JP2008160167A - 窒化物系半導体素子 - Google Patents

窒化物系半導体素子 Download PDF

Info

Publication number
JP2008160167A
JP2008160167A JP2008076847A JP2008076847A JP2008160167A JP 2008160167 A JP2008160167 A JP 2008160167A JP 2008076847 A JP2008076847 A JP 2008076847A JP 2008076847 A JP2008076847 A JP 2008076847A JP 2008160167 A JP2008160167 A JP 2008160167A
Authority
JP
Japan
Prior art keywords
nitride
back surface
substrate
type gan
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008076847A
Other languages
English (en)
Other versions
JP2008160167A5 (ja
JP5025540B2 (ja
Inventor
Tadao Toda
忠夫 戸田
Masayuki Hata
雅幸 畑
Tsutomu Yamaguchi
勤 山口
Yasuhiko Nomura
康彦 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=28449238&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2008160167(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008076847A priority Critical patent/JP5025540B2/ja
Publication of JP2008160167A publication Critical patent/JP2008160167A/ja
Publication of JP2008160167A5 publication Critical patent/JP2008160167A5/ja
Application granted granted Critical
Publication of JP5025540B2 publication Critical patent/JP5025540B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】窒化物系半導体基板などの窒素面と電極とのコンタクト抵抗を低減することが可能な窒化物系半導体素子の製造方法を提供する。
【解決手段】この窒化物系半導体レーザ素子の製造方法は、ウルツ鉱構造を有するn型GaN基板1の裏面(窒素面)をRIE法によりエッチングする工程と、その後、エッチングされたn型GaN基板1の裏面(窒素面)上に、n側電極8を形成する工程とを備えている。
【選択図】図5

Description

本発明は、窒化物系半導体素子およびその製造方法に関し、特に、電極を有する窒化物系半導体素子およびその製造方法に関する。
近年、窒化物系半導体レーザ素子は、次世代の大容量光ディスク用光源としての利用が期待され、その開発が盛んに行われている。
通常、窒化物系半導体レーザ素子を形成する場合、絶縁性のサファイア基板が用いられる。しかし、サファイア基板上に、窒化物系半導体層を形成する場合、サファイア基板と窒化物系半導体層との格子定数の差が大きいので、窒化物系半導体層内に格子定数の差に起因した多数の結晶欠陥(転位)が発生するという不都合があった。その結果、窒化物系半導体レーザ素子の特性が低下するという問題点があった。
そこで、従来、窒化物系半導体層との格子定数の差が小さいGaN基板などの窒化物系半導体基板を用いた窒化物系半導体レーザ素子が提案されている。
図7は、n型GaN基板を用いて形成された従来の窒化物系半導体レーザ素子を示した断面図である。図7を参照して、従来の窒化物系半導体レーザ素子の製造プロセスでは、n型GaN基板101上に成長される窒化物系半導体層(102〜110)の結晶性を向上させるため、窒化物系半導体層(102〜110)は、ウルツ鉱構造を有するn型GaN基板1のGa面((HKLM)面:Mは正の整数)上に成長される。また、ウルツ鉱構造を有するn型GaN基板101の窒素面((HKL−M)面:Mは正の整数)は、裏面として用いられるとともに、このn型GaN基板101の裏面上にn側電極112が形成される。以下、従来の窒化物系半導体レーザ素子の製造プロセスを詳細に説明する。
図7に示すように、約300μm〜約500μmの厚みを有するn型GaN基板101の上面(Ga面)上に、MOCVD法(Metal Organic Chemical Vapor Deposition;有機金属化学気相成長法)などを用いて、約3μmの厚みを有するn型GaNからなるn型層102と、約100nmの厚みを有するn型In0.05Ga0.95Nからなるn型バッファ層103と、約400nmの厚みを有するn型Al0.05Ga0.95Nからなるn型クラッド層104と、約70nmの厚みを有するn型GaNからなるn型光ガイド層105と、MQW(Multiple Quantum Well;多重量子井戸)構造を有するMQW活性層106と、約200nmの厚みを有するp型Al0.2Ga0.8Nからなるp型層107と、約70nmの厚みを有するp型GaNからなるp型光ガイド層108と、約400nmの厚みを有するp型Al0.05Ga0.95Nからなるp型クラッド層109と、約100nmの厚みを有するp型GaNからなるp型コンタクト層110とを順次形成する。
次に、p型コンタクト層110の上面上の所定領域に、p側電極111を形成する。そして、n型GaN基板101の裏面をn型GaN基板101が所定の厚み(100μm程度)になるまで研磨した後、n型GaN基板101の裏面(窒素面)上に、n側電極112を形成する。最後に、n型GaN基板101および各層102〜110を劈開することにより、素子分離および共振器端面の形成を行う。これにより、図7に示した従来の窒化物系半導体レーザ素子が完成される。
図7に示した従来の窒化物系半導体レーザ素子では、n型GaN基板101の硬度が非常に大きいので、劈開により素子分離および共振器端面の形成を良好に行うのが困難であるという不都合がある。このような不都合に対処するため、劈開工程の前にn型GaN基板の裏面を機械研磨して、n型GaN基板の裏面の凹凸の大きさを小さくすることによって、素子分離および共振器端面の形成を良好に行う方法が提案されている(たとえば、特許文献1参照)。
特開2002−26438号公報
しかしながら、上記特許文献1に開示された従来の方法では、n型GaN基板の裏面を機械研磨する際に、n型GaN基板の裏面近傍に応力が加わる。このため、n型GaN基板の裏面近傍にクラックなどの微細な結晶欠陥が発生するという不都合がある。その結果、n型GaN基板と、n型GaN基板の裏面(窒素面)上に形成されたn側電極とのコンタクト抵抗が増加するという問題点があった。
また、n型GaN基板の窒素面は、酸化されやすいので、これによっても、n型GaN基板の裏面(窒素面)上に形成されたn側電極とのコンタクト抵抗が増加するという問題点があった。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、窒化物系半導体基板などの窒素面と電極とのコンタクト抵抗を低減することが可能な窒化物系半導体素子の製造方法を提供することである。
この発明のもう1つの目的は、上記の窒化物系半導体素子の製造方法において、窒化物系半導体基板などの窒素面近傍の結晶欠陥を低減することである。
この発明のさらにもう1つの目的は、窒化物系半導体基板などの窒素面と電極とのコンタクト抵抗を低減することが可能な窒化物系半導体素子を提供することである。
上記目的を達成するために、この発明の第1の局面による窒化物系半導体素子の製造方法は、ウルツ鉱構造を有するn型の窒化物系半導体層および窒化物系半導体基板のいずれかからなる第1半導体層の裏面をエッチングする工程と、その後、エッチングされた第1半導体層の裏面上に、n側電極を形成する工程とを備えている。
この第1の局面による窒化物系半導体素子の製造方法では、上記のように、ウルツ鉱構造を有するn型の窒化物系半導体層および窒化物系半導体基板のいずれかからなる第1半導体層の裏面を、エッチングすることによって、研磨工程などに起因して発生した第1半導体層の裏面近傍の結晶欠陥を含む領域を除去することができるので、第1半導体層の裏面近傍の結晶欠陥を低減することができる。これにより、結晶欠陥による電子キャリアのトラップなどに起因する電子キャリア濃度の低下を抑制することができるので、第1半導体層の裏面の電子キャリア濃度を大きくすることができる。その結果、第1半導体層とn側電極とのコンタクト抵抗を低減することができる。また、第1半導体層の裏面をエッチングすることによって、機械研磨の場合に比べて、第1半導体層の裏面の平坦性を向上させることができる。これにより、第1半導体層の裏面上に形成されるn側電極の平坦性を向上させることができるので、n側電極を放熱基台に取り付ける構造の場合には、n側電極と放熱基台との密着性を向上させることができる。その結果、良好な放熱特性を得ることができる。また、第1半導体層の裏面上に形成されるn側電極の平坦性を向上させることができるので、n側電極にワイヤボンディングを行う構造の場合には、n側電極に対するワイヤボンディングのボンディング特性を向上させることができる。
上記第1の局面による窒化物系半導体素子の製造方法において、好ましくは、第1半導体層の裏面は、第1半導体層の窒素面を含む。ここで、窒素面とは、全て窒素面である場合のみならず、窒素面が主体の面である場合を含む広い概念である。具体的には、窒素面が50%以上ある面は、本発明の窒素面に含まれる。このように第1半導体層の裏面が窒素面である場合には、裏面が酸化されやすいので、裏面の酸化された部分をエッチングにより除去することができる。これにより、第1半導体層とn側電極とのコンタクト抵抗をより低減することができる。
上記第1の局面による窒化物系半導体素子の製造方法において、好ましくは、エッチングする工程は、第1半導体層の裏面を反応性エッチングによりエッチングする工程を含む。このように構成すれば、反応性エッチングにより、容易に、第1半導体層の裏面の平坦性を向上させることができるとともに、裏面近傍の結晶欠陥を低減することができる。なお、本発明の反応性エッチングは、ドライエッチングとほぼ同じ意味を有する。
上記反応性エッチングによりエッチングする工程を含む窒化物系半導体素子の製造方法において、好ましくは、反応性エッチングによりエッチングする工程は、Cl2ガスとBCl3ガスとを用いて反応性エッチングによりエッチングする工程を含む。このように構成すれば、容易に、第1半導体層の裏面の平坦性を向上させることができるとともに、裏面近傍の結晶欠陥を低減することができる。この場合、反応性エッチングによりエッチングする工程におけるCl2ガスに対するBCl3ガスの流量比は、30%以上70%以下であるのが好ましい。このCl2ガスに対するBCl3ガスの流量比の範囲は、実験により第1半導体層の裏面の平坦性を向上させることができることが確認された範囲であるので、この範囲の流量比を用いれば、確実に第1半導体層の裏面の平坦性を向上させることができる。
上記第1の局面による窒化物系半導体素子の製造方法において、好ましくは、n側電極を形成する工程に先立って、エッチングされた第1半導体層の窒素面を、塩素、フッ素、臭素、ヨウ素、イオウおよびアンモニウムの少なくとも1つを含む溶液に浸す工程をさらに備える。このように構成すれば、第1半導体層の窒素面のエッチングによる残留物を容易に除去することができる。これにより、第1半導体層とn側電極とのコンタクト抵抗をより低減することができる。この場合、n側電極を形成する工程に先立って、第1半導体層の裏面をHCl溶液により塩酸処理する工程をさらに備える。このように構成すれば、第1半導体層の裏面のエッチングにより裏面に付着した塩素系残留物を容易に除去することができる。
上記第1の局面による窒化物系半導体素子の製造方法において、好ましくは、エッチングする工程に先立って、第1半導体層の裏面を研磨する工程をさらに備える。このように第1半導体層の裏面を研磨した場合にも、研磨後のエッチング工程により、第1半導体層の裏面の平坦性を向上することができるとともに、研磨に起因して発生した裏面近傍の結晶欠陥を低減することができる。
上記第1の局面による窒化物系半導体素子の製造方法において、好ましくは、エッチングする工程は、第1半導体層の裏面をウェットエッチングによりエッチングする工程を含む。このように構成すれば、ウェットエッチングにより、容易に、第1半導体層の裏面の平坦性を向上させることができるとともに、裏面近傍の結晶欠陥を低減することができる。この場合、ウェットエッチングによりエッチングする工程は、王水、KOHおよびK228からなるグループから選択される少なくとも1つのエッチング液を用いてエッチングする工程を含むのが好ましい。また、ウェットエッチングによりエッチングする工程は、約120℃に昇温した状態でエッチングする工程を含むのが好ましい。このように構成すれば、ウェットエッチングを室温で行う場合の約10倍のエッチングレートを得ることができる。
この発明の第2の局面による窒化物系半導体素子の製造方法は、ウルツ鉱構造を有するn型の窒化物系半導体層および窒化物系半導体基板のいずれかからなる第1半導体層の窒素面を、反応性エッチングによりエッチングする工程と、その後、エッチングされた第1半導体層の窒素面上に、n側電極を形成する工程とを備えている。
この第2の局面による窒化物系半導体素子の製造方法では、上記のように、ウルツ鉱構造を有するn型の窒化物系半導体層および窒化物系半導体基板のいずれかからなる第1半導体層の窒素面を、反応性エッチングによりエッチングすることによって、研磨工程などに起因して発生した第1半導体層の窒素面近傍の結晶欠陥を含む領域を除去することができるので、第1半導体層の窒素面近傍の結晶欠陥を低減することができる。これにより、結晶欠陥による電子キャリアのトラップなどに起因する電子キャリア濃度の低下を抑制することができるので、第1半導体層の窒素面の電子キャリア濃度を大きくすることができる。その結果、第1半導体層とn側電極とのコンタクト抵抗を低減することができる。また、第1半導体層の窒素面を反応性エッチングによりエッチングすることによって、機械研磨の場合に比べて、第1半導体層の窒素面の平坦性を向上させることができる。これにより、第1半導体層の窒素面上に形成されるn側電極の平坦性を向上させることができるので、n側電極を放熱基台に取り付ける構造の場合には、n側電極と放熱基台との密着性を向上させることができる。その結果、良好な放熱特性を得ることができる。また、第1半導体層の窒素面上に形成されるn側電極の平坦性を向上させることができるので、n側電極にワイヤボンディングを行う構造の場合には、n側電極に対するワイヤボンディングのボンディング特性を向上させることができる。
この発明の第3の局面による窒化物系半導体素子は、ウルツ鉱構造を有するn型の窒化物系半導体層および窒化物系半導体基板のいずれかからなる第1半導体層と、第1半導体層の裏面上に形成されたn側電極とを備え、n側電極と第1半導体層とのコンタクト抵抗は、0.05Ωcm2以下である。
この第3の局面による窒化物系半導体素子では、n側電極と第1半導体層とのコンタクト抵抗を、0.05Ωcm2以下にすることによって、n側電極と第1半導体層とのコンタクト抵抗が低減された良好な素子特性を有する窒化物系半導体素子を得ることができる。
上記第3の局面による窒化物系半導体素子において、好ましくは、第1半導体層のn側電極との界面近傍における電子キャリア濃度は、1×1017cm-3以上である。このように構成すれば、容易に、n側電極と第1半導体層とのコンタクト抵抗が低減された窒化物系半導体素子を得ることができる。
上記第3の局面による窒化物系半導体素子において、好ましくは、第1半導体層のn側電極との界面近傍における転位密度は、1×109cm-2以下である。このように構成すれば、第1半導体層のn側電極との界面近傍における結晶欠陥(転位)を低減することができるので、第1半導体層のn側電極との界面におけるコンタクト抵抗を低減することができる。
上記第3の局面による窒化物系半導体素子において、好ましくは、第1半導体層の裏面は、第1半導体層の窒素面を含む。
上記反応性エッチングによりエッチングする工程を含む窒化物系半導体素子の製造方法において、好ましくは、反応性エッチングによりエッチングする工程におけるエッチング深さとエッチング時間とは、比例関係にある。このように構成すれば、エッチング時間を調整することにより、エッチング深さを精度よく制御することができる。
上記第1の局面による窒化物系半導体素子の製造方法において、好ましくは、エッチングする工程は、第1半導体層の裏面をエッチングすることにより、第1半導体層の裏面を鏡面にする工程を含む。このように構成すれば、より良好な第1半導体層の裏面の平坦性を得ることができる。
上記第1の局面による窒化物系半導体素子の製造方法において、好ましくは、n側電極の形成工程の後、熱処理を施す工程をさらに備える。このように構成すれば、第1半導体層とn側電極とのコンタクト抵抗をより低減することができる。
上記第1の局面による窒化物系半導体素子の製造方法において、好ましくは、エッチングする工程は、第1半導体層の裏面を約1μm以上の厚み分エッチングする工程を含む。このように構成すれば、研磨工程などに起因して発生した第1半導体層の裏面近傍の結晶欠陥を含む領域を十分に除去することができるので、第1半導体層の裏面近傍の結晶欠陥をより低減することができる。
上記第1の局面による窒化物系半導体素子の製造方法において、第1半導体層は、GaN、BN、AlN、InNおよびTlNからなるグループより選択される少なくとも1つの材料からなるn型の窒化物系半導体層および窒化物系半導体基板を含んでいてもよい。また、n側電極は、Al膜を含んでいてもよい。
上記第1の局面による窒化物系半導体素子の製造方法において、好ましくは、窒化物系半導体素子は、窒化物系半導体発光素子である。このように構成すれば、窒化物系半導体発光素子において、第1半導体層とn側電極とのコンタクト抵抗を低減することができるので、良好な発光特性を有する窒化物系半導体発光素子を得ることができる。
上記第3の局面による窒化物系半導体素子において、第1半導体層は、GaN、BN、AlN、InNおよびTlNからなるグループより選択される少なくとも1つの材料からなるn型の窒化物系半導体層および窒化物系半導体基板を含んでいてもよい。また、n側電極は、Al膜を含んでいてもよい。
上記第3の局面による窒化物系半導体素子において、好ましくは、窒化物系半導体素子は、窒化物系半導体発光素子である。このように構成すれば、窒化物系半導体発光素子において、第1半導体層とn側電極とのコンタクト抵抗を低減することができるので、良好な発光特性を有する窒化物系半導体発光素子を得ることができる。
本発明によると、窒化物系半導体基板などの窒素面と電極とのコンタクト抵抗を低減することが可能な窒化物系半導体素子の製造方法を提供することができる。
また、本発明によると、上記の窒化物系半導体素子の製造方法において、窒化物系半導体基板などの窒素面近傍の結晶欠陥を低減することができる。
さらに、本発明によると、窒化物系半導体基板などの窒素面と電極とのコンタクト抵抗を低減することが可能な窒化物系半導体素子を提供することができる。
以下、本発明を具体化した実施形態を図面に基づいて説明する。
図1〜図5は、本発明の一実施形態による窒化物系半導体レ−ザ素子の製造プロセスを説明するための断面図および斜視図である。
図1〜図5を参照して、本発明の一実施形態による窒化物系半導体レーザ素子の製造プロセスについて説明する。まず、本実施形態では、たとえば、特開2000−44400号公報に開示された方法によりウルツ鉱構造を有する酸素ドープのn型GaN基板1を形成する。具体的には、HVPE法を用いてGaAs基板(図示せず)上に、酸素ドープのn型GaN層を約120μm〜約400μmの厚みで形成する。その後、GaAs基板を除去することによって、図1に示されるようなn型GaN基板1を得る。このn型GaN基板1のホール効果測定による基板キャリア濃度は、5×1018cm-3である。また、n型GaN基板1のSIMS(Secondary Ion Mass Spectroscopy)分析による不純物濃度は、1×1019cm-3である。なお、n型GaN基板1は、本発明の「第1半導体層」の一例である。
そして、n型GaN基板1の(0001)面である上面(Ga面)上に、常圧MOCVD法を用いて、約1気圧(約100kPa)の圧力下で、約5μmの厚みを有するn型GaNからなるn型バッファ層2と、約1μmの厚みを有するn型Al0.08Ga0.92Nからなるn型クラッド層3と、InGaNからなるMQW活性層4と、約0.28μmの厚みを有するp型Al0.08Ga0.92Nからなるp型クラッド層5と、約70nmの厚みを有するp型GaNからなるp型コンタクト層6とを順次形成する。
なお、MQW活性層4は、約20nmの厚みのGaNからなる4層のバリア層と、約3.5nmの厚みのIn0.15Ga0.85Nからなる3層の井戸層とを交互に積層することにより形成する。また、原料ガスとしては、Ga(CH33と、In(CH33と、Al(CH33と、NH3とを用い、キャリアガスとしては、H2とN2とを用いる。本実施形態では、これらの原料ガスの供給量を変化させることにより、各層2〜6の組成を調整している。また、n型バッファ層2およびn型クラッド層3のn型ドーパントとしては、SiH4ガス(Si)を用いる。p型クラッド層5およびp型コンタクト層6のp型ドーパントとしては、Cp2Mgガス(Mg)を用いる。
次に、フォトリソグラフィ技術およびエッチング技術を用いて、p型コンタクト層6およびp型クラッド層5の一部の領域をエッチングする。これにより、図2に示すように、p型クラッド層5の凸部とp型コンタクト層6とからなる約2μmの幅を有する凸部(リッジ部)を形成する。次に、p型コンタクト層6の上面上に、下から上に向かって、約1nmの厚みを有するPt膜と、約10nmの厚みを有するPd膜と、約300nmの厚みを有するNi膜とからなるp側電極7を形成する。これにより、図2に示したような複数の素子が形成される領域を含む窒化物系半導体レーザ素子構造20が形成される。
この後、図3および図4に示すように、n型GaN基板1の(000−1)面である裏面(窒素面)を機械研磨する。この研磨工程に用いる機械研磨装置30は、図3に示すように、平坦な表面を有するガラス基板11と、上下に移動可能で、かつ、R方向に回転可能に支持されたホルダ12と、バフ13とから構成されている。バフ13上には、約0.2μm〜約1μmの粒子粗さのダイヤモンド、酸化ケイ素またはアルミナなどからなる研磨剤(図示せず)が配置されている。この研磨剤の粒子粗さは、約0.2μm〜約0.5μmの範囲であれば、特に良好に裏面研磨を行うことができる。また、ホルダ12の下面には、図3および図4に示すように、窒化物系半導体レーザ素子構造20が、ワックス14により、ホルダ12と直接接触することのないように間隔を隔てて取り付けられている。これにより、機械研磨に際して、窒化物系半導体レーザ素子構造20が破損するのを防止する。なお、ガラス基板11などに代えて、金属などからなる平坦な研磨盤を用いてもよい。
図3に示した機械研磨装置30を用いて、n型GaN基板1の裏面(窒素面)をn型GaN基板1の厚みが約120μm〜約180μmになるまで研磨する。具体的には、ホルダ12の下面に取り付けられた窒化物系半導体レーザ素子構造20のn型GaN基板1の裏面(図4参照)を、研磨剤が配置されているバフ13の上面に、一定の負荷で押圧する。そして、バフ13(図3参照)に水またはオイルを流しながら、ホルダ12をR方向に回転する。このようにして、n型GaN基板1の厚みが約120μm〜約180μmになるまで機械研磨を行う。なお、n型GaN基板1の厚みを、約120μm〜約180μmの範囲に加工するのは、この範囲の厚みであれば、後述する劈開工程を良好に行うことができるためである。
この後、本実施形態では、反応性イオンエッチング(RIE)法により、n型GaN基板1の裏面(窒素面)を、約20分間エッチングする。このエッチングは、ガス流量、Cl2ガス:10sccm、BCl3ガス:5sccm、エッチング圧力:約3.3Pa、RFパワー:200W(0.63W/cm2)、エッチング温度:常温の条件下で行った。これにより、n型GaN基板1の裏面(窒素面)を約1μmの厚み分だけ除去する。その結果、上記機械研磨に起因して発生した結晶欠陥を含むn型GaN基板1の裏面近傍の領域を除去することができる。また、n型GaN基板1の裏面を、機械研磨のみで加工した場合と比べて、より平坦な鏡面にすることができる。なお、n型GaN基板1の裏面の反射像を目視により良好に確認することができる表面状態を鏡面とする。
ここで、上記したエッチングによる効果を確認するために、エッチング前後におけるn型GaN基板1の裏面の結晶欠陥(転位)密度を、TEM(Transmission Electron Microscope)分析により測定した。その結果、エッチング前には、結晶欠陥密度は、1×1010cm-2以上であったのに対して、エッチング後には、結晶欠陥密度は、1×106cm-2以下にまで減少していることが判明した。また、エッチング後のn型GaN基板1の裏面近傍の電子キャリア濃度を、エレクトロケミカルC−V測定濃度プロファイラーにより測定した。その結果、n型GaN基板1の裏面近傍の電子キャリア濃度は、1.0×1018cm-3以上であった。これにより、RIE法によるエッチングによって、裏面近傍の電子キャリア濃度を、n型GaN基板1の基板キャリア濃度(5×1018cm-3)と同程度にできることがわかった。
また、上記したエッチング条件では、エッチング時間とエッチング深さとは比例関係になる。したがって、エッチング時間を調整することにより、エッチング深さを精度よく制御することができる。また、エッチングガスの組成により、エッチングレートおよび表面状態は変化する。図6は、RIE法のエッチングガスを変化させた場合のエッチングレートの変化を示したグラフである。この場合、Cl2ガス流量を10sccmに固定するとともに、BCl3ガス流量を変化させた場合のエッチングレートを測定した。その結果、図6に示すように、Cl2ガスに対するBCl3ガスの流量比が、30%以上70%以下の範囲であれば、エッチングされた面が平坦な鏡面になることが判明した。なお、Cl2ガスに対するBCl3ガスの流量比が、5%未満の場合または85%を越える場合には、エッチングされた面の平坦性が損なわれるとともに、白濁した面となった。
上記のようなエッチング工程を行った後、窒化物系半導体レーザ素子構造20を、室温のHCl溶液(濃度10%)に1分間浸漬することにより塩酸処理を行う。これにより、RIE法によるエッチング時に、n型GaN基板1の裏面に付着した塩素系残留物が除去される。
この後、スパッタリング法または真空蒸着法などを用いて、窒化物系半導体レーザ素子構造20のn型GaN基板1の裏面(窒素面)上に、n型GaN基板1の裏面に近い方から順に、6nmの厚みを有するAl膜と、2nmの厚みを有するSi膜と、10nmの厚みを有するNi膜と、300nmの厚みを有するAu膜とからなるn側電極8を形成する。
最後に、劈開により、素子分離および共振器端面の形成を行うことによって、図5に示すような本実施形態による窒化物系半導体レーザ素子が完成される。
本実施形態による窒化物系半導体レーザ素子の製造プロセスでは、上記したように、n型GaN基板1の裏面(窒素面)を、RIE法によりエッチングすることによって、研磨工程に起因して発生したn型GaN基板1の裏面近傍の結晶欠陥を含む領域を除去することができる。これにより、結晶欠陥による電子キャリアのトラップなどに起因する電子キャリア濃度の低下を抑制することができる。また、n型GaN基板1の裏面が窒素面である場合には、n型GaN基板1の裏面が酸化されやすいので、その酸化された部分をエッチングにより除去することができる。これらの結果、n型GaN基板1とn側電極8とのコンタクト抵抗を低減することができる。なお、本実施形態に沿って作製された窒化物系半導体レーザ素子におけるn型GaN基板1とn側電極8とのコンタクト抵抗をTLM法(Transmission Line Model)により測定したところ、コンタクト抵抗は、2.0×10-4Ωcm2以下であった。また、n型GaN基板1の裏面(窒素面)上にn側電極8を形成した後、さらに500℃の窒素ガス雰囲気中で10分間の熱処理を行った場合には、コンタクト抵抗はさらに低い1.0×10-5Ωcm2であった。
また、本実施形態による窒化物系半導体レーザ素子の製造プロセスでは、上記したように、n型GaN基板1の裏面を、RIE法によりエッチングすることによって、機械研磨の場合に比べて、n型GaN基板1の裏面の平坦性をより向上させることができる。これにより、n型GaN基板1の裏面上に形成されたn側電極8の平坦性を向上させることができる。その結果、窒化物系半導体レーザ素子をジャンクションダウンで取り付ける構造の場合には、n側電極8に対するワイヤボンディングのボンディング特性を向上させることができる。また、n側電極8を放熱基台(サブマウント)に取り付ける構造の場合には、n側電極8と放熱基台との密着性を向上させることができるので、良好な放熱特性を得ることができる。
次に、RIE法を用いてn型GaN基板の裏面(窒素面)のエッチングを行う本発明の効果をより詳細に確認するため、以下の表1に示すような実験を行った。
Figure 2008160167
上記表1を参照して、ウルツ鉱構造を有するn型GaN基板からなる試料1〜7に、種々の窒素面(裏面)処理を施した後、n型GaN基板の裏面近傍の電子キャリア濃度を、エレクトロケミカルC−V測定濃度プロファイラーにより測定した。また、電子キャリア濃度測定後の試料1〜7のn型GaN基板の裏面上に、n側電極を形成した後、n型GaN基板とn側電極とのコンタクト抵抗を、TLM法により測定した。
なお、試料1〜7のn側電極は、上記した一実施形態と同様、Al膜とSi膜とNi膜とAu膜とにより形成した。また、基板研磨、RIE法によるエッチングおよび塩酸処理のその他の条件は、上記した一実施形態と同様である。なお、試料6は、上記した一実施形態の製造プロセスを用いて作製した。
結果としては、RIE法を用いてn型GaN基板の裏面のエッチングを行った本発明による試料3〜7では、従来と同様の方法により作製された試料1よりもコンタクト抵抗が大きく低減された。具体的には、試料1のコンタクト抵抗は、20Ωcm2であったのに対して、本発明による試料3〜7のコンタクト抵抗は、0.05Ωcm2以下であった。これは以下の理由によると考えられる。すなわち、本発明による試料3〜7では、機械研磨により発生した結晶欠陥を含むn型GaN基板の裏面近傍の領域が、RIE法によるエッチングにより除去されたと考えられる。このため、n型GaN基板の裏面近傍における結晶欠陥に起因して電子キャリア濃度が低下するのが抑制されたためであると考えられる。
また、本発明による試料3〜7では、従来例に対応する試料1よりも、n型GaN基板の裏面近傍の電子キャリア濃度が高かった。具体的には、従来例に対応する試料1の電子キャリア濃度は、2.0×1016cm-3であったのに対して、本発明による試料3〜7の電子キャリア濃度は、1.0×1017cm-3以上であった。
また、Cl2ガスを用いたRIE法により、n型GaN基板の裏面を約1μmの厚み分だけ除去した試料4では、Cl2ガスを用いたRIE法により、n型GaN基板の裏面を約0.5μmの厚み分だけ除去した試料3よりも、低いコンタクト抵抗を得ることができた。これは、約0.5μmの厚み分の除去では、機械研磨により発生した結晶欠陥を含むn型GaN基板の裏面近傍の領域を十分に除去することができなかったためであると考えられる。これらの試料において、n型GaN基板の裏面の結晶欠陥(転位)密度を、TEM分析により測定したところ、試料3の結晶欠陥密度は1×109cm-2であった。一方、試料4では、観察した視野中に結晶欠陥は観察されず、結晶欠陥密度は1×106cm-2以下であった。したがって、RIE法によりn型GaN基板の裏面を約1.0μm以上の厚み分除去するのが好ましい。
また、Cl2ガスおよびBCl3ガスを用いたRIE法によるエッチングを行った試料5では、Cl2ガスのみを用いたRIE法によってn型GaN基板の裏面のエッチングを行った試料4に比べて、さらに低いコンタクト抵抗を得ることができた。
また、Cl2ガスおよびBCl3ガスを用いたRIE法によりn型GaN基板の裏面をエッチングした後、塩酸処理を行った上記一実施形態に対応する試料6、および、さらに500℃の窒素雰囲気中で10分間の熱処理を行った試料7では、塩酸処理および熱処理を行わない試料5に比べて、さらに低いコンタクト抵抗を得ることができた。また、試料6と試料7との比較から、熱処理によって、n型GaN基板とn側電極とのコンタクト抵抗をさらに減少することができるとともに、n型GaN基板の裏面近傍の電子キャリア濃度をさらに向上させることが判明した。
なお、RIE法によるエッチングを行わずに、10%の濃度のHCl溶液による約10分間の浸漬処理(塩酸処理)を行った試料2では、塩酸処理を行わなかった従来例に対応する試料1よりも、低いコンタクト抵抗を得ることができた。具体的には、試料1のコンタクト抵抗は、20Ωcm2であったのに対して、試料2のコンタクト抵抗は、0.1Ωcm2であった。これは、塩酸処理により、n型GaN基板の裏面が清浄化されたためであると考えられる。
また、n型GaN基板のn型ドーパントとして酸素を用いた場合、コンタクト抵抗を低くするために酸素のドーピング量を多くしてキャリア濃度を上げると結晶性が低下する。しかし、本発明により、上記一実施形態によるn型GaN基板1の酸素ドープ量(基板キャリア濃度:5×1018cm-3)においてもコンタクト抵抗を低くすることができる。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、上記一実施形態では、n型GaN基板1を用いて窒化物系半導体レーザ素子を形成した場合について説明したが、本発明はこれに限らず、ウルツ鉱構造を有するn型の窒化物系半導体基板または窒化物系半導体層を用いた場合であってもよい。たとえば、BN(窒化ホウ素)、AlN(窒化アルミニウム)、InN(窒化インジウム)またはTlN(窒化タリウム)などからなる窒化物系半導体基板または窒化物系半導体層が考えられる。また、これらの混晶からなる窒化物系半導体基板または窒化物系半導体層であってもよい。
また、上記一実施形態では、n型GaN基板1の裏面(窒素面)をRIE法によりエッチングしたが、本発明はこれに限らず、他のドライエッチング(反応性エッチング)を用いてもよい。たとえば、反応性イオンビームエッチングや、ラジカルエッチングや、プラズマエッチングを用いてもよい。
また、上記一実施形態では、n型GaN基板1の裏面(窒素面)を、Cl2ガスとBCl3ガスとを用いて、RIE法によりエッチングを行ったが、本発明はこれに限らず、他のエッチングガスを用いてもよい。たとえば、Cl2とSiCl4との混合ガスやCl2とCF4との混合ガスやCl2ガスを用いてもよい。
また、上記一実施形態では、RIE法によるエッチング後、窒化物系半導体レーザ素子構造20をHCl溶液に浸漬(塩酸処理)することにより、n型GaN基板1の裏面に付着した塩素系残留物を除去したが、本発明はこれに限らず、塩素、フッ素、臭素、ヨウ素、イオウおよびアンモニアの少なくとも1つを含む溶液に浸漬してもよい。
また、上記一実施形態では、n型GaN基板1の上面(Ga面)上に各層2〜6を成長した後、n型GaN基板1の裏面(窒素面)を機械研磨した場合について説明したが、本発明はこれに限らず、n型GaN基板1の裏面(窒素面)をあらかじめ所定の厚みに機械研磨した後、n型GaN基板1の上面(Ga面)上に各層2〜6を形成する場合であってもよい。また、n型GaN基板1の窒素面の機械研磨を行わない場合であってもよい。
また、上記一実施形態では、各層2〜6を形成する際のn型ドーパントおよびp型ドーパントとして、それぞれ、SiおよびMgを用いたが、本発明はこれに限らず、他のn型またはp型のドーパントを用いてもよい。たとえば、n型ドーパントして、SeやGeなどを用いてもよい。また、p型ドーパントして、BeやZnなどを用いてもよい。また、上記一実施形態では、常圧MOCVD法により、n型GaN基板1上に各層2〜6を形成したが、本発明はこれに限らず、他の成長法により、各層2〜6を形成してもよい。たとえば、減圧MOCVD法により、各層2〜6を形成してもよい。
また、上記一実施形態では、n型GaN基板1上に、n型バッファ層2を形成した場合について説明したが、本発明はこれに限らず、n型バッファ層2を形成しない場合であってもよい。この場合、各層3〜6の結晶性は若干低下するが、製造プロセスを簡略化することができる。
また、上記一実施形態では、n側電極8材料としてAl/Si/Ni/Au膜を用いたが、本発明はこれに限らず、10nmの厚みを有するTi膜と500nmの厚みを有するAl膜とからなるn側電極、6nmの厚みを有するAl膜と10nmの厚みを有するNi膜と300nmの厚みを有するAu膜とからなるn側電極、または、10nmの厚みを有するAlSi膜と300nmの厚みを有するZn膜と100nmの厚みを有するAu膜とからなるn側電極などのAlを含む他の電極構造を用いてもよい。
また、上記一実施形態では、電流狭窄構造または横方向光閉じ込め構造として、リッジ構造を用いた場合について説明したが、本発明はこれに限らず、高抵抗のブロック層またはn型のブロック層を用いた埋め込み構造により電流狭窄を行ってもよい。また、イオン注入法などにより、電流狭窄層または横方向光閉じ込め構造としての光吸収層を形成してもよい。
また、上記一実施形態では、本発明を窒化物系半導体レーザ素子に適用する場合について説明したが、本発明はこれに限らず、ウルツ鉱構造を有するn型の窒化物系半導体層または窒化物系半導体基板を用いた半導体素子であればよい。たとえば、表面の平坦性が要求されるMESFET(Metal Semiconductor Field Effect Transistor)、HEMT(High Electron Mobility Transistor)、発光ダイオード素子(LED)または面発光レーザ素子(VCSEL(Vertical Cavity Surface Emitting Laser))などに本発明を適用してもよい。
また、上記一実施形態では、所定の厚みを有するp側電極7およびn側電極8を用いたが、本発明はこれに限らず、他の厚みを有する電極であってもよい。たとえば、電極の各層の厚みを薄くして、電極が透光性を有するように形成することによって、面発光レーザ素子や発光ダイオード素子として用いてもよい。特に、n側の電極は透光性を有するような薄い厚みに形成しても、本発明により、n側電極のコンタクト抵抗を十分に低くすることができる。
また、上記一実施形態では、n型GaN基板1の裏面(窒素面)を、RIE法によりドライエッチングを行ったが、本発明はこれに限らず、n型GaN基板1の裏面(窒素面)をウェットエッチングするようにしてもよい。n型GaN基板1の裏面の窒素面をウェットエッチングする場合には、ウェットエッチング液として、王水、KOHやK228などを用いる。たとえば、0.1Molの濃度のKOHを用いてn型GaN基板1の裏面の窒素面を室温でウェットエッチングすればよい。なお、この場合、約120℃に昇温すれば、室温の場合に比べて、エッチングレートを約10倍にすることができる。
また、上記一実施形態では、n型GaN基板1の窒素面からなる裏面を、RIE法によりドライエッチングする場合について説明したが、本発明はこれに限らず、n型GaN基板1の裏面がGa面からなる場合に、そのn型GaN基板1のGa面からなる裏面をウェットエッチングするようにしてもよい。n型GaN基板1の裏面のGa面をウェットエッチングする場合には、ウェットエッチング液として、王水、KOHやK228などを用いる。たとえば、0.1Molの濃度のKOHを用いて365nmの水銀ランプを用いて、室温でn型GaN基板1の裏面のGa面をウェットエッチングすればよい。なお、この場合、約120℃に昇温すれば、室温の場合に比べて、エッチングレートを約10倍にすることができる。
また、上記一実施形態では、裏面が全て窒素面であるn型GaNジャスト基板を用いる場合について説明したが、本発明はこれに限らず、n型GaN基板の裏面に少しGa面が存在するn型GaNオフ基板を用いてもよい。このn型GaNオフ基板の場合にも、裏面は本発明の窒素面に含まれる。
本発明の一実施形態による窒化物系半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の一実施形態による窒化物系半導体レーザ素子の製造プロセスを説明するための断面図である。 本発明の一実施形態による窒化物系半導体レ−ザ素子の製造プロセスを説明するための断面図である。 図3に示したプロセスにおける拡大断面図である。 本発明の一実施形態による窒化物系半導体レーザ素子の製造プロセスを説明するための斜視図である。 RIE法のエッチングガスを変化させた場合のエッチングレートの変化を示したグラフである。 従来の窒化物系半導体レーザ素子を示した断面図である。
符号の説明
1 n型GaN基板(第1半導体層)
8 n側電極

Claims (6)

  1. 基板の裏面上に形成されたn側電極を放熱基台に取り付ける構造の窒化物系半導体素子であって、
    前記基板は、酸素がドープされたn型の窒化物系半導体からなり、
    前記基板の上面上に形成されたn型の窒化物系半導体層と、
    前記n型の窒化物系半導体層上に形成された活性層と、
    前記活性層上に形成されたp型の窒化物系半導体層と、
    前記p型の窒化物系半導体層上に形成されたp側電極とを備え、
    前記基板は、前記基板の裏面側を研磨することにより、所定の厚みに形成されており、且つ、前記研磨により発生した転位を含む前記基板の裏面近傍の領域がエッチング除去されており、
    前記基板の裏面近傍の領域における転位密度は、1×10cm−2以下に低減され、
    前記n側電極と前記基板との間のコンタクト抵抗は、0.05Ωcm以下である、窒化物系半導体素子。
  2. 前記基板は、HVPE法により形成されており、
    前記窒化物系半導体層は、MOCVD法により形成されている、請求項1に記載の窒化物系半導体素子。
  3. 前記基板の裏面近傍の領域における転位密度は、1×10cm−2以下に低減される、請求項1又は2に記載の窒化物系半導体素子。
  4. 前記基板の裏面は、窒素面を含む、請求項1〜3のいずれかに記載の窒化物系半導体素子。
  5. 前記基板の裏面は、全て窒素面である、請求項1〜4のいずれかに記載の窒化物系半導体素子。
  6. 前記基板は、オフ基板である、請求項1〜5のいずれかに記載の窒化物系半導体素子。
JP2008076847A 2002-03-26 2008-03-24 窒化物系半導体素子 Expired - Lifetime JP5025540B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076847A JP5025540B2 (ja) 2002-03-26 2008-03-24 窒化物系半導体素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002085085 2002-03-26
JP2002085085 2002-03-26
JP2008076847A JP5025540B2 (ja) 2002-03-26 2008-03-24 窒化物系半導体素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006348155A Division JP4171511B2 (ja) 2002-03-26 2006-12-25 窒化物系半導体素子の製造方法

Publications (3)

Publication Number Publication Date
JP2008160167A true JP2008160167A (ja) 2008-07-10
JP2008160167A5 JP2008160167A5 (ja) 2008-11-13
JP5025540B2 JP5025540B2 (ja) 2012-09-12

Family

ID=28449238

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2008076844A Expired - Lifetime JP4180107B2 (ja) 2002-03-26 2008-03-24 窒化物系半導体素子の製造方法
JP2008076845A Pending JP2008211228A (ja) 2002-03-26 2008-03-24 窒化物系半導体素子の製造方法
JP2008076847A Expired - Lifetime JP5025540B2 (ja) 2002-03-26 2008-03-24 窒化物系半導体素子
JP2011226265A Pending JP2012028812A (ja) 2002-03-26 2011-10-13 窒化物系半導体素子
JP2013162967A Pending JP2013243400A (ja) 2002-03-26 2013-08-06 窒化物系半導体素子

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2008076844A Expired - Lifetime JP4180107B2 (ja) 2002-03-26 2008-03-24 窒化物系半導体素子の製造方法
JP2008076845A Pending JP2008211228A (ja) 2002-03-26 2008-03-24 窒化物系半導体素子の製造方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2011226265A Pending JP2012028812A (ja) 2002-03-26 2011-10-13 窒化物系半導体素子
JP2013162967A Pending JP2013243400A (ja) 2002-03-26 2013-08-06 窒化物系半導体素子

Country Status (3)

Country Link
US (9) US6791120B2 (ja)
JP (5) JP4180107B2 (ja)
CN (3) CN1271766C (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US7904187B2 (en) 1999-02-01 2011-03-08 Hoffberg Steven M Internet appliance system and method
US6791120B2 (en) * 2002-03-26 2004-09-14 Sanyo Electric Co., Ltd. Nitride-based semiconductor device and method of fabricating the same
KR101017657B1 (ko) 2002-04-30 2011-02-25 크리 인코포레이티드 고 전압 스위칭 디바이스 및 이의 제조 방법
US6864502B2 (en) * 2002-09-18 2005-03-08 Toyoda Gosei Co., Ltd. III group nitride system compound semiconductor light emitting element
JP3841092B2 (ja) * 2003-08-26 2006-11-01 住友電気工業株式会社 発光装置
EP1679740A4 (en) * 2003-10-27 2009-09-02 Sumitomo Electric Industries GALLIUM NITRIDE SEMICONDUCTOR SUBSTRATE AND PROCESS FOR PRODUCING THE SAME
JP2005191530A (ja) * 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd 発光装置
KR101154494B1 (ko) 2003-12-09 2012-06-13 재팬 사이언스 앤드 테크놀로지 에이젼시 질소면의 표면상의 구조물 제조를 통한 고효율 3족 질화물계 발광다이오드
US7355284B2 (en) * 2004-03-29 2008-04-08 Cree, Inc. Semiconductor light emitting devices including flexible film having therein an optical element
JP4379208B2 (ja) * 2004-06-03 2009-12-09 三菱電機株式会社 窒化物半導体装置の製造方法
JP2006128558A (ja) * 2004-11-01 2006-05-18 Sony Corp 半導体レーザ、半導体レーザの実装方法、半導体レーザ実装構造体および光ディスク装置
JP5065574B2 (ja) * 2005-01-12 2012-11-07 住友電気工業株式会社 GaN基板の研磨方法
EP1681712A1 (en) 2005-01-13 2006-07-19 S.O.I. Tec Silicon on Insulator Technologies S.A. Method of producing substrates for optoelectronic applications
CN101124704A (zh) 2005-03-16 2008-02-13 松下电器产业株式会社 氮化物半导体装置及其制造方法
US7606276B2 (en) * 2005-05-19 2009-10-20 Panasonic Corporation Nitride semiconductor device and method for fabricating the same
JP2007080896A (ja) * 2005-09-12 2007-03-29 Sanyo Electric Co Ltd 半導体素子
JP2008042157A (ja) * 2006-07-12 2008-02-21 Sumitomo Electric Ind Ltd 3族窒化物基板の製造方法、および3族窒化物基板
US7585772B2 (en) * 2006-07-26 2009-09-08 Freiberger Compound Materials Gmbh Process for smoothening III-N substrates
KR100755656B1 (ko) * 2006-08-11 2007-09-04 삼성전기주식회사 질화물계 반도체 발광소자의 제조방법
US20080111144A1 (en) * 2006-11-15 2008-05-15 The Regents Of The University Of California LIGHT EMITTING DIODE AND LASER DIODE USING N-FACE GaN, InN, AND AlN AND THEIR ALLOYS
US8193020B2 (en) 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
CA2669228C (en) * 2006-11-15 2014-12-16 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality n-face gan, inn, and ain and their alloys by metal organic chemical vapor deposition
JP2010510655A (ja) * 2006-11-15 2010-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア N面GaN、InNおよびAlNならびにそれらの合金を用いた発光ダイオードおよびレーザダイオード
WO2008064070A1 (en) * 2006-11-17 2008-05-29 3M Innovative Properties Company Optical bonding composition for led light source
US20100051970A1 (en) * 2006-11-17 2010-03-04 Ouderkirk Andrew J Planarized led with optical extractor
WO2008063884A1 (en) * 2006-11-20 2008-05-29 3M Innovative Properties Company Optical bonding composition for led light source
JP4561732B2 (ja) * 2006-11-20 2010-10-13 トヨタ自動車株式会社 移動体位置測位装置
JP2009190936A (ja) * 2008-02-14 2009-08-27 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法
US8343824B2 (en) * 2008-04-29 2013-01-01 International Rectifier Corporation Gallium nitride material processing and related device structures
JP4730422B2 (ja) * 2008-10-24 2011-07-20 住友電気工業株式会社 Iii族窒化物半導体電子デバイス、iii族窒化物半導体電子デバイスを作製する方法、及びiii族窒化物半導体エピタキシャルウエハ
JP2011103400A (ja) * 2009-11-11 2011-05-26 Sumitomo Electric Ind Ltd 化合物半導体素子
JP2011187579A (ja) * 2010-03-05 2011-09-22 Sony Corp モードロック半導体レーザ素子及びその駆動方法
RU2434315C1 (ru) 2010-03-15 2011-11-20 Юрий Георгиевич Шретер Светоизлучающее устройство с гетерофазными границами
CN102136435B (zh) * 2010-04-08 2013-05-15 上海卓骋电子科技有限公司 高性能半导体结构的制造方法
JP2012231087A (ja) * 2011-04-27 2012-11-22 Mitsubishi Chemicals Corp 窒化物系ledの製造方法
JP5598437B2 (ja) * 2011-07-12 2014-10-01 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法
KR101433548B1 (ko) 2011-09-12 2014-08-22 미쓰비시 가가꾸 가부시키가이샤 발광 다이오드 소자
CN103579428B (zh) * 2012-07-30 2016-08-17 比亚迪股份有限公司 一种led外延片及其制备方法
JP2013128150A (ja) * 2013-03-26 2013-06-27 Toyoda Gosei Co Ltd Iii族窒化物半導体からなる発光素子の製造方法
JP6151135B2 (ja) 2013-09-03 2017-06-21 株式会社東芝 半導体装置及びその製造方法
JP6255874B2 (ja) * 2013-10-09 2018-01-10 日産自動車株式会社 半導体装置及びその製造方法
US9627699B2 (en) 2013-11-06 2017-04-18 Watt Fuel Cell Corp. Gaseous fuel CPOX reformers and methods of CPOX reforming
DE112014005913B4 (de) * 2013-12-20 2021-10-07 Ngk Insulators, Ltd. Verfahren zum Herstellen von Substraten mit zumindest einer Oberflächen-Gallium-Nitrid-Schicht
CN104752306B (zh) * 2013-12-31 2018-03-09 北京北方华创微电子装备有限公司 在氮化镓层上刻蚀隔离槽的处理方法
WO2015146069A1 (ja) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 発光ダイオード素子
CN105355550B (zh) * 2015-12-02 2018-05-01 中国科学院微电子研究所 Iii族氮化物低损伤刻蚀方法
CN107460546B (zh) * 2017-07-18 2019-06-25 成都新柯力化工科技有限公司 一种规模化制备led用半导体材料氮化镓薄膜的方法
CN109755356B (zh) * 2017-11-07 2020-08-21 山东浪潮华光光电子股份有限公司 一种提升GaN基发光二极管内置欧姆接触性能的方法
WO2020186080A1 (en) * 2019-03-12 2020-09-17 The Regents Of The University Of California Method for removing a bar of one or more devices using supporting plates
JP2021012900A (ja) * 2019-07-03 2021-02-04 パナソニックIpマネジメント株式会社 Iii族窒化物系半導体レーザ素子
US11538849B2 (en) * 2020-05-28 2022-12-27 X Display Company Technology Limited Multi-LED structures with reduced circuitry
CN112548845B (zh) * 2021-02-19 2021-09-14 清华大学 一种基板加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044400A (ja) * 1998-05-28 2000-02-15 Sumitomo Electric Ind Ltd 窒化ガリウム単結晶基板及びその製造方法
JP2000049374A (ja) * 1998-07-28 2000-02-18 Sumitomo Electric Ind Ltd 白色led
JP2001176823A (ja) * 1999-12-17 2001-06-29 Sharp Corp 窒化物半導体チップの製造方法
JP2002016000A (ja) * 2000-06-27 2002-01-18 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体基板

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555877A (en) * 1982-10-13 1985-12-03 Fausto Libra Prefabricated multi-story building
JPH09103172A (ja) 1985-07-12 1997-04-22 Iseki & Co Ltd 脱穀装置
JPH05299693A (ja) * 1992-04-21 1993-11-12 Victor Co Of Japan Ltd 端面発光型半導体装置
JPH06275911A (ja) 1993-03-19 1994-09-30 Fujitsu Ltd 半導体レーザ装置とその製造方法
US5493577A (en) * 1994-12-21 1996-02-20 Sandia Corporation Efficient semiconductor light-emitting device and method
JP3165374B2 (ja) 1995-08-31 2001-05-14 株式会社東芝 化合物半導体の電極の形成方法
JP3754120B2 (ja) * 1996-02-27 2006-03-08 株式会社東芝 半導体発光装置
JPH09266352A (ja) * 1996-03-28 1997-10-07 Fuji Photo Film Co Ltd 半導体発光素子
JP3495866B2 (ja) 1996-12-24 2004-02-09 キヤノン株式会社 光電変換装置
JPH10190059A (ja) 1996-12-26 1998-07-21 Nec Corp 窒化化合物半導体素子及びその製造方法
JPH10294531A (ja) * 1997-02-21 1998-11-04 Toshiba Corp 窒化物化合物半導体発光素子
EP0942459B1 (en) * 1997-04-11 2012-03-21 Nichia Corporation Method of growing nitride semiconductors
JP3395631B2 (ja) 1997-04-17 2003-04-14 日亜化学工業株式会社 窒化物半導体素子及び窒化物半導体素子の製造方法
US6555403B1 (en) * 1997-07-30 2003-04-29 Fujitsu Limited Semiconductor laser, semiconductor light emitting device, and methods of manufacturing the same
AU9368798A (en) * 1997-09-23 1999-04-12 Auckland Uniservices Limited Method and system for detecting white matter neural injury and predicting neurological outcome particularly for preterm infants
JP3932466B2 (ja) * 1997-09-25 2007-06-20 富士フイルム株式会社 半導体レーザ
JP3925753B2 (ja) * 1997-10-24 2007-06-06 ソニー株式会社 半導体素子およびその製造方法ならびに半導体発光素子
JP3456413B2 (ja) 1997-11-26 2003-10-14 日亜化学工業株式会社 窒化物半導体の成長方法及び窒化物半導体素子
JP3859356B2 (ja) 1998-05-21 2006-12-20 日亜化学工業株式会社 窒化物半導体素子の製造方法
JP3360812B2 (ja) 1998-05-26 2003-01-07 日亜化学工業株式会社 窒化物半導体素子
TW428331B (en) * 1998-05-28 2001-04-01 Sumitomo Electric Industries Gallium nitride single crystal substrate and method of producing the same
JP4005701B2 (ja) * 1998-06-24 2007-11-14 シャープ株式会社 窒素化合物半導体膜の形成方法および窒素化合物半導体素子
US6319742B1 (en) * 1998-07-29 2001-11-20 Sanyo Electric Co., Ltd. Method of forming nitride based semiconductor layer
JP3683416B2 (ja) 1998-08-21 2005-08-17 アンリツ株式会社 スーパールミネッセントダイオード
KR100277968B1 (ko) * 1998-09-23 2001-03-02 구자홍 질화갈륨 기판 제조방법
JP2001015852A (ja) * 1999-04-26 2001-01-19 Sharp Corp p型のIII族窒化物半導体層上の電極構造とその形成方法
JP4573374B2 (ja) 1999-05-21 2010-11-04 シャープ株式会社 半導体発光装置の製造方法
JP4077137B2 (ja) 2000-06-15 2008-04-16 東芝電子エンジニアリング株式会社 半導体発光素子及びその製造方法
US6803603B1 (en) * 1999-06-23 2004-10-12 Kabushiki Kaisha Toshiba Semiconductor light-emitting element
JP2001068786A (ja) 1999-06-24 2001-03-16 Sharp Corp 窒化物系化合物半導体発光素子およびその製造方法
JP4282173B2 (ja) * 1999-09-03 2009-06-17 シャープ株式会社 窒素化合物半導体発光素子およびその製造方法
US6455877B1 (en) * 1999-09-08 2002-09-24 Sharp Kabushiki Kaisha III-N compound semiconductor device
JP3733008B2 (ja) 1999-09-08 2006-01-11 シャープ株式会社 Iii−n系化合物半導体装置
JP4424840B2 (ja) * 1999-09-08 2010-03-03 シャープ株式会社 Iii−n系化合物半導体装置
JP4145437B2 (ja) * 1999-09-28 2008-09-03 住友電気工業株式会社 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板
JP2001102678A (ja) * 1999-09-29 2001-04-13 Toshiba Corp 窒化ガリウム系化合物半導体素子
JP4618836B2 (ja) 2000-01-04 2011-01-26 シャープ株式会社 窒化物系化合物半導体基板およびその製造方法
JP2001345266A (ja) 2000-02-24 2001-12-14 Matsushita Electric Ind Co Ltd 半導体装置,その製造方法及び半導体基板の製造方法
US6566231B2 (en) * 2000-02-24 2003-05-20 Matsushita Electric Industrial Co., Ltd. Method of manufacturing high performance semiconductor device with reduced lattice defects in the active region
JP3636976B2 (ja) * 2000-03-17 2005-04-06 日本電気株式会社 窒化物半導体素子およびその製造方法
US6738403B2 (en) * 2000-04-06 2004-05-18 Fuji Photo Film Co., Ltd. Semiconductor laser element and semiconductor laser
JP2001308460A (ja) * 2000-04-27 2001-11-02 Sharp Corp 窒化物半導体レーザ素子とその光ピックアップ装置
JP2001322899A (ja) 2000-05-11 2001-11-20 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体基板及びその製造方法
JP2001339101A (ja) * 2000-05-26 2001-12-07 Sharp Corp 窒化ガリウム系化合物半導体素子
JP2002026456A (ja) 2000-06-30 2002-01-25 Toshiba Corp 半導体装置、半導体レーザ及びその製造方法並びにエッチング方法
JP2002026438A (ja) 2000-07-05 2002-01-25 Sanyo Electric Co Ltd 窒化物系半導体素子およびその製造方法
JP2002033305A (ja) 2000-07-13 2002-01-31 Hitachi Ltd 半導体装置の製造方法およびそれを用いて製造した半導体装置
TW451504B (en) * 2000-07-28 2001-08-21 Opto Tech Corp Compound semiconductor device and method for making the same
JP4416297B2 (ja) * 2000-09-08 2010-02-17 シャープ株式会社 窒化物半導体発光素子、ならびにそれを使用した発光装置および光ピックアップ装置
JP2002158393A (ja) 2000-09-11 2002-05-31 Fuji Photo Film Co Ltd 半導体レーザ素子および半導体レーザ装置
JP2002094189A (ja) * 2000-09-14 2002-03-29 Sharp Corp 窒化物半導体レーザ素子およびそれを用いた光学装置
JP2002141552A (ja) * 2000-10-31 2002-05-17 Ricoh Co Ltd 3族窒化物半導体、半導体基板、該半導体を用いたレーザおよび半導体装置
JP3812356B2 (ja) 2001-03-30 2006-08-23 松下電器産業株式会社 半導体発光素子およびその製造方法
JP2001313441A (ja) 2001-03-30 2001-11-09 Rohm Co Ltd 半導体発光素子
JP2002324913A (ja) * 2001-04-25 2002-11-08 Ricoh Co Ltd Iii族窒化物半導体およびその作製方法および半導体装置およびその作製方法
KR100387242B1 (ko) 2001-05-26 2003-06-12 삼성전기주식회사 반도체 발광소자의 제조방법
US6613143B1 (en) * 2001-07-06 2003-09-02 Technologies And Devices International, Inc. Method for fabricating bulk GaN single crystals
US6455340B1 (en) * 2001-12-21 2002-09-24 Xerox Corporation Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff
US6515308B1 (en) * 2001-12-21 2003-02-04 Xerox Corporation Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
JP3933592B2 (ja) 2002-03-26 2007-06-20 三洋電機株式会社 窒化物系半導体素子
US6791120B2 (en) * 2002-03-26 2004-09-14 Sanyo Electric Co., Ltd. Nitride-based semiconductor device and method of fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044400A (ja) * 1998-05-28 2000-02-15 Sumitomo Electric Ind Ltd 窒化ガリウム単結晶基板及びその製造方法
JP2000049374A (ja) * 1998-07-28 2000-02-18 Sumitomo Electric Ind Ltd 白色led
JP2001176823A (ja) * 1999-12-17 2001-06-29 Sharp Corp 窒化物半導体チップの製造方法
JP2002016000A (ja) * 2000-06-27 2002-01-18 Sanyo Electric Co Ltd 窒化物系半導体素子および窒化物系半導体基板

Also Published As

Publication number Publication date
CN1797803A (zh) 2006-07-05
US20080067541A1 (en) 2008-03-20
US20070077669A1 (en) 2007-04-05
JP4180107B2 (ja) 2008-11-12
CN1271766C (zh) 2006-08-23
US20080315221A1 (en) 2008-12-25
JP2012028812A (ja) 2012-02-09
US20050191775A1 (en) 2005-09-01
CN1913104B (zh) 2010-05-12
US7629623B2 (en) 2009-12-08
US20080179601A1 (en) 2008-07-31
US6890779B2 (en) 2005-05-10
US20050029539A1 (en) 2005-02-10
JP2008160166A (ja) 2008-07-10
US20080069162A1 (en) 2008-03-20
JP2013243400A (ja) 2013-12-05
CN100448039C (zh) 2008-12-31
JP2008211228A (ja) 2008-09-11
JP5025540B2 (ja) 2012-09-12
US20070235750A1 (en) 2007-10-11
CN1913104A (zh) 2007-02-14
CN1447485A (zh) 2003-10-08
US7655484B2 (en) 2010-02-02
US20040012032A1 (en) 2004-01-22
US6791120B2 (en) 2004-09-14

Similar Documents

Publication Publication Date Title
JP5025540B2 (ja) 窒化物系半導体素子
JP3933592B2 (ja) 窒化物系半導体素子
US9786810B2 (en) Method of fabricating optical devices using laser treatment
US8283677B2 (en) Nitride semiconductor light-emitting device
JP3662806B2 (ja) 窒化物系半導体層の製造方法
JPWO2006041134A1 (ja) 窒化化合物半導体素子およびその製造方法
KR20110110846A (ko) 레이저 패시트들을 위한 광전기화학 식각
JP2002185085A (ja) 窒化物系半導体レーザ素子及びチップ分割方法
JP3920910B2 (ja) 窒化物系半導体素子およびその製造方法
JP2007273844A (ja) 半導体素子
WO2009087855A1 (ja) 半導体デバイスの製造方法
JP4148976B2 (ja) 窒化物系半導体素子の製造方法
JP2007116192A (ja) 窒化物系半導体装置
JP3896149B2 (ja) 窒化物系半導体素子およびその製造方法
JP4017654B2 (ja) 窒化物系半導体素子
JP4078380B2 (ja) 窒化物系半導体素子の製造方法
JP4171511B2 (ja) 窒化物系半導体素子の製造方法
JP2002026438A (ja) 窒化物系半導体素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5025540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term