JP2005268237A - リソグラフィ装置、デバイス製造方法、およびそれにより製造されたデバイス - Google Patents

リソグラフィ装置、デバイス製造方法、およびそれにより製造されたデバイス Download PDF

Info

Publication number
JP2005268237A
JP2005268237A JP2003196130A JP2003196130A JP2005268237A JP 2005268237 A JP2005268237 A JP 2005268237A JP 2003196130 A JP2003196130 A JP 2003196130A JP 2003196130 A JP2003196130 A JP 2003196130A JP 2005268237 A JP2005268237 A JP 2005268237A
Authority
JP
Japan
Prior art keywords
alignment
marker
light
pupil plane
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003196130A
Other languages
English (en)
Other versions
JP4091486B2 (ja
Inventor
Boef Arie Jeffrey Den
ジェフリー デン ボーフ アリー
Maarten Hoogerland
ホーゲルランド マールテン
Boguslaw Gajdeczko
ガユデクズコ ボグスロウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2005268237A publication Critical patent/JP2005268237A/ja
Application granted granted Critical
Publication of JP4091486B2 publication Critical patent/JP4091486B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Abstract

【課題】単一のアライメントマークを使用して、および/または非対称アライメントマークを調整して、アライメント位置を捕捉することの可能な改良されたアライメントシステムを提供する。
【解決手段】アライメントシステムにおいて、2つの重なり合う、相対回転されたアライメントマーカの像を作り出す自己参照干渉計を用いる。検出器が像のフーリエ変換が干渉させられる瞳面における強度を検出する。干渉された次数における強度変化として示される、2つの像の回折次数間の位相差から位置情報が得られる。回折次数のどちらかのサイドの2つの位置で強度を測定することにより非対称性もまた計測可能である。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、放射線の投影ビームを供給する放射線システムと、所望するパターンに従って投影ビームをパターン化するパターニング手段を支持する支持構造と、基板を保持する基板テーブルと、パターン化されたビームを基板の目標部分に投影する投影システムと、180°相対回転されるアライメントマークの2つの重なり合う像を投影する自己参照干渉計を備えたアライメントシステムとにより構成されるリソグラフィ投影装置に関する。
【0002】
【従来の技術】
ここに使用する「パターニング手段」なる用語は、入射する放射線ビームに、基板の目標部分に作り出されるべきパターンと一致するパターン化断面を与えるために使用し得る手段に当たるものとして広義に解釈されるべきである。また、「ライトバルブ」なる用語もこうした状況において使用される。一般的に、上記のパターンは、集積回路や他のデバイス(以下を参照)であるような、デバイスにおいて目標部分に作り出される特別な機能層に相当する。そのようなパターニング手段には以下が含まれる。すなわち、
− マスク。マスクの概念はリソグラフィにおいて周知のものであり、これには、様々なハイブリッドマスクタイプのみならず、バイナリマスク、レベンソンマスク、減衰位相シフトマスクといったようなマスクタイプも含まれる。放射線ビームにこのようなマスクを配置することにより、マスクに照射する放射線の、マスクパターンに従う選択的透過(透過性マスクの場合)や選択的反射(反射性マスクの場合)を可能にする。マスクの場合、その支持構造は一般的に、入射する放射線ビームの所望する位置にマスクを保持しておくことが可能であり、かつ、必要な場合、ビームに対して運動させることの可能なマスクテーブルである。
− プログラマブルミラーアレイ。このようなデバイスの一例として、粘弾性制御層および反射面を有するマトリクスアドレス可能面があげられる。こうした装置の基本的原理は、(例えば)反射面のアドレスされた領域は入射光を回折光として反射するが、アドレスされていない領域は入射光を非回折光として反射するといったことである。適切なフィルタを使用することにより、回折光のみを残して上記非回折光を反射ビームからフィルタすることが可能である。この方法において、ビームはマトリクスアドレス可能面のアドレスパターンに従ってパターン形成される。プログラマブルミラーアレイのまた別の実施形態では小さな複数のミラーのマトリクス配列を用いる。そのミラーの各々は、適した局部電界を適用することによって、もしくは圧電作動手段を用いることによって、軸を中心に個々に傾けられている。もう一度言うと、ミラーはマトリクスアドレス可能であり、それによりアドレスされたミラーはアドレスされていないミラーとは異なる方向に入射の放射線ビームを反射する。このようにして、反射されたビームはマトリクスアドレス可能ミラーのアドレスパターンに従いパターン形成される。必要とされるマトリクスアドレッシングは適切な電子手段を用いて実行される。前述の両方の状況において、パターニング手段は1つ以上のプログラマブルミラーアレイから構成可能である。ここで言及するミラーアレイの詳細は例えば、米国特許第US5,296,891号および同第US5,523,193号、並びに、PCT特許種出願第WO98/38597および同WO98/33096に記載されている。プログラマブルミラーアレイの場合、上記支持構造は、例えばフレームもしくはテーブルとして具体化され、これは必要に応じて、固定式となるか、もしくは可動式となる。
− プログラマブルLCDアレイ。このような構成の例が、米国特許第US5,229,872号に詳細に説明されているので参照されたい。上記同様、この場合における支持構造も、例えばフレームもしくはテーブルとして具体化され、これも必要に応じて、固定式となるか、もしくは可動式となる。簡潔化の目的で、本文の残りを、特定の箇所において、マスクおよびマスクテーブルを必要とする例に限定して導くものとする。しかし、こうした例において論じられる一般的な原理は、既に述べたようなパターニング手段として広義に理解するべきである。
【0003】
リソグラフィ投影装置は例えば、集積回路(IC)の製造において使用可能である。この場合、パターニング手段はICの個々の層に対応する回路パターンを生成する。そして、放射線感光原料(レジスト)の層が塗布された基板(シリコンウェーハ)上の目標部分(例えば1つあるいはそれ以上のダイから成る)にこのパターンを像形成することが出来る。一般的に、シングルウェーハは、投影システムを介して1つずつ順次照射される近接目標部分の全体ネットワークを含んでいる。マスクテーブル上のマスクによるパターニングを用いる現在の装置は、異なる2つのタイプのマシンに区分される。リソグラフィ投影装置の一タイプでは、全体マスクパターンを目標部分に1回の作動にて露光することによって各目標部分が照射される。こうした装置は一般的にウェーハステッパと称されている。ステップアンドスキャン装置と称される別の装置では、所定の基準方向(「スキャニング」方向)にマスクパターンを投影ビーム下で徐々にスキャニングし、これと同時に基板テーブルをこの方向と平行に、あるいは非並行にスキャニングすることにより、各目標部分が照射される。一般的に、投影装置は倍率係数M(一般的に、<1)を有することから、基板テーブルが走査される速度Vは、マスクテーブルが走査される速度の係数M倍となる。ここに記載を行ったリソグラフィデバイスに関するさらなる情報は、参考までに記載を行うと、例えば、米国特許第US6,046,792号から得ることが出来る。
【0004】
リソグラフィ投影装置を使用する製造工程において、パターン(例えばマスクにおける)は少なくとも部分的に放射線感光材(レジスト)の層で覆われた基板上に像形成される。この像形成ステップに先立ち、基板は、プライミング、レジスト塗布、およびソフトベークといったような各種の工程を経る。露光後、基板は、ポストベーク(PEB)、現像、ハードベーク、および結像フューチャの測定/検査といったような他の工程を通る。この工程の配列は、例えばICといったような素子の個々の層をパターン化するための基準として使用される。このようなパターン形成された層は、それから、全て個々の層を仕上げる目的である、エッチング、イオン注入(ドーピング)、メタライゼーション、酸化、化学機械的研磨等といった種々のプロセスを経る。数枚の層が必要とされる場合には、全体工程、もしくはその変形をそれぞれの新しい層に繰り返す必要がある。最終的に、素子のアレイが基板(ウェーハ)上に形成される。次に、これらの素子はダイシングやソーイングといったような技法で相互より分離される。それから個々の素子は、キャリアに装着されたり、ピンに接続されたりし得る。こうした工程、例えば、1997年にマグローヒル出版会社より刊行された、Peter van Zant著、「マイクロチップ製造:半導体処理に対する実用ガイド」という名称の書籍(“Microchip Fabrication:A Pratical Guide to Semiconductor Processing”)の第3版、ISBN0−07−067250−4に詳細に説明されている。
【0005】
簡潔化の目的で、これより投影システムを「レンズ」と称するものとする。しかし、この用語は、例えば屈折光学システム、反射光学システム、および反射屈折光学システムを含むさまざまなタイプの投影システムを網羅するものとして広義に解釈されるべきである。放射線システムはまた、放射線の投影ビームの誘導、成形、あるいは制御を行う、こうした設計タイプのいずれかに応じて稼動する構成要素も備えることが出来る。こうした構成要素もまた以降において集約的に、あるいは単独的に「レンズ」と称する。さらに、リソグラフィ装置は2つあるいはそれ以上の基板テーブル(および、あるいは2つもしくはそれ以上のマスクテーブル)を有するタイプのものである。このような「多段」デバイスにおいては、追加のテーブルが並列して使用される。もしくは、1つ以上の他のテーブルが露光に使用されている間に予備工程が1つ以上のテーブルにて実行される。例えば、デュアルステージリソグラフィ装置が、米国特許第US5,969,441号および国際特許出願第WO98/40791号に開示されている。
【0006】
リソグラフィ工程における重要なステップは、マスクパターンの投影像が基板上の正確な位置となるようにリソグラフィ装置に基板の位置を合わせることである。リソグラフィの技法により製造される半導体および他のデバイスは、デバイスに多重層を形成する目的に多重露光を行う必要があり、それらが正確に整列していることが重要である。より小さいフィーチャが結像されるようになり、オーバレイ要求がより厳密となり、したがいアライメント工程において要求される精度がより厳密なものになっている。
【0007】
欧州特許第EP−A−0 906 590号において詳述されている1つの既知のアライメントシステムにおいて、基板上のマーカは、1つがXであり、1つがYである、2つのペアの基準格子から成り、このペアになった2つの格子はわずかに異なる周期を有する。格子は空間的コヒーレント光により照射され、回折光が集光されて検出器アレイに結像される。異なる回折次数が分けられ、それにより対応する正次数と負次数が干渉する。アレイにおける各々の検出器は基準格子と光検出器から成る。基板が走査されると、検出器の出力は正弦波状に変化する。両方のペアの格子からの信号は同時にピークをむかえ、マーカが整列される。このタイプのシステムは大きなダイナミックレンジを提供し、かつ、高い回折次数を用いることで、マーカの非対称性に無感応である。しかし、異なる周期を有する2つの格子を設ける必要により、基板上のアライメントマーカに必要とされるスペース量が増す。アライメントマーカに充てられるこうした「シリコンのリアルエステート(スペース)」は最小限に抑えられることが望ましく、よって、デバイス製造には利用出来ない。
【0008】
欧州特許第EP−A−1,148,390号に詳述されている他の既知のシステムにおいては、90°と−90°の回転を行う2つの重なり合う像を生成するコンパクトな自己参照干渉計を使用する。この2つの重なり合う像は瞳面において干渉させられる。光学システムおよび空間フィルタは第一次数ビームを選択、分離し、それらを検出器に再結像する。このシステムは多数の長所を有するが、アライメントマーカにおける180°対称が要求される。
【0009】
【発明が解決しようとする課題】
本発明は、単一のアライメントマークを使用して、および/または非対称アライメントマークを調整して、好ましくはアライメント位置を捕捉することの可能な改良されたアライメントシステムを提供すること目的とする。
【0010】
【課題を解決するための手段】
本目的および他の目的は冒頭の段落において特定したようなリソグラフィ装置において、本発明に従って達成される。ここで、上記のアライメントシステムは、上記の自己参照干渉計の瞳面における異なる複数の位置にて光強度を検出するための検出システムをさらに備えていることを特徴とする。
【0011】
瞳面における強度を検出することにより、本アライメントシステムは可能な情報を最大限に利用する。例えば、瞳面における複数の回折次数の位置における強度変化を検出することで、非常に微細な位置情報を得ることが可能である。この情報はマーカが走査されるときの強度変化における相対位相から得られる。すなわち、異なる回折次数は異なる空間周波数により強度が変化する。いくつかの強度が一致してピークになるとき、中心アライメント位置が決定出来る。代替案として、あるいはこれに加え、回折次数の両サイドに厳密に一定の間隔をとった2つの位置で強度を計測することにより、粗い位置あるいはキャプチャが、2つの強度信号間のビート周波数を検出することによって得られる。キャプチャ範囲サイズは検出器のスペーシングにより判断される。すなわち、検出器がより近いと、キャプチャ範囲がより大きくなる。さらには、瞳面の暗い領域における位相変化を検出することによりマーカにおける非対称性が検出可能であり、こうした非対称性により生じるアライメント位置のエラー補正に用いられる。
【0012】
本発明のアライメントシステムは特に、従来技術において既知のマーカを含めたさまざまに異なる形状のマーカとの使用を可能とし、過去にさかのぼっての互換性を提供し得ることにその長所を有する。本発明のアライメントシステムはまた、従来技術によるアライメントシステムと直接的互換性を有し、エンドユーザはそれ以前のシステムに使用されていたマーカの配置やプロセスを修正することなくそれを利用することが可能である。さらに本アライメントシステムは、追加のフューチャと、より高精度のアライメントを可能にする。
【0013】
本発明は、従来技術におけるよりも高い空間周波数を有する新しいアライメントマーカを使用することも可能であり、改善されたローバスト性とアライメント精度を達成する。さらに、単一周波数の短い格子を使用することが可能であり、アライメントマーカに充てられるスクライブレーンのリアルエステート(スペース)量を減らす。
【0014】
本発明の実施形態において、マーカのフィルタされていないカメラ画像が提供され得る。この画像はより鮮鋭であり、キャプチャリングといったような追加の機能に使用され得る。
【0015】
本発明はモジュール方式の形態でも具体化することが可能である。この場合、前部は安定性要求が厳格であり、後部は安定性要求においてそれほど厳格ではない。後部は前部を変更することなく修正やアップグレードが可能である。
【0016】
本発明のさらなる態様に基づいて、デバイスの製造方法が提供される。該デバイスの製造方法は、放射線感光材料の層により少なくとも部分的に覆われた基板を提供し、放射線システムを用いて放射線の投影ビームを供給し、パターニング手段を用いて投影ビームのその断面にパターンを与え、放射線感光材料の層の目標部分に放射線のパターン化されたビームを投影し、上記の投影ステップの前あるいは後に、180°相対回転される上記アライメントマークの2つの重なり合う像を投影する自己参照干渉計を用いて上記基板のアライメントマークに対するアライメントを実行するステップとを有することを特徴とし、ここで、該アライメントのステップは、上記アライメントマークの上記像のフーリエ変換が干渉する瞳面における複数の異なる位置にて光の強度を計測することから成ることを特徴とする。
【0017】
本発明による装置の使用法に関して、本文ではICの製造において詳細な参照説明を行うものであるが、こうした装置が他の多くの用途においても使用可能であることは明確に理解されるべきである。例えば、本発明による装置は、集積光学装置、磁気ドメインメモリ用ガイダンスおよび検出パターン、液晶ディスプレイパネル、薄膜磁気ヘッド等の製造に使用され得る。こうした代替的な用途においては、本文にて使用した「レチクル」、「ウェーハ」、「ダイ」といった用語は、それぞれ「マスク」、「基板」、「目標部分」といった、より一般的な用語に置き換えて使用され得ることは当該技術分野の専門家にとって明らかである。
【0018】
本明細書において使用した「放射線」および「ビーム」という用語は、イオンビーム、電子ビーム、またX線といったような粒子ビームのみならず、紫外線(例えば、365nm、248nm、193nm、157nm、あるいは126nmの波長を有する)、およびEUV(極紫外線、例えば5nm−20nmの範囲の波長を有する)を含む、あらゆるタイプの電磁放射線を網羅するものである。
【0019】
本発明の実施の形態についての詳細説明を、添付の図面を参照に、例示の方法においてのみ行うものとする。
【0020】
【発明の実施の形態】
実施形態1
図1は、本発明の特別な実施形態に基づいたリソグラフィ投影装置を示したものである。この装置は、特別な本実施形態において放射線源LAも備えた、放射線の投影ビームPB(例えばDUV放射線)を供給する放射線システムEx、ILと、マスクMA(例えばレクチル)を保持するマスクホルダーを備え、かつ、品目PLに対して正確にマスクの位置決めを行う第一位置決め手段に連結を行った第一オブジェクト・テーブル(マスクテーブル)MTと、基板W(例えば、レジスト塗布シリコンウェーハ)を保持する基板ホルダーを備え、かつ、品目PLに対して正確に基板の位置決めを行う第二位置決め手段に連結を行った第二オブジェクト・テーブル(基板テーブル)WTと、マスクMAの照射部分を、基板Wの目標部分C(例えば、1つあるいはそれ以上のダイから成る)に像形成する投影システム(「レンズ」)PL(例えば屈折レンズシステム)とにより構成されている。ここで示しているように、この装置は透過タイプ(すなわち透過マスクを有する)である。しかし、一般的には、例えば反射マスクを有する反射タイプのものも可能である。あるいは、本装置は、上記に関連するタイプであるプログラマブルミラーアレイといったような、他の種類のパターニング手段も使用可能である。
【0021】
ソースLA(例えばエキシマレーザー)は放射線のビームを作り出す。このビームは、直接的に、あるいは、例えばビームエキスパンダーExといったようなコンディショニング手段を横断した後に、照明システム(照明装置)ILに供給される。照明装置ILは、ビームにおける強度分布の外部かつ/あるいは内部放射範囲(一般的にそれぞれ、σ−outerおよびσ−innerに相当する)を設定する調整手段AMから成る。さらに、照明装置ILは一般的に積分器INおよびコンデンサCOといったような、他のさまざまな構成要素を備える。このようにして、マスクMAに照射するビームPBは、その断面に亘り所望する均一性と強度分布とを有する。
【0022】
図1に関して、ソースLAはリソグラフィ装置のハウジング内にある(これは例えばソースが水銀ランプである場合に多い)が、しかし、リソグラフィ投影装置から離して配置することも可能であることを注記する。この場合、ソースLAが作り出す放射線ビームは(適した誘導ミラーにより)装置内に導かれる。この後者のシナリオでは、ソースLAがエキシマレーザーである場合が多い。本発明および請求項はこれら両方のシナリオを網羅するものである。
【0023】
続いてビームPBはマスクテーブルMT上に保持されているマスクMAと衝突する。ビームPBはマスクMAを横断して基板Wの目標部分C上にビームPBの焦点を合わせるレンズPLを通過する。第二位置決め手段(および干渉計測手段IF)により、基板テーブルWTは、例えばビームPBの経路における異なる目標部分Cに位置を合わせるために正確に運動可能である。同様に、第一位置決め手段は、例えばマスクライブラリからマスクMAを機械的に検索した後に、あるいは走査運動の間に、ビームPBの経路に対してマスクMAを正確に位置決めするように使用可能である。一般的に、オブジェクト・テーブルMTおよびオブジェクト・テーブルWTの運動はロングストロークモジュール(粗動位置決め)およびショートストロークモジュール(微動位置決め)にて行われる。これについては図1に明示を行っていない。しかし、ウェーハステッパの場合(ステップアンドスキャン装置とは対照的に)、マスクテーブルMTはショートストロークアクチュエータに連結されるだけであるか、あるいは固定される。
【0024】
ここに表した装置は2つの異なるモードにて使用可能である。
1. ステップモードにおいて、マスクテーブルMTは基本的に静止状態に保たれている。そして、マスクの像全体が1回の作動(すなわち1回の「フラッシュ」)で目標部分Cに投影される。次に基板テーブルWTがx方向および/あるいはy方向にシフトされ、異なる目標部分CがビームPBにより照射され得る。
2. スキャンモードにおいて、基本的に同一シナリオが適用されるが、但し、ここでは、所定の目標部分Cは1回の「フラッシュ」では露光されない。代わって、マスクテーブルMTが、速度vにて所定方向(いわゆる「走査方向」、例えばy方向)に運動可能であり、それによってビームPBがマスクの像を走査する。これと同時に、基板テーブルWTが速度V=Mvで、同一方向あるいは反対方向に運動する。ここで、MはレンズPLの倍率(一般的にM=1/4あるいは1/5)である。このように、解像度を妥協することなく、比較的大きな目標部分Cを露光することが可能となる。
【0025】
露光が基板上に正しく配置されてなされるように、リソグラフィ装置には、基板W上に設けられたアライメントマークWMの位置を正確に計測することの可能なアライメントセンサー10が備わっている。実際においてアライメントセンサーは固定されており、アライメントマーカWMがアライメントセンサーによって捕捉されるまで、基板テーブルWT上に保持された基板Wはアライメントセンサーの下で走査される。次に、基板上のアライメントマーカがアライメントセンサーによって正確なアライメントにあるとされたとき、基板テーブルの位置が記録される。アライメントセンサー10がオフアクシスセンサーであり、すなわちアライメントマーカを照射し、そして反射光を、投影システムPLを通してではなく、直接的に検出することを意味する。アライメントセンサー10は露光ステーションあるいは分離した計測ステーション、もしくはこの両方に配設される。後者の場合、アライメントセンサーは、基板テーブルWTに固定して設けられた基準マーカ(フィデューシャル)に対する基板上のアライメントマークの位置を計測するために使用される。一旦基板テーブルが露光ステーションに移されると、投影システムPLに対する基板テーブルの基準マークの位置が計測され、この基準マークから投影レンズに対する基板マーカの位置が得られる。アライメントセンサーが露光ステーションに配設されている場合にもこの手順が使用され得るが、投影レンズに対するアライメントセンサーにおける基準位置が正確に知らされ、それにより基板上のアライメントマークの位置が直接的にも判断される。一般的には、基板上の少なくとも2つのアライメントマーカの位置が計測されて、基板の正確な位置および方向が判断される。走査が正確な位置で実行されていることを確認するために、アライメントシステムは走査露光の開始時および終了時にも使用され得る。
【0026】
図2はアライメントシステム10全体の略図である。光源11は、放射線を正の回折次数+nと負の回折次数−nに反射するマーカWMを照射する放射線の空間的コヒーレントビームを放射する。これらは対物レンズ12により並行となり、自己参照干渉計13に入射する。対物レンズ12は例えば0.6といった高NAを有し、850nmの波長を有する照明放射線により、1.5μmの小ピッチでマークの検出を可能にする。自己参照干渉計は、180°相対回転した、重なり合い、ゆえに干渉させられることが可能な2つの入力の像を出力する。瞳面14において、分離した異なる回折次数を有する、これらの像の重なり合うフーリエ変換が見られ、干渉させることが可能である。以下に詳細に記載するように、瞳面における検出器15は干渉回折次数を検出して位置情報を供給する。図2の右手側の部分は重なり合う像の情報を示している。すなわち、1つの像+n’、−n’が、入力次数+n、−nに対して+90°回転され、第2の像+n”、−n”が−90°回転されている。
【0027】
像回転装置および干渉計13はアライメントシステムの心臓部を形成し、図2においてブラックボックスとして示されている。この部分の詳細説明を以下にて行う。アライメントシステム10は、瞳面全体14における位相情報の利用を可能とし、かつ適切な検出器アレイ15によって計測が可能であるという長所を有する。その結果、マーカ選択の自由をもたらす。すなわち、アライメントシステムは、ほぼ180°の回転対称をなすどのマーカ上でも整列可能である。実際に、以下に論じるように、非対称のある特定の量が調整、かつ検出可能である。
【0028】
アライメントシステム10の他の特筆すべきフューチャは、図3に示すようにそのモジュール性である。自己参照干渉計13および対物レンズ12は安定性が要求される1つのコンパクトな装置(前部10a)を形成する。この前部10aは位置情報を含む2つの重なり合う波面を生成する。瞳面14における位相差の実際の計測はセンサーの後部10bにて行われる。位置情報が前部10aにおいてすでに符号化されていることから、この後部10bは安定性に関しその仕様はそれほど高くない。それほど重要ではない後部10bには、検出器構成15、光源マルチプレクサ11、および波長デマルチプレクサ16が含まれており、多波長を使用することを可能にする。この構成によってエンドユーザに利用可能な機能性を決定する。
【0029】
この重要な長所は、後部10bにおける設計変更が、重要な前部10aに何も影響を及ぼさないという事実である。例えば異なる波長あるいは異なる格子周期が必要な場合、前部10aは1回だけ設計される必要があり、あとは再設計を必要としない。
【0030】
前部10aには、干渉計13、照射ビームのビームスプリッタ17、4分の1波長板18、および対物レンズ12が含まれる。ビームスプリッタのかわりに、小さな中央のシルバーエリアを有する角度を設けた面プレートを使用し、照明ビームをアライメントマーカに反射させることも可能である。後部10bはさまざまに異なる形態にて具体化され得るが、基本的には次の機能を実行するための構成要素、すなわち、干渉パターンを作り出す(重なり合うビームが直交偏光される)ための偏光器19、プロダクトクロストークを回避するための開口絞り20、検出器サイドにさまざまな波長を分割するためのデマルチプレクサ16、および検出器アレイ15a−15bが含まれる。以下において説明を行うように、開口絞りの形状もまた次数間のクロストークを回避するように選択が可能である。
【0031】
瞳面全体の有効利用性と後部のモジュール性はフレキシブルアライメントセンサーの構造を可能にする。それほど大きくない設計努力で新しい機能を追加することが可能であり、センサーは設置段階で他のアライメントセンサーとの互換性がもたせることが可能であることから、ユーザは、他のアライメントセンサーを使用する装置用に開発されたマスクおよび機械設定を含めたプロセスを使用し続けることが出来る。
【0032】
自己参照干渉計13は反対の重なり回折次数の干渉を達成する。この干渉計のドリフトや不安定度がアライメント精度を低下させることから、この干渉計は検出原理の重要部分である。干渉計13の側面を図4において示している。この干渉計は、入射波面を分割、再合成するための偏光ビームスプリッタ(PBS)131と、入射の波面を90°で反射、回転させる2つのプリズム132、133の3つの主要部分から成る。反射され、回転された波面は横に置かれている。さらに、偏光は90°まで回転される。ドリフトを最小限に抑えるために、干渉計13は固体ガラスから出来ており、別々になった部分131、132、133は互いに接着される。実際に、干渉計13は2つの固体ガラス部分から作られており、その各々はプリズム132、133のうちの1つと、ビームスプリッタ131の半分から成り、これらはビームスプリッタ131の反射面131aに沿って互いに接着されている。
【0033】
図4における先が太くなった矢印は、入射波面の単一ビームのレイトレースを示しており、白抜きの矢印は、偏光の面ではなく入射波面の方向を示している。レイトレースと波面の方向に従うと、両方のプリズムが時計回りに波面を90°回転させることが分かる。2つの再合成された波面は互いに対して正味180°の回転が達せられ、直交面偏光される。
【0034】
上記に関連して、欧州特許第EP−A−1,148390号において回転プリズムの作用についてのさらなる詳細記載がなされている。プリズムはあらゆる入射ビームを映し出し、回転させる光学素子としてモデル化可能であることが示される。
【0035】
干渉計の作用を説明するために、図6において、干渉計13に入る矢印形の対象134を有する長方形の入力面を示している。入力対象134はビームスプリッタ131により分割され、2つの回転プリズム132、133に入る。便宜上、第二回転プリズム133も、幻像133´のビームスプリッタ面に映し出され示されている。第一プリズムによる「実像」と第二プリズムによる「虚像」分岐という2つの重なり合う干渉計分岐を有することから、このアプローチは説明が容易である。
【0036】
干渉計13の対称性により、両方のプリズム132、133の仮想ミラー面135は一致する。しかし、2つのプリズムの回転軸136、137は干渉計13の中心線138をはさみ反対側にある。仮想ミラー面135は入力対象134の虚像134´を作り出す。映し出された像134´が図において白抜きの矢印で示されている。しかし、この像はここで便宜上示されているだけであり、2つのプリズムの追加の回転によるもので、実際は存在しない。
【0037】
2つの回転軸136、137は干渉計分岐の中心をはさみ両側にある。結果、像は反対方向に回転される。+90°回転と−90°回転はそれぞれクロスハッチの矢印139aと斜線の矢印139bとなる。2つの矢印は反対方向を向き(ゆえに正味回転は実際180°)、矢印の足の部分がつながれている。これは、足部分の回転が干渉計の不変点であることを示している。
【0038】
図7は、不変点の構造を図で示したものである。干渉計は幅aと高さ2aの長方形の入出力面を有している。干渉計に入るフィールドは干渉計(入力領域)の上半分を占め、対称中心線の下方に映し出されて、2つのプリズムにより+90°と−90°回転される。これらの重なり合う視野は出力領域に存在する。図に示すように、回転軸が距離aで分かれている。不変点IPが入力領域の正確に中心にあることが図で容易に確認出来る。
【0039】
不変点IPの周りの同心円は、クロスハッチのスライスおよび斜線のスライスで示されているように、180°の相対回転によってそれ自身に結像される。入力および出力の距離a上の側方配置の利点は、アライメント放射線ソース(例えばレーザー)内への光フィードバックが回避されることである。
【0040】
重なり合う回折次数がどのようにこの干渉計によって形成されるかが容易に理解出来よう。0次は回転不変点に投影され、図8に示すように偶数および奇数次数がこの点の周りを回転する。
【0041】
熱光源およびガス放電光源は多くの光を放棄することによってのみ空間的コヒーレントを得ることが出来ることから、このアライメントシステム10は空間的コヒーレント光源、好ましくはレーザーを必要とする。いくつかの干渉の問題を回避するため、短い一時的干渉性を有する光を使用することが望ましい。
【0042】
従い、好ましい光源11はレーザーダイオードであり、このようなダイオードは空間的コヒーレントであり、それらのコヒーレンス長は、流入電流にRF変調を加えることにより容易にスポイルされることが出来る。例えば約532nm、635nm、780nm、および850nmといったようないくつかの異なる周波数の照明を使用することが望ましい。こうした周波数で放射するダイオード同様、位相モジュレータによる周波数二倍Nd:YAGレーザー(例えば、欧州特許番号第EP−A−1 026 550号を参照)のような周波数二倍ソースや、ファイバーレーザーを使用することが可能である。
【0043】
照明光学の設計は2つの相反する要求により推進されている。信号強度を最大にし、かつプロダクトクロストークを最小限に抑えるために、マーカのみを照射する小さなスポットが望ましい。一方で、小さなスポットはキャプチャリング工程を複雑にする。さらにアライメント精度はスポット位置変化に、より影響される。
【0044】
プロダクトクロストークは開口絞りとハイパワーレーザーの有用により効果的に抑えられ、アライメント性能は信号強度によってほとんど制限されることがない。従い、照明スポットサイズは少なくともマーカサイズよりも大きい。マーカサイズが50×50μm2の次数であり、同一次数の要求キャプチャリング範囲であるとした場合、100μmの次数のスポット直径が適切である。
【0045】
照明スポットの形状に関し、瞳面における照明ビームの角度範囲において相反する要求がまだある。マーカとして粗い格子が使用出来るよう、ビーム角度は出来るだけ小さく保たれなくてはならない。しかし、角度範囲が小さいと照明スポットが過度に大きくなるため、角度範囲とスポット形状との関係で最適な妥協点が見出されなくてはならない。16μmの第一次数は、λ=633nmの40ラジアンの角度で回折される。こうした低い空間周波数を計測するため、照明ビームの角度サイズは直径約40mradに制限される必要がある。
【0046】
アライメントシステム10において、照明スポットは円偏光され、図3に示すように、偏光ビームスプリッタ17および0次4分の1波長板18により照明および検出光の分割が可能となる。
【0047】
照明ビームの波長よりもかなり大きいピッチの粗い格子に対しては、偏光の選択はそれほど重要ではない。しかし、マーカピッチが波長と同一次数のものである場合、回折効率は偏光によって左右される。また極端なケースでは、アライメントマーカを偏光成分のみを回折する偏光器として作用させることも可能である。このようなマーカには円偏光が有効である。直線偏光の場合、格子効率はある1つの特定の方向に対して非常に低いという可能性が常にある。円偏光は2つの直交偏光成分(90°位相シフトによる)を含むため、効率的に光を回折する成分が常に1つある。
【0048】
擬似反射を抑える目的で、偏光ビームスプリッタ17および4分の1波長板18に少しの傾きを加えることが出来る。傾斜角度は、この傾斜によって導かれる収差を最小限に抑えるように注意深く選択される必要がある。もちろん、対物レンズの設計においてこうした収差を修正することも可能である。
【0049】
干渉計は、瞳E(k)の2つの直交偏光(仮想)像を作り出す。ここで、kは空間周波数である。瞳面14における合計光視野は、元の視野に、この視野の180°回転したコピーを加えたものである。瞳面における強度は以下となる。
【数1】
幅2Δkを有する2つの検出器15は、瞳面14における位置k=k0とk=−k0に配置されるとき、これらの検出器により捕捉される光パワーP1およびP2は以下の等式より求められる。
【数2】
【数3】
【0050】
図5は信号の形状を図示したものである。ミラーの作用により、横線で示した領域が重なり合い、干渉する。また、斜線で示した領域が重なり合い、干渉する。2つの視野間の位相差は位置情報を含む。
【0051】
瞳の2つの像は直交偏光および直線偏光される。ゆえに、これらの間の干渉は、強度変化の形態(フリンジ)では見えない。位相変化を強度変化に変換するために、瞳の2つの像は同一偏光を有していなくてはならない。この同一偏光は偏光光学素子により達せられる。偏光光学素子には、ダイクロイックシート偏光子、多層コーティングによる標準的偏光ビームスプリッタ、また、サバール板、ウォラストンプリズム、グランテーラービームスプリッタ、あるいはワイヤグリッド偏光器といったような複屈折ビームスプリッタが考えられる。
【0052】
ダイクロイックシート偏光子はその制限された光学的品質のため好ましいものではなく、かつ、これらシート偏光子は近赤外線領域であまり効果を有しない場合がある。さらに、これらシート偏光子は光子の50%を無駄にする。多層ビームスプリッタが格段に優れているが、満足のいく減衰率が達せられる波長範囲が限られている。複屈折ビームスプリッタは広い波長範囲において優れた減衰率を有するが、この複屈折ビームスプリッタは温度に依存することから、温度ドリフトをまねく可能性がある。
【0053】
ビームスプリッタが偏光器19として使用される場合、そのフィールド入射はジョーンズベクトルを有する。
【数4】
【0054】
偏光ビームスプリッタはE(k)およびE(−k)の方向に対して45°に合わせられる。よって、ビームスプリッタにより透過される強度I1(k)と結合される強度I2(k)は以下となる。
【数5】
【数6】
【0055】
これから分かるように2つの強度は逆位相に変化し、合計強度はビームスプリッタに入射する強度に等しい。よって、両方の分岐は位置情報を含み、アライメントに使用可能である。これは、一方の分岐がx位置検出のためのものであり、もう一方の分岐がy位置検出のためのものであることを意味し、長方形の開口絞りを使用することによりプロダクトクロストークを回避することが可能である。あるいは、一方の分岐が微アライメントのための小さな開口絞りにより利用可能であり、もう一方の分岐が大きな開口絞りによりキャプチャリングに利用可能である。さらに別の案として、一方の分岐を1セットの波長に使用し、他方の分岐を他セットの波長に使用することも考えられる。
【0056】
アライメントマーカはスクライブレーンにおいて、プロダクトクロストークを導きがちなプロダクト構造の非常に近くに配置されることがしばしばある。すなわち、プロダクトによって散乱される光はアライメント信号に影響を与える。プロダクトクロストークは十分に小さい照明ビームを使用することでかなり減衰させることが可能である。しかし、小さい照明ビームはさまざまな理由で好ましいものではない。小さな照明ビームでは、照明スポットの位置の安定性が非常に重要となる。例えば、スキャニングスポットの極端なケースでは、照明スポットのドリフトが直接アライメント位置のドリフトとなる。また、基板Wが基板テーブルWTに載置された後、マーカが不完全に照射される可能性がかなりあるため、キャプチャリングはより重要となる。結局、より大きい照明NAが必要とされ、これにより粗い格子の検出がより必要となる。
【0057】
従い、例えば最大マーカ直径の約3倍の1/e2幅を有する、大きな照明スポットを用いることが望ましい。こうした大きなスポットを用いる結果、プロダクト構造が照射され、マーカ上の光パワーが減る。しかし後者の問題は、十分にパワフルな光源の装備が可能であり、それほど重要な問題ではない。
【0058】
プロダクトクロストークの問題は、図9に示すように、マーカの中間像に配置される開口絞りにより解決可能である。アライメントシステム10は空間フィルタリングを必要としないことから、対物レンズ12の高NAによってマーカの鮮鋭な像が保障され、開口絞り20はプロダクトクロストークを非常に効果的に抑えることが出来る。
【0059】
回転プリズムを有する干渉計により、2つのマーカ像、すなわち通常の像MI−1と反転像MI−2は開口絞り20に投影される。マーカが走査されると、これらの像は反対方向に動く。走査方向において、開口絞り20はマーカ全体を含むほど十分に長くなくてはならない。非走査方向(すなわちスクライブレーンに垂直)において、開口絞り20を自由に狭くすることが可能である。開口の実際の幅はプロダクトクロストークと信号強度とのトレードオフとなる。
【0060】
マーカ走査の間、マーカの像が開口(視野)絞りのエッジに重なり合うと、回折効果が生じる。これが生じるとき、検出信号はマーカの空中像の畳み込みであり、視野絞りの窓関数である。視野絞りがシャープエッジを有する場合、回折次数の部分は隣の回折次数に漏れ、クロストークを生じる。このクロストークは、走査方向における視野絞りのアポデイゼーションにより、すなわち、視野絞りに「ソフト」エッジをもたらすことにより抑えることが出来る。視野絞りに「ソフト」エッジをもたらす可能な方法に、フィールドエッジでの透過率勾配、フィールドエッジの鮫歯プロファイル、傾斜エッジ、あるいは丸いエッジが含まれる。鮫歯プロファイルが用いられる場合、非スキャニング方向における回折効果を回避するために空間周波数は十分に高くなくてはならない。傾斜エッジあるいは丸いエッジは非スキャニング方向において視野絞りよりも広くなるようにマーカを必要とするが、視野絞りもプロダクトクロストークを回避するためのものであるため、これは通常のケースとなろう。所望するそのような窓関数も視野絞りの形状の適した選択により達せられることから、傾斜エッジあるいは丸いエッジが望ましい。
【0061】
基板Wが基板テーブルWTに載置された後、キャプチャリングに粗アライメントが必要とされる。y−粗アライメントの間、Δxである大きいxオフセットが存在しており、これは図10に示すような状況を導く。アウトラインで示すように、マーカWMおよびプロダクト構造PSの実際の位置は、クロスハッチで示すように、期待位置からオフセットΔx異なる。開口絞り20の幅がスクライブレーン幅SL−Wに等しい場合、プロダクト構造PSからの光は開口絞り20を通って漏れる。従い、開口絞り20はスクライブレーン幅よりも小さい。
【0062】
実際に、x方向およびy方向の長方形の開口絞りを有することが望ましい。偏光ビームスプリッタ19の2つの出力は上述したようにこれら2つの方向に対して使用可能である。あるいは、例えばLCDアレイのような、空間光変調器(SLM)はプログラム可能開口絞りとして使用出来る。位置情報が干渉計において既に符号化されていることから、空間光変調器(SLM)の光学品質は重要ではない。
【0063】
本発明に基づき、検出アレイ15は瞳面に、好ましくは開口絞り20の後の瞳面22に配備される。最も簡単な検出器構成を図11に示している。簡略化のため、最も低い3次数と1波長のみを示している。さらに0次も示していない。2つのマルチモード検出ファイバー23は互いから光を集める。これらの2つのファイバーを通過する光は1つのマルチモードファイバー24内に結合されて、リモートフォト検出器25に送られる。
【0064】
このアプローチは単純であり、従来センサーと互換性のある機能性を提供する。しかし、対物レンズ12のNAを高くすることが可能であるため、特別な機能性は、特別な波長出力または特別な次数を与えることにより容易に追加可能である。
【0065】
マーカピッチに対してよりフレキシブルとなるため、かつボックスあるいはフレームといったような非周期マーカの計測を可能にするために、検出器アレイの使用が可能である。この検出器アレイは、以下に論じるように、非対称の正確な検出も可能にする。検出器アレイに対して、一束のマルチモードファイバー、チャネルごとのディスクリートピン検出器、あるいはCCDまたはCMOS(線形)アレイといった多くのオプションが可能である。
【0066】
一束のマルチモードファイバーの使用することにより、分散する素子を安定性の理由から遠隔に配置することが可能である。ディスクリートピン検出器は大きなダイナミックレンジを提供するが、しかし、各々は別々のプリアンプを必要とする。ゆえに素子数は限定される。CCDリニアアレイは高速での読み出しが可能な多くの素子を提供するが、位相ステッピング検出が用いられる場合に特に有益である。
【0067】
最大フレキシビリティのために2次元データ取得が必要とされる場合、高い平行度が要求され、電子の複雑さを増す。データ取得が2つの直交する方向に制限されると、多大なフレキシビリティが可能であり、それによりリニア検出器アレイが使用可能である。
【0068】
上記で述べたように、マーカは、別々に検出される必要のあるいくつかの異なる波長により照射されることが望ましい。異なる色の分離においてダイクロイック光学の使用が可能である。あるいは、分光素子としてブレーズド格子も使用可能であり、特別の波長を加えることにおいてのフレキシビリティを提供する。ブレーズド格子は鮫歯格子形状を成し、ブレーズド格子はただ1つの次数において光のほとんどを回折するという特性を有する。ブレーズド格子26を使用する装置を図12に示している。再度述べると、検出器15は瞳面22に配置される。弱い0次はカメラ27の入力として利用可能である。ブレーズド格子が第一次に対して最適化され、ピッチPbを有する場合、第一次の回折角度は以下となる。
【数7】
【0069】
格子ピッチの選択は必要とされる波長分離により決定される。波長分離がΔλである場合、対応する角度波長分散は以下となる。
【数8】
【0070】
開口20の有限幅Wは次の角度分散を生じる。
【数9】
【0071】
回折(Δθd>Δθw)により、波長拡散は角度分散よりも大きくなくてはならないという要求を含むと次のようになる。
【数10】
【0072】
最も短い波長は、波長分離における最も高度な要求を生じる。例えば、w=20μmである場合、さまざまに異なる波長の波長分離は次のテーブル1に表される。
【表1】
【0073】
ブレーズド角度は通常1つの中心波長の周辺で最適化される。この場合、中心波長は(532+850)/2=691nmである。波長範囲(532nmおよび850nm)の極端な値では格子の効率は減じられる。しかし、これらの波長における可能なレーザー出力が非常に高いことから、これは容認される。さらに、これらの波長で生じる0次回折はカメラ画像に使用され得る。
【0074】
マーカは位相格子アライメントの間、通常通りに走査される。この走査動作は、一時的周波数2kxxでキャリアに位相差をつける。
【数11】
【0075】
この信号を復調すると、以下に基づくマーカ位置が得られる。
【数12】
マーカが走査されると、マーカは開口に沿って動く。結果、スクライブレーン内にあって、マーカに隣接する構造は検出開口に向って動き、それがアライメント信号を歪める。この歪みはプロダクトクロストークに類似するものであり、スクライブレーンにおける(メトロロジー)マーカ間の適した分離により回避することが可能である。
【0076】
しかし、走査は、正確な位相計測に必要とされるキャリア周波数を導くためだけに必要とされる。可変リターダを使用することにより、位相情報φk−φ-kを抽出するために位相変調干渉計も同様に使用され得る。この技法において、マーカは静止状態にあり、既知の位相変化Ψ(t)を瞳面の干渉パターンに適応させるためにリターダが使用される。
【数13】
【0077】
実際に、2つの形式の位相変調を用いることが可能である。すなわち、フーリエ変換干渉計となる等距離位相ステッピングおよび同調位相変調Ψ(t)=Ψ^cos(Ωt)である。
【0078】
位相変調干渉計の使用により、スクライブレーンにおけるメトロロジー構造(アライメントマーカのような)の高密パッキングが可能となる。位相変調干渉計はアライメントセンサーの他の形態においても使用可能であることを注記する。
【0079】
これより記載を行うものとするが、瞳面における光の位相からマーカの非対称性を計測することも可能である。最初に理論的な背景を説明し、それからいくつかの例示結果と実際上の実行方法を説明する。
【0080】
マーカによって反射される合成近視野は次となる。
【数14】
ill(x)は、固定照明ビームの合成光視野であり、r(x−x0)はオフセットx0を有するマーカの合成振幅反射率である。このオフセットはアライメントマーカによって計測されなくてはならない未知のマーカ位置である。
【0081】
合成反射近視野は常にオフセットx0による対称(=偶数)関数および非対称(=奇数)関数に分解可能である。よって、一般性を損なうことなく次を導くことが出来る。
【数15】
【0082】
下付文字の‘e’および‘0’はそれぞれ偶関数および奇関数を示している。定義により、これら関数はfe(x)=fe(−x)、およびf0(x)=f0(−x)の特性を有する。近視野のこの式は全く一般的なものであり、何らかの制限は加えられていない。言い換えると、近視野の上記説明はあらゆるプロセッシング効果と照明の不完全をカバーする。
【0083】
瞳面における視野Ep(k,x0)はEnf(x,x0)のフーリエ変換(FT)である。すなわち、
【数16】
【0084】
偶関数のFTは偶数であり、かつ実数である。また、奇関数のFTは奇数であり、かつ虚数である。これらの基本的な特性から瞳面における視野に関して次の式が得られる。
【数17】
【0085】
実数値関数Ae(k)、A0(k)、Be(k)およびB0(k)は、関数ae(k)、a0(k)、be(k)およびb0(k)のフーリエ変換である。この等式はこの一般的な式においてはまったく意味をなさない。しかし、対称振幅対象(ae(x)≠0を除いて全ての項はゼロである)、対称合成対象、あるいは非対称合成対象(全ての項≠0)といったような、多くの特別なケースを考察することにより、Ep(k,x0)の有用な特性をいくつか導き出すことが出来る。
【0086】
対称振幅マーカの瞳面における視野は、
【数18】
【0087】
瞳面における位相φはkにより線形に変化する。また、この位相φはマーカ位置x0のみの関数である。
【数19】
【0088】
振幅Ae(k)はkの偶関数であり、マーカ位置とは関係がない。この特別に単純なマーカタイプにおいて、Ep(k,x0)の位相の傾斜を計測することによりその位置を明確に決定することが出来る。
【数20】
【0089】
合成反射係数を有する対称マーカにおいて、瞳面における視野は次となる。
【数21】
【0090】
強度Ie(k)と位相Ψe(k)は両方とも以下の式から得られる偶関数である。
【数22】
【数23】
【0091】
瞳の位相はもはや直線ではない。よって、瞳面における2つの任意の点間の位相計測が必要な位置の正確な計測になるとは限らない。しかし、瞳面kおよび−kにおける共役点間の位相差がマーカ形状に関係なく、マーカ位置によってのみ決定されることが即ぐに判る。よって、アライメントシステム10の瞳面における強度は次のようになる。
【数24】
【0092】
この等式は、反対の空間周波数を有する点どうしが正確に重なり合っているという理想的な状況を表したものであることに注意しなくてはならない。アライメントシステム10において、マーカが傾けられると、瞳面において重なり合う視野は反対方向に動く。よって、マーカの小さな傾斜がある(もしくは不完全なセンサー調整の)場合、瞳の強度に関して以下が分かる。
【数25】
【0093】
偶関数の導関数は常に奇関数であり、偶数位相変化がパラボリック成分を有する場合、特別な線形位相変化が導かれることが分かる。この線形位相変化はアライメントオフセットを生み出す。この所見は基本的に焦点依存効果の別の説明である。マーカの焦点が合っていないとき、瞳面における視野はパラボリック位相変化を得て、マーカが傾けられるとアライメントオフセットが作られる。
【0094】
合成反射係数を有する非対称マーカに関して、瞳面における視野は次となる。
【数26】
非対称部分の振幅は次より得られる。
【数27】
この等式は、振幅が偶関数にならなくてはいけないことから、|Z0e(k)|=|Z0e(−k)|となるべきであることを示している。位相Ψiは次によって得られる。
【数28】
0(k)およびB0(k)の奇数特性により、位相Ψiは次の特性を有する。
【数29】
非対称性により瞳面における視野の振幅は変化し、特別な位相項φ(k)が導かれる。
【数30】
【0095】
図13において、いかにZが構成されるかを明らかにしている。また、この図では、いかに追加の位相項φ(k)が非対称成分Z0(k)により導かれるかも示している。図13において、位相項φ(k)は、
という特性を有することから、φ(k)は常に奇数成分およびおそらく小さい(しかし関連のない)偶数成分を含むことを示している。
【0096】
非対称のタイプに何らかの制限を加えず、位相項φ(k)と振幅Z(k)を次のように表すことが出来る。
【数31】
【数32】
【0097】
非対称性の特性について仮定がまだ立てられていないことから、これらの等式はかなり複雑である。これらの等式の使用を明確にする2つの特別な状況がある。第一のケースにおいて、Ze(k)はZ0e(k)に垂直である。この場合、次のようになる。
【数33】
これより次が導かれる。
【数34】
【数35】
この状況において、位相と振幅に関して次のように表される。
【数36】
【数37】
【0098】
よって、計測が空間周波数kにてなされるとき、位相はアライメントエラーを導く純粋な奇関数である。この第一のケースを図14において示している。
【0099】
第二の特別なケースにおいて、Ze(k)はZ0(k)に並行であり、よって、
【数38】
これより次が導かれる。
【数39】
【0100】
この状況において、非対称性は反対称位相項を導かない(よって位相エラーはない)。しかし振幅の非対称となる。これを図15において示している。
【0101】
φ(k)の等式は複雑すぎ、これを使用し続けることは出来ない。しかし、前に述べたように、これを対称部分と反対称部分に分解することが可能である。
【数40】
【0102】
奇数位相変化のみが検出されるため、偶数位相変化は無関係である。さらに、前に述べたように、位置情報は瞳面における正味の位相の傾斜に含まれる。よって、kにより線形に変化する位相項を考慮に入れる必要を有するのみである。
【0103】
アライメントシステム10により検出された合計の位相変化Ψd(k)は次のようになる。
【数41】
【0104】
この等式は、アライメントにおけるマーカの非対称性の、重要かつ非常に基本的な問題を提示している。すなわち、瞳面における位相の傾斜はもはや明らかにマーカ位置x0からは決定されないが、項c1により未知の非対称性によっても決定される。
【0105】
幸運にも、計測された位相Ψd(k)の高い次数の項(c3 5等)は未知の非対称の関数だけであり、ここではこの問題の解決法を見出す。高い次数の項の大きさにより線形非対称項c1が決定される。
【0106】
多くの場合、瞳における視野は明るい領域(大きな振幅|Z|)と暗い領域(小さい振幅|Z|)から成る。例えば、明るい領域は50%衝撃係数格子の奇数回折次数にあたる。このような格子の偶数次数は暗い領域である。明るい領域においては|Ze|>>|Z0e|となり、非対称から導かれる位相変化は小さく、以下により概算が可能である。
【数42】
【0107】
通常、φ(k)は非常に小さく、プロセスの変化により生じる非対称における小さな変化によりわずかに変化する。原理上、これらの明るい領域は高い次数項を計測するために使用され得るが、計測の正確さはかなり限定される。
【0108】
しかし、瞳面の視野の暗い領域におき、状況は全般に異なる。これらの暗い領域においては
となり、次の式により、プロセス変化による非対称の小さな変化は位相の大きな変化を生じる。
【数43】
【0109】
これから分かるように、Z0e(k)は、Ze(k)と比較し、値において比較可能であるとき、位相はkによりかなり変化する。
【0110】
非対称検出の理論を1次元の例を参照に、さらに説明を行う。マーカは図16に示された強度プロファイルに従い照射される。入射ビームの光パワーは1mWであり、全幅は約100μmである。照明ビームの波長は633nmである。
【0111】
図17に示すように、マーカは深度40nmを有する分離した2μm幅のバーである。その中心はx=250μmに置かれている。この例は1次元であるため、バーはy方向に無限に伸長する。このバーの反射係数は1つである。周期的構造(すなわち格子)に対するこのマーカの伸長については後述する。
【0112】
このバーは位相深度が比較的小さく、また照明スポット幅に比較して非常に小さい(図16と図17における異なる縮尺に注意されたい)。従い、反射光は非常に強い正反射を有し、非常に少ない量の光のみが回折される。図18に示すように、これは遠視野の強度分布から明らかである。
【0113】
強い正反射のピークがはっきりと見てとれ、これは1.5×10-4W/1.3mradのピーク強度に達する。正反射の全体幅は20mradであり、実際に全ての入射パワーが正反射される集積によって変えることが可能である。回折光はわずか1.5×10-7W/1.3mradのピーク強度に達し、よって、5mradの開口を有する検出器は合計光パワーわずか0.6μWを捕捉する。この2μm幅バーが4μm周期で繰り返されるとすると、第二回折次数の位置である、
となり、強度はゼロである。
【0114】
マーカは完全に対称であり、よって、アライメントシステム10により検出される位相差は、マーカ位置に比例した傾斜を有する完全な直線となるべきである。これは、計測された位相を遠視野角の関数として示した図19においてはっきりと見てとれる。
【0115】
小さなスパイクはゼロ強度のポイントに置かれた数値異常である。実際に、これらのポイントはゼロ強度の領域において生じる位相特異性にあたる。これらの数値結果を別として、位相は、マーカが整列した位置にあることを示すゼロ傾斜を有する直線であることがはっきりと分かる。
【0116】
しかし、古典的なルーフトップを追加することで、わずかな非対称を導く。例として、図20に示すマーカの形状となる4nmのルーフトップを用いるものとする。
【0117】
図21は瞳面における光の強度を示す。対称の場合と比較した場合、形状はわずかに変化した。しかし、暗い領域における強度が著しく増した。瞳面の暗い領域における変化は非対称(に変化する)のよいインジケータであることはすでに示した。
【0118】
暗い領域における強度は最小で約2×10-11W/1.3mradに達する。これは強度としては非常に低く、この領域の計測を可能にするために、計測の間どれくらいの光子が実際に捕捉されるかを計算することが有益である。検出角度が1mrad、かつ、取得時間が30msであると仮定して、4.6×10-13Jの合計光子エネルギーが捕捉される。よって、1プロトンのエネルギーは、約3.13×10-19Jであるので検出器に入射する光子の合計量は次となる。
【数44】
【0119】
この計算は、暗い領域における正確な位相計測が可能であることを示している。アライメントシステムにより計測された位相変化を図22に示している。
【0120】
対称の場合と比較して、計測された位相は劇的に変化した。明るい領域において、位相はアライメントオフセットが原因となるほとんど線形の傾斜を得た。例えば、グラフにて示すように、sin(θ)=0.16で、0.058ラジアンの小さな位相エラーが生じる。瞳のこのポイントは、マーカが4μm周期で繰り返される場合に存在する第1次の場所にあたる。位相エラーは小さいが、あいにく次の大きなアライメントエラーΔxが現れる。
【数45】
【0121】
幸運にも、このオフセットを原因とする非対称は瞳面の暗い領域において非常に明確に検出され得る。計測された位相において、約sin(θ)=0.32の領域で、極端に大きい、かつ非線形の変化があることを示していることがはっきりと分かる。図23は検出される干渉信号のコントラストを示したものである。
【0122】
図23のコントラストカーブは、正確な位相計測を可能とするほど十分にコントラストが高いことを示している。しかし、コントラストを著しく低下させる他の非対称タイプが存在しうることを強調せねばならない。
【0123】
実際に、非対称における変化(すなわちプロセス変化)を検出可能にすることが、おそらく、なお重要である。図24は1nmのルーフトップの変化に対する位相変化を示したものである。これは、18nm/4=4.5nmのプロセス変化に相当する。結果の位相変化は、光子統計に基づいて計測される0.1ラジアンの次数のものである。
【0124】
実際に、上記で論じた分離構造は周期的に繰り返され、離散回折次数における散乱光を集中させる。しかし、この周期的な繰り返しは偶数位相分布Ψe(k)と、瞳面における視野の振幅|Z(k)|に影響を与えるだけであることから、この周期的な繰り返しは非対称計測の概念を変えることはない。また、非対称により導かれる奇数位相変化は変わらない。
【0125】
分離構造の合成反射係数はr(x)であり、この構造は瞳における合成視野Z(k)となる。周期XPによる左にN回、右にN回の、この構造の周期的な繰り返しはr(x)の2N+1の複製での格子を作り出す。
【数46】
【0126】
この式をフーリエ変換し、フーリエシフト定理を使用することにより、瞳における合成視野Zg(k)が求められる。
【数47】
【0127】
g(k)は、実数値偶関数f(k)とZ(k)を掛けることで求められることが分かる。この関数は負となり、Zg(k)における位相ジャンプを生じさせる。しかし、これらの位相ジャンプは常に対称をなす。Zg(k)の振幅は、kXP=m2πのときにピークとなる。ここでmは整数である。空間周波数kは次の式により求められるため、これは単に格子原理の数式である。
【数48】
【0128】
図25は、5回繰り返される4−nmルーフトップを有するマーカの遠視野における強度を示したものである。第1回折次数と第3回折次数がグラフにてはっきりと分かる。これらの次数間の強度比は、回折されたフィールドにおけるホイヘンスオブリクィティファクター[1+cos(θ)]/2により生じる期待(1/3)2比率よりもわずかに高い。弱い奇数次数の強度も著しく増した。次数間において強度はあわただしい振動を呈する。しかし、ピーク強度はかなりの量の光子に相当する。
【0129】
瞳面における奇数位相変化を図26に示している。再びこのグラフは暗い領域における同一の大きな位相偏位を示している。しかし、分離オブジェクトの場合と比較して、説明を行う必要のある違いが多少ある。
【0130】
15nmのマーカシフトに相当する特別な小さい線形の傾きと、小さなスパイクは実際の実施形態においては生じないものである。Ψdの厳密な検査では、わずかな段階的な変化を示すことが分かる。これは、マーカの不均一な照明によって生じる。図27で明らかなように、200μmに照明ビーム幅が増すことで再びΨdはなめらかに変化する。
【0131】
このグラフにより非対称計測における照明プロファイルの重要性が明らかである。理想的には有限幅を有する均一な照明プロファイルが望ましい。しかし、この要求は、照明ビーム角度の開きが小さくなくてはならないという要求と相反する。
【0132】
非対称計測技術の精度における非常に基本的な限界はマーカの表面の粗さである。表面の粗さは、干渉パターンの暗い領域における大きくかつノイジーな位相変化を導くランダム非対称のフォームが考慮され得るため、これは驚くことではない。これは、以下の例において、前段で使用されたものと同一の格子の例で明らかとなる。しかし、今回、0.5nmの表面の粗さに1μmの平均グレインサイズが付加される。この照明スポットは200μmの幅を有する。
【0133】
図28は、遠視野において計測された位相を示しており、表面の粗さの影響がかなりはっきりと見られる。一見したところこれはかなり深刻に見える。幸運なことに、実際のケースにおいてはノイズがそれほど深刻にはならない理由がいくつかある。第一に、大きなスパイクはゼロ強度のポイント(特異点)にあたる。検出器は常に有限空間領域を有することから、これらの効果は検出にて抑えられるであろう。第二に、この特別な例において、照明スポットサイズは格子幅に比較して大きいため、センサーは重要でない領域にて数多くの粗さの影響を「見る」。この議論は、最適な照明スポットの重要性を再度強調することになる。
【0134】
計測された位相Ψdの線形項は位置情報を含む。しかし、この位置は非対称の存在に影響される。この非対称の寄与を知るため、出来るだけ正確に非対称の「形状」を知る必要がある。計測された位相Ψdの非線形変化は非対称についての情報を与える。各非対称はそれ独自のフィンガープリントを有する。
【0135】
計測した傾斜にプロセス修正を導く目的に、2つの異なるアプローチを使用することが可能である。すなわち、予測手法のようなアプローチと散乱測定のようなアプローチである。予測手法アプローチにおいては、統計技術の使用を可能にするより多くのデータが利用可能であることから、本発明にさらに多くの可能性を与える。特に有益なアプローチは、散乱測定アプローチでも用いられる「逆問題」を使用することである。
【0136】
非対称の計測は、CD(限界寸法)メトロロジーアプリケーションの散乱測定と多くの類似性を有する。後者の場合、非常に複雑な方法における、特定の未知のレジストプロファイルに関連する偏光データが計測される。逆問題技術はここではレジストパターンを回復させるために適用される。このタイプの計測問題はまさに非対称計測に相当する。
【0137】
好ましくはアライメントセンサーはマーカの位置で非常にシャープなピークとなる局部的信号を生成すべきである。しかし、狭いピークは大きな計測帯域幅を必要とするため、このようなセンサーの実現において、信号対雑音比といったような多くの実際上の問題をまねく。精度およびダイナミックレンジの理由から、位相格子アライメントセンサーがしばしば使用される。これらのセンサーは狭帯域時限同調信号を生成するためである。
【0138】
残念ながら、正弦波信号はマルチプル極大値を含み、よってマーカ位置は1つのシングルピークで独自に明確にされない。この理由として、位相格子アライメントセンサーは、どのピークがマーカ位置にあたるかを決定する「キャプチャリング」機構を必要とするからである。本発明において、2つのキャプチャリング機構が可能である。その第一は、上記で論じたように、0次から可能なカメラ画像を利用する。第二は、瞳面において検出される信号を使用し、かつ分割フォトダイオードを必要とする。この両方の方法は1つだけの短い格子を必要とする。
【0139】
アライメントセンサー10により、全ての可能な波長を同時に用いてマーカのシャープな像を作り出すことはきわめて容易である。多重波長の使用により、マーカ深度が小さすぎないかぎりマーカは常に見えるべきである、ということを保障する。対物レンズ12は例えば0.6の大きなNAを有する。また、空間フィルタリングがないことで、アドバンスド画像処理技術を用いて、さまざまなカメラベースのキャプチャリングアルゴリズムを十二分に可能にする1−2μmの次数の解像を有する「鮮明な」像をもたらす。
【0140】
アライメントセンサー10により2つの異なるタイプの像を生成することが可能である。すなわち、別々の偏光器により作り出されたカメラ画像はマーカの2つの個々の像を示すことが可能であるのに対して、偏光ビームスプリッタの後のカメラ画像には、重なり合い、かつシフトしたマーカの2つの像が含まれる。像の第一のタイプでは、互いに対して180°回転された2つの像をもたらす。部分的に重なり合うマーカの像の輪郭の形状がマーカ位置に関する正確な情報をもたらすことから、これはキャプチャリングアルゴリズムに有効である。しかし、プリアライメントエラーがスクライブレーン幅を超過すると、一方の像のマーカは他方の像のプロダクト構造に投影される。プロダクト構造が画像処理アルゴリズムのローバスト性を低下させるノイズ源として作用することから、これはローバスト性問題を導くことがある。
【0141】
本発明は既知の技術を利用することも可能である。それにより、わずかに異なる周期を有する2つの格子が、わずかに異なる周波数を有する2つの同調アライメント信号を生成する。2つの信号の2つのピークが一致する位置がマーカ位置として限定される。このアプローチは、十分に大きなキャプチャリング範囲に対しローバスト技術となることを証明した。
【0142】
しかし、上記で述べたように、本発明は、広い回折次数を有する短いマーカに特に適合する他のキャプチャリング代替案を提供する。この技術は、瞳面全体が利用可能であるという事実に基づくものである。しかし、照明スポットがマーカ長よりも大きい場合にのみ作用する。この技術の主たる長所は、2つの別々の格子の代わりに1つの格子のみを必要とすることである。この技術についてさらに説明を行う。
【0143】
周期Xgおよび幅W=N.Xg.を有する格子を考察する。ここで、Nは格子線の数である。第一回折次数は次の空間周波数k1を有する。
【数49】
【0144】
回折次数はsin(k)/k形状を有し、メインローブの全体幅は次のようになる。
【数50】
【0145】
この格子の第一回折次数のアライメント信号は分割検出器により計測される。各検出素子はメインローブの2分の1を捕捉する。2つの素子間の中心線は、回折次数のピークに中心をおく。これらの2つの検出器により捕捉される平均空間周波数は約、
【数51】
両方の検出器は空間周波数のわずかな違いを有する信号を計測する。これら2つの信号の有効波長は、
【数52】
よって、キャプチャリング範囲は±Wに等しい。
【0146】
実施形態2
本発明の第二実施形態ではファイバーアレイを使用して光を瞳面から検出器アレイに導くが、その他は第一実施形態と同様であり、同様の方法で使用可能である。
【0147】
図29は第二実施形態におけるアライメントシステムの検出器部分を示したものである。自己参照干渉計(図29では示しておらない)からの光は、偏光ビームスプリッタ19により2つの分岐に分割され、そのうち一方の光はキャプチャリングの目的にカメラに導かれ、もう一方の光は微アライメント計測に使用される。微アライメント分岐は、例えばフォトダイオードのアレイやCCDといったようなリモート検出器アレイに光を導く光ファイバーのアレイ35に、自己参照干渉計の瞳面を再結像するレンズ31、33の光学システムから成る。レンズ31もまた、開口絞りとして作用する像面フィルタ32が配置される位置にマーカの中間像を作り出す。
【0148】
ファイバー束35は、束の終端部に検出器の適したアレイを配列することが可能であり、それにより、2つの像が重なり合い、干渉する瞳面における複数の異なる位置における強度が決定され得る。結果のデータは必要な位置情報を得るように処理可能である。特に、幾つかのエラーを取り消すために、検出分岐の光軸の両側にあるペアになったファイバーからの信号が付加される。これは、同一光検出器のペアエンドの両方のファイバーを有することにより、あるいは電子的に、ペアのファイバーを結合することで成される。検出器アレイは、個々のファイバーに連結された複数のディスクリート検出器、あるいはペアのファイバー、あるいはCCDアレイのような位置感知検出器から成る。もちろん、ファイバー束の入力端よりもむしろ検出器アレイそれ自身が瞳面に配置されよう。しかしファイバー束は、検出器アレイ、および、例えばプリアンプといったようなその関連するエレクトロニクスを装置の温度感知部分から離して配置することを可能にする。さらなる空間フィルタ34は第0次を取り除く。
【0149】
キャプチャリングを行うカメラの使用法を図30において示している。この図では、マーカのさまざまな位置における、マーカの2つの像を上2行に示し、同様に、カメラで見られる合成像を下の行に示している。列Aにおいてマーカは粗く整列されており、カメラで見られる像はコントラストの高い暗いラインと明るいラインを有する。マーカがアライメントから離れるにつれて、像は反対方向に動き、最初に列Bに示した、均一にグレーになった像を導き、次に、列Cに示した、ラインパターンを導くが余分なラインと外側にあまりコントラストのないラインを有する。さらなる動きにより、列Dに示したグレーの象を再度導き、そして、さらにラインが追加された、列Eに示すようなラインの像を導く。像認識ソフトウェアにより最小ライン数と最大コントラストにより容易に像を検出することが可能である。
【0150】
実施形態3
本発明の第三実施形態は、検出分岐の構成を除き第一実施形態と同様であり、これを図31に示している。
【0151】
第三実施形態の検出ブランチは、第二実施形態と同様、偏光器(図31には示しておらない)、光学システム31、33、および像面フィルタ32を含んでいる。しかし、第三実施形態においては、ファイバーアレイおよび検出器に代わり、瞳面の部分を選択するようにプログラムされた、例えばLCDアレイ(ライトバルブ)やマイクロミラーアレイといったような空間光モジュレータ39を配備している。空間光モジュレータ39からの光はレンズ40によりファイバー41に集められ、ファイバー41によりフォト検出器42に導かれる。
【0152】
空間光モジュレータ39は、マーカ像の重なり合ったフーリエ変換から特定の次数の2つのビームを選択するようにプログラムされている。マーカが走査されると、その強度は検出器42によって計測可能となり、所望する位置情報が得られる。ここで、マーカは多重波長光源によって照射され、異なる波長が分離され、検出器42において別々に検出され得る。
【0153】
第三実施形態は多くの長所を有するが、それにおける原理は、本アライメントシステムはハードウェアの修正を必要とせずに、180°回転対称をなすどのようなマーカにも使用可能であるということである。必要なことは、同一基板上に異なるマーカを整列させることでさえも可能とするよう、空間光モジュレータが最適にプログラムされ、それが進行中に実行可能であるということだけである。よって、第三実施形態のアライメントシステムは、格子、チェッカーボード、ボックス、フレーム、シェブロン等の既知のマーカとの互換性も有する。また、完全な瞳面をサンプル化することが可能であり、また、それを空間光モジュレータ39の異なる設定により、マーカの繰り返しの走査により分析することが可能である。
【0154】
重なり合う像間にて必要な干渉を作り出すために偏光ビームスプリッタが使用されると、上に記載を行っているように、位置情報を含んだ2つのビームが作り出され、図31に示した構成要素が別の分岐にも同じく設けられ、2つの次数の同時検出を可能にする。さらに、2つ以上のミラー位置を有するマイクロミラーアレイといったような、光を複数の異なる方向に選択的に再誘導することの可能な空間光モジュレータが、対応する多数の集光レンズ、ファイバー、および検出器と共に使用され、単一分岐における多次数の検出を可能にする。第二実施形態と同様、ファイバー41を使用しないことも可能であり、集光レンズ40の焦点にて検出器を配置することが可能ではある。しかし、ファイバー41を使用することで、熱発生あるいはかさばる検出器を熱に弱い構成要素から離して配置することが可能であり、より多くのスペース利用が可能である。
【0155】
次数結合プリズム
本発明の実施形態において使用され得る次数結合プリズムを図32および図33において示している。図32はプリズムを分解した形で示しており、図33は組み合わせた形状で示している。
【0156】
この組み合わせた形状にて、次数結合プリズム50の基本形状は、底面の入射面55と、側面の出射面56を有する三角プリズムである。このプリズムは対角ジョイントにて半分ずつ2つ(第一ハーフ51、第二ハーフ52)に分けられている。図32において明確に示されているように、正の次数+nは第一ハーフ51の底面に入射し、側面58からジョイント57に向かって全内部反射を作る。正の次数は、ビームスプリッタ面として作用するジョイント57から、プリズム50の背面に取り付けられた1/4波長板とミラーとに後方反射する。1/4波長板とミラーは正の次数の偏光を回転させ、ジョイントであるビームスプリッタ面57を通ってこれを返し、プリズムの前面56から出射させる役割を有する。
【0157】
一方、負の次数は第二ハーフの底部に入射し、第二側面59とジョイントであるビームスプリッタ面57から全内部反射し、前面56を通って出射する。
【0158】
図33は、プリズムが、正と負の次数(+1から+4の次数と−1から−4の次数が示されている)をその中心において対称に受け取るように配置される場合、対応する+次数と−次数は結合されるが、第一、第二、等の次数は別々に保たれる。
【0159】
次数結合プリズムは、本発明の実施形態の瞳面において使用されて、基本的に検出のための同一情報を搬送する反対次数を結合する。次数結合プリズムを使用することにより、検出される信号の強度が2倍となることから低出力光源を使用することが可能となる。加えて、対称配置の結果、正と負の回折次数間の非対称誘導差を平均化する。本発明の次数結合プリズムは非常に小型であり、使用可能なスペースが限られているような状況において特に有益である。
【0160】
次数結合プリズムは、自己参照干渉計関連に基づくアライメントシステムの瞳面における使用以外の他の使用法が有り、単一面に置かれた回折次数を結合することが望まれるような配列において特に使用されることが理解されよう。例えばその2つのサイドにおける光パス長を等しくするようにプリズムを修正することも可能である。
【0161】
以上、本発明の実施形態を詳細に説明したが、本発明を上記以外の方法でも具体化できることは当業者にとって明らかである。ここに行った詳細説明は本発明を制限する意図ではない。例えば、上記説明のアライメントシステムは、基板同様にマスクあるいはテーブルに設けられたマーカに対するアライメントにも使用可能である。
【図面の簡単な説明】
【図1】本発明の第一実施形態に基づくリソグラフィ装置を示したものである。
【図2】その作用概念を説明するため、本発明の第一実施形態におけるアライメントシステムの選択された部分を示したものである。
【図3】図2のアライメントシステムの異なるモジュールを示したものである。
【図4】図2および図3のアライメントシステムにおいて使用される自己参照干渉計の簡略側面図である。
【図5】図4の自己参照干渉計の瞳面における干渉を説明する図である。
【図6】図4の自己参照干渉計の機能を説明する図である。
【図7】不変点を示した干渉計の入出力面の図である。
【図8】出力における回折次数の回転を示した、干渉計の入出力面の図である。
【図9】プロダクト構造からのクロストークを除去するための開口絞りの使用法を説明するための、アライメントシステムにおける光学素子の図である。
【図10】開口絞りの輪郭を示した、マーカとプロダクト構造の図である。
【図11】本発明の第一実施形態のアライメントシステムにおける検出装置を示したものである。
【図12】本発明の第一実施形態のアライメントシステムにおける色分離のための可能な配列を示したものである。
【図13】非対称マーカの検出を説明するベクトル図である。
【図14】非対称マーカの検出を説明するベクトル図である。
【図15】非対称マーカの検出を説明するベクトル図である。
【図16】本発明の作用例における、1次元マークを照射するために使用される強度プロファイルのグラフである。
【図17】本発明の例における1次元マーカの図である。
【図18】本発明の例においての遠視野における強度分布グラフである。
【図19】本発明の例における遠視野角の関数として計測された位相のグラフである。
【図20】本発明の作用の第2例における非対称マークの図である。
【図21】本発明の第2例の遠視野における強度のグラフである。
【図22】第2例における遠視野角の関数として計測された位相のグラフである。
【図23】第2例における遠視野角における角度の関数としての干渉信号のコントラストのグラフである。
【図24】本発明の作用の第3例における位相変化のグラフである。
【図25】本発明の第4例おける、遠視野における強度のグラフである。
【図26】第4例における遠視野角の関数として計測された位相のグラフである。
【図27】図27Aおよび図27Bは、照明ビーム幅を変えることによる影響を示したグラフである。照明ビーム幅を変えることによる影響を示したグラフである。
【図28】本発明の第5例における角度の関数として計測された位相のグラフである。
【図29】本発明の第二実施形態のアライメントシステムにおける検出装置を示したものである。
【図30】本発明の第二実施形態におけるキャプチャーのためのカメラの機能を説明する図である。
【図31】本発明の第三実施形態のアライメントシステムにおける検出装置を示したものである。
【図32】本発明の実施形態において使用可能な次数結合プリズムの分解図である。
【図33】反対次数の結合を示した、図32のプリズムを組み合わせた形状の次数結合プリズム図である。尚、図面において、一致する参照符合はその一致する部分を示すものとする。

Claims (22)

  1. 放射線の投影ビームを供給する放射線システムと、所望するパターンに従って投影ビームをパターン化するパターニング手段を支持する支持構造と、基板を保持する基板テーブルと、パターン化されたビームを基板の目標部分に投影する投影システムと、180°相対回転されるアライメントマークの2つの重なり合う像を投影する自己参照干渉計を備えたアライメントシステムとにより構成されるリソグラフィ投影装置において、該アライメントシステムは、該自己参照干渉計の瞳面における複数の異なる位置にて光強度を検出するための検出システムをさらに備えていることを特徴とするリソグラフィ投影装置。
  2. 上記の複数の位置のうちの少なくとも2つの位置は、上記アライメントマーカにより作り出された異なる回折次数のほぼその位置に置かれていることを特徴とする請求項1に記載の装置。
  3. 上記の複数の位置のうちの少なくとも2つの位置は、上記アライメントマーカにより作り出された回折次数からほぼ等距離で、かつその両サイドに置かれていることを特徴とする請求項1あるいは請求項2に記載の装置。
  4. 上記の検出システムはほぼ上記瞳面に配置された複数の検出素子から成ることを特徴とする請求項1、請求項2、あるいは請求項3に記載の装置。
  5. 上記の検出システムは複数の光ファイバーを備えており、その各々は、ほぼ上記瞳面に配置された入力端と、ファイバーを通り複数の検出素子の1つに誘導される光を導く出力端とを有していることを特徴とする請求項1、請求項2、あるいは請求項3に記載の装置。
  6. 上記ファイバーの各々は、上記検出素子のそれぞれ1つに光を導くように配列されていることを特徴とする請求項5に記載の装置。
  7. 上記のファイバーはペアで配備されており、ペアのファイバーの入力端は上記瞳面に対称に配置されており、ペアのファイバーにより導かれる光は同一検出素子に導かれることを特徴とする請求項5に記載の装置。
  8. 上記の検出素子はフォトダイオードから成ることを特徴とする請求項4から請求項7のいずれか一項に記載の装置。
  9. 上記の検出素子はCCDアレイ素子であることを特徴とする請求項4から請求項7のいずれか一項に記載の装置。
  10. 上記の検出システムは、上記瞳面の選択された部分から光の通過を制御可能とした、該瞳面に設けられた空間光モジュレータと、該空間光モジュレータにより通過された光を検出素子に集光するコレクタとから成ることを特徴とする請求項1、請求項2、あるいは請求項3に記載の装置。
  11. 上記のアライメントシステムは、複数の異なる波長の光によりアライメントマーカを照射する手段を備えており、上記の検出システムは、異なる波長の光を異なる検出素子に導くための波長デマルチプレックス手段を備えていることを特徴とする前記請求項のいずれか一項に記載の装置。
  12. 上記の波長デマルチプレックス手段はブレーズド格子から成ることを特徴とする請求項11に記載の装置。
  13. 上記のアライメントシステムは、上記の自己参照干渉計と上記の瞳面間に配置された像面における開口絞りを備えていることを特徴とする前記請求項のいずれか一項に記載の装置。
  14. 上記の開口絞りは制御可能な開口を有していることを特徴とする請求項13に記載の装置。
  15. 上記のアライメントシステムは自己参照干渉計により出力された光を2つのビームに導く偏光ビームスプリッタを備えており、ここで、該ビームのそれぞれ1つから光を受け取る2つの検出システムを有することを特徴とする前記請求項のいずれか一項に記載の装置。
  16. 上記のアライメントシステムは自己参照干渉計により出力された光を2つのビームに導く偏光ビームスプリッタを備えており、該ビームの一方は上記検出システムにより受け取られ、もう一方のビームはカメラにより受け取られることを特徴とする前記請求項のいずれか一項に記載の装置。
  17. 上記の検出システムは、正の次数のセットと負の次数のその対応するセットとを入力面を通して受け取り、かつ、結合した次数のセットを該入力面に垂直な出力面を通して出力する次数結合プリズムを備えており、ここで、該プリズムは、上記入力面に垂直であり、かつ上記出力面に対して45°であるビーム分割面で結合された第一ハーフおよび第二ハーフと、上記出力面に対向して記プリズムの該第一ハーフのさらなる面に隣接して設けられた1/4波長板およびミラーとから成ることを特徴とする前記請求項のいずれか一項に記載の装置。
  18. 放射線感光材料の層により少なくとも部分的に覆われた基板を提供し、放射線システムを用いて放射線の投影ビームを供給し、パターニング手段を用いて投影ビームのその断面にパターンを与え、放射線感光材料の層の目標部分に放射線のパターン化されたビームを投影し、上記の投影ステップの前あるいは後に、自己参照干渉計を用いて上記基板上のアライメントマークに対するアライメントを実行し180°相対回転される上記アライメントマークの2つの重なり合う像を投影するステップとから成るデバイス製造方法において、該アライメントのステップは、上記アライメントマークの上記像のフーリエ変換が干渉する瞳面における複数の異なる位置にて光強度を計測することから成ることを特徴とするデバイス製造方法。
  19. 上記の複数の異なる位置は、上記のフーリエ変換による異なる回折次数に該当する位置を含み、微細な位置情報が該回折次数の強度変化の相対位相から決定されることを特徴とする請求項18に記載の方法。
  20. 上記の複数の異なる位置は、上記の瞳面における回折次数の両サイドに等距離にスペースをおいた2つの位置からなり、ここで、粗い位置情報が、回折次数の両サイドの2つの位置における強度変化の相対位相から決定されることを特徴とする請求項18あるいは請求項19に記載の方法。
  21. 上記瞳面の暗い領域における位相変化を計測して上記アライメントマーカにおける非対称性を検出するステップをさらに備えていることを特徴とする請求項18、請求項19あるいは請求項20に記載の方法。
  22. 請求項18の方法に従って製造されたデバイス。
JP2003196130A 2002-06-11 2003-06-09 リソグラフィ装置、およびデバイス製造方法 Expired - Fee Related JP4091486B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02254057 2002-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007185484A Division JP4604069B2 (ja) 2002-06-11 2007-07-17 プリズム

Publications (2)

Publication Number Publication Date
JP2005268237A true JP2005268237A (ja) 2005-09-29
JP4091486B2 JP4091486B2 (ja) 2008-05-28

Family

ID=31502816

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003196130A Expired - Fee Related JP4091486B2 (ja) 2002-06-11 2003-06-09 リソグラフィ装置、およびデバイス製造方法
JP2007185484A Expired - Lifetime JP4604069B2 (ja) 2002-06-11 2007-07-17 プリズム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007185484A Expired - Lifetime JP4604069B2 (ja) 2002-06-11 2007-07-17 プリズム

Country Status (7)

Country Link
US (3) US6961116B2 (ja)
JP (2) JP4091486B2 (ja)
KR (1) KR100547437B1 (ja)
CN (1) CN1296774C (ja)
DE (1) DE60319462T2 (ja)
SG (1) SG131761A1 (ja)
TW (1) TWI298824B (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273954A (ja) * 2006-02-27 2007-10-18 Asml Holding Nv 対称性形成システム
JP2008066638A (ja) * 2006-09-11 2008-03-21 Canon Inc マークの位置を検出する装置
JP2009147317A (ja) * 2007-11-20 2009-07-02 Asml Netherlands Bv リソグラフィ装置および方法
JP2009168593A (ja) * 2008-01-16 2009-07-30 Hiroo Kinoshita 形状測定装置
JP2009200489A (ja) * 2008-02-21 2009-09-03 Asml Netherlands Bv 粗ウェーハ位置合わせ用マーク構造及びこのようなマーク構造の製造方法
CN102253609A (zh) * 2010-05-18 2011-11-23 上海微电子装备有限公司 对准标记测量信号处理方法
JP2012169617A (ja) * 2011-02-11 2012-09-06 Asml Netherlands Bv 検査装置および方法、リソグラフィ装置、リソグラフィ処理セル、およびデバイス製造方法
JP2012191177A (ja) * 2011-02-18 2012-10-04 Asml Netherlands Bv 測定方法、測定装置、リソグラフィ装置及びデバイス製造方法
US8305560B2 (en) 2008-06-16 2012-11-06 Canon Kabushiki Kaisha Exposure apparatus, device manufacturing method, and aperture stop manufacturing method
JP2013231741A (ja) * 2007-02-26 2013-11-14 Corning Inc 歪測定結像システム
JP2014502420A (ja) * 2010-11-12 2014-01-30 エーエスエムエル ネザーランズ ビー.ブイ. メトロロジ方法及び装置、リソグラフィシステム並びにデバイス製造方法
US8867020B2 (en) 2010-11-12 2014-10-21 Asml Netherlands B.V. Metrology method and apparatus, and device manufacturing method
JP2015518654A (ja) * 2012-04-12 2015-07-02 エーエスエムエル ネザーランズ ビー.ブイ. 位置測定方法、位置測定装置、リソグラフィ装置及びデバイス製造方法並びに光学要素
JP2015525883A (ja) * 2012-07-30 2015-09-07 エーエスエムエル ネザーランズ ビー.ブイ. 位置測定装置、位置測定方法、リソグラフィ装置およびデバイス製造方法
JP2015528584A (ja) * 2012-08-16 2015-09-28 エーエスエムエル ネザーランズ ビー.ブイ. 微細構造の非対称性を測定する方法及び装置、位置測定方法、位置測定装置、リソグラフィ装置及びデバイス製造方法
JP2016539356A (ja) * 2013-10-09 2016-12-15 エーエスエムエル ネザーランズ ビー.ブイ. 偏光非依存干渉計
KR20170041243A (ko) * 2014-08-25 2017-04-14 에이에스엠엘 홀딩 엔.브이. 측정 방법, 측정 장치, 리소그래피 장치 및 디바이스 제조 방법
KR20170069769A (ko) * 2015-12-11 2017-06-21 한국전자통신연구원 복수의 공간 광 변조기를 타일링하여 홀로그램 엘리먼트 이미지들을 기록하는 홀로그램 기록 장치
JP2017198793A (ja) * 2016-04-26 2017-11-02 株式会社ニコン 計測装置、露光装置、デバイス製造方法、及びパターン形成方法
JP2018517933A (ja) * 2015-06-05 2018-07-05 エーエスエムエル ネザーランズ ビー.ブイ. アライメントシステム
JP2019505831A (ja) * 2015-12-07 2019-02-28 エーエスエムエル ホールディング エヌ.ブイ. 対物レンズシステム
JP2019510214A (ja) * 2016-02-24 2019-04-11 ベルツ,マルティン 三次元インターフェロメータ及び電界の位相を決定する方法
KR20190094432A (ko) * 2016-12-19 2019-08-13 에이에스엠엘 네델란즈 비.브이. 계측 센서, 리소그래피 장치 및 디바이스 제조 방법
JP2019159324A (ja) * 2018-03-06 2019-09-19 ライカ インストゥルメンツ (シンガポール) プライヴェット リミテッドLeica Instruments (Singapore) Pte. Ltd. 手術腔の内腔壁を観察するための反射屈折型の医療用イメージングシステム
JP2019532328A (ja) * 2016-08-30 2019-11-07 エーエスエムエル ネザーランズ ビー.ブイ. 位置センサ、リソグラフィ装置およびデバイス製造方法
JP2021528685A (ja) * 2018-07-04 2021-10-21 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ測定のためのセンサ装置及び方法
JP2021182145A (ja) * 2016-05-31 2021-11-25 株式会社ニコン 位置検出装置及び位置検出方法、露光装置及び露光方法、並びに、デバイス製造方法

Families Citing this family (344)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60319462T2 (de) * 2002-06-11 2009-03-12 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
US8064730B2 (en) * 2003-09-22 2011-11-22 Asml Netherlands B.V. Device manufacturing method, orientation determination method and lithographic apparatus
US7408616B2 (en) * 2003-09-26 2008-08-05 Carl Zeiss Smt Ag Microlithographic exposure method as well as a projection exposure system for carrying out the method
US7228034B2 (en) * 2003-11-03 2007-06-05 Intel Corporation Interference patterning
DE10352040A1 (de) * 2003-11-07 2005-07-21 Carl Zeiss Sms Gmbh In Lage, Form und/oder den optischen Eigenschaften veränderbare Blenden-und/oder Filteranordnung für optische Geräte, insbesondere Mikroskope
DE102004010363B4 (de) * 2004-03-03 2012-11-15 Qimonda Ag Verfahren zur Bestimmung einer örtlichen Variation des Reflektions- oder Transmissionsverhaltens über die Oberfläche einer Maske
DE102004012125B3 (de) * 2004-03-12 2005-09-01 Nanofilm Technologie Gmbh Ellipsometrisches Messverfahren mit ROI-gestützter Bildkorrektur
DE102004032933B3 (de) * 2004-07-07 2006-01-05 Süss Microtec Lithography Gmbh Mittelpunktbestimmung von drehsymmetrischen Justiermarken
US20080144036A1 (en) * 2006-12-19 2008-06-19 Asml Netherlands B.V. Method of measurement, an inspection apparatus and a lithographic apparatus
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US20060061743A1 (en) * 2004-09-22 2006-03-23 Asml Netherlands B.V. Lithographic apparatus, alignment system, and device manufacturing method
CN1700101B (zh) * 2005-05-13 2010-12-08 上海微电子装备有限公司 用于投影光刻机的调焦调平传感器
US7528934B2 (en) * 2005-05-16 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060256311A1 (en) * 2005-05-16 2006-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4425239B2 (ja) * 2005-05-16 2010-03-03 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置およびデバイス製造方法
US7266803B2 (en) * 2005-07-29 2007-09-04 Taiwan Semiconductor Manufacturing Company, Ltd. Layout generation and optimization to improve photolithographic performance
US20070146708A1 (en) * 2005-11-24 2007-06-28 Nikon Corporation Mark structure, mark measurement apparatus, pattern forming apparatus and detection apparatus, and detection method and device manufacturing method
US7480050B2 (en) * 2006-02-09 2009-01-20 Asml Netherlands B.V. Lithographic system, sensor, and method of measuring properties of a substrate
US8908175B1 (en) * 2006-03-31 2014-12-09 Kla-Tencor Corporation Flexible scatterometry metrology system and method
ATE499895T1 (de) * 2006-04-12 2011-03-15 Nassir Navab Virtuelle penetrierende spiegelvorrichtung zur visualisierung von virtuellen objekten in angiografischen anwendungen
US7573584B2 (en) * 2006-09-25 2009-08-11 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
CN1949087B (zh) * 2006-11-03 2010-05-12 上海微电子装备有限公司 一种光刻装置的对准系统以及该对准系统的级结合系统
JP4885029B2 (ja) * 2007-03-28 2012-02-29 株式会社オーク製作所 露光描画装置
US7580131B2 (en) * 2007-04-17 2009-08-25 Asml Netherlands B.V. Angularly resolved scatterometer and inspection method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
KR101546987B1 (ko) * 2007-10-16 2015-08-24 가부시키가이샤 니콘 조명 광학 시스템, 노광 장치 및 디바이스 제조 방법
EP2179330A1 (en) * 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
SG153747A1 (en) * 2007-12-13 2009-07-29 Asml Netherlands Bv Alignment method, alignment system and product with alignment mark
NL1036308A1 (nl) * 2007-12-19 2009-06-22 Asml Netherlands Bv Lithographic method.
NL1036351A1 (nl) * 2007-12-31 2009-07-01 Asml Netherlands Bv Alignment system and alignment marks for use therewith cross-reference to related applications.
WO2009145048A1 (ja) * 2008-05-28 2009-12-03 株式会社ニコン 空間光変調器の検査装置および検査方法、照明光学系、照明光学系の調整方法、露光装置、およびデバイス製造方法
CN101750417B (zh) * 2008-12-12 2012-03-14 鸿富锦精密工业(深圳)有限公司 检测装置
US8039366B2 (en) * 2009-02-19 2011-10-18 International Business Machines Corporation Method for providing rotationally symmetric alignment marks for an alignment system that requires asymmetric geometric layout
US8170838B2 (en) * 2009-04-27 2012-05-01 Nanometrics Incorporated Simulating two-dimensional periodic patterns using compressed fourier space
KR101395733B1 (ko) * 2009-06-17 2014-05-15 에이에스엠엘 네델란즈 비.브이. 오버레이 측정 방법, 리소그래피 장치, 검사 장치, 처리 장치, 및 리소그래피 처리 셀
NL2005459A (en) 2009-12-08 2011-06-09 Asml Netherlands Bv Inspection method and apparatus, and corresponding lithographic apparatus.
KR101761270B1 (ko) * 2009-12-26 2017-07-25 디2에스, 인코포레이티드 멀티 노광 패스를 갖는 대전 입자 빔 리소그래피를 이용한 패턴 분할 방법 및 시스템
NL2007216A (en) 2010-09-08 2012-03-12 Asml Netherlands Bv Self-referencing interferometer, alignment system, and lithographic apparatus.
EP2458441B1 (en) 2010-11-30 2022-01-19 ASML Netherlands BV Measuring method, apparatus and substrate
CN103635139A (zh) * 2011-07-06 2014-03-12 富士胶片株式会社 X射线成像设备和用于其的校准方法
NL2009273A (en) * 2011-08-31 2013-03-04 Asml Netherlands Bv Level sensor arrangement for lithographic apparatus, lithographic apparatus and device manufacturing method.
US20130110005A1 (en) * 2011-10-27 2013-05-02 Covidien Lp Point size light illumination in metrology systems for in-situ surgical applications
CN103135371B (zh) * 2011-12-02 2015-02-11 上海微电子装备有限公司 基于分束偏折结构的小光斑离轴对准系统
CN103186060B (zh) * 2011-12-31 2014-12-03 中芯国际集成电路制造(上海)有限公司 光刻对准装置、其使用方法及光刻机
JP5832345B2 (ja) * 2012-03-22 2015-12-16 株式会社ニューフレアテクノロジー 検査装置および検査方法
CN103365122B (zh) * 2012-03-31 2016-01-20 上海微电子装备有限公司 用于光刻设备的自参考干涉对准系统
JP5451832B2 (ja) * 2012-08-21 2014-03-26 株式会社ニューフレアテクノロジー パターン検査装置
WO2014032833A1 (en) 2012-08-29 2014-03-06 Asml Netherlands B.V. Deformation pattern recognition method, pattern transferring method, processing device monitoring method, and lithographic apparatus
JP6095786B2 (ja) 2012-10-02 2017-03-15 エーエスエムエル ネザーランズ ビー.ブイ. 位置測定装置、位置測定方法、リソグラフィ装置及びデバイス製造方法
NL2011477A (en) 2012-10-10 2014-04-14 Asml Netherlands Bv Mark position measuring apparatus and method, lithographic apparatus and device manufacturing method.
CN103777476B (zh) * 2012-10-19 2016-01-27 上海微电子装备有限公司 一种离轴对准系统及对准方法
JP5992110B2 (ja) * 2012-11-05 2016-09-14 エーエスエムエル ネザーランズ ビー.ブイ. ミクロ構造の非対称性を測定する方法および装置、位置測定方法、位置測定装置、リソグラフィ装置およびデバイス製造方法
CN103869628B (zh) * 2012-12-11 2016-07-06 上海微电子装备有限公司 一种用于光刻设备的自参考干涉对准信号处理系统
CN104020642B (zh) * 2013-03-01 2016-04-20 上海微电子装备有限公司 自参考干涉对准系统
CN105143986B (zh) * 2013-03-20 2017-04-26 Asml荷兰有限公司 用于测量微结构的非对称性的方法和设备、位置测量方法、位置测量设备、光刻设备和器件制造方法
CN104062858B (zh) * 2013-03-21 2016-09-28 上海微电子装备有限公司 零光程差自参考干涉对准系统
CN104062852B (zh) * 2013-03-21 2016-09-28 上海微电子装备有限公司 零光程差自参考干涉对准系统
CN104111594B (zh) * 2013-04-16 2016-09-28 上海微电子装备有限公司 基于信号频率的二维自参考干涉对准系统及对准方法
EP2994798B1 (en) * 2013-05-07 2017-05-31 ASML Netherlands B.V. Alignment sensor, lithographic apparatus and alignment method
DE102014203348A1 (de) 2014-02-25 2015-08-27 Carl Zeiss Smt Gmbh Bündelverteilungsoptik, Beleuchtungsoptik mit einer derartigen Bündelverteilungsoptik, optisches System mit einer derartigen Beleuchtungsoptik sowie Projektionsbelichtungsanlage mit einem derartigen optischen System
WO2015200315A1 (en) * 2014-06-24 2015-12-30 Kla-Tencor Corporation Rotated boundaries of stops and targets
WO2016015987A1 (en) 2014-07-28 2016-02-04 Asml Netherlands B.V. Illumination system, inspection apparatus including such an illumination system, inspection method and manufacturing method
CN105445929B (zh) * 2014-08-20 2018-03-02 上海微电子装备(集团)股份有限公司 光程调整装置和光程调整方法
DE102014111979A1 (de) * 2014-08-21 2016-02-25 Martin Berz Interferometer
CN105388706B (zh) * 2014-09-09 2018-03-02 上海微电子装备(集团)股份有限公司 自参考干涉对准系统
EP3291011A4 (en) 2015-03-25 2019-02-27 Nikon Corporation LAYOUT METHOD, BRAND DETECTION METHOD, LIGHT EXPOSURE METHOD, MEASURING APPARATUS, LIGHT EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
KR102162234B1 (ko) 2015-06-17 2020-10-07 에이에스엠엘 네델란즈 비.브이. 레시피간 일치도에 기초한 레시피 선택
US9823574B2 (en) 2015-09-29 2017-11-21 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography alignment marks
US11054751B2 (en) 2015-10-12 2021-07-06 Asml Holding N.V. Apparatus with a sensor and a method of performing target measurement
WO2017093256A1 (en) 2015-12-03 2017-06-08 Asml Netherlands B.V. Position measuring method of an alignment target
WO2017102264A1 (en) 2015-12-17 2017-06-22 Asml Netherlands B.V. Source separation from metrology data
US10437158B2 (en) 2015-12-31 2019-10-08 Asml Netherlands B.V. Metrology by reconstruction
JP6553817B2 (ja) 2016-01-19 2019-07-31 エーエスエムエル ネザーランズ ビー.ブイ. 位置センシング機構、そのような機構を含むリソグラフィ装置、位置センシング方法、及びデバイス製造方法
US10942460B2 (en) 2016-04-12 2021-03-09 Asml Netherlands B.V. Mark position determination method
US10394132B2 (en) 2016-05-17 2019-08-27 Asml Netherlands B.V. Metrology robustness based on through-wavelength similarity
US10983440B2 (en) 2016-05-23 2021-04-20 Asml Netherlands B.V. Selection of substrate measurement recipes
US10845720B2 (en) 2016-05-31 2020-11-24 Nikon Corporation Mark detection apparatus, mark detection method, measurement apparatus, exposure apparatus, exposure method and device manufacturing method
CN107450272B (zh) * 2016-05-31 2020-04-10 上海微电子装备(集团)股份有限公司 离轴照明装置
WO2017207269A1 (en) * 2016-06-03 2017-12-07 Asml Holding N.V. Alignment system wafer stack beam analyzer
US10690995B2 (en) 2016-06-09 2020-06-23 Asml Netherlands B.V. Radiation source
WO2017215944A1 (en) 2016-06-15 2017-12-21 Asml Netherlands B.V. Substrate measurement recipe configuration to improve device matching
JP6744437B2 (ja) * 2016-06-30 2020-08-19 エーエスエムエル ホールディング エヌ.ブイ. オーバーレイおよびクリティカルディメンションセンサにおける瞳照明のための方法およびデバイス
WO2018033499A1 (en) 2016-08-15 2018-02-22 Asml Netherlands B.V. Alignment method
US10578982B2 (en) 2016-08-17 2020-03-03 Asml Netherlands B.V. Substrate measurement recipe design of, or for, a target including a latent image
KR102221714B1 (ko) * 2016-08-23 2021-03-03 에이에스엠엘 네델란즈 비.브이. 리소그래피 공정에 의해 기판 상에 형성된 구조체를 측정하는 메트롤로지 장치, 리소그래피 시스템, 및 리소그래피 공정에 의해 기판 상에 형성된 구조체를 측정하는 방법
WO2018041550A1 (en) 2016-09-01 2018-03-08 Asml Netherlands B.V. Automatic selection of metrology target measurement recipes
CN109690418B (zh) 2016-09-08 2021-10-01 Asml控股股份有限公司 包括对装置标记的原位印刷的测量方法以及对应装置
JP7081490B2 (ja) 2016-09-27 2022-06-07 株式会社ニコン レイアウト情報提供方法、レイアウト情報、決定方法、プログラム、並びに情報記録媒体
EP3309616A1 (en) * 2016-10-14 2018-04-18 ASML Netherlands B.V. Method of inspecting a substrate, metrology apparatus, and lithographic system
WO2018077587A1 (en) 2016-10-24 2018-05-03 Asml Netherlands B.V. Lithographic apparatus and method
KR102499301B1 (ko) 2016-11-15 2023-02-10 에이에스엠엘 네델란즈 비.브이. 방사선 분석 시스템
CN110383177B (zh) 2017-02-22 2021-10-29 Asml荷兰有限公司 计算量测法
WO2018202414A1 (en) 2017-05-04 2018-11-08 Asml Holding N.V. Method, substrate and apparatus to measure performance of optical metrology
NL2020530A (en) 2017-05-08 2018-11-14 Asml Netherlands Bv Metrology sensor, lithographic apparatus and method for manufacturing devices
NL2020769A (en) 2017-05-15 2018-11-20 Asml Netherlands Bv Metrology sensor, lithographic apparatus and method for manufacturing devices
CN110709778B (zh) * 2017-06-02 2021-12-21 Asml荷兰有限公司 量测设备
NL2020921A (en) 2017-06-07 2018-12-13 Stichting Vu Alignment Measurement System
NL2020956A (en) 2017-06-08 2018-12-13 Asml Netherlands Bv System and method for measurement of alignment
CN110799907B (zh) * 2017-06-26 2021-12-28 Asml荷兰有限公司 确定变形的方法
EP3422103A1 (en) * 2017-06-26 2019-01-02 ASML Netherlands B.V. Method of determining a performance parameter of a process
KR20200015775A (ko) 2017-07-17 2020-02-12 에이에스엠엘 네델란즈 비.브이. 정보 결정 장치 및 방법
EP3432071A1 (en) 2017-07-17 2019-01-23 ASML Netherlands B.V. Information determining apparatus and method
EP3441819A1 (en) 2017-08-07 2019-02-13 ASML Netherlands B.V. Computational metrology
KR102352673B1 (ko) 2017-08-07 2022-01-17 에이에스엠엘 네델란즈 비.브이. 컴퓨테이션 계측법
WO2019034318A1 (en) 2017-08-16 2019-02-21 Asml Netherlands B.V. ALIGNMENT MEASUREMENT SYSTEM
EP3454125A1 (en) 2017-09-07 2019-03-13 ASML Netherlands B.V. A method of measuring a parameter and apparatus
WO2019063193A1 (en) 2017-09-29 2019-04-04 Asml Netherlands B.V. SOURCE OF RADIATION
US10895813B2 (en) 2017-11-01 2021-01-19 Asml Holding N.V. Lithographic cluster, lithographic apparatus, and device manufacturing method
CN111512235B (zh) 2017-12-19 2022-08-05 Asml荷兰有限公司 基于计算量测的校正和控制
US11079687B2 (en) 2017-12-22 2021-08-03 Asml Netherlands B.V. Process window based on defect probability
JP7060695B2 (ja) 2018-01-17 2022-04-26 エーエスエムエル ネザーランズ ビー.ブイ. スキャン信号の特徴診断
KR102454303B1 (ko) 2018-01-24 2022-10-12 에이에스엠엘 네델란즈 비.브이. 컴퓨테이션 계측법 기반 샘플링 스킴
WO2019145101A1 (en) 2018-01-26 2019-08-01 Asml Netherlands B.V. Apparatus and methods for determining the position of a target structure on a substrate
WO2019149586A1 (en) 2018-01-30 2019-08-08 Asml Netherlands B.V. Method of patterning at least a layer of a semiconductor device
KR102481755B1 (ko) 2018-02-23 2022-12-29 에이에스엠엘 네델란즈 비.브이. 가이드 패터닝 디바이스 검사
KR102606115B1 (ko) 2018-02-23 2023-11-29 에이에스엠엘 네델란즈 비.브이. 패턴의 시맨틱 분할을 위한 딥 러닝
CN111819498A (zh) 2018-03-06 2020-10-23 Asml控股股份有限公司 抗反射光学衬底和制造方法
WO2019206579A1 (en) 2018-04-26 2019-10-31 Asml Netherlands B.V. Alignment method and apparatus
NL2022852A (en) 2018-04-26 2019-10-31 Asml Holding Nv Alignment sensor apparatus for process sensivity compensation
US11204559B2 (en) 2018-05-16 2021-12-21 Asml Holdings N.V. High stability collimator assembly, lithographic apparatus, and method
EP3572881A1 (en) 2018-05-24 2019-11-27 ASML Netherlands B.V. Bandwidth calculation system and method for determining a desired wavelength bandwidth for a measurement beam in a mark detection system
TWI791196B (zh) 2018-05-24 2023-02-01 荷蘭商Asml荷蘭公司 判定基板之堆疊組態之方法及其相關非暫時性電腦可讀媒體
EP3575875A1 (en) * 2018-05-31 2019-12-04 ASML Netherlands B.V. Measurement apparatus and method of measuring a target
US11586114B2 (en) 2018-06-25 2023-02-21 Asml Netherlands B.V. Wavefront optimization for tuning scanner based on performance matching
JP7101268B2 (ja) 2018-07-06 2022-07-14 エーエスエムエル ネザーランズ ビー.ブイ. 位置センサ
WO2020020759A1 (en) 2018-07-26 2020-01-30 Asml Netherlands B.V. Method for determining an etch profile of a layer of a wafer for a simulation system
US11630396B2 (en) 2018-08-14 2023-04-18 Asml Netherlands B.V. Model calibration and guided metrology based on smart sampling
US11055464B2 (en) * 2018-08-14 2021-07-06 Taiwan Semiconductor Manufacturing Co., Ltd. Critical dimension uniformity
WO2020035203A1 (en) 2018-08-16 2020-02-20 Asml Netherlands B.V. Apparatus and method for clearing and detecting marks
TWI749355B (zh) 2018-08-17 2021-12-11 荷蘭商Asml荷蘭公司 用於校正圖案化程序之度量衡資料之方法及相關的電腦程式產品
WO2020038629A1 (en) 2018-08-20 2020-02-27 Asml Netherlands B.V. Apparatus and method for measuring a position of alignment marks
EP3614194A1 (en) 2018-08-24 2020-02-26 ASML Netherlands B.V. Matching pupil determination
WO2020043582A1 (en) 2018-08-29 2020-03-05 Asml Holding N.V. Compact alignment sensor arrangements
EP3853666B1 (en) 2018-09-19 2022-08-10 ASML Netherlands B.V. Metrology sensor for position metrology
WO2020057924A1 (en) 2018-09-21 2020-03-26 Asml Netherlands B.V. Radiation system
TWI722562B (zh) 2018-09-24 2021-03-21 荷蘭商Asml荷蘭公司 自圖案化製程之圖案組判定候選圖案的方法
JP7124212B2 (ja) 2018-09-27 2022-08-23 エーエスエムエル ネザーランズ ビー.ブイ. マークの位置を測定するための装置及び方法
TW202020577A (zh) 2018-09-28 2020-06-01 荷蘭商Asml荷蘭公司 基於晶圓量測判定熱點排序
CN112840274A (zh) 2018-10-12 2021-05-25 Asml荷兰有限公司 用于对准传感器的检测系统
EP3640972A1 (en) 2018-10-18 2020-04-22 ASML Netherlands B.V. System and method for facilitating chemical mechanical polishing
EP3647874A1 (en) 2018-11-05 2020-05-06 ASML Netherlands B.V. Optical fibers and production methods therefor
SG11202103803QA (en) 2018-10-24 2021-05-28 Asml Netherlands Bv Optical fibers and production methods therefor
WO2020094385A1 (en) 2018-11-08 2020-05-14 Asml Netherlands B.V. Prediction of out of specification based on spatial characteristic of process variability
EP3663856A1 (en) 2018-12-07 2020-06-10 ASML Netherlands B.V. Method for adjusting a target feature in a model of a patterning process based on local electric fields
CN113196173A (zh) 2018-12-14 2021-07-30 Asml荷兰有限公司 用于对图像图案分组以确定图案化过程中晶片行为的设备和方法
CN113196175A (zh) * 2018-12-18 2021-07-30 Asml荷兰有限公司 测量图案化过程的参数的方法、量测设备、目标
JP7143526B2 (ja) 2018-12-20 2022-09-28 エーエスエムエル ホールディング エヌ.ブイ. 並列アライメントマークを同時に獲得するための装置及びその方法
JP7203974B2 (ja) * 2018-12-21 2023-01-13 エーエスエムエル ホールディング エヌ.ブイ. アライメント信号のためのノイズ補正
KR102617197B1 (ko) 2018-12-28 2023-12-27 에이에스엠엘 네델란즈 비.브이. 프린트된 기판으로부터의 측정 피드백에 기초한 패턴 랭킹 결정
EP3715951A1 (en) 2019-03-28 2020-09-30 ASML Netherlands B.V. Position metrology apparatus and associated optical elements
WO2020141050A1 (en) 2018-12-31 2020-07-09 Asml Netherlands B.V. Position metrology apparatus and associated optical elements
WO2020164904A1 (en) 2019-02-15 2020-08-20 Asml Holding N.V. Metrology system, lithographic apparatus, and calibration method
EP3696606A1 (en) 2019-02-15 2020-08-19 ASML Netherlands B.V. A metrology apparatus with radiation source having multiple broadband outputs
CN113439240A (zh) 2019-02-19 2021-09-24 Asml控股股份有限公司 量测系统、光刻设备和方法
NL2024850A (en) 2019-02-21 2020-08-31 Asml Holding Nv Wafer alignment using form birefringence of targets or product
EP3702840A1 (en) 2019-03-01 2020-09-02 ASML Netherlands B.V. Alignment method and associated metrology device
EP3705942A1 (en) 2019-03-04 2020-09-09 ASML Netherlands B.V. Hollow-core photonic crystal fiber based optical component for broadband radiation generation
IL286548B1 (en) 2019-03-25 2024-02-01 Asml Netherlands Bv A device for expanding frequency and method
EP3715944A1 (en) 2019-03-25 2020-09-30 ASML Netherlands B.V. Frequency broadening apparatus and method
EP3719551A1 (en) 2019-04-03 2020-10-07 ASML Netherlands B.V. Optical fiber
WO2020200637A1 (en) 2019-04-03 2020-10-08 Asml Netherlands B.V. Optical fiber
JP7260669B2 (ja) 2019-05-03 2023-04-18 エーエスエムエル ネザーランズ ビー.ブイ. 斜めフィッティング技術に基づいてアライメントモデルを決定するための方法
US11940608B2 (en) 2019-05-06 2024-03-26 Asml Netherlands B.V. Dark field microscope
EP3739389A1 (en) 2019-05-17 2020-11-18 ASML Netherlands B.V. Metrology tools comprising aplanatic objective singlet
WO2020239516A1 (en) * 2019-05-30 2020-12-03 Asml Holding N.V. Self-referencing interferometer and dual self-referencing interferometer devices
WO2020244854A1 (en) 2019-06-03 2020-12-10 Asml Netherlands B.V. Image formation apparatus
US11875101B2 (en) 2019-06-20 2024-01-16 Asml Netherlands B.V. Method for patterning process modelling
EP3767347A1 (en) 2019-07-17 2021-01-20 ASML Netherlands B.V. Mounted hollow-core fibre arrangement
EP3754389A1 (en) 2019-06-21 2020-12-23 ASML Netherlands B.V. Mounted hollow-core fibre arrangement
EP3758168A1 (en) 2019-06-25 2020-12-30 ASML Netherlands B.V. Hollow-core photonic crystal fiber based optical component for broadband radiation generation
EP3994523A1 (en) 2019-07-02 2022-05-11 ASML Netherlands B.V. Metrology method and associated metrology and lithographic apparatuses
EP3994526A1 (en) 2019-07-03 2022-05-11 ASML Netherlands B.V. Method for applying a deposition model in a semiconductor manufacturing process
EP3786712A1 (en) 2019-08-28 2021-03-03 ASML Netherlands B.V. Light sources and methods of controlling; devices and methods for use in measurement applications
US11971663B2 (en) 2019-07-16 2024-04-30 Asml Netherlands B.V. Light sources and methods of controlling; devices and methods for use in measurement applications
EP3767375A1 (en) 2019-07-19 2021-01-20 ASML Netherlands B.V. A light source and a method for use in metrology applications
EP3796080A1 (en) 2019-09-18 2021-03-24 ASML Netherlands B.V. Radiation source
WO2021013611A1 (en) 2019-07-24 2021-01-28 Asml Netherlands B.V. Radiation source
TWI777193B (zh) 2019-07-31 2022-09-11 荷蘭商Asml控股公司 基於波長掃描之對準感測器
TWI767291B (zh) 2019-08-09 2022-06-11 荷蘭商Asml荷蘭公司 對準裝置及微影裝置
JP2022544187A (ja) 2019-08-09 2022-10-17 エーエスエムエル ネザーランズ ビー.ブイ. 計測デバイスおよびそのための位相変調装置
EP3812836A1 (en) 2019-10-21 2021-04-28 ASML Netherlands B.V. End facet protection for a light source and a method for use in metrology applications
EP3786700A1 (en) 2019-08-29 2021-03-03 ASML Netherlands B.V. End facet protection for a light source and a method for use in metrology applications
EP3786701B1 (en) 2019-08-29 2023-04-26 ASML Netherlands B.V. End facet protection for a light source and a method for use in metrology applications
EP3786702A1 (en) 2019-09-02 2021-03-03 ASML Netherlands B.V. Mode control of photonic crystal fiber based broadband light sources
WO2021043593A1 (en) 2019-09-02 2021-03-11 Asml Netherlands B.V. Mode control of photonic crystal fiber based broadband light sources
WO2021043596A1 (en) 2019-09-03 2021-03-11 Asml Netherlands B.V. Method for determining aberration sensitivity of patterns
EP3790280B1 (en) * 2019-09-03 2023-11-15 eSMART Technologies SA System and methods of device pairing
JP7367194B2 (ja) 2019-09-17 2023-10-23 エーエスエムエル ホールディング エヌ.ブイ. アライメントソースとしてのレーザモジュール、メトロロジシステム、及びリソグラフィ装置
WO2021052801A1 (en) 2019-09-18 2021-03-25 Asml Netherlands B.V. Improved broadband radiation generation in hollow-core fibres
EP3805857A1 (en) 2019-10-09 2021-04-14 ASML Netherlands B.V. Improved broadband radiation generation in hollow-core fibres
US20210095957A1 (en) 2019-09-27 2021-04-01 Asml Holding N.V. Lithographic Apparatus, Metrology Systems, Phased Array Illumination Sources and Methods thereof
WO2021058313A1 (en) 2019-09-27 2021-04-01 Asml Holding N.V. Lithographic apparatus, metrology system, and illumination systems with structured illumination
WO2021058338A1 (en) 2019-09-27 2021-04-01 Asml Netherlands B.V. Metrology systems, coherence scrambler illumination sources and methods thereof
WO2021063663A1 (en) 2019-09-30 2021-04-08 Asml Holding N.V. Alignment sensor with modulated light source
KR20220054425A (ko) 2019-10-02 2022-05-02 에이에스엠엘 네델란즈 비.브이. 예측 모델들을 사용한 공정 모니터링 및 튜닝
EP3809190A1 (en) 2019-10-14 2021-04-21 ASML Netherlands B.V. Method and apparatus for coherence scrambling in metrology applications
CN114585972A (zh) 2019-10-21 2022-06-03 Asml控股股份有限公司 感测对准标记的设备和方法
KR20220063265A (ko) 2019-10-24 2022-05-17 에이에스엠엘 네델란즈 비.브이. 광대역 방사선 발생을 위한 중공 코어 광결정 섬유 기반 광학 요소
EP3839586A1 (en) 2019-12-18 2021-06-23 ASML Netherlands B.V. Hollow-core photonic crystal fiber based optical component for broadband radiation generation
US20220397832A1 (en) 2019-11-01 2022-12-15 Asml Netherlands B.V. Metrology method and lithographic apparatuses
EP3819266A1 (en) 2019-11-07 2021-05-12 ASML Netherlands B.V. Method of manufacture of a capillary for a hollow-core photonic crystal fiber
US20220390860A1 (en) 2019-11-07 2022-12-08 Asml Holding N.V. Systems for cleaning a portion of a lithography apparatus
EP3819267B1 (en) 2019-11-07 2022-06-29 ASML Netherlands B.V. Method of manufacture of a capillary for a hollow-core photonic crystal fiber
KR20220079662A (ko) 2019-11-11 2022-06-13 에이에스엠엘 네델란즈 비.브이. 리소그래피 시스템을 위한 교정 방법
US11762305B2 (en) 2019-12-05 2023-09-19 Asml Netherlands B.V. Alignment method
CN114830039A (zh) 2019-12-12 2022-07-29 Asml荷兰有限公司 对准方法以及相关对准和光刻设备
CN114868084A (zh) 2019-12-16 2022-08-05 Asml荷兰有限公司 量测方法和相关联的量测和光刻设备
EP3839635A1 (en) 2019-12-17 2021-06-23 ASML Netherlands B.V. Dark field digital holographic microscope and associated metrology method
WO2021121733A1 (en) 2019-12-17 2021-06-24 Asml Netherlands B.V. Dark field digital holographic microscope and associated metrology method
IL293749A (en) 2019-12-18 2022-08-01 Asml Netherlands Bv A method for correcting measurements in the production of integrated circuits and related devices
EP3851915A1 (en) 2020-01-14 2021-07-21 ASML Netherlands B.V. Method for correcting measurements in the manufacture of integrated circuits and associated apparatuses
US20230009177A1 (en) 2019-12-19 2023-01-12 Asmlnetherlands B.V. Optically determining electrical contact between metallic features in different layers in a structure
EP3839631A1 (en) 2019-12-19 2021-06-23 ASML Netherlands B.V. Determining relative positions of different layers in a structure
US20230058714A1 (en) 2019-12-30 2023-02-23 Asml Netherlands B.V. Lithographic apparatus, metrology systems, illumination sources and methods thereof
EP3865931A1 (en) 2020-02-12 2021-08-18 ASML Netherlands B.V. Method, assembly, and apparatus for improved control of broadband radiation generation
WO2021144093A1 (en) 2020-01-15 2021-07-22 Asml Netherlands B.V. Method, assembly, and apparatus for improved control of broadband radiation generation
WO2021144066A1 (en) 2020-01-16 2021-07-22 Asml Netherlands B.V. Substrate, patterning device and lithographic apparatuses
WO2021151565A1 (en) 2020-01-28 2021-08-05 Asml Netherlands B.V. Metrology method and associated metrology and lithographic apparatuses
WO2021156069A1 (en) 2020-02-05 2021-08-12 Asml Holding N.V. Apparatus for sensing alignment marks
US20230076218A1 (en) 2020-02-21 2023-03-09 Asml Netherlands B.V. Method for calibrating simulation process based on defect-based process window
EP3876036A1 (en) 2020-03-04 2021-09-08 ASML Netherlands B.V. Vibration isolation system and associated applications in lithography
CN113448190B (zh) * 2020-03-26 2022-11-15 上海微电子装备(集团)股份有限公司 一种对准系统、对准方法及光刻机
EP3889681A1 (en) 2020-03-31 2021-10-06 ASML Netherlands B.V. An assembly including a non-linear element and a method of use thereof
US20230359118A1 (en) 2020-04-03 2023-11-09 Asml Holding N.V. Systems and methods for forming structures on a surface
US11249402B2 (en) 2020-04-23 2022-02-15 Asml Holding N. V. Adjustable retardance compensator for self-referencing interferometer devices
CN115668067A (zh) 2020-05-19 2023-01-31 Asml控股股份有限公司 基于局部对准标记变形来产生对准信号
EP3913429A1 (en) 2020-05-19 2021-11-24 ASML Netherlands B.V. A supercontinuum radiation source and associated metrology devices
WO2021239479A1 (en) * 2020-05-26 2021-12-02 Asml Netherlands B.V. Lithographic apparatus, multi-wavelength phase-modulated scanning metrology system and method
KR20230013039A (ko) 2020-05-27 2023-01-26 에이에스엠엘 네델란즈 비.브이. 정렬 방법 및 연관된 정렬과 리소그래피 장치
KR20230003194A (ko) 2020-05-29 2023-01-05 에이에스엠엘 네델란즈 비.브이. 기판, 패터닝 디바이스 및 계측 장치
TW202331426A (zh) 2020-06-01 2023-08-01 荷蘭商Asml控股公司 用於清潔微影設備之一部分之清潔工具及方法
CN115698866A (zh) 2020-06-18 2023-02-03 Asml荷兰有限公司 光刻设备、量测系统及其方法
CN115702392A (zh) 2020-06-23 2023-02-14 Asml控股股份有限公司 光刻设备、量测系统、照射开关及其方法
WO2021259559A1 (en) 2020-06-24 2021-12-30 Asml Netherlands B.V. Metrology method and associated metrology and lithographic apparatuses
JP2023530864A (ja) 2020-06-24 2023-07-20 エーエスエムエル ホールディング エヌ.ブイ. 自己参照集積アライメントセンサ
US20230221652A1 (en) 2020-07-03 2023-07-13 Asml Netherlans B. V. Process window based on failure rate
KR20230035034A (ko) 2020-07-06 2023-03-10 에이에스엠엘 네델란즈 비.브이. 조명 장치 및 연관된 계측 및 리소그래피 장치
EP3936936A1 (en) 2020-07-08 2022-01-12 ASML Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator with extended fiber lifetime
DK3936937T3 (en) 2020-07-08 2022-09-19 Asml Netherlands Bv Hollow-Core Fiber Based Broadband Radiation Generator With Extended Fiber Lifetime
US20230273531A1 (en) 2020-07-16 2023-08-31 Asml Holding N.V. Spectrometric metrology systems based on multimode interference and lithographic apparatus
US20230273502A1 (en) 2020-08-03 2023-08-31 Asml Netherlands B.V. Method for generating broadband radiation and associated broadband source and metrology device
EP3974899A1 (en) 2020-09-28 2022-03-30 ASML Netherlands B.V. Method for generating broadband radiation and associated broadband source and metrology device
WO2022028812A1 (en) 2020-08-06 2022-02-10 Asml Netherlands B.V. Hollow core fiber light source and a method for manufacturing a hollow core fiber
EP4001976A1 (en) 2020-11-13 2022-05-25 ASML Netherlands B.V. Hollow core fiber light source and a method for manufacturing a hollow core fiber
WO2022042966A1 (en) 2020-08-26 2022-03-03 Asml Holding N.V. Lithographic apparatus, metrology system, and intensity imbalance measurement for error correction
EP3964809A1 (en) 2020-09-02 2022-03-09 Stichting VU Wavefront metrology sensor and mask therefor, method for optimizing a mask and associated apparatuses
EP3964892A1 (en) 2020-09-02 2022-03-09 Stichting VU Illumination arrangement and associated dark field digital holographic microscope
EP3968090A1 (en) 2020-09-11 2022-03-16 ASML Netherlands B.V. Radiation source arrangement and metrology device
JP2023540186A (ja) 2020-09-03 2023-09-22 エーエスエムエル ネザーランズ ビー.ブイ. 中空コアフォトニック結晶ファイバベースの広帯域放射ジェネレータ
EP3988996A1 (en) 2020-10-20 2022-04-27 ASML Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator
EP3978964A1 (en) 2020-10-01 2022-04-06 ASML Netherlands B.V. Achromatic optical relay arrangement
KR20230095971A (ko) 2020-11-04 2023-06-29 에이에스엠엘 홀딩 엔.브이. 편광 선택 메트롤로지 시스템, 리소그래피 장치, 및 그 방법
WO2022112064A1 (en) 2020-11-24 2022-06-02 Asml Holding N.V. Multiple objectives metrology system, lithographic apparatus, and methods thereof
CN116529673A (zh) 2020-11-27 2023-08-01 Asml荷兰有限公司 量测方法及相关量测和光刻装置
EP4009107A1 (en) 2020-12-01 2022-06-08 ASML Netherlands B.V. Method and apparatus for imaging nonstationary object
US20240027913A1 (en) 2020-12-08 2024-01-25 Asml Netherlands B.V. Metrology system and coherence adjusters
JP2023551776A (ja) 2020-12-08 2023-12-13 エーエスエムエル ネザーランズ ビー.ブイ. メトロロジの方法及び関連装置
KR20230112653A (ko) 2020-12-10 2023-07-27 에이에스엠엘 네델란즈 비.브이. 중공 코어 광결정 광섬유 기반 광대역 방사선 발생기
EP4012492A1 (en) 2020-12-10 2022-06-15 ASML Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator
US20240094641A1 (en) 2020-12-10 2024-03-21 Asml Holding N.V. Intensity order difference based metrology system, lithographic apparatus, and methods thereof
CN116635795A (zh) 2020-12-23 2023-08-22 Asml荷兰有限公司 光刻设备、量测系统及其方法
CN116783556A (zh) 2021-01-19 2023-09-19 Asml控股股份有限公司 用于在光刻对准设备中测量强度的系统和方法
WO2022161703A1 (en) 2021-01-27 2022-08-04 Asml Netherlands B.V. Hollow-core photonic crystal fiber
EP4036619A1 (en) 2021-01-27 2022-08-03 ASML Netherlands B.V. Hollow-core photonic crystal fiber
JP2024512198A (ja) 2021-02-04 2024-03-19 エーエスエムエル ネザーランズ ビー.ブイ. 光パルスを空間的にフィルタリングするための方法および装置
EP4067968A1 (en) 2021-03-29 2022-10-05 ASML Netherlands B.V. Methods and apparatuses for spatially filtering optical pulses
EP4053636A1 (en) 2021-03-02 2022-09-07 ASML Netherlands B.V. Alignment method
WO2022199958A1 (en) 2021-03-10 2022-09-29 Asml Netherlands B.V. Alignment method and associated alignment and lithographic apparatuses
IL305428A (en) 2021-03-16 2023-10-01 Asml Netherlands Bv A radiation source based on hollow-core optical fibers
EP4086698A1 (en) 2021-05-06 2022-11-09 ASML Netherlands B.V. Hollow-core optical fiber based radiation source
EP4060403A1 (en) 2021-03-16 2022-09-21 ASML Netherlands B.V. Hollow-core photonic crystal fiber based multiple wavelength light source device
CN117157586A (zh) 2021-03-29 2023-12-01 Asml荷兰有限公司 用于晶片对准的不对称性扩展栅格模型
CN117203585A (zh) 2021-04-23 2023-12-08 Asml荷兰有限公司 控制光学系统、量测系统、光刻设备中的像差及其方法
WO2022233547A1 (en) 2021-05-03 2022-11-10 Asml Netherlands B.V. Optical element for generation of broadband radiation
EP4105696A1 (en) 2021-06-15 2022-12-21 ASML Netherlands B.V. Optical element for generation of broadband radiation
WO2022258275A1 (en) 2021-06-07 2022-12-15 Asml Netherlands B.V. Integrated optical alignment sensors
WO2022258371A1 (en) 2021-06-08 2022-12-15 Asml Netherlands B.V. Intensity imbalance calibration on an overfilled bidirectional mark
KR20240018488A (ko) 2021-06-08 2024-02-13 에이에스엠엘 홀딩 엔.브이. 계측 시스템, 시간적 및 공간적 가간섭성 스크램블러 및 그 방법
EP4112572A1 (en) 2021-06-28 2023-01-04 ASML Netherlands B.V. Method of producing photonic crystal fibers
WO2023285138A1 (en) 2021-07-13 2023-01-19 Asml Holding N.V. Metrology systems with phased arrays for contaminant detection and microscopy
KR20240035804A (ko) 2021-07-20 2024-03-18 에이에스엠엘 네델란즈 비.브이. 저차원 데이터 분석을 위한 데이터 매핑 방법 및 프로그램
EP4130880A1 (en) 2021-08-03 2023-02-08 ASML Netherlands B.V. Methods of data mapping for low dimensional data analysis
WO2023016773A1 (en) 2021-08-12 2023-02-16 Asml Netherlands B.V. Intensity measurements using off-axis illumination
CN117813558A (zh) 2021-08-18 2024-04-02 Asml荷兰有限公司 量测方法和设备
WO2023020791A1 (en) 2021-08-20 2023-02-23 Asml Netherlands B.V. Compensating optical system for nonuniform surfaces, a metrology system, lithographic apparatus, and methods thereof
EP4163715A1 (en) 2021-10-05 2023-04-12 ASML Netherlands B.V. Improved broadband radiation generation in photonic crystal or highly non-linear fibres
WO2023025578A1 (en) 2021-08-25 2023-03-02 Asml Netherlands B.V. Improved broadband radiation generation in photonic crystal or highly non-linear fibres
WO2023036521A1 (en) 2021-09-08 2023-03-16 Asml Netherlands B.V. Metrology method and associated metrology and lithographic apparatuses
WO2023041488A1 (en) 2021-09-15 2023-03-23 Asml Netherlands B.V. Source separation from metrology data
WO2023046420A1 (en) 2021-09-22 2023-03-30 Asml Netherlands B.V. Source selection module and associated metrology and lithographic apparatuses
EP4163687A1 (en) 2021-10-06 2023-04-12 ASML Netherlands B.V. Fiber alignment monitoring tool and associated fiber alignment method
EP4167031A1 (en) 2021-10-18 2023-04-19 ASML Netherlands B.V. Method of determining a measurement recipe in a metrology method
EP4170429A1 (en) 2021-10-19 2023-04-26 ASML Netherlands B.V. Out-of-band leakage correction method and metrology apparatus
WO2023072880A1 (en) 2021-10-29 2023-05-04 Asml Netherlands B.V. Inspection apparatus, polarization-maintaining rotatable beam displacer, and method
EP4174568A1 (en) 2021-11-01 2023-05-03 ASML Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator
WO2023078619A1 (en) 2021-11-02 2023-05-11 Asml Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator
EP4174567A1 (en) 2021-11-02 2023-05-03 ASML Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator
WO2023104469A1 (en) 2021-12-07 2023-06-15 Asml Netherlands B.V. Target asymmetry measurement for substrate alignment in lithography systems
WO2023104504A1 (en) 2021-12-09 2023-06-15 Asml Netherlands B.V. Surrounding pattern and process aware metrology
WO2023117610A1 (en) 2021-12-23 2023-06-29 Asml Netherlands B.V. Generating an alignment signal without dedicated alignment structures
WO2023117611A1 (en) 2021-12-23 2023-06-29 Asml Netherlands B.V. Systems and methods for generating multiple illumination spots from a single illumination source
WO2023126173A1 (en) 2021-12-28 2023-07-06 Asml Netherlands B.V. An optical system implemented in a system for fast optical inspection of targets
WO2023126174A1 (en) 2021-12-29 2023-07-06 Asml Netherlands B.V. Enhanced alignment for a photolithographic apparatus
WO2023131589A1 (en) 2022-01-10 2023-07-13 Asml Netherlands B.V. Mechanically controlled stress-engineered optical systems and methods
WO2023138916A1 (en) 2022-01-21 2023-07-27 Asml Netherlands B.V. Systems and methods for inspecting a portion of a lithography apparatus
WO2023147951A1 (en) 2022-02-07 2023-08-10 Asml Netherlands B.V. Inspection apparatus, motorized apertures, and method background
EP4231090A1 (en) 2022-02-17 2023-08-23 ASML Netherlands B.V. A supercontinuum radiation source and associated metrology devices
WO2023160924A1 (en) 2022-02-22 2023-08-31 Asml Netherlands B.V. Method and apparatus for reflecting pulsed radiation
WO2023160925A1 (en) 2022-02-25 2023-08-31 Asml Netherlands B.V. Systems and methods for cleaning a portion of a lithography apparatus
WO2023165823A1 (en) 2022-03-02 2023-09-07 Asml Netherlands B.V. Inspection apparatus, linearly movable beam displacer, and method
EP4242744A1 (en) 2022-03-09 2023-09-13 ASML Netherlands B.V. Method for correcting measurements in the manufacture of integrated circuits and associated apparatuses
WO2023174648A1 (en) 2022-03-18 2023-09-21 Stichting Vu Illumination arrangement for a metrology device and associated method
EP4246232A1 (en) 2022-03-18 2023-09-20 Stichting VU Illumination arrangement for a metrology device and associated method
EP4273622A1 (en) 2022-05-02 2023-11-08 ASML Netherlands B.V. Hollow-core optical fiber based radiation source
WO2023194049A1 (en) 2022-04-08 2023-10-12 Asml Netherlands B.V. Hollow-core optical fiber based radiation source
WO2023198444A1 (en) 2022-04-15 2023-10-19 Asml Netherlands B.V. Metrology apparatus with configurable printed optical routing for parallel optical detection
WO2023198466A1 (en) 2022-04-15 2023-10-19 Asml Netherlands B.V. A lithographic apparatus, an inspection system, and a detector having a square-core fiber
WO2023217499A1 (en) 2022-05-12 2023-11-16 Asml Netherlands B.V. Optical arrangement for a metrology system
WO2023217553A1 (en) 2022-05-12 2023-11-16 Asml Netherlands B.V. A movable stage for a lithographic apparatus
WO2023222317A1 (en) 2022-05-16 2023-11-23 Asml Netherlands B.V. Passive integrated optical systems and methods for reduction of spatial optical coherence
EP4289798A1 (en) 2022-06-07 2023-12-13 ASML Netherlands B.V. Method of producing photonic crystal fibers
WO2023242012A1 (en) 2022-06-14 2023-12-21 Asml Netherlands B.V. Integrated optical system for scalable and accurate inspection systems
EP4300178A1 (en) * 2022-06-30 2024-01-03 Mycronic Ab Electrical crosstalk cancellation in acoustooptical modulators
EP4300183A1 (en) 2022-06-30 2024-01-03 ASML Netherlands B.V. Apparatus for broadband radiation generation
EP4303658A1 (en) 2022-07-05 2024-01-10 ASML Netherlands B.V. Method of correction metrology signal data
WO2024017649A1 (en) 2022-07-19 2024-01-25 Asml Netherlands B.V. Enhanced alignment apparatus for lithographic systems
WO2024022839A1 (en) 2022-07-25 2024-02-01 Asml Netherlands B.V. Metrology system using multiple radiation spots
EP4312005A1 (en) 2022-07-29 2024-01-31 Stichting VU Method and apparatuses for fourier transform spectrometry
EP4318131A1 (en) 2022-08-01 2024-02-07 ASML Netherlands B.V. Sensor module, illuminator, metrology device and associated metrology method
WO2024041827A1 (en) 2022-08-22 2024-02-29 Asml Netherlands B.V. Metrology system and method
EP4332678A1 (en) 2022-09-05 2024-03-06 ASML Netherlands B.V. Holographic metrology apparatus and method
WO2024052061A1 (en) 2022-09-08 2024-03-14 Asml Netherlands B.V. Measuring contrast and critical dimension using an alignment sensor
EP4336251A1 (en) 2022-09-12 2024-03-13 ASML Netherlands B.V. A multi-pass radiation device
WO2024061736A1 (en) 2022-09-23 2024-03-28 Asml Netherlands B.V. Positioning system for an optical element of a metrology apparatus
WO2024078830A1 (en) 2022-10-10 2024-04-18 Asml Netherlands B.V. Electrostatic clamp with a structured electrode by post bond structuring
WO2024078813A1 (en) 2022-10-11 2024-04-18 Asml Netherlands B.V. An aberration correction optical system
EP4354200A1 (en) 2022-10-11 2024-04-17 ASML Netherlands B.V. An aberration correction optical system
WO2024078818A1 (en) 2022-10-11 2024-04-18 Asml Netherlands B.V. Inspection systems using metasurface and integrated optical systems for lithography
EP4361703A1 (en) 2022-10-27 2024-05-01 ASML Netherlands B.V. An illumination module for a metrology device
CN116819917B (zh) * 2023-08-31 2023-11-17 光科芯图(北京)科技有限公司 一种掩模板、曝光设备及掩模板对准方法
CN116859682B (zh) * 2023-08-31 2023-12-08 光科芯图(北京)科技有限公司 一种掩模的曝光标定装置及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358068A (ja) * 2000-04-20 2001-12-26 Svg Lithography Systems Inc アライメントセンサ、アライメントセンサシステム、イメージ回転形干渉計及びアライメントマーク検出方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3404963C2 (de) 1984-02-11 1986-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Laser-Interferometer zur Längenmessung
US4687332A (en) * 1985-10-15 1987-08-18 Lockheed Missiles & Space Company, Inc. Self-referencing scan-shear interferometer
JP2902421B2 (ja) 1989-10-16 1999-06-07 旭光学工業株式会社 干渉計
DE4028050A1 (de) 1990-09-05 1992-03-12 Kerner Anna Geradheitsinterferometer
JP3653827B2 (ja) 1995-10-20 2005-06-02 株式会社ニコン 干渉計
JP3570728B2 (ja) 1997-03-07 2004-09-29 アーエスエム リソグラフィ ベスローテン フェンノートシャップ 離軸整列ユニットを持つリトグラフ投射装置
TW569083B (en) 1999-02-04 2004-01-01 Asml Netherlands Bv Lithographic projection apparatus
JP2002050560A (ja) * 2000-08-02 2002-02-15 Nikon Corp ステージ装置、計測装置及び計測方法、露光装置及び露光方法
US6757066B2 (en) * 2002-01-28 2004-06-29 Zygo Corporation Multiple degree of freedom interferometer
DE60319462T2 (de) * 2002-06-11 2009-03-12 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358068A (ja) * 2000-04-20 2001-12-26 Svg Lithography Systems Inc アライメントセンサ、アライメントセンサシステム、イメージ回転形干渉計及びアライメントマーク検出方法

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519863B2 (ja) * 2006-02-27 2010-08-04 エーエスエムエル ホールディング エヌ.ブイ. 対称性形成システム
JP2007273954A (ja) * 2006-02-27 2007-10-18 Asml Holding Nv 対称性形成システム
JP2008066638A (ja) * 2006-09-11 2008-03-21 Canon Inc マークの位置を検出する装置
JP2013231741A (ja) * 2007-02-26 2013-11-14 Corning Inc 歪測定結像システム
JP2009147317A (ja) * 2007-11-20 2009-07-02 Asml Netherlands Bv リソグラフィ装置および方法
JP2009168593A (ja) * 2008-01-16 2009-07-30 Hiroo Kinoshita 形状測定装置
JP2009200489A (ja) * 2008-02-21 2009-09-03 Asml Netherlands Bv 粗ウェーハ位置合わせ用マーク構造及びこのようなマーク構造の製造方法
US8080462B2 (en) 2008-02-21 2011-12-20 Asml Netherlands B.V. Mark structure for coarse wafer alignment and method for manufacturing such a mark structure
US8305560B2 (en) 2008-06-16 2012-11-06 Canon Kabushiki Kaisha Exposure apparatus, device manufacturing method, and aperture stop manufacturing method
CN102253609A (zh) * 2010-05-18 2011-11-23 上海微电子装备有限公司 对准标记测量信号处理方法
US9535342B2 (en) 2010-11-12 2017-01-03 Asml Netherlands B.V. Metrology method and apparatus, and device manufacturing method
US9946167B2 (en) 2010-11-12 2018-04-17 Asml Netherlands B.V. Metrology method and inspection apparatus, lithographic system and device manufacturing method
US9140998B2 (en) 2010-11-12 2015-09-22 Asml Netherlands B.V. Metrology method and inspection apparatus, lithographic system and device manufacturing method
JP2014502420A (ja) * 2010-11-12 2014-01-30 エーエスエムエル ネザーランズ ビー.ブイ. メトロロジ方法及び装置、リソグラフィシステム並びにデバイス製造方法
US8867020B2 (en) 2010-11-12 2014-10-21 Asml Netherlands B.V. Metrology method and apparatus, and device manufacturing method
KR101492205B1 (ko) 2010-11-12 2015-02-10 에이에스엠엘 네델란즈 비.브이. 메트롤로지 방법 및 장치, 리소그래피 시스템, 및 디바이스 제조 방법
JP2012169617A (ja) * 2011-02-11 2012-09-06 Asml Netherlands Bv 検査装置および方法、リソグラフィ装置、リソグラフィ処理セル、およびデバイス製造方法
US8593646B2 (en) 2011-02-18 2013-11-26 Asml Netherlands B.V. Measuring method, measuring apparatus, lithographic apparatus and device manufacturing method
US9303978B2 (en) 2011-02-18 2016-04-05 Asml Netherlands B.V. Optical apparatus, method of scanning, lithographic apparatus and device manufacturing method
TWI459153B (zh) * 2011-02-18 2014-11-01 Asml Netherlands Bv 量測方法、量測裝置、微影裝置及元件製造方法
JP2012191177A (ja) * 2011-02-18 2012-10-04 Asml Netherlands Bv 測定方法、測定装置、リソグラフィ装置及びデバイス製造方法
JP2015518654A (ja) * 2012-04-12 2015-07-02 エーエスエムエル ネザーランズ ビー.ブイ. 位置測定方法、位置測定装置、リソグラフィ装置及びデバイス製造方法並びに光学要素
JP2015525883A (ja) * 2012-07-30 2015-09-07 エーエスエムエル ネザーランズ ビー.ブイ. 位置測定装置、位置測定方法、リソグラフィ装置およびデバイス製造方法
JP2015528584A (ja) * 2012-08-16 2015-09-28 エーエスエムエル ネザーランズ ビー.ブイ. 微細構造の非対称性を測定する方法及び装置、位置測定方法、位置測定装置、リソグラフィ装置及びデバイス製造方法
US9778025B2 (en) 2012-08-16 2017-10-03 Asml Netherlands B.V. Method and apparatus for measuring asymmetry of a microstructure, position measuring method, position measuring apparatus, lithographic apparatus and device manufacturing method
JP2016539356A (ja) * 2013-10-09 2016-12-15 エーエスエムエル ネザーランズ ビー.ブイ. 偏光非依存干渉計
KR20170041243A (ko) * 2014-08-25 2017-04-14 에이에스엠엘 홀딩 엔.브이. 측정 방법, 측정 장치, 리소그래피 장치 및 디바이스 제조 방법
KR101982693B1 (ko) * 2014-08-25 2019-05-27 에이에스엠엘 홀딩 엔.브이. 측정 방법, 측정 장치, 리소그래피 장치 및 디바이스 제조 방법
JP2017528757A (ja) * 2014-08-25 2017-09-28 エーエスエムエル ホールディング エヌ.ブイ. 測定方法、測定装置、リソグラフィ装置、及びデバイス製造方法
JP2020016898A (ja) * 2015-06-05 2020-01-30 エーエスエムエル ネザーランズ ビー.ブイ. アライメントシステム
JP2018517933A (ja) * 2015-06-05 2018-07-05 エーエスエムエル ネザーランズ ビー.ブイ. アライメントシステム
JP2019505831A (ja) * 2015-12-07 2019-02-28 エーエスエムエル ホールディング エヌ.ブイ. 対物レンズシステム
KR20170069769A (ko) * 2015-12-11 2017-06-21 한국전자통신연구원 복수의 공간 광 변조기를 타일링하여 홀로그램 엘리먼트 이미지들을 기록하는 홀로그램 기록 장치
KR102612558B1 (ko) * 2015-12-11 2023-12-12 한국전자통신연구원 복수의 공간 광 변조기를 타일링하여 홀로그램 엘리먼트 이미지들을 기록하는 홀로그램 기록 장치
JP2019510214A (ja) * 2016-02-24 2019-04-11 ベルツ,マルティン 三次元インターフェロメータ及び電界の位相を決定する方法
JP2017198793A (ja) * 2016-04-26 2017-11-02 株式会社ニコン 計測装置、露光装置、デバイス製造方法、及びパターン形成方法
JP7176597B2 (ja) 2016-05-31 2022-11-22 株式会社ニコン 位置検出装置及び位置検出方法、露光装置及び露光方法、並びに、デバイス製造方法
JP2021182145A (ja) * 2016-05-31 2021-11-25 株式会社ニコン 位置検出装置及び位置検出方法、露光装置及び露光方法、並びに、デバイス製造方法
JP2019532328A (ja) * 2016-08-30 2019-11-07 エーエスエムエル ネザーランズ ビー.ブイ. 位置センサ、リソグラフィ装置およびデバイス製造方法
KR102260941B1 (ko) * 2016-12-19 2021-06-04 에이에스엠엘 네델란즈 비.브이. 계측 센서, 리소그래피 장치 및 디바이스 제조 방법
US11086240B2 (en) 2016-12-19 2021-08-10 Asml Netherlands B.V. Metrology sensor, lithographic apparatus and method for manufacturing devices
JP2020502580A (ja) * 2016-12-19 2020-01-23 エーエスエムエル ネザーランズ ビー.ブイ. 計測センサ、リソグラフィ装置および内でのデバイス製造方法
KR20190094432A (ko) * 2016-12-19 2019-08-13 에이에스엠엘 네델란즈 비.브이. 계측 센서, 리소그래피 장치 및 디바이스 제조 방법
JP2019159324A (ja) * 2018-03-06 2019-09-19 ライカ インストゥルメンツ (シンガポール) プライヴェット リミテッドLeica Instruments (Singapore) Pte. Ltd. 手術腔の内腔壁を観察するための反射屈折型の医療用イメージングシステム
JP2021528685A (ja) * 2018-07-04 2021-10-21 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ測定のためのセンサ装置及び方法
JP7110407B2 (ja) 2018-07-04 2022-08-01 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ測定のためのセンサ装置及び方法

Also Published As

Publication number Publication date
TW200403541A (en) 2004-03-01
JP4604069B2 (ja) 2010-12-22
US6961116B2 (en) 2005-11-01
KR20030095331A (ko) 2003-12-18
US20060007446A1 (en) 2006-01-12
CN1296774C (zh) 2007-01-24
US20080088956A1 (en) 2008-04-17
TWI298824B (en) 2008-07-11
JP4091486B2 (ja) 2008-05-28
JP2008022015A (ja) 2008-01-31
DE60319462T2 (de) 2009-03-12
KR100547437B1 (ko) 2006-01-31
US7564534B2 (en) 2009-07-21
SG131761A1 (en) 2007-05-28
CN1477448A (zh) 2004-02-25
DE60319462D1 (de) 2008-04-17
US20040033426A1 (en) 2004-02-19
US7319506B2 (en) 2008-01-15

Similar Documents

Publication Publication Date Title
JP4091486B2 (ja) リソグラフィ装置、およびデバイス製造方法
JP6612452B2 (ja) 対物レンズシステム
EP1372040B1 (en) Lithographic apparatus and device manufacturing method
KR102571918B1 (ko) 위치 계측을 위한 계측 센서
JP4875045B2 (ja) リソグラフィ装置および方法
JP4153304B2 (ja) オーバーレイの測定方法
JP6342486B2 (ja) 偏光非依存干渉計
US9778025B2 (en) Method and apparatus for measuring asymmetry of a microstructure, position measuring method, position measuring apparatus, lithographic apparatus and device manufacturing method
JP4150256B2 (ja) 基準位置合わせマークに対する基板の位置合わせを測定する方法
JP2008546218A (ja) リソグラフィ投影システムおよび投影レンズ偏光センサ
CN114174929A (zh) 基于波长扫描的对准传感器
JP2683409B2 (ja) 位置合わせ装置
JP2809439B2 (ja) 位置合せ装置
JPH0448203A (ja) 露光装置
JP2683385C (ja)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070403

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Ref document number: 4091486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees