出力回路
JPH0969288A (ja) * 1995-06-23 1997-03-11 Mitsubishi Electric Corp 半導体装置およびその試験装置
JPH0991961A (ja) * 1995-09-26 1997-04-04 Fujitsu Ltd 半導体集積回路装置
JPH09171682A (ja) * 1995-12-21 1997-06-30 Nec Corp 半導体記憶装置及びその製造方法
JP2001014896A (ja) * 1999-06-24 2001-01-19 Mitsubishi Electric Corp 半導体記憶装置
JP2001155482A (ja) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp 半導体記憶装置
JP2001184860A (ja) * 1999-12-24 2001-07-06 Nec Ic Microcomput Syst Ltd 半導体記憶装置
JP2002074994A (ja) * 2000-08-25 2002-03-15 Matsushita Electric Ind Co Ltd 半導体記憶装置及びその検査方法
JP2003030983A (ja) * 2001-07-13 2003-01-31 Mitsubishi Electric Corp ダイナミック型半導体記憶装置
JP2009021707A (ja) * 2007-07-10 2009-01-29 Fujitsu Microelectronics Ltd 発振装置、その調整方法及びメモリ装置

Also Published As

Publication number Publication date
KR100954132B1 (ko) 2010-04-20
JP5018292B2 (ja) 2012-09-05
US20090016136A1 (en) 2009-01-15
CN101345080A (zh) 2009-01-14
EP2015308B1 (en) 2011-10-19
EP2015308A1 (en) 2009-01-14
CN101345080B (zh) 2014-01-22
KR20090005981A (ko) 2009-01-14
CN103559908A (zh) 2014-02-05
US8027220B2 (en) 2011-09-27

Similar Documents

Publication Publication Date Title
JP4237109B2 (ja) 半導体記憶装置及びリフレッシュ周期制御方法
US7898890B2 (en) Oscillating device, method of adjusting the same and memory
KR100238997B1 (ko) 반도체장치 및 그 시험장치
US20110216612A1 (en) Device
KR100800145B1 (ko) 셀프 리프레쉬 주기 제어 회로 및 그 방법
JP6209978B2 (ja) メモリコントローラ,情報処理装置及び基準電圧調整方法
JP5018292B2 (ja) メモリ装置
JP2007024865A (ja) 半導体装置
CN108027414A (zh) 片上参数测量
JP5038742B2 (ja) セルフリフレッシュ制御回路、半導体装置
JP3712537B2 (ja) 温度検出回路、温度検出回路の校正方法、及び、半導体記憶装置
US8976608B2 (en) Semiconductor integrated circuit device
JP2010282317A (ja) 内部電源回路、半導体装置、及び半導体装置の製造方法
JP2000163955A (ja) リフレッシュタイマー及びそのリフレッシュ周期の調整方法
JP2016081547A (ja) 不揮発性記憶装置及び不揮発性記憶装置の制御方法
KR20150051471A (ko) 반도체 장치 및 그의 구동방법
US11761996B2 (en) Power supply voltage detector, power supply voltage detection apparatus, system and medium
JP5460093B2 (ja) 半導体メモリの内部電源制御回路及び半導体装置
JP5632064B2 (ja) 電源制御回路
KR100894104B1 (ko) 셀프 리프래쉬 주기 측정 회로
JP3019371B2 (ja) 半導体集積回路装置
JP4388491B2 (ja) オンチップテスト回路及び半導体集積回路装置
KR20110047887A (ko) 온도검출회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees