JP2006073062A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2006073062A
JP2006073062A JP2004253070A JP2004253070A JP2006073062A JP 2006073062 A JP2006073062 A JP 2006073062A JP 2004253070 A JP2004253070 A JP 2004253070A JP 2004253070 A JP2004253070 A JP 2004253070A JP 2006073062 A JP2006073062 A JP 2006073062A
Authority
JP
Japan
Prior art keywords
refresh
refresh operation
signal
cell
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004253070A
Other languages
English (en)
Inventor
Takashi Osawa
澤 隆 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004253070A priority Critical patent/JP2006073062A/ja
Priority to US11/092,904 priority patent/US7251179B2/en
Priority to DE602005024905T priority patent/DE602005024905D1/de
Priority to EP05007000A priority patent/EP1630818B1/en
Priority to CNB2005100966874A priority patent/CN100508059C/zh
Publication of JP2006073062A publication Critical patent/JP2006073062A/ja
Priority to US11/779,055 priority patent/US7430041B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

【課題】 外部アクセスの速度を高速化することが可能な半導体記憶装置を提供する。
【解決手段】 FBC3のリフレッシュ動作を行ってから次に行うまでのインターバル期間を規定するために時間計測を行うリフレッシュ・インターバルタイマ31と、リフレッシュ動作に必要なtRAS期間を規定するために時間計測を行うtRASタイマ32と、リフレッシュすべきFBC3のアドレスを生成するアドレスカウンタ33と、リフレッシュ動作および外部アクセス動作の制御を行うリフレッシュコントローラ34と、制御信号RINTを生成するRINT生成器35と、とを備えている。リフレッシュ動作中に通常の読み出し/書き込み要求が行われた場合には、リフレッシュ動作を中断して、通常の読み出し/書き込み動作を行い、その動作が終了した後にリフレッシュ動作を再開するようにしたため、リフレッシュ動作によって外部アクセス速度が制限されるおそれがなくなる。
【選択図】 図4

Description

本発明は、リフレッシュ動作が必要なメモリセルを備える半導体記憶装置に関する。
トレンチキャパシタ(trench capacitor)やスタックットキャパシタ(stacked capacitor)を有する従来のone transistor及びone capacitorからなるDRAMセルは、微細化に伴ってその作製が困難になることが懸念されている。これら従来のDRAMセルに替わり得るメモリセルとして、Silicon on Insulator(SOI)の上などに形成されたFET (Field Effect Transistor)のフローティングボディに多数キャリアを蓄積することで情報を記憶する新メモリセルFBCが提案されている(特許文献1,2参照)。
FBCは、1ビットの情報を記憶する素子単位が1個のMISFET(Metal Insulator Semiconductor Field Effect Transistor)のみからなるために、1ビット分の占有面積が小さく、限られたシリコン面積上に大容量の記憶素子を形成可能であり、記憶容量の増大に寄与できると考えられている。
PD-SOI(Partially Depleted-SOI)上に形成したFBCの書き込み及び読み出しの原理は、N型のMISFETを例にとると以下のように説明できる。「1」書きの状態をボディに正孔が多い状態、逆に正孔が少ない状態を「0」と定義する。
このMISFETは、SOI上に形成されたnFETからなり、ソースはGND(0V)であり、ドレインはビット線(BL)に接続され、ゲートはワード線(WL)に接続されている。ボディは電気的にフローティングである。
「1」を書き込むためにはトランジスタを飽和状態で動作させる。例えばWLを1.5V、BLを1.5Vにバイスする。このような状態では、インパクトイオン化により、ドレイン近傍に電子・正孔対が大量に発生する。これらのうち、電子はドレイン端子に吸い込まれて行くが、正孔はポテンシャルが低いボディに蓄えられる。インパクトイオン化でホールが発生される電流と、ボディとソースとの間のpn接合のフォワード電流が釣り合った状態でボディ電圧は平衡状態に達する。大体、0.7V程度である。
次に、「0」データを書き込み方法を説明する。「0」を書き込むためには、BLを負の電圧に引き下げる。例えば、-1.5Vに下げる。この動作により、ボディのp領域とBLにつながったn領域が大きくフォワードにバイアスされるので、ボディに蓄えられていた正孔の多くはn領域に吐き出される。これにより正孔の数が減った状態が「0」状態である。データの読み出しは、WLを例えば1.5V、BLを例えば0.2Vに低く設定し、トランジスタを線形領域で動作させ、ボディに蓄えられている正孔の数の違いによりトランジスタの閾値電圧(Vth)が異なる効果(ボディ効果)を利用して電流差を検知して「1」と「0」を識別する。読み出し時に、ビット線電圧をこの例では0.2Vと低く設定する理由は、ビット線電圧を高くして飽和状態にバイアスしてしまうと、「0」を読み出す場合にインパクトイオン化によりデータが「1」に化けてしまい、「0」を正しく検知できなくなる恐れがあるためである。
FBCは、フローティングボディに蓄えられた多数キャリアの数の大小を記憶する。データを保持している間は、セルのソースを0Vとしたときにワード線を負の値にして、「1」と「0」の何れのデータ状態においても、ワード線とボディ間の容量結合を利用して、ボディの電位を負の値にし、ボディとソース及びドレインのPN接合を逆バイアスにして、ボディとソース及びドレインの間に流れる電流を低く抑えている。
しかしながら、PN接合の逆バイアス電流は僅かながら存在するため、ボディへ少しずつ正孔が流入してくる。ゲートがドレインに対して負の電位に設定されていることから、GIDL(Gate Induced Drain Leakage)によるボディへの正孔の流入もある。従って、「1」データはもともと正孔の数が多い状態であるので、通常のread/write動作においてボディ電位が正の値に浮く時に、溢れ出る正孔を補給してやることで充分であるが、「0」データはある一定期間において正孔を吐き出してやるためのリフレッシュ動作が必要になる。
FBCは、従来の1T(トランジスタ)-1C(キャパシタ)型のDRAMセルに比べて、PN接合の面積がSOI基板を使っているために小さく、リーク電流を比較的小さく抑えられる。とはいっても、電荷を蓄える為の容量は従来の1T-1C型のDRAMセルの場合の数10fFに対して、FBCでは1fF未満である。このため、データ保持時間はDRAMよりも短くなることは避けられない。従って、リフレッシュを行う頻度が高くなり、その分read/writeを行う外部アクセス期間が制限されてしまうという欠点がある。
また、従来の1T-1C型のセルからなる仮想SRAM(VSRAM:Virtually Static RAM)においては、外部からのread/write動作が入って内部のリフレッシュ動作と競合した場合に、リフレッシュ動作が完了するまで、read/write動作は待機していなければならない(非特許文献1参照)。なぜならば、1T-1Cセルは破壊読み出し型(destructive read-out)セルだからである。つまり、一度WLを立ち上げてデータを読み出し始めたら、センスアンプでデータを増幅して再書き込みを完了せずに途中で中断すると、セルデータが破壊されてしまうからである。従って、1T-1C型セルのDRAMを使ってVSRAMを構成すると、ランダムアクセス時間やランダム書き込み時間が2倍以上に延びてしまう欠点があった。
特開2003-68877公報 特開2002-246571公報 K. Sawada et al., "A 30-uA Data-Retention Pseudostatic RAM with Virtually Static RAM Mode", IEEE J. Solid-State Circuits, vol. 23
本発明は、外部アクセスの速度を高速化することが可能な半導体記憶装置を提供する。
本発明の一態様によれば、リフレッシュ動作が必要なメモリセルと、前記メモリセルに対して外部から読み出しあるいは書き込みについての外部アクセスの要求が来ると、リフレッシュ動作を中断するリフレッシュ制御回路と、を備える。
本発明によれば、外部アクセスが完了するまでリフレッシュ動作を中断するようにしたため、外部アクセスの速度を高速化することができる。
以下、図面を参照しながら本発明の一実施形態について説明する。
(第1の実施形態)
図1は本発明の第1の実施形態に係る半導体記憶装置の内部構成を示す回路図である。図2は図1の半導体記憶装置内に設けられるセンスアンプ1内部の詳細な回路図である。図3は図2のセンスアンプ1内のコア部分であるセンスコア部11の内部構成の詳細回路図である。
図1の半導体記憶装置は、略中央に列設される複数のセンスアンプ1と、これらセンスアンプ1の両側に配置されるセルアレイ2とを備えている。図1では省略しているが、本実施形態の半導体記憶装置は、カラムデコーダやロウデコーダなどの読み出し/書き込み制御回路を備えている。
図1に示すように、セルアレイ2は、センスアンプ1の左右にそれぞれ配置される256本のワード線と、図示されていないが1024対のビット線とを有する。すなわち、センスアンプ1が1024個並んでいる。偶数番目のワード線と各ビット線の真線(true line)との交点付近、および奇数番目のワード線と各ビット線の補線(Complement line)との交点付近にはそれぞれFBC3が設けられている。このように、図1の半導体記憶装置は、Folded方式のセル配置になっている。
センスアンプ1の左右のセルアレイ2はそれぞれ、ビット線をFBC3のソース電位に短絡するビット線イコライズトランジスタ4と、ダミーセル5とを有する。ビット線イコライズトランジスタ4は、イコライズ信号線EQLL0,EQLL1,EQLR0,EQLR1とビット線との交点付近に接続されている。ダミーセル5は、ダミーワード線DWLL0,DWLL1,DWLR0,DWLR1とビット線との交点付近に接続されている。ダミーセル5には、後述する回路により、FBC3の読み出し動作に先立って、ワード線方向に1個おきにデータ「1」と「0」が書き込まれる。
ビット線対のうち一方と、隣接する他のビット線対のうち一方との間には、NMOSトランジスタ6が接続されている。これらNMOSトランジスタ6のゲートには、信号AVL0,AVR0,AVL1,AVR1が供給されている。
図2に示すように、各ビット線とセンスコア部11との間にはそれぞれ、NMOSトランジスタからなるトランスファゲート15が接続されている。これらトランスファゲート15は、φTLとφTRにより導通/遮断を切り替える。以下では、トランスファゲート15よりもセンスアンプ1側の経路をセンスノードSN0,BSN0,SN1,BSN1と呼ぶ。
CMOSトランスファゲート12は、センスノードとビット線とを交差接続するか否かを切り替える。トランスファゲート12内のNMOSトランジスタは、信号FBL0,FBL1,FBR0,FBR1により制御され、トランスファゲート12内のPMOSトランジスタは、信号BFBL0,BFBL1,BFBR0,BFBR1で制御される。
ビット線BLL0,BBLL0,BLR0,BBLR0には、各ビット線を接地電位VBLLに落とすトランジスタ13が接続されている。これらトランジスタ13により、ビット線BLL0,BBLL0,BLR0,BBLR0につながっているダミーセル5に「0」が書き込まれる。また、隣接するビット線BLL1,BBL1,BLR1,BBLR1には、各ビット線を電源電圧VBLHに設定するトランジスタ14が接続されている。これらトランジスタ14により、ビット線BLL1,BBL1,BLR1,BBLR1につながっているダミーセル5に「1」が書き込まれる。
例えば、センスアンプ1の左側のセルアレイ2中のWLL0が活性化されたとする。この場合、ダミービット線DWLL1と信号AVL1も同時に活性化される。これにより、ビット線BLL0, BLL1にFBC3がつながると同時に、ビット線BBLL0に「0」が書かれているダミーセル5がつながり、ビット線BBLL1には「1」が書かれているダミーセル5がつながる。そして、トランジスタ6がオンして、ビット線BBLL0, BBLL1がショートされる。従って、2個のダミーセル5に流れる電流は平均化されて「1」と「0」のセル電流の中間電流がビット線BBLL0, BBLL1に流れることと等価になる。これによって、センスノードSN0, SN1の電位は、センスノードBSN0, BSN1に現れる基準電位に対して、「0」セルの場合は大きくなり、「1」セルの場合は小さくなる。これらの電位差が十分大きくなった(develop)ところで、信号BSANは低レベルになり、信号SAPが高レベルになる。
図3に示すように、センスコア部11は、カレントミラー回路で構成される電流負荷回路21と、一対のビット線SN0,BSN0に接続されるダイナミックラッチ回路22,23と、を有する。ダイナミックラッチ回路22を構成する2個のNMOSトランジスタの接続ノードには信号BSANが入力され、ダイナミックラッチ回路23を構成する2個のPMOSトランジスタの接続ノードには信号SAPが入力される。ダイナミックラッチ回路22,23は、一対のセンスノードSN0, BSN0またはSN1, BSN1の電位差が十分に大きくなったときに、ラッチ動作を行う。
FBC3は、完全な非破壊読出し型(non-destructive read-out)セルとは言えないことが分かっている。それは、チャージポンピング現象が存在するからである。この現象は、トランジスタのオン・オフを繰り返す、いわゆるゲートのポンピング動作を複数回行うと、ゲートシリコン表面で、反転状態と蓄積状態が交互に繰り返され、シリコン表面のSiO2との界面で正孔が徐々に消滅してゆく現象である。
1回の反転・蓄積の状態変化で消滅する正孔の数は、Si-SiO2界面の界面準位の密度Nitに依存する。例えば、Nit=1×1010cm-2と仮定すると、セルトランジスタのW/L=0.1μm/0.1μmの場合、Si-SiO2界面の面積は1個のセル当たり1.0×10-10cm2になるので、1セルあたり界面準位は平均して1個程度あることになる。1個のFBC3の「1」と「0」の間の正孔の数の差は約1000個程度であるので、約1000回WLをポンピングすると、「1」データが完全に「0」データに変わってしまうことを意味する。
実際には、500回程度で「1」のデータの読み出し余裕がなくなることで不良を起こす危険性が高まることになる。従って、FBC3は破壊読み出しセル(destructive read-out cell)ではないが完全な非破壊読出しセル(non-destructive read-out cell)でもない、言わば‘準非破壊’読出しセル(quasi non-destructive read-out cell)である。
しかし、1回のリード動作だけでは、FBC3のデータは破壊されないため、リフレッシュ動作を途中で中断することが許容される。これは、VSRAMにとって外部からのアクセスを(リフレッシュ動作と競合した場合に)内部リフレッシュ動作に優先できることを意味し、自己リフレッシュを行わないFBC3メモリのアクセス時間や書き込み時間と同等な性能をVSRAMリード付きメモリで実現できることになる。
図4は本実施形態の半導体記憶装置の全体構成を示すブロック図である。図4の半導体記憶装置は、FBC3のリフレッシュ動作を行ってから次に行うまでのインターバル期間を規定するために時間計測を行うリフレッシュ・インターバルタイマ31と、リフレッシュ動作に必要なtRAS期間を規定するために時間計測を行うtRASタイマ32と、リフレッシュすべきFBC3のアドレスを生成するアドレスカウンタ33と、リフレッシュ動作および外部アクセス動作の制御を行うリフレッシュコントローラ34と、後述する制御信号RINTを生成するRINT生成器35と、ロウアドレスバッファ36と、ロウアドレススイッチ37と、ロウアドレスの制御を行うロウパスコントローラ38と、ロウデコーダ39と、カラムアドレスバッファ40と、カラムアドレスの制御を行うカラム&データパスコントローラ41と、カラムデコーダ42と、データ入出力バッファ43と、DQバッファ44とを備えている。
図5はリフレッシュ・インターバルタイマ31の内部構成の一例を示す回路図である。図5のタイマは、バイアス回路51と、リングオシレータ52と、出力回路53とを有する。バイアス回路51は、ゲートとドレインが短絡されたカレントミラー接続のPMOSトランジスタ54と、同じくゲートとドレインが短絡されたカレントミラー接続のNMOSトランジスタ55と、PMOSトランジスタ54のドレインとNMOSトランジスタ55のドレインとの間に接続される抵抗56とを有する。
リングオシレータ52は、直列接続された5段の論理反転回路57を有し、最終段の論理反転回路57の出力は、初段の論理反転回路57の入力に帰還されている。論理反転回路57はいずれも、電源電圧と接地電圧間に直列接続されるPMOSトランジスタ58、PMOSトランジスタ59、NMOSトランジスタ60およびNMOSトランジスタ61を有する。
バイアス回路51内のPMOSトランジスタ54は、リングオシレータ52内のPMOSトランジスタ58,62〜65とカレントミラー回路を構成しており、バイアス回路51内のNMOSトランジスタ55は、リングオシレータ52内のNMOSトランジスタ61,66〜69とカレントミラー回路を構成している。したがって、リングオシレータ52内のPMOSトランジスタ58,62〜65とNMOSトランジスタ61,66〜67には、バイアス回路51を流れる電流と同量の電流が流れる。
出力回路53は、リングオシレータ52の出力REFCTを反転するインバータ70と、直列接続される5段のインバータ71〜75と、最終段のインバータ75の出力とインバータ70とのNOR演算を行うNOR回路76とを有する。
NOR回路76は、リングオシレータ52の入出力信号REFCTを反転した信号BREFCTとこの信号BREFCTをインバータ71〜75で反転した信号とのNOR演算を行う。
図5のリフレッシュ・インターバルタイマ31は、バイアス回路51に流れる電流と同量の電流をリングオシレータ52の各段に流すため、MOSFETのデバイス特性のばらつきに依存しない高精度の時間計測を行うことができる。このタイマ31から出力される信号REFREQは、時間計測された時間を周期とする正のパルスである。
図6はtRASタイマ32の内部構成の一例を示す回路図である。図6のtRASタイマ32は、直列接続されたインバータ81、遅延回路82およびインバータ83を有する。このtRASタイマ32は、リフレッシュを指示する信号REFRESHを時間τ3だけ遅延させた信号REFTRASを出力する。REFRESH信号が高レベルになってから、この信号REFTRASが高レベルになるまでの期間は、通常は外部信号である信号BRASがアクティブ(低レベル)である期間、言い換えると、リフレッシュ動作を行っている期間と考えてよい。すなわち、tRASタイマ32は、リフレッシュ動作に要する時間τ3を計測する。
図7はアドレスカウンタ33の内部構成の一例を示すブロック図である。図示のように、図7のアドレスカウンタ33は、直列接続された複数の分周回路85を有する。各分周回路85の出力論理は、入力信号の立ち下がりエッジで変化する。各分周回路85は、入力信号を2分周した分周信号を出力する。
図8は分周回路85の内部構成の一例を示す回路図である。図示のように、分周回路85は、信号BCi-1が低レベル、Ci-1が高レベルの論理により出力論理が切り替わる論理変換回路91と、信号Ci-1が低レベル、BCi-1が高レベルの論理により出力論理が切り替わる論理変換回路92と、信号Ci-1が低レベル、BCi-1が高レベルの論理により出力論理が切り替わる論理変換回路93と、信号BCi-1が低レベル、Ci-1が高レベルの論理により出力論理が切り替わる論理変換回路94と、インバータ95〜97とを有する。論理変換回路91〜94はいずれも、電源端子と接地端子との間に直列接続されるPMOSトランジスタ、PMOSトランジスタ、NMOSトランジスタおよびNMOSトランジスタを有する。
図9はリフレッシュコントローラ34の内部構成の一例を示す回路図である。図9のリフレッシュコントローラ34は、2つのNAND回路を交差接続したフリップフロップ101,102と、インバータ103〜107と、NAND回路109,110とを有する。
図10はロウアドレススイッチ37の内部構成の一例を示す回路図である。図10のロウアドレススイッチ37は、インバータ111,112と、OR回路113〜116と、NAND回路117,118と、インバータ119,120とを有する。
図11はロウデコーダ39の内部構成の一例を示す回路図である。図11のロウデコーダ39は、メモリセルにデータを書き込むときのワード線の電圧VWLHWとデータ保持時のワード線の電圧VWLLとの間に直列接続されるPMOSトランジスタ121および4つのNMOSトランジスタ122〜125と、PMOSトランジスタ121およびNMOSトランジスタ122の接続ノードに直列接続される3つのインバータ126〜128と、上記接続ノードと電圧VWLHWとの間に接続されるPMOSトランジスタ129とを有する。
外部からの信号BRASが高レベル(FBC3のプリチャージ状態)のとき、正のパルスからなるリフレッシュ要求信号REFREQが出ると仮定すると、信号BRASの反転信号REXTは低レベルなので、図9のリフレッシュコントローラ34の出力であるリフレッシュ信号REFRESHが高レベルになる。これにより、リフレッシュ動作が開始される。
リフレッシュ信号REFRESHが高レベルになってから、時間τ3が経過すると、図6のtRASタイマ32の出力信号REFTRASがハイレベルになり、図9のリフレッシュコントローラ34内の後段のフリップフロップ102がリセットされて、リフレッシュ信号REFRESHは低レベルに落ち、リフレッシュ動作が完了する。
ところが、τ3の時間が経過する前に外部信号BRASが低レベルに下がった場合(リフレッシュ動作中に通常の読み出し/書き込み動作が割り込んできた場合)、外部信号BRASの反転信号REXTが高レベルになる。これにより、図9のリフレッシュコントローラ34内の後段のフリップフロップ102がリセットされ、リフレッシュ信号REFRESH信号は低レベルになる。すなわち、リフレッシュ動作の途中で通常動作が割り込んできた場合には、リフレッシュ動作は強制的に中断される。そして、τ3の遅延時間が経過して、図6のtRASタイマ32の出力信号REFTRASが高レベルになっても、図9のリフレッシュコントローラ34内の前段のフリップフロップ101の出力がリセットされないように、信号REXTの反転信号により、NAND回路110の出力は強制的に高レベルになる。
その後、通常の読み出し/書き込み動作が終了して、外部信号BRASが再び高レベルになると、その反転信号REXTは低レベルになる。このとき、図6のtRASタイマ32の出力信号REFTRASは低レベルになっているので、図9のリフレッシュコントローラ34内の後段のフリップフロップ102が再びセットされて、リフレッシュ信号REFRESHが立ち上がる。これにより、先程中断したリフレッシュ動作が再開される。
このときリフレッシュするワード線は、図7のアドレスカウンタ33の出力が図10のロウアドレススイッチ37を介して図11のロウデコーダ39に入力されて選択される。
図7のアドレスカウンタ33は、図9のリフレッシュコントローラ34内の前段のフリップフロップ101から出力される信号CTR, BCTRによりカウント動作を行うが、リフレッシュ動作中に通常の読み出し/書き込み動作の割込が入った場合でも、前段のフリップフロップ101はリセットされないため、信号CTR, BCTRの論理は変化しなくなり、アドレスカウンタ33がカウントアップをすることもない。
したがって、割込が起こってリフレッシュ動作が中断されて、再びリフレッシュ動作を開始する場合のワード線は、割込前のワード線と同じであり、中断されたアドレスから正しくリフレッシュ動作を行うことができる。
通常の読み出し/書き込み動作の割込が入らずに、正常にリフレッシュ動作が完了した場合、図9のリフレッシュコントローラ34内の前段および後段のフリップフロップ102はともにリセットされる。これにより、信号CTR, BCTRの論理が変化し、図7のアドレスカウンタ33はカウントアップを行い、次のリフレッシュ動作時には、新たなワード線をリフレッシュするための準備が整う。
図9の前段のフリップフロップ101に入力される信号BPRSTは、このフリップフロップ101の2つの入力がともに高レベルであった場合に出力が曖昧になるのを防止するために、電源を投入した直後に低レベルを維持し、フリップフロップ101の出力が正常な値になった後にハイレベルに立ち上がる信号である。
図12はRINT生成器35の内部構成の一例を示す回路図である。図10のRINT生成器35は、遅延回路131〜133と、AND回路134,135と、NOR回路136,137とを有する。このRINT生成器35で生成される信号RINTは、外部信号BRASの反転信号REXTとリフレッシュ信号REFRESHとを用いて生成される。
信号REXTが高レベルになって、τ1+τ2の遅延時間の後に信号RINTが立ち上がる。以下、τ1+τ2の時間が必要である理由を説明する。リフレッシュ動作を開始してワード線が立ち上がった後、通常の読み出し/書き込み動作(以下、通常動作)の割込があった場合、立ち上げたワード線を立ち下げて、通常動作に対応するワード線を立ち上げて通常動作を行い、通常動作の完了後に再びリフレッシュ動作用のワード線を立ち上げる場合に、ロウデコーダ39が正しく切り替わる必要がある。
通常、ロウデコーダ39は、図11に示すように、ダイナミックNAND回路で構成されており、全アドレスがすべて低レベルになった後に、信号PRCHが低レベルになって、デコーダ回路が正しくプリチャージされ、その後に次のアドレスが入力されてワード線を立ち上げる、という順番が重要である。したがって、図12のRINT生成器35において、信号REXT, REFRESHが同時に切り替わっても、高レベルから低レベルになる信号はすぐに伝わって信号RINTは低レベルになるが、その後はロウアドレスがリセットされるまでの時間あるいは信号PRCHが低レベルになるまでの時間τ1と、ロウデコーダ39が正しくプリチャージされるまでの時間あるいは信号PRCHの必要なパルス幅の時間τ2だけ待ってから、信号RINTを高レベルにする。このような動作を、図12の回路構成により実現している。
通常の読み出し/書き込み動作とリフレッシュ動作とが競合するタイミングとして、図13〜図15の3通りが考えられる。
図13は外部信号BRASがアクティブのときにリフレッシュ要求があった場合の動作タイミング図である。外部信号BRASの反転信号REXTが高レベルのときにリクエスト要求信号REFREQが来ても、図9のリフレッシュコントローラ34内の後段のフリップフロップ102はセットされない。したがって、リフレッシュ信号REFRESHは低レベルのままである。
しかし、前段のフリップフロップ101はセットされるため、プリチャージ状態になり、信号REXTが低レベルになったとき(外部信号BRASがアクティブでないとき)に、後段のフリップフロップ102がセットされて、リフレッシュ信号REFRESHが高レベルになる。その後は、リフレッシュに必要なtRAS時間τ3を経過した後、リフレッシュ動作が完了する。
図14は外部信号BRASが高レベル(プリチャージ状態)のときにリクエスト要求信号REFREQが来るが、その後すぐに外部信号BRASが低レベル(アクティブ状態)になる場合の動作タイミング図である。この場合、外部信号BRASの反転信号REXTが低レベルの間にリフレッシュ要求信号REFREQが来るため、すぐにリフレッシュ信号REFRESH信号が高レベルになる。ところが、リフレッシュに必要なtRAS時間τ3を経過する前に外部信号BRASがアクティブになるため、図9のリフレッシュコントローラ34内の後段のフリップフロップ102がリセットされてしまい、リフレッシュ信号REFRESHが低レベルに落ちてしまう。
その後、外部信号BRASがプリチャージ状態になり、信号REXTが低レベルになると、再び図9のリフレッシュコントローラ34内の後段のフリップフロップ102がセットされて、リフレッシュ信号REFRESHが立ち上がる。そして、リフレッシュに必要なtRAS時間τ3を経過した後、リフレッシュ動作が完了する。
リフレッシュ動作を中断してから再開するまでの間、図9のリフレッシュコントローラ34内の前段のフリップフロップ101はセットされ続けているため、図7のアドレスカウンタ33をカウントアップする信号CTRは高レベルを維持するため、リフレッシュ動作中断時に選択されていたワード線と、リフレッシュ動作再開時に選択されるワード線は同じであり、いったんリフレッシュ動作が中断されても、中断されたアドレスから正常にリフレッシュ動作を行うことができる。
図15は外部信号BRASが高レベル(プリチャージ状態)のときにリフレッシュ要求信号REFREQが来て、リフレッシュ動作が完了するまでプリチャージ状態が続く場合の動作タイミング図である。
外部信号BRASの反転信号REXTが低レベル中に、リクエスト要求信号REFREQが出力されると、リフレッシュ信号REFRESHが高レベルになる。リフレッシュに必要なtRAS時間τ3内には外部信号BRASはアクティブ状態にならないため、リフレッシュ動作が正常に完了する。その後、外部信号BRASがアクティブ状態になって、通常の読み出し/書き込み動作があった後は、図14のようにリフレッシュ動作に入ることはない。
図16は、リフレッシュ動作の途中で、通常の読み出し動作の割込が入る場合の動作タイミング図である。時刻t1で、リフレッシュ動作用のワード線が立ち上がった後、時刻t2で外部信号BRASが低レベル(アクティブ状態)になると、ワード線はすぐに立ち下がるとともに、時刻t3で通常読み出し用のワード線が立ち上がる。そして、時刻t4でビット線BL, BBLの電位差が次第に大きくなり、時刻t5になると、データ線DOUTの電位差も次第に大きくなり、データの読み出しが行われる。
読み出し動作が終了した後、時刻t6で外部信号BRASを高レベル(プリチャージ状態)にすると、時刻t7で通常読み出し用のワード線が立ち下がり、その後、時刻t8で、中断していたリフレッシュ動作用のワード線が再び立ち上がる。
このように、第1の実施形態では、リフレッシュ動作中に通常の読み出し/書き込み要求が行われた場合には、リフレッシュ動作を中断して、通常の読み出し/書き込み動作を行い、その動作が終了した後にリフレッシュ動作を再開するようにしたため、リフレッシュ動作によって外部アクセス速度が制限されるおそれがなくなり、高速動作が可能になる。
なお、上述した第1の実施形態は、リフレッシュ要求REFREQが来てリフレッシュ動作を開始し、リフレッシュ動作がまだ完了していない間に次のリフレッシュ要求REFREQが来た場合には対応していない。したがって、外部BRASが連続してアクティブである時間は、(リフレッシュ間隔tREF+2×tRAS)以内に制限される。ここで、リフレッシュ間隔tREFとは、図5のリフレッシュ・インターバルタイマ31で規定される期間であり、リフレッシュ動作を開始してから次にリフレッシュ動作を開始するまでの時間である。また、tRASとは、図6のtRASタイマ32で規定されるリフレッシュ動作に要する時間である。
通常は、リフレッシュ間隔tREFは数μ秒で、tRASは数10ns秒なので、ほぼリフレッシュ間隔により制限され、外部信号BRASをアクティブにしておく期間は長くとも数μ秒未満である。
本実施形態では、1Mビット程度のメモリ容量をもつ半導体記憶装置を想定しており、センスアンプ1を挟んで左右に512Kビットのセルアレイ2が配置されている。ただし、集積度やセルアレイ2の構成などは図示されたものに限定されない。例えば、同じ1Mビットのメモリ容量であっても、例えば256Kビットのセルアレイ2を4個設けてもよい。
(第2の実施形態)
第2の実施形態は、外部信号BRASをアクティブにしておける時間をできるだけ長くするものである。
図17は本発明の第2の実施形態による半導体記憶装置の全体構成を示すブロック図である。図17の半導体記憶装置は、独立にアクセス可能な4個のセルアレイ2を有する。各セルアレイ2は256Kビットのメモリ容量を持ち、チップ全体で1Mビットのメモリ容量を持つ。各セルアレイは、ロウアドレスA8R, A8Lで区別される。各セルアレイ2は、4個のRINT0生成器141、RINT1生成器142、RINT2生成器143およびRINT3生成器144により駆動される。各セルアレイ2は、それぞれ別個にセンスアンプ1を有し、読み出し/書き込み動作とリフレッシュ動作は、メモリアレイ単体で同時並行的に行うことができる。
なお、図17では、簡略化のために、カラムパスとデータパスの回路を省略している。
本実施形態では、チップ全体としてプリチャージ状態か否かを判断するのではなく、各セルアレイ2ごとに判断して、各セルアレイ2ごとに個別にリフレッシュを行う。これにより、外部信号BRASが連続してアクティブになる許容時間tRAS(rw)に対する制限が、第1の実施形態では、tRAS(rw)<tREF+tRAS(ref)×2であったが、tRAS(rw)<tREF×n+tRAS(ref)×2に緩和される。ここで、tRAS(ref)とは、リフレッシュ動作に必要な時間であり、nはセルアレイ2の数である。
図17の半導体記憶装置において、図4におけるリフレッシュ・インターバルタイマ31とリフレッシュコントローラ34は、インターバルタイマ&コントローラ145に一体化されている。このインターバルタイマ&コントローラ145、ロウアドレスバッファ36およびロウアドレスバッファコントローラ146は、各セルアレイ2で共有される。
一方、tRASタイマ32、アドレスカウンタ33、RINT生成器141〜144、ロウアドレススイッチ37、ロウパスコントローラ38およびロウデコーダ39は、各セルアレイ2ごとに設けられている。
図18はインターバルタイマ&コントローラ145の内部構成の一例を示すブロック図、図19は図18のインターバル&コントローラにより生成される信号のタイミング図である。
図18に示すように、インターバルタイマ&コントローラ145は、縦続接続された2つの分周回路151を有する。これら分周回路151は例えば図8と同様の回路で構成される。これら分周回路151は、入力信号を2分周して出力する。したがって、インターバルタイマ&コントローラ145は、REFCTの周期の2倍の周期を持つ信号REFCT1と、4倍の周期を持つ信号REFCT2を生成する。
また、インターバルタイマ&コントローラ145は、これら分周信号を用いて論理演算を行うためのNANDゲート152〜155とインバータ156〜159とを有する。これら4つのインバータは、図19に示すように、リフレッシュ要求信号REFREQの4倍の周期をもち、それぞれが1周期ずつずれている信号REFREQ0, REFREQ1, REFREQ2, REFREQ3を生成する。
このように、第2の実施形態は、複数のセルアレイ2を設け、各セルアレイ2に対して個別にリフレッシュ動作と通常の読み出し/書き込み動作のいずれかを行えるようにしたため、外部信号BRASを連続してアクティブにする時間tRAS(rw)の制限がかなり緩和される。すなわち、tRAS(rw)<tREF×n+tRAS(ref)×2の式で表されるように、セルアレイ2の数分だけtRAS(rw)を長くでき、第1の実施形態よりもさらに使い勝手のよいメモリを提供することができる。
上述した第1および第2の実施形態において、セルアレイ2がFBC3で構成されている場合には、リフレッシュは「0」データを記憶しているFBC3に対してのみ行えばよく、「1」データを記憶しているFBC3に対してはリフレッシュは不要である。そして、「0」データの書き込みは「1」データの書き込み(リフレッシュ)よりもはるかに高速に行えるため、リフレッシュに要するサイクル時間は通常の読み出し/書き込み(通常動作)に要するサイクル時間よりもはるかに短くてすむ。したがって、通常動作時の外部信号BRASのプリチャージ時間tRPの最小スペックの制限はかなり緩和することが可能であり、通常動作時の制約に関しては、tRASとともにtRPについても、VSRAM機能を持たない一般的なDRAMの仕様とほぼ同様の値を実現できる。
本発明の第1の実施形態に係る半導体記憶装置の内部構成を示す回路図。 図1の半導体記憶装置内に設けられるセンスアンプ1内部の詳細な回路図。 図2のセンスアンプ1内のコア部分であるセンスコア部11の内部構成の詳細回路図。 本実施形態の半導体記憶装置の全体構成を示すブロック図。 リフレッシュ・インターバルタイマ31の内部構成の一例を示す回路図。 tRASタイマ32の内部構成の一例を示す回路図。 アドレスカウンタ33の内部構成の一例を示すブロック図。 分周回路85の内部構成の一例を示す回路図。 リフレッシュコントローラ34の内部構成の一例を示す回路図。 ロウアドレススイッチ37の内部構成の一例を示す回路図。 ロウデコーダ39の内部構成の一例を示す回路図。 RINT生成器35の内部構成の一例を示す回路図。 外部信号BRASがアクティブのときにリフレッシュ要求があった場合の動作タイミング図。 外部信号BRASが高レベルのときにリクエスト要求信号REFREQが来るが、その後すぐに外部信号BRASが低レベルになる場合の動作タイミング図。 外部信号BRASが高レベルのときにリフレッシュ要求信号REFREQが来て、リフレッシュ動作が完了するまでプリチャージ状態が続く場合の動作タイミング図。 リフレッシュ動作の途中で、通常の読み出し動作の割込が入る場合の動作タイミング図。 本発明の第2の実施形態による半導体記憶装置の全体構成を示すブロック図。 インターバルタイマ&コントローラ145の内部構成の一例を示すブロック図。 図18のインターバル&コントローラにより生成される信号のタイミング図。
符号の説明
1 センスアンプ
2 セルアレイ
11 センスコア部
21 電流負荷回路
22,23 ダイナミックラッチ回路
31 リフレッシュ・インターバルタイマ
32 tRASタイマ
33 アドレスカウンタ
34 リフレッシュコントローラ
35 RINT生成器
37 ロウアドレススイッチ
39 ロウデコーダ

Claims (5)

  1. リフレッシュ動作が必要なメモリセルと、
    前記メモリセルに対して外部から読み出しあるいは書き込みについての外部アクセスの要求が来ると、リフレッシュ動作を中断するリフレッシュ制御回路と、を備えることを特徴とする半導体記憶装置。
  2. 前記リフレッシュ制御回路は、外部アクセスの要求に応じてリフレッシュ動作を中断した場合、該外部アクセスが完了した後、次の回のリフレッシュ動作を開始するまでの間に、中断したリフレッシュ動作を完了することを特徴とする請求項1に記載の半導体記憶装置。
  3. 前記メモリセルに対して、リフレッシュ動作を行ってから次にリフレッシュ動作を行うまでの第1の期間を規定するために時間計測を行う第1の時間計測器と、
    リフレッシュ動作に必要な第2の期間を規定するために時間計測を行う第2の時間計測器と、
    リフレッシュ動作を行うべきメモリセルのアドレスを生成するアドレス生成器と、を備え、
    前記リフレッシュ制御回路は、前記第1の時間計測器および前記第2の時間計測器の出力と外部からのアクセス信号とに基づいて、リフレッシュ動作のタイミングを制御することを特徴とする請求項1または2に記載の半導体記憶装置。
  4. それぞれ複数のメモリセルを有し、個別にリフレッシュを行うことが可能な複数のセルアレイを備え、
    前記リフレッシュ制御回路は、前記複数のセルアレイの動作状態を個別に判断して、各セルアレイのリフレッシュを行うか否かを制御することを特徴とする請求項1乃至3のいずれかに記載の半導体記憶装置。
  5. 前記リフレッシュ動作を行うべきメモリセルのアドレスを生成するアドレス生成器にて、リフレッシュ動作が外部アクセスにより中断された場合には、新たなアドレスの生成が抑制されることを特徴とする請求項3または4に記載の半導体記憶装置。
JP2004253070A 2004-08-31 2004-08-31 半導体記憶装置 Pending JP2006073062A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004253070A JP2006073062A (ja) 2004-08-31 2004-08-31 半導体記憶装置
US11/092,904 US7251179B2 (en) 2004-08-31 2005-03-30 Semiconductor storage apparatus
DE602005024905T DE602005024905D1 (de) 2004-08-31 2005-03-31 Halbleiterspeicher mit Auffrischungs-Steuerschaltung
EP05007000A EP1630818B1 (en) 2004-08-31 2005-03-31 Dynamic semiconductor storage with refresh control circuit
CNB2005100966874A CN100508059C (zh) 2004-08-31 2005-08-31 半导体存储装置和刷新方法
US11/779,055 US7430041B2 (en) 2004-08-31 2007-07-17 Semiconductor storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253070A JP2006073062A (ja) 2004-08-31 2004-08-31 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2006073062A true JP2006073062A (ja) 2006-03-16

Family

ID=35447806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253070A Pending JP2006073062A (ja) 2004-08-31 2004-08-31 半導体記憶装置

Country Status (5)

Country Link
US (2) US7251179B2 (ja)
EP (1) EP1630818B1 (ja)
JP (1) JP2006073062A (ja)
CN (1) CN100508059C (ja)
DE (1) DE602005024905D1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004010A (ja) * 2007-06-20 2009-01-08 Toshiba Corp 半導体記憶装置およびその駆動方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7746716B2 (en) * 2007-02-22 2010-06-29 Freescale Semiconductor, Inc. Memory having a dummy bitline for timing control
JP5018292B2 (ja) * 2007-07-10 2012-09-05 富士通セミコンダクター株式会社 メモリ装置
US8014195B2 (en) * 2008-02-06 2011-09-06 Micron Technology, Inc. Single transistor memory cell
SG10201700467UA (en) * 2010-02-07 2017-02-27 Zeno Semiconductor Inc Semiconductor memory device having electrically floating body transistor, and having both volatile and non-volatile functionality and method
KR102083490B1 (ko) * 2012-08-08 2020-03-03 삼성전자 주식회사 비휘발성 메모리 장치, 이를 포함하는 메모리 시스템 및 비휘발성 메모리 장치의 커맨드 실행 제어 방법
US10049750B2 (en) 2016-11-14 2018-08-14 Micron Technology, Inc. Methods including establishing a negative body potential in a memory cell
JP2018163723A (ja) * 2017-03-27 2018-10-18 東芝メモリ株式会社 メモリデバイス及びメモリシステム

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790961A (en) * 1972-06-09 1974-02-05 Advanced Memory Syst Inc Random access dynamic semiconductor memory system
JPS5891593A (ja) * 1981-11-26 1983-05-31 Ricoh Co Ltd メモリのリフレツシユ制御装置
JPS61129797A (ja) 1984-11-28 1986-06-17 Hitachi Ltd 非同期式メモリ装置
JPH087995B2 (ja) * 1985-08-16 1996-01-29 富士通株式会社 ダイナミツク半導体記憶装置のリフレツシユ方法および装置
JPS6355797A (ja) * 1986-08-27 1988-03-10 Fujitsu Ltd メモリ
JPS63166093A (ja) 1986-12-26 1988-07-09 Toshiba Corp 半導体メモリの制御回路
JPS63247997A (ja) 1987-04-01 1988-10-14 Mitsubishi Electric Corp 半導体記憶装置
JPH05336752A (ja) * 1992-05-27 1993-12-17 Hitachi Ltd スイッチングレギュレータ
JP3489906B2 (ja) * 1995-04-18 2004-01-26 松下電器産業株式会社 半導体メモリ装置
JPH09306164A (ja) * 1996-05-13 1997-11-28 Internatl Business Mach Corp <Ibm> メモリ・リフレッシュ・システム
JP3599541B2 (ja) * 1997-11-27 2004-12-08 シャープ株式会社 不揮発性半導体記憶装置
NL1010458C2 (nl) * 1998-11-03 2000-05-04 Search B V S Longitudinaal versterkte zelfdragende capillaire membranen en gebruik daarvan.
JP4201490B2 (ja) 2000-04-28 2008-12-24 富士通マイクロエレクトロニクス株式会社 自動プリチャージ機能を有するメモリ回路及び自動内部コマンド機能を有する集積回路装置
US6275437B1 (en) 2000-06-30 2001-08-14 Samsung Electronics Co., Ltd. Refresh-type memory with zero write recovery time and no maximum cycle time
JP4203704B2 (ja) 2000-08-02 2009-01-07 セイコーエプソン株式会社 半導体装置、そのリフレッシュ方法、メモリのリフレッシュ方法、メモリシステムおよび電子機器
US6621725B2 (en) 2000-08-17 2003-09-16 Kabushiki Kaisha Toshiba Semiconductor memory device with floating storage bulk region and method of manufacturing the same
JP4606565B2 (ja) 2000-11-02 2011-01-05 富士通セミコンダクター株式会社 同期型半導体記憶装置
JP3531602B2 (ja) 2000-11-08 2004-05-31 セイコーエプソン株式会社 半導体メモリ装置内のワード線の活性化
US7285141B2 (en) * 2001-09-19 2007-10-23 Taiheiyo Cement Corporation Method and apparatus for fermentation
TWI253805B (en) * 2001-12-11 2006-04-21 Realtek Semiconductor Corp Sense amplifier
JP2003196977A (ja) 2001-12-27 2003-07-11 Fujitsu Ltd 半導体記憶装置のデータアクセス方法、及び半導体記憶装置
JP2003323798A (ja) * 2002-04-26 2003-11-14 Fujitsu Ltd 半導体記憶装置、およびその制御方法
JP4408193B2 (ja) * 2002-08-08 2010-02-03 富士通マイクロエレクトロニクス株式会社 半導体記憶装置及び半導体記憶装置の試験方法
JP4044401B2 (ja) * 2002-09-11 2008-02-06 株式会社東芝 半導体記憶装置
JP2004111643A (ja) 2002-09-18 2004-04-08 Toshiba Corp 半導体記憶装置、及び、その制御方法
CN100550197C (zh) 2002-09-20 2009-10-14 富士通微电子株式会社 半导体存储器
US6920524B2 (en) * 2003-02-03 2005-07-19 Micron Technology, Inc. Detection circuit for mixed asynchronous and synchronous memory operation
US7292490B1 (en) * 2005-09-08 2007-11-06 Gsi Technology, Inc. System and method for refreshing a DRAM device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004010A (ja) * 2007-06-20 2009-01-08 Toshiba Corp 半導体記憶装置およびその駆動方法
US7804731B2 (en) 2007-06-20 2010-09-28 Kabushiki Kaisha Toshiba Semiconductor memory device and driving method therefor

Also Published As

Publication number Publication date
US20060044911A1 (en) 2006-03-02
US7251179B2 (en) 2007-07-31
DE602005024905D1 (de) 2011-01-05
US7430041B2 (en) 2008-09-30
EP1630818B1 (en) 2010-11-24
CN1758374A (zh) 2006-04-12
CN100508059C (zh) 2009-07-01
US20070258294A1 (en) 2007-11-08
EP1630818A1 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US7352642B2 (en) Semiconductor memory device
JP4110115B2 (ja) 半導体記憶装置
US7457186B2 (en) Semiconductor memory device
US6807077B2 (en) Content addressable memory capable of stably storing ternary data
JP4443886B2 (ja) 半導体記憶装置
US7626879B2 (en) Semiconductor memory device
US7430041B2 (en) Semiconductor storage apparatus
JP5319917B2 (ja) 半導体記憶装置
JP2004134026A (ja) 半導体記憶装置及びその制御方法
US7558139B2 (en) Semiconductor memory device
US6236605B1 (en) Semiconductor integrated circuit and semiconductor memory device including overdriving sense amplifier
US7804731B2 (en) Semiconductor memory device and driving method therefor
EP1776704B1 (en) Word line control circuit for improving dynamic refresh in a semiconductor memory device with reduced standby power
US6377499B1 (en) Refresh-free semiconductor memory device
US7023752B2 (en) Semiconductor storage apparatus
JP2016212934A (ja) 半導体装置及びその制御方法
JP2006073055A (ja) 半導体記憶装置
JP2001167573A (ja) 半導体記憶装置
JP2009193657A (ja) 半導体記憶装置およびその駆動方法
JPH1064259A (ja) 半導体記憶装置
TW201303868A (zh) 用以控制隨機存取記憶體元件中的漏電流之電路和方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080801