JP2004056098A - 発光素子およびその製造方法 - Google Patents

発光素子およびその製造方法 Download PDF

Info

Publication number
JP2004056098A
JP2004056098A JP2003137912A JP2003137912A JP2004056098A JP 2004056098 A JP2004056098 A JP 2004056098A JP 2003137912 A JP2003137912 A JP 2003137912A JP 2003137912 A JP2003137912 A JP 2003137912A JP 2004056098 A JP2004056098 A JP 2004056098A
Authority
JP
Japan
Prior art keywords
substrate
light emitting
emitting device
compound semiconductor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003137912A
Other languages
English (en)
Other versions
JP3679097B2 (ja
Inventor
Noboru Ichinose
一ノ瀬 昇
Seishi Shimamura
島村 清史
Yukio Kaneko
金子 由基夫
Villora Encarnacion Antonia Garcia
ガルシア ビヨラ エンカルナシオン アントニア
Kazuo Aoki
青木 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koha Co Ltd
Original Assignee
Koha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003137912A priority Critical patent/JP3679097B2/ja
Application filed by Koha Co Ltd filed Critical Koha Co Ltd
Priority to US10/452,158 priority patent/US6977397B2/en
Priority to EP20030012454 priority patent/EP1367657B1/en
Priority to TW92114721A priority patent/TWI292623B/zh
Priority to DE60334754T priority patent/DE60334754D1/de
Priority to CN2008101288788A priority patent/CN101320780B/zh
Priority to AT03012454T priority patent/ATE487239T1/de
Priority to KR1020030034609A priority patent/KR100993408B1/ko
Priority to CNB031382800A priority patent/CN100405618C/zh
Publication of JP2004056098A publication Critical patent/JP2004056098A/ja
Priority to HK04106034A priority patent/HK1063377A1/xx
Application granted granted Critical
Publication of JP3679097B2 publication Critical patent/JP3679097B2/ja
Priority to US11/211,860 priority patent/US7319249B2/en
Priority to US11/982,580 priority patent/US7608472B2/en
Priority to US12/134,806 priority patent/US7629615B2/en
Priority to US12/604,993 priority patent/US8450747B2/en
Priority to US13/902,111 priority patent/US8791466B2/en
Priority to US14/317,089 priority patent/US9117974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/06102Disposition the bonding areas being at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】可視領域から紫外領域の光を透過する無色透明の導電体を得ることができ、その導電体を基板に用いて垂直構造とすることが可能であり、基板側をも光の取り出し面とすることができる発光素子およびその製造方法を提供する。
【解決手段】制御された雰囲気の高温炉の中に、原料融液9が毛細管現象で継続的に上面にまで上昇可能なスリット8aを有するスリットダイ8と、該スリットダイ8および原料融液9を収納するルツボ6とにより、スリットダイ8の上面と同一断面形状を有する単結晶を育成するEFG法により、基板を製造する。この基板上にMOCVD法によりIII−V族系、II−VI族系、あるいはその両者の薄膜を成長させる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、可視から近紫外で発光するのに十分広いバンドギャップを有する発光素子およびその製造方法に関し、特に、可視領域から紫外領域の光を透過する無色透明の導電体を得ることができ、その導電体を基板に用いて垂直構造とすることが可能であり、基板側をも光の取り出し面とすることができる発光素子およびその製造方法に関する。
【0002】
【従来の技術】
従来の発光素子として、SiCからなる基板上にGaNからなるn型層およびp型層を積層したものが知られている(例えば、特許文献1参照。)。
【0003】
SiCは、茶褐色の透明性を有し、約427nmまでの可視光を透過するため、基板側からも発光光を透過させることができる。
【0004】
このSiCを用いた発光素子は、SiCの単結晶ウエハ上にSiC薄膜をエピタキシャル成長させてSiCエピタキシャル基板を形成し、この基板上にGaNからなるn型層およびp型層を形成して、これらを切り出すことによって複数の発光素子にすることによって製造されている。
【0005】
【特許文献1】
特開2002−255692号公報(段落0008)
【0006】
【発明が解決しようとする課題】
しかし、SiCは、単結晶ウエハの結晶性が悪く、単結晶の垂直方向に貫通するいわゆるマイクロパイプ欠陥が存在するため、マイクロパイプ欠陥を避けてn型層およびp型層を形成して切り出さなければならず、発光素子としての生産性が悪いという問題がある。
【0007】
また、SiCは、青色領域までの光を透過するが、紫外領域の光を透過しない。従って、基板側から発光光を取り出す場合は、可視領域から紫外領域の光を発光するGaNの発光光のうち紫外領域の光を透過できないため、基板側を紫外光の取り出し面とすることができないという問題がある。また、SiCは、着色しているため、SiCを透過する光は、発光波長の一部が吸収されるという問題がある。
【0008】
従って、本発明の目的は、可視領域から紫外領域の光を透過する無色透明の導電体を得ることができ、その導電体を基板に用いて垂直構造とすることが可能であり、基板側をも光の取り出し面とすることができる発光素子およびその製造方法を提供することにある。また、本発明の他の目的は、生産性のよい発光素子およびその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するため、ガリウム酸化物の基板と、前記基板上に形成されたpn接合部とを含むことを特徴とする発光素子を提供する。
【0010】
本発明は、上記目的を達成するため、Gaを主成分とする酸化物の基板の上に、化合物半導体薄膜を成長させたことを特徴とする発光素子を提供する。
【0011】
本発明は、上記目的を達成するため、制御された雰囲気の高温炉の中に、原料融液が毛細管現象で継続的に上面にまで上昇可能なスリットを有するスリットダイと、該スリットダイおよび原料融液を収納するルツボとにより、スリットダイの上面と同一形状の断面を有する単結晶を育成するEFG(Edge−Defined film Fed Growth)法により、Gaを主成分とする酸化物の基板を形成し、前記基板の上に化合物半導体薄膜を成長させることを特徴とする発光素子の製造方法を提供する。
【0012】
本発明は、上記目的を達成するため、Ga系種結晶およびGa系結晶を準備し、前記Ga系種結晶と前記Ga系結晶を接触させてその部位を加熱し、前記Ga系種結晶および前記Ga系結晶を溶融し、溶融した前記Ga系結晶を前記Ga系種結晶とともに結晶化させるFZ法により、Gaを主成分とする酸化物の基板を形成し、前記基板の上に化合物半導体薄膜を成長させることを特徴とする発光素子の製造方法を提供する。
【0013】
【発明の実施の形態】
<基板>
β−Gaは、導電性を有するので、電極構造が垂直型のLEDを作ることができ、その結果、素子全体を電流通路にすることができることから電流密度を低くすることができるので、発光素子の寿命を長くすることができる。
【0014】
実際、n型導電性を有するβ−Ga基板の比抵抗を測定した結果、図1に示すように、室温で0.1Ω・cm程度の値が得られている。また、発光素子として用いる温度範囲において、比抵抗の温度変化は小さいため、発光素子としての安定性が得られる。
【0015】
また、電極構造が垂直型のため、n層をエッチングによって露出させる必要がないので、素子製造工数が少なくて済み、基板の単位面積当たりの素子数を多く取れるので、低コストで製造できる。
【0016】
サファイアを基板とする場合、電極構造が水平型となるため、III−V族系化合物半導体の薄膜成長の後、n層を露出させてからn電極を取り付けるため、マスキングやエッチングなどの工程が別途必要となる。ところが、電極構造が垂直型の場合、例えば、GaAs系発光素子のように、前記のマスキングやエッチング工程などは、必要がなくなる。
【0017】
SiCの場合、3C、4H、6H、15Rなどの多くの相が存在し、単相での基板を得ることは困難である。硬度は非常に高く、加工性が悪いことから、平坦な基板は得られにくく、原子スケールで見た場合、基板表面には相の異なる多数のステップが存在する。その基板の上に薄膜を成長させた場合、多数の結晶性や欠陥密度の異なる膜が成長することになる。このように、SiCの場合、一つの基板上において、無数の質の異なる核が成長し、結果として、それらが合わさる形で膜が成長するので、膜の品質向上は極めて困難となる。実際、SiCとGaNの格子不整合は、理論上は3.4%と言われているが、前記のような理由のため、実際の格子不整合は極めて大きいのが現状である。
【0018】
これに対して、β−Gaは単相であり、かつ原子スケールで平坦であるために、SiCで見られるような実際上の大きな格子不整合は見られない。バンドギャップの観点においては、SiCの場合、例えば6H−SiCの場合、3.03eVであるので、約427nm以下の波長域においては不透明である。III−V族系化合物半導体の発光領域は、約550〜380nmであることを考えた場合、SiCで利用できる波長範囲は、その約2/3であると言わざるを得ない。それに対して、β−Gaの場合、約260nmまで透過するので、III−V族系化合物半導体の発光領域の全波長範囲、特に、紫外領域での利用が可能になる。
【0019】
本発明に用いられる基板は、β−Gaを基本とするが、Cu、Ag、Zn、Cd、Al、In、Si、GeおよびSnからなる群から選ばれる1種以上を添加したGaを主成分とした酸化物で構成してもよい。これらの添加元素の作用は、格子定数あるいはバンドギャップエネルギーを制御するためである。例えば、(AlInGa(1−x−y)(ただし、0≦x≦1、0≦y≦1、0≦x+y≦1)で表わされるガリウム酸化物を用いることができる。
【0020】
<熱膨張係数>
熱膨張の観点においても、GaNの熱膨張係数が5.6×10−6/Kであるのに対し、β−Gaの値は4.6×10−6/Kであって、サファイア(4.5×10−6/K)と同程度であり、6H−SiC(3.5×10−6/K)に対し優位性を持つ。熱膨張係数の違いも、成長膜の品質という観点から見た場合、主要な要素である。
【0021】
<バルク単結晶>
β−Gaの最大の特長は、そのバルク単結晶が得られるということである。GaAs系材料を中心とする近赤外から赤色領域までにおいては、常にバルク単結晶が得られ、その導電性基板上に格子不整合性の極めて小さな膜が得られてきた。その分、低コストで、かつ、効率の高い発光素子の製造が容易であった。GaN系、ZnSe系のいわゆる青色発光素子と期待される材料はバルク状の単結晶作製が事実上不可能であった。そのため、導電性で、かつ、発光領域で透明な格子不整合性の小さいバルク単結晶の開発がしのぎを削って行われてきた。現在においても、この問題は本質的には解決されていない。これに対して、本発明で提供するβ−Gaの基板は、こうした問題を抜本的に解決するものである。EFG法あるいはFZ法により、直径2インチサイズのバルク単結晶が得られるので、青色から紫外領域における発光素子の開発をGaAs系発光素子と同様に取り扱うことが可能となる。
【0022】
<EFG法によるGa単結晶>
図2は、EFG法に用いるルツボを示す。このルツボ6は、EFG法引上げ炉(図示せず)に挿入されるものである。ルツボ6は、例えばイリジウム製であって、β−Ga融液9を毛細管現象により上昇させるスリット8aを有するスリットダイ8を備える。
【0023】
EFG法において、下記のように単結晶を成長させる。ルツボ6に原料となるβ−Gaを所定量入れ、加熱して溶解し、β−Ga融液9とする。ルツボ6内に配置されたスリットダイ8に形成するスリット8aによりβ−Ga融液9を毛細管現象によりスリットダイ8上面に上昇させ、種結晶7にβ−Ga融液9を接触させて冷却し、任意の形状の断面を有する成長結晶10を形成する。
【0024】
具体的には、内径48.5mm、肉厚1.5mm、高さ50mmのイリジウム製ルツボ6に、酸化ガリウム原料75gを入れて、厚さ3mm×幅20mm×高さ40mm、スリット間隔0.5mmのスリットダイ8を設置した。該ルツボ6を、通常の窒素雰囲気、1気圧中で、1760℃、酸素分圧を5×10―気圧に維持して、スリット8a内を毛細管現象で上昇したβ−Ga融液9にβ−Gaの種結晶7を接触させ、1mm/hの速度で単結晶育成を行った。
【0025】
スリットダイ8の上部で、スリットダイ8の形状に規定された単結晶を育成させるので、CZ法に比べ、結晶成長界面での温度勾配を極めて小さくできる。さらに、β−Ga融液9がスリット8aを通して供給され、結晶の成長速度がβ−Ga融液9内ので拡散速度よりも速いので、β−Ga融液9中の成分の蒸発ならびにβ−Ga融液9の組成変動を極めて小さくできる。従って、高晶質の単結晶が作製できる。また、スリットダイ8の形状により成長結晶10の形状を規定できるため、スリットダイ8の大型化により単結晶を大型化することが容易に実現できる。このように、CZ法などの手法では困難であったGa単結晶の大型化、高品質化がEFG法により可能となった。
【0026】
<FZ法によるGa単結晶>
図3は、FZ法(フローティングゾーン法)によりβ−Ga単結晶を製造する赤外線加熱単結晶製造装置を示す。この赤外線加熱単結晶製造装置100は、石英管102と、β−Ga種結晶(以下「種結晶」と略す。)107を保持・回転するシード回転部103と、β−Ga多結晶素材(以下「多結晶素材」と略す。)109を保持・回転する素材回転部104と、多結晶素材109を加熱して溶融する加熱部105と、シード回転部103、素材回転部104および加熱部105を制御する制御部106とを有して概略構成されている。
【0027】
シード回転部103は、種結晶107を保持するシードチャック133と、シードチャック133に回転を伝える下部回転軸132と、下部回転軸132を正回転させるとともに、上下方向に移動させる下部駆動部131とを備える。
【0028】
素材回転部104は、多結晶素材109の上端部109aを保持する素材チャック143と、素材チャック143に回転を伝える上部回転軸142と、上部回転軸142を正逆回転させるとともに、上下方向に移動させる上部駆動部141とを備える。
【0029】
加熱部105は、多結晶素材109を径方向から加熱して溶融するハロゲンランプ151と、ハロゲンランプ151を収容し、ハロゲンランプの発光する光を多結晶素材109の所定部位に集光する楕円鏡152と、ハロゲンランプ151に電源を供給する電源部153とを備える。
【0030】
石英管102には、下部回転軸132、シードチャック133、上部回転軸142、素材チャック143、多結晶素材109、β−Gaの単結晶108および種結晶107が収容される。石英管102は、酸素ガスと不活性ガスとしての窒素ガスとの混合ガスを供給されて密閉できるようになっている。
【0031】
β−Ga単結晶を成長させるには、以下の方法による。まず、種結晶107と多結晶素材109を準備する。すなわち、種結晶107は、例えば、β−Ga単結晶を劈開面に沿って切り出したもので、成長結晶の5分の1以下の径または5mm以下の断面積を有し、β−Ga単結晶の成長の際に破損しない強度を有する。多結晶素材109は、Gaの粉末の所定量を図示しないゴム管に充填し、500MPaで冷間圧縮し、その後、1500℃で10時間焼結して得られる。
【0032】
次に、種結晶107の一端をシードチャック133に保持し、棒状の多結晶素材109の上端部109aを素材チャック143に保持する。上部回転軸142の上下位置を調節して種結晶107の上端と多結晶素材109の下端を接触させる。また、ハロゲンランプ151の光を種結晶107の上端と多結晶素材109の下端との部位に集光するように、上部回転軸142および下部回転軸132の上下位置を調節する。石英管102の雰囲気102aは、窒素と酸素の混合気体(100%窒素から100%酸素の間で変化する。)の全圧1気圧から2気圧に満たされている。
【0033】
操作者が図示しない電源スイッチをオンにすると、制御部106は、制御プログラムに従い、各部を制御して以下のように単結晶成長制御を行う。加熱部105に電源が投入されると、ハロゲンランプ151は、種結晶107の上端と多結晶素材109の下端の部位を加熱して、その加熱部位を溶解し、溶解滴を形成する。このとき、種結晶107のみを回転させておく。
【0034】
ついで、多結晶素材109と種結晶107とが十分になじむように当該部を反対方向に回転させながら溶解する。適度のβ−Ga単結晶の溶解物108’ができたときに、多結晶素材109の回転を停止し、種結晶107のみを回転させて多結晶素材109および種結晶107を互いに反対方向に引っ張り、種結晶107よりも細いダッシュネックを形成する。
【0035】
ついで、種結晶107と多結晶素材109を20rpmで互いに反対方向に回転させながらハロゲンランプ151で加熱し、かつ、多結晶素材109を5mm/hの割合で上部回転軸142により上方に引っ張る。ハロゲンランプ151により多結晶素材109を加熱すると、多結晶素材109は、溶解して溶解物108’を形成するとともに、それが冷却すると多結晶素材109と同等またはそれよりも小さな径のβ−Ga単結晶108が生成する。適度の長さの単結晶を形成した後、生成したβ−Ga単結晶108を取り出す。
【0036】
次に、β−Ga単結晶108から形成した基板の作製方法を示す。β−Ga単結晶108は、b軸<010>方位に結晶成長させた場合には、(100)面の劈開性が強くなるので、(100)面に平行な面と垂直な面で切断して基板を作製する。a軸<100>方位、c軸<001>方位に結晶成長させた場合は、(100)面、(001)面の劈開性が弱くなるので、全ての面の加工性が良くなり、上記のような切断面の制限はない。
【0037】
次に、この実施の形態に係るFZ法によるGa単結晶の効果を説明する。
(イ)所定の方向に結晶を成長させているので、直径1cm以上の大きなβ−Ga単結晶108を得ることができる。
(ロ)このβ−Ga単結晶108は、a軸<100>方位、b軸<010>方位、あるいはc軸<001>方位を結晶軸とすることにより、クラッキング、双晶化傾向が減少し、高い結晶性が得られる。
(ハ)このようなβ−Ga単結晶108は、再現性よく生成できるため、半導体等の基板としての利用価値も高い。
【0038】
<II−VI族系化合物ZnSe薄膜の形成>
β−Ga系単結晶の(101)面上にMOCVD(Metal Organic Chemical Vapor Deposition)法により、350℃でZnSeからなるp型導電性を示す薄膜を形成する。ZnSeは、ジメチル亜鉛とHSeを用い、p型ドーパントとしてNをNH雰囲気中でドープする。この場合、Nは、アクセプタとしてSeと置換する。ここで、II族元素として、Zn、Cd、Hgを用い、VI族元素として、O、S、Se、Te、Poを用いる。II−VI族系化合物として、例えば、ZnSe、ZnO等が挙げられる。
【0039】
<III−V族系化合物薄膜の形成方法>
III−V族系化合物薄膜は、MOCVD法により形成する。III族元素としては、B、Al、Ga、In、Tlを用い、V族元素としては、N、P、As、Sb、Biを用いる。III−V族系化合物として、例えば、GaN、GaAs等が挙げられる。
図4は、β−Ga系単結晶の基板の(101)面上にGaNからなる薄膜を成長させたときの原子配列を示す。この場合、GaNの(001)面が、β−Ga系単結晶の(101)面上に成長する。β−Ga系単結晶の(101)面上には、O(酸素)原子70、70、・・・が配列している。図中O原子70は、実線の正円で示されている。β−Ga系単結晶の(101)面における格子定数は、a=b=0.289nm、γ=約116°である。GaNの(001)面における格子定数は、a=b=0.319nm、γ=120°である。図中GaNのN(窒素)原子80は、破線の正円で示されている。
【0040】
β−Ga系単結晶の(101)面上にGaNの(001)面を成長させてGaNからなる薄膜を形成する場合、格子定数のミスマッチングは、約10%であり、角度のミスマッチングは、約3%である。従って、β−Ga系単結晶のO原子およびGaNのN原子の原子配列が略同じであるので、GaNからなる薄膜は、均一な平面構造をもつことができる。そのため、β−Ga系単結晶の(101)面上にバッファ層を介することなく、GaNからなる薄膜を形成しても、格子不整合が生じない。
【0041】
また、β−Ga系単結晶に格子定数調整用のInを添加することにより、β−Ga系単結晶の(101)面における格子定数にGaNの(001)面の格子定数をより近づけることができ、GaNからなる薄膜は、より均一な平面構造をもつことができる。
【0042】
一方、図5は、Al系結晶の基板上にGaNからなる薄膜を成長させたときの原子配列を示す。Al系結晶の(001)面上には、O(酸素)原子75、75、・・・が配列している。図中O原子75は、実線の正円で示されている。Al系結晶の(001)面における格子定数は、a=b=0.475nm、γ=120°である。GaNの(001)面における格子定数は、a=b=0.319nm、γ=120°である。図中N原子は、破線の正円で示されている。Al系結晶の(001)面上にGaNの(001)面を成長させてGaNからなる薄膜を形成する場合、格子定数のミスマッチングは、約30%である。従って、Al系結晶上にGaNからなる薄膜を形成する場合には、バッファ層を形成し、そのバッファ層の上に薄膜を形成しなければ、格子不整合が生じ、均一な平面構造をもつことができないおそれがある。
【0043】
<薄膜の形成方法>
図6は、MOCVD法を示す概略図であり、MOCVD装置の主要部を示す概略断面を示す。図7は、MOCVD法により得られる発光素子を示す。MOCVD装置20は、真空ポンプおよび排気装置(図示せず)を備えた排気部26が接続された反応容器21と、基板27を載置するサセプタ22と、サセプタ22を加熱するヒータ23と、サセプタ22を回転、上下移動させる制御軸24と、基板27に向って斜め、または水平に原料ガスを供給する石英ノズル25と、各種原料ガスを発生する、TMG(トリメチルガリウム)ガス発生装置31、TMA(トリメチルアルミニウム)ガス発生装置32、TMI(トリメチルインジウム)ガス発生装置33等を備える。なお、必要に応じてガス発生装置の数を増減してもよい。窒素源としてNHが用いられ、キャリアガスとしてHが用いられる。GaN薄膜を形成するときは、TMGとNHが、AlGaN薄膜を形成するときは、TMA、TMGおよびNHが、InGaN薄膜を形成するときは、TMI、TMGおよびNHが用いられる。
【0044】
MOCVD装置20により薄膜を形成するには、例えば、以下のように行う。まず、基板27は、薄膜が形成される面を上にしてサセプタ22に保持され、反応容器21内に設置される。そして、温度を1020℃で、TMGを54×10−6モル/min、TMAを6×10−6モル/min、モノシラン(SiH)を22×10−11モル/minで流して、60分問成長させ、SiドープGa0.9Al0.1N(n−GaN層)1aを3μmの膜厚で成長させた。
【0045】
さらに、温度を1030℃で、TMGを54×10−6モル/min、ビスジクロペンタジエニルマグネシウム(CpMg)を流して、MgドープGaN(p−GaN層)1bを1μmの膜厚で成長させた。その上に透明電極(Au/Ni)1hを蒸着し、その後、MgドープGaN1bをp型化した。その後、透明電極1hにはp電極1cを取り付け、ボンディング1eによりリード1fを取り付ける。基板1の下面にn電極1dを取り付けて、発光素子を構成した。
【0046】
電極は、p型導電性を示す薄膜、あるいは基板、またはn型導電性を示す薄膜、あるいは基板上に蒸着、スパッタ等により形成される。電極は、オーミック接触が得られる材料で形成される。例えば、n型導電性を示す薄膜あるいは基板には、Au、Al、Co、Ge、Ti、Sn、In、Ni、Pt、W、Mo、Cr、Cu、Pb等の金属単体、これらのうち少なくとも2種の合金(例えば、Au−Ge合金)、これらを2層構造に形成するもの(例えば、Al/Ti、Au/Ni、Au/Co)、あるいはITOが挙げられる。p型導電性を示す薄膜あるいは基板には、Au、Al、Be、Ni、Pt、In、Sn、Cr、Ti、Zn等の金属単体、これらのうち少なくとも2種の合金(例えば、Au−Zn合金、Au−Be合金)、これらを2層構造に形成するもの(例えば、Ni/Au)あるいはITO等が形成される。
【0047】
<キャリア濃度が異なる薄膜の形成>
例えば、GaNからなるn−GaN層の上にn−GaN層よりキャリア濃度の低いGaNからなるn−GaN層を形成し、当該キャリア濃度の低いn−GaN層の上にGaNからなるp−GaN層およびp−GaN層よりキャリア濃度が高いGaNからなるp−GaN層を順次積層する。例えば、n型ドーパントあるいはp型ドーパント量を変えるなどの方法によりキャリア濃度を変えることができる。
基板にβ−Ga系単結晶を用い、キャリア濃度の異なる複数のn層および複数のp層を形成することで、下記の効果が得られる。
(イ)n−GaN層のキャリア濃度を基板のキャリア濃度より低く形成することにより、その上に形成するp−GaN層の結晶性がよくなり、発光効率が向上する。
(ロ)n−GaN層とp−GaN層とを接合することにより、PN接合の発光素子を形成することができるため、GaNが有するバンドギャップにより短波長の発光が可能となる。
(ハ)基板にβ−Ga系単結晶を用いているため、結晶性の高いn型導電性を示す基板を形成することができる。
(ニ)基板に用いるβ−Ga系単結晶は、紫外領域の光を透過するため、基板側から紫外光から可視光までの発光光を取り出すことができる。
【0048】
<バッファ層の形成方法>
図8は、図7に示された発光素子にバッファ層を設けたものを示す。本発明で得られるβ−Gaの基板1とn−GaN層1aとの間に、AlGa1−xNバッファ層(ただし0≦x≦1)1gが設けられている。このバッファ層は、上記のMOCVD装置により形成した。このバッファ層の上に前述した<成膜方法>に従ってpn接合構造を形成する。
【0049】
【実施例】
以下、本発明の実施例について説明する。
<実施例1・p型導電性を示す基板上へのn型GaN薄膜の形成方法>
p型導電性を示す基板は、以下のように製作する。まず、FZ法によりβ−Ga結晶を形成する。原料として、例えば、MgO(p型ドーパント源)を含むβ−Gaを均一に混合し、混合物をゴム管に入れ500MPaで冷間圧縮して棒状に成形する。成形したものを大気中において1500℃で10時間焼結してMgを含むβ−Ga系多結晶素材を得る。β−Ga種結晶を準備し、成長雰囲気が全圧1〜2気圧の下、NおよびO混合ガスを500ml/minで流しながら、石英管中でβ−Ga種結晶とβ−Ga系多結晶素材とを接触させてその部位を加熱し、β−Ga種結晶とβ−Ga系多結晶素材との接触部分で両者を溶融する。溶解したβ−Ga系多結晶素材をβ−Ga種結晶とともに回転速度20rpmで反対方向に回転させながら、かつ5mm/hの成長速度で成長させると、β−Ga種結晶上に透明で、Mgを含む絶縁性のβ−Ga系単結晶が生成する。このβ−Ga系単結晶により基板を作製し、この基板を酸素雰囲気中において所定の温度(例えば950℃)で所定の期間アニールすると、酸素欠陥が減少し、p型導電性を示す基板が得られる。
【0050】
上記基板上にn型導電性を示す薄膜を形成する。薄膜は、MOCVD法による気相成長により形成する。まず、p型導電性を示す基板をMOCVD装置にセットする。基板を温度を1150℃に保持し、Hを20l/分、NHを10l/分、TMGを1.7×10−4モル/分、およびHで0.86ppmまで希釈したモノシラン(SiH)を200ml/分の割合で30分間供給し、膜厚約2.2μm、キャリア濃度1.5×1018/cmのn型導電性を示すGaNから成る薄膜を形成する。
【0051】
<実施例2・pn接合を備えた発光素子の形成方法>
図9は、本発明の実施例2に係る発光素子を示す。この発光素子40は、β−Ga単結晶からなるGa基板41と、Ga基板41の上に形成されたAlGa1−xNからなるバッファ層(ただし0≦x≦1)42と、AlGa1−xNバッファ層42の上に形成されたGaNからなるn−GaN層43と、n−GaN層43の上に形成されたGaNからなるp−GaN層44と、p−GaN層44の上に形成された透明電極45と、透明電極45の一部に形成されたAu等からなるボンディング電極47と、Ga基板41の下面に形成されたn電極46からなる。この発光素子40は、ボンディング電極47を介してボンディング48によりリード49を取り付け、金属ペースト51を介してプリント基板50に搭載される。
【0052】
この発光素子40は、n−GaN層43とp−GaN層44とが接合されたpn接合部で発光するが、発光光は、透明電極45を透過して上方に出射する出射光60として外部に射出する他、Ga基板41の下面の方に向う発光光61は、例えば、金属ペースト51により反射させられて上方に出射する。従って、発光光が直接外部に出射するのと比べて、発光強度が増大する。
【0053】
<実施例3・フリップチップ型発光素子>
図10は、本発明の実施例3に係る発光素子を示す。この発光素子40は、β−Ga単結晶からなるGa基板41と、Ga基板41の下部のAlGa1−xNからなるバッファ層(ただし0≦x≦1)42と、AlGa1−xNバッファ層42の下部のGaNからなるn−GaN層43と、n−GaN層43の下部の一部に形成されたGaNからなるp−GaN層44およびn電極46と、p−GaN層44の下部のp電極52とからなる。p電極52およびn電極46は、それぞれ半田ボール63、64を介してリードフレーム65、66にそれぞれ接続される。
この発光素子40は、n−GaN層43とp−GaN層44とが接合されたpn接合部で発光するが、発光した光は、Ga基板41を透過して出射光60として上方に出射する。
【0054】
<実施例4・ダブルへテロ構造を備えた発光素子>
図11は、本発明の実施例4に係る発光素子を示す。この発光素子40は、β−Ga単結晶からなるGa基板41と、Ga基板41の上に形成されたAlGa1−yNからなるバッファ層(ただし0≦y≦1)42と、バッファ層42の上に形成されたAlGa1−zNからなるn−AlGa1−zNクラッド層(ただし0≦z<1)55と、n−AlGa1−zNクラッド層55の上に形成されたInGa1−mNからなるInGa1−mN発光層(ただし0≦m<1)56と、InGa1−mN発光層56の上に形成されたAlGa1−pNからなるp−AlGa1−pNクラッド層(ただし0≦p<1、p>z)57と、p−AlGa1−pNクラッド層57の上に形成された透明電極45と、透明電極45の一部に形成されたAu等からなるボンディング電極47と、Ga基板41の下面に形成されたn電極46からなる。この発光素子40は、ボンディング電極47にボンディング48によりリード49を取り付け、金属ペースト51を介してプリント基板50に搭載される。
【0055】
n−AlGa1−zNクラッド層55のバンドギャップエネルギーは、InGa1−mN発光層56のバンドギャップエネルギーより大きく、p−AlGa1−pNクラッド層57のバンドギャップエネルギーは、InGa1−mN発光層56のバンドギャップエネルギーより大きくなるように形成される。
【0056】
この発光素子40は、ダブルへテロ構造を有しているため、キャリアとなる電子と正孔とがInGa1−mN発光層56に閉じこめられて再結合する確率が高くなるので、発光光率が大幅に向上する。さらに、発光光は、透明電極45を透過して上方に出射する出射光60として外部に射出する他、Ga基板41の下面の方に向う発光光61は、例えば、金属ペースト51により反射させられて上方に出射するので、発光光が直接外部に射出するのと比べて、発光強度が増大する。
【0057】
【発明の効果】
本発明により、透明導電体で、バルク単結晶が作製可能な材料を基板とするGaN系発光素子およびその製造方法を提供することが可能となり、発光素子の上下に電極を取り付けたことから、構造が簡単になるため生産性が向上し、光の取り出し効率が向上した。
【0058】
また、Gaを主成分とする酸化物を基板に用いることにより、可視領域から紫外領域の光を透過する無色透明の導電体を得ることができ、その導電体を基板に用いて垂直構造とすることが可能となり、基板側をも光の取り出し面とすることができる発光素子およびその製造方法を提供できる。
【0059】
また、従来の基板材料であるサファイアやSiCよりも、加工性がよいGaの単結晶を得ることができる。
【図面の簡単な説明】
【図1】β−Gaの比抵抗の温度変化を示すグラフである。
【図2】本発明で用いられるEFG法引上炉に挿入するルツボを示す一部破断斜視図である。
【図3】本発明で用いられるFZ法赤外線加熱単結晶製造装置を示す要部断面図である。
【図4】本発明で好適に用いられるのβ−Ga系単結晶の基板の(101)面上にGaNの(001)面からなる薄膜を成長させたときの原子配列を示す図である。
【図5】比較例としてのAl系結晶の基板の(001)面上にGaNの(001)面からなる薄膜を成長させたときの原子配列を示す図である。
【図6】本発明で用いられるMOCVD法を示す概略図である。
【図7】本発明の実施例1に係る発光素子を示す断面図である。
【図8】本発明の実施例1に係る発光素子にバッファ層を設けた発光素子の断面図である。
【図9】本発明の実施例2に係る発光素子を示す断面図である。
【図10】本発明の実施例3に係る発光素子を示す断面図である。
【図11】本発明の実施例4に係る発光素子を示す断面図である。
【符号の説明】
1 基板
1a n−GaN層
1b p−GaN層
1c p電極
1d n電極
1e ボンディング
1f リード
6 ルツボ
7 種結晶
8 スリットダイ
8a スリット
9 Ga融液
10 β−Ga成長結晶
20 MOCVD装置
21 反応容器
22 サセプタ
23 ヒータ
24 制御軸
25 石英ノズル
26 排気部
27 基板
31、32、33 ガス発生装置
40 発光素子
41 基板
42 AlGa1−xNバッファ層
43 n−GaN層
44 p−GaN層
45 透明電極
46 n−電極
47 ボンディング電極
48 ボンディング
49 リード
50 プリント基板
51 金属ペースト
52 p電極
55 n−AlGa1−zNクラッド層
56 InGa1−mN発光層
57 p−AlGa1−pNクラッド層
60 出射光
61 発光光
63、64 半田ボール
65、66 リードフレーム
100 赤外線加熱単結晶製造装置
102 石英管
102a 雰囲気
103 シード回転部
104 素材回転部
105 加熱部
106 制御部
107 種結晶
108 単結晶
108’ 溶解物
109 多結晶素材
109a 上端部
131 下部駆動部
132 下部回転軸
133 シードチャック
141 上部駆動部
142 上部回転軸
143 素材チャック
151 ハロゲンランプ
152 楕円鏡
153 電源部

Claims (20)

  1. ガリウム酸化物の基板と、前記基板上に形成されたpn接合部とを含むことを特徴とする発光素子。
  2. 前記基板は、(AlInGa(1−x−y)(ただし、0≦x≦1、0≦y≦1、0≦x+y≦1)で表わされるガリウム酸化物であることを特徴とする請求項1記載の発光素子。
  3. 前記pn接合部は、一導電型の前記基板と、前記基板上に形成された前記一導電型と反対の他の導電型のGaN系化合物半導体薄膜とによって形成されることを特徴とする請求項1記載の発光素子。
  4. 前記pn接合部は、一導電型の前記基板上に形成された前記一導電型のGaN系化合物半導体薄膜と、前記一導電型のGaN系化合物半導体薄膜上に形成された前記一導電型と反対の他の導電型のGaN系化合物半導体薄膜とによって形成されることを特徴とする請求項1記載の発光素子。
  5. 前記一導電型のGaN系化合物半導体薄膜は、第1の所定のバンドギャップエネルギーを有する前記一導電型のGaN系化合物半導体膜と、前記第1の所定のバンドギャップエネルギーより小さい第2の所定のバンドギャップエネルギーを有する前記一導電型のGaN系化合物半導体とを含み、
    前記他の導電型のGaN系化合物半導体薄膜は、前記第2の所定のバンドギャップエネルギーより大なる第3の所定のバンドギャップエネルギーを有することを特徴とする請求項4記載の発光素子。
  6. 前記第1の所定のバンドギャップエネルギーを有するGaN系化合物半導体膜は、InGa1−aN(ただし、0<a<1)、GaN、およびAlGa1−bN(ただし、0<b<1)より選択された1つの材料によって形成され、
    前記第2の所定のバンドギャップエネルギーを有するGaN系化合物半導体膜は、InGa1−cN(ただし、0<c<1、a<c)によって形成され、
    前記第3の所定のバンドギャップエネルギーを有するGaN系化合物半導体膜は、GaN、およびAlGa1−dN(ただし、0<d<1)より選択された1つの材料によって形成されることを特徴とする請求項5記載の発光素子。
  7. Gaを主成分とする酸化物からなる単結晶の基板の上に、化合物半導体薄膜を成長させたことを特徴とする発光素子。
  8. 前記基板は、導電性、および可視光および紫外光を透過する透明性を有することを特徴とする請求項7記載の発光素子。
  9. 前記化合物半導体薄膜は、III−V族系化合物により形成されていることを特徴とする請求項7記載の発光素子。
  10. 前記化合物半導体薄膜は、II−VI族系化合物により形成されていることを特徴とする請求項7記載の発光素子。
  11. 前記基板は、n型導電性を示し、
    前記化合物半導体薄膜は、p型導電性を示すことを特徴とする請求項7記載の発光素子。
  12. 前記基板は、p型導電性を示し、
    前記化合物半導体薄膜は、n型導電性を示すことを特徴とする請求項7記載の発光素子。
  13. 前記基板は、Ga系結晶からなることを特徴とする請求項7記載の発光素子。
  14. 前記基板は、表面を(101)面とするGa系結晶からなり、
    前記化合物半導体薄膜は、前記(101)面上に形成されたGaNからなることを特徴とする請求項7記載の発光素子。
  15. 少なくとも前記基板または前記化合物半導体薄膜の一方は、格子定数あるいはバンドギャップ調整用の添加物を含むことを特徴とする請求項7記載の発光素子。
  16. 前記添加物は、Cu、Ag、Zn、Cd、Al、In、Si、GeおよびSnからなる群から選ばれる1種以上であることを特徴とする請求項15記載の発光素子。
  17. 前記化合物半導体薄膜は、n型導電性を示す1層以上の層、およびp型導電性を示す1層以上の層を有することを特徴とする請求項7記載の発光素子。
  18. 前記化合物半導体薄膜のV族元素の原子配列と前記基板中の酸素原子の原子配列とが同じ配列を有することを特徴とする請求項9記載の発光素子。
  19. 制御された雰囲気の高温炉の中に、原料融液が毛細管現象で継続的に上面にまで上昇可能なスリットを有するスリットダイと、前記スリットダイおよび原料融液を収容するルツボとにより、前記スリットダイの上面と同一形状の断面を有する単結晶を育成するEFG法により、Gaを主成分とする酸化物よりなる単結晶の基板を形成し、
    前記基板の上に化合物半導体薄膜を成長させることを特徴とする発光素子の製造方法。
  20. 単結晶のGa系種結晶および非単結晶のGa系材料を準備し、
    前記Ga系種結晶と前記Ga系材料を接触させてその接触部位を加熱して、前記Ga系種結晶および前記Ga系材料を溶融し、この溶融した前記Ga系材料を前記Ga系種結晶とともに結晶化させるFZ法により、Gaを主成分とする酸化物よりなる単結晶の基板を形成し、
    前記基板の上に化合物半導体薄膜を成長させることを特徴とする発光素子の製造方法。
JP2003137912A 2002-05-31 2003-05-15 発光素子 Expired - Fee Related JP3679097B2 (ja)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2003137912A JP3679097B2 (ja) 2002-05-31 2003-05-15 発光素子
EP20030012454 EP1367657B1 (en) 2002-05-31 2003-05-30 Light emitting element and method of making same
TW92114721A TWI292623B (en) 2002-05-31 2003-05-30 Light emitting element and method of making same
DE60334754T DE60334754D1 (de) 2002-05-31 2003-05-30 Lichtemittierende Vorrichtung und Verfahren zu ihrer Herstellung
CN2008101288788A CN101320780B (zh) 2002-05-31 2003-05-30 发光元件
AT03012454T ATE487239T1 (de) 2002-05-31 2003-05-30 Lichtemittierende vorrichtung und verfahren zu ihrer herstellung
KR1020030034609A KR100993408B1 (ko) 2002-05-31 2003-05-30 발광 소자 및 그 제조 방법
CNB031382800A CN100405618C (zh) 2002-05-31 2003-05-30 发光元件及其制造方法
US10/452,158 US6977397B2 (en) 2002-05-31 2003-05-30 Light emitting element and method of making same
HK04106034A HK1063377A1 (en) 2002-05-31 2004-08-11 Light emitting device and a method of manufacturing the same
US11/211,860 US7319249B2 (en) 2002-05-31 2005-08-25 Light emitting element and method of making same
US11/982,580 US7608472B2 (en) 2002-05-31 2007-11-02 Light emitting element and method of making same
US12/134,806 US7629615B2 (en) 2002-05-31 2008-06-06 Light emitting element and method of making same
US12/604,993 US8450747B2 (en) 2002-05-31 2009-10-23 Light emitting element and method of making same
US13/902,111 US8791466B2 (en) 2002-05-31 2013-05-24 Light emitting element and method of making same
US14/317,089 US9117974B2 (en) 2002-05-31 2014-06-27 Light emitting element and method of making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002160630 2002-05-31
JP2003137912A JP3679097B2 (ja) 2002-05-31 2003-05-15 発光素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005088676A Division JP3980035B2 (ja) 2002-05-31 2005-03-25 発光素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2004056098A true JP2004056098A (ja) 2004-02-19
JP3679097B2 JP3679097B2 (ja) 2005-08-03

Family

ID=29422476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137912A Expired - Fee Related JP3679097B2 (ja) 2002-05-31 2003-05-15 発光素子

Country Status (9)

Country Link
US (7) US6977397B2 (ja)
EP (1) EP1367657B1 (ja)
JP (1) JP3679097B2 (ja)
KR (1) KR100993408B1 (ja)
CN (2) CN100405618C (ja)
AT (1) ATE487239T1 (ja)
DE (1) DE60334754D1 (ja)
HK (1) HK1063377A1 (ja)
TW (1) TWI292623B (ja)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112079A1 (ja) * 2004-05-13 2005-11-24 Nippon Light Metal Company, Ltd. 酸化ガリウム単結晶複合体及びその製造方法並びに酸化ガリウム単結晶複合体を用いた窒化物半導体膜の製造方法
JP2005340308A (ja) * 2004-05-24 2005-12-08 Koha Co Ltd 半導体素子の製造方法
JP2006032739A (ja) * 2004-07-16 2006-02-02 Koha Co Ltd 発光素子
JP2006032738A (ja) * 2004-07-16 2006-02-02 Koha Co Ltd 発光素子
JP2006032737A (ja) * 2004-07-16 2006-02-02 Koha Co Ltd 発光素子
JP2006135268A (ja) * 2004-11-09 2006-05-25 Koha Co Ltd 半導体装置およびその製造方法
JP2006135269A (ja) * 2004-11-09 2006-05-25 Koha Co Ltd 半導体装置
JP2006310765A (ja) * 2005-03-31 2006-11-09 Toyoda Gosei Co Ltd 低温成長バッファ層の形成方法、発光素子の製造方法、発光素子、および発光装置
JP2006312571A (ja) * 2005-05-09 2006-11-16 Koha Co Ltd Ga2O3系結晶の製造方法
JP2007042928A (ja) * 2005-08-04 2007-02-15 National Institute For Materials Science 発光素子
JP2007254174A (ja) * 2006-03-20 2007-10-04 Nippon Light Metal Co Ltd 酸化ガリウム単結晶及びその製造方法、並びに窒化物半導体用基板及びその製造方法
JP2008016694A (ja) * 2006-07-07 2008-01-24 Toyoda Gosei Co Ltd 半導体素子の製造方法
JP2008066591A (ja) * 2006-09-08 2008-03-21 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
WO2008044440A1 (fr) * 2006-10-06 2008-04-17 Koha Co., Ltd. Dispositif électroluminescent
WO2008056530A1 (fr) * 2006-11-06 2008-05-15 Koha Co., Ltd. Laser à semiconducteur et son procédé de fabrication
JP2008156141A (ja) * 2006-12-21 2008-07-10 Koha Co Ltd 半導体基板及びその製造方法
CN100452463C (zh) * 2005-12-14 2009-01-14 丰田合成株式会社 发光元件及其制造方法
JP2009081468A (ja) * 2009-01-19 2009-04-16 Univ Waseda Ga2O3系半導体素子及びGa2O3系半導体素子の製造方法
US7727865B2 (en) 2004-02-18 2010-06-01 Waseda University Method for controlling conductivity of Ga2O3single crystal
US7800105B2 (en) 2004-03-12 2010-09-21 Waseda University Ga2O3 semiconductor device
JP2011102235A (ja) * 2010-11-15 2011-05-26 Waseda Univ Ga2O3系単結晶の導電率制御方法
JP2011146652A (ja) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd 貼り合わせ基板、貼り合わせ基板の製造方法、及び発光素子
JP2011153054A (ja) * 2010-01-28 2011-08-11 Namiki Precision Jewel Co Ltd 酸化ガリウム単結晶の製造方法および酸化ガリウム単結晶
JP2011190134A (ja) * 2010-03-12 2011-09-29 Namiki Precision Jewel Co Ltd 酸化ガリウム単結晶の製造方法及び製造装置
JP2011236125A (ja) * 2011-06-23 2011-11-24 Waseda Univ β−Ga2O3単結晶
JP2012508974A (ja) * 2008-11-17 2012-04-12 エルジー イノテック カンパニー リミテッド 酸化ガリウム基板の製造方法、発光素子、及び発光素子の製造方法
JP2013012760A (ja) * 2012-08-23 2013-01-17 Waseda Univ Ga2O3系半導体素子
WO2013035465A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法
WO2013054916A1 (ja) * 2011-10-13 2013-04-18 株式会社タムラ製作所 結晶積層構造体及びその製造方法、並びに半導体素子
JP2013067524A (ja) * 2011-09-21 2013-04-18 Namiki Precision Jewel Co Ltd 酸化ガリウム基板とその製造方法
JP2013082587A (ja) * 2011-10-11 2013-05-09 Tamura Seisakusho Co Ltd β−Ga2O3系単結晶の成長方法
JP2013086976A (ja) * 2011-10-13 2013-05-13 Tamura Seisakusho Co Ltd 結晶積層構造体の製造方法
JP2013089616A (ja) * 2011-10-13 2013-05-13 Tamura Seisakusho Co Ltd 結晶積層構造体及びその製造方法
JP2013103863A (ja) * 2011-11-15 2013-05-30 Tamura Seisakusho Co Ltd β−Ga2O3結晶の製造方法
JP2013124216A (ja) * 2011-12-16 2013-06-24 Tamura Seisakusho Co Ltd Ga2O3系単結晶の成長方法及びGa2O3系基板の製造方法
JP2013227160A (ja) * 2012-04-24 2013-11-07 Namiki Precision Jewel Co Ltd 酸化ガリウム単結晶、及び、酸化ガリウム単結晶基板
WO2013172227A1 (ja) 2012-05-16 2013-11-21 並木精密宝石株式会社 酸化ガリウム単結晶、及び、酸化ガリウム単結晶基板
JP2013237591A (ja) * 2012-05-16 2013-11-28 Namiki Precision Jewel Co Ltd 酸化ガリウム融液、酸化ガリウム単結晶、酸化ガリウム基板、および酸化ガリウム単結晶の製造方法
JP2013241316A (ja) * 2012-05-23 2013-12-05 Namiki Precision Jewel Co Ltd 酸化ガリウム単結晶、及び、酸化ガリウム単結晶基板
WO2014073314A1 (ja) * 2012-11-07 2014-05-15 株式会社タムラ製作所 β-Ga2O3系単結晶の育成方法
WO2014132970A1 (ja) * 2013-03-01 2014-09-04 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法、及びオーミックコンタクト形成方法
JP2014199935A (ja) * 2011-04-08 2014-10-23 株式会社タムラ製作所 半導体積層体及びその製造方法、並びに半導体素子
JP2015008317A (ja) * 2014-08-20 2015-01-15 学校法人早稲田大学 Ga2O3系半導体基板構造
WO2016002845A1 (ja) * 2014-07-02 2016-01-07 株式会社タムラ製作所 酸化ガリウム基板
JP2016013970A (ja) * 2015-09-02 2016-01-28 株式会社タムラ製作所 β−Ga2O3系単結晶基板の製造方法
JP2016079080A (ja) * 2014-10-21 2016-05-16 国立大学法人信州大学 β−Ga2O3結晶の製造方法及び製造装置並びにるつぼ容器
JP2018501184A (ja) * 2015-01-09 2018-01-18 フォルシュングスフェアブント・ベルリン・アインゲトラーゲナー・フェライン 金属るつぼ内に含まれる金属からベータ相の酸化ガリウム(β−Ga2O3)単結晶を成長させる方法
US10570528B2 (en) 2016-04-21 2020-02-25 Shinshu University Apparatus and method for producing gallium oxide crystal
WO2021084941A1 (ja) 2019-10-28 2021-05-06 Agc株式会社 単結晶インゴット、結晶育成用ダイ、及び単結晶の製造方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150527B2 (ja) * 2002-02-27 2008-09-17 日鉱金属株式会社 結晶の製造方法
JP3679097B2 (ja) * 2002-05-31 2005-08-03 株式会社光波 発光素子
CA2517024C (en) 2003-02-24 2009-12-01 Waseda University .beta.-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method
JP4754164B2 (ja) 2003-08-08 2011-08-24 株式会社光波 半導体層
KR20050051920A (ko) * 2003-11-28 2005-06-02 삼성전자주식회사 플립칩형 질화물계 발광소자 및 그 제조방법
US9153960B2 (en) 2004-01-15 2015-10-06 Comarco Wireless Technologies, Inc. Power supply equipment utilizing interchangeable tips to provide power and a data signal to electronic devices
US7250627B2 (en) * 2004-03-12 2007-07-31 Hewlett-Packard Development Company, L.P. Semiconductor device
EP1775774A4 (en) * 2004-06-11 2008-10-22 Matsushita Electric Ind Co Ltd POWER ELEMENT
KR100691159B1 (ko) * 2005-04-30 2007-03-09 삼성전기주식회사 질화갈륨계 반도체의 제조 방법
KR100691251B1 (ko) * 2005-08-08 2007-03-12 성균관대학교산학협력단 발광소자 및 그 제조방법
CN100418240C (zh) * 2005-10-18 2008-09-10 南京大学 在β三氧化二镓衬底上生长InGaN/GaN量子阱LED器件结构的方法
US20070134833A1 (en) * 2005-12-14 2007-06-14 Toyoda Gosei Co., Ltd. Semiconductor element and method of making same
JP4680762B2 (ja) * 2005-12-14 2011-05-11 株式会社光波 発光素子及びその製造方法
WO2008050479A1 (fr) * 2006-10-25 2008-05-02 Stanley Electric Co., Ltd. Couche de zno et dispositif électroluminescent à semi-conducteur
JP5378829B2 (ja) * 2009-02-19 2013-12-25 住友電気工業株式会社 エピタキシャルウエハを形成する方法、及び半導体素子を作製する方法
KR101047652B1 (ko) * 2009-12-18 2011-07-07 엘지이노텍 주식회사 발광소자 및 그 제조방법
CN110071170B (zh) * 2011-09-08 2022-10-11 株式会社田村制作所 晶体层叠结构体
US9716004B2 (en) 2011-09-08 2017-07-25 Tamura Corporation Crystal laminate structure and method for producing same
EP3151285B1 (en) * 2011-09-08 2023-11-22 Tamura Corporation Ga2o3-based semiconductor element
JP5491483B2 (ja) * 2011-11-15 2014-05-14 株式会社タムラ製作所 β−Ga2O3系単結晶の成長方法
CN104737268A (zh) * 2012-01-12 2015-06-24 第一太阳能有限公司 在半导体器件的不同层中提供掺杂剂浓度控制的方法和系统
CN102534758A (zh) * 2012-01-20 2012-07-04 上海中电振华晶体技术有限公司 一种棒状蓝宝石晶体的生长方法及设备
GB201211038D0 (en) 2012-06-21 2012-08-01 Norwegian Univ Sci & Tech Ntnu Solar cells
JP5788925B2 (ja) * 2013-04-04 2015-10-07 株式会社タムラ製作所 β−Ga2O3系単結晶の成長方法
JP5865867B2 (ja) 2013-05-13 2016-02-17 株式会社タムラ製作所 β−Ga2O3系単結晶の育成方法、並びにβ−Ga2O3系単結晶基板の製造方法
JP5836999B2 (ja) * 2013-05-14 2015-12-24 株式会社タムラ製作所 β−Ga2O3系単結晶の育成方法、及びβ−Ga2O3系単結晶基板の製造方法
GB201311101D0 (en) 2013-06-21 2013-08-07 Norwegian Univ Sci & Tech Ntnu Semiconducting Films
JP2015163567A (ja) * 2014-02-28 2015-09-10 株式会社タムラ製作所 半導体積層構造体及び半導体素子
RU2677687C2 (ru) * 2014-03-13 2019-01-21 Филипс Лайтинг Холдинг Б.В. Нить для устройства освещения
DK3323152T3 (da) 2015-07-13 2021-12-20 Crayonano As Nanowire-/nanopyramideformede lysdioder og fotodetektorer
JP6959915B2 (ja) 2015-07-13 2021-11-05 クラヨナノ エーエス グラファイト基板上に成長させたナノワイヤ又はナノピラミッド
AU2016302692B2 (en) 2015-07-31 2019-04-18 Crayonano As Process for growing nanowires or nanopyramids on graphitic substrates
CN106978626A (zh) * 2016-01-15 2017-07-25 中国科学院上海硅酸盐研究所 掺锗氧化镓透明导电半导体单晶及其制备方法
GB201705755D0 (en) * 2017-04-10 2017-05-24 Norwegian Univ Of Science And Tech (Ntnu) Nanostructure
CN109097833A (zh) * 2018-11-12 2018-12-28 孟静 大尺寸碳化硅单晶板的制备装置
JP7155968B2 (ja) 2018-12-04 2022-10-19 Tdk株式会社 単結晶育成用ルツボ及び単結晶製造方法
JP2022149310A (ja) 2021-03-25 2022-10-06 Tdk株式会社 結晶製造方法、結晶製造装置、及び単結晶
WO2023073404A1 (en) 2021-10-27 2023-05-04 Silanna UV Technologies Pte Ltd Methods and systems for heating a wide bandgap substrate
WO2023084275A1 (en) 2021-11-10 2023-05-19 Silanna UV Technologies Pte Ltd Ultrawide bandgap semiconductor devices including magnesium germanium oxides
WO2023084274A1 (en) 2021-11-10 2023-05-19 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices
US20230143766A1 (en) 2021-11-10 2023-05-11 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782088A (ja) * 1993-09-17 1995-03-28 Shinkosha:Kk 単結晶の育成方法
US5550089A (en) * 1994-03-23 1996-08-27 Lucent Technologies Inc. Gallium oxide coatings for optoelectronic devices using electron beam evaporation of a high purity single crystal Gd3 Ga5 O12 source.
JP3890930B2 (ja) 1995-03-29 2007-03-07 日亜化学工業株式会社 窒化物半導体発光素子
US5625202A (en) * 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
US6218207B1 (en) * 1998-05-29 2001-04-17 Mitsushita Electronics Corporation Method for growing nitride semiconductor crystals, nitride semiconductor device, and method for fabricating the same
US6218280B1 (en) * 1998-06-18 2001-04-17 University Of Florida Method and apparatus for producing group-III nitrides
US6291085B1 (en) * 1998-08-03 2001-09-18 The Curators Of The University Of Missouri Zinc oxide films containing P-type dopant and process for preparing same
JP4174913B2 (ja) * 1999-06-04 2008-11-05 昭和電工株式会社 Iii族窒化物半導体発光素子
CN1123937C (zh) * 1999-07-28 2003-10-08 光磊科技股份有限公司 以蓝宝石为基板的蓝光发光二极管及其制造方法
JP4547746B2 (ja) * 1999-12-01 2010-09-22 ソニー株式会社 窒化物系iii−v族化合物の結晶製造方法
JP2001338886A (ja) * 2000-03-24 2001-12-07 Ngk Insulators Ltd 半導体デバイス、その製造方法、及びそれに用いる半導体デバイス用基板
CN1095505C (zh) * 2000-03-30 2002-12-04 天津市环欧半导体材料技术有限公司 生产硅单晶的直拉区熔法
JP4083396B2 (ja) * 2000-07-10 2008-04-30 独立行政法人科学技術振興機構 紫外透明導電膜とその製造方法
TW541723B (en) 2001-04-27 2003-07-11 Shinetsu Handotai Kk Method for manufacturing light-emitting element
JP4232363B2 (ja) 2001-08-30 2009-03-04 信越半導体株式会社 ZnO系半導体発光素子
JP4465941B2 (ja) * 2001-11-22 2010-05-26 富士ゼロックス株式会社 紫外線受光素子
JP3679097B2 (ja) 2002-05-31 2005-08-03 株式会社光波 発光素子
CA2517024C (en) 2003-02-24 2009-12-01 Waseda University .beta.-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method
JP4630986B2 (ja) 2003-02-24 2011-02-09 学校法人早稲田大学 β−Ga2O3系単結晶成長方法
JP4565062B2 (ja) 2003-03-12 2010-10-20 学校法人早稲田大学 薄膜単結晶の成長方法
DE60325458D1 (de) 2003-04-18 2009-02-05 St Microelectronics Srl Elektronisches Bauteil mit Übergang und mit dem Bauteil integriertes Leistungs-Bauelement

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727865B2 (en) 2004-02-18 2010-06-01 Waseda University Method for controlling conductivity of Ga2O3single crystal
US7800105B2 (en) 2004-03-12 2010-09-21 Waseda University Ga2O3 semiconductor device
WO2005112079A1 (ja) * 2004-05-13 2005-11-24 Nippon Light Metal Company, Ltd. 酸化ガリウム単結晶複合体及びその製造方法並びに酸化ガリウム単結晶複合体を用いた窒化物半導体膜の製造方法
JP2005340308A (ja) * 2004-05-24 2005-12-08 Koha Co Ltd 半導体素子の製造方法
JP2006032737A (ja) * 2004-07-16 2006-02-02 Koha Co Ltd 発光素子
JP2006032738A (ja) * 2004-07-16 2006-02-02 Koha Co Ltd 発光素子
JP2006032739A (ja) * 2004-07-16 2006-02-02 Koha Co Ltd 発光素子
JP2006135269A (ja) * 2004-11-09 2006-05-25 Koha Co Ltd 半導体装置
JP2006135268A (ja) * 2004-11-09 2006-05-25 Koha Co Ltd 半導体装置およびその製造方法
JP4647286B2 (ja) * 2004-11-09 2011-03-09 株式会社光波 半導体装置およびその製造方法
JP4647287B2 (ja) * 2004-11-09 2011-03-09 株式会社光波 半導体装置
JP2006310765A (ja) * 2005-03-31 2006-11-09 Toyoda Gosei Co Ltd 低温成長バッファ層の形成方法、発光素子の製造方法、発光素子、および発光装置
JP2006312571A (ja) * 2005-05-09 2006-11-16 Koha Co Ltd Ga2O3系結晶の製造方法
JP4611103B2 (ja) * 2005-05-09 2011-01-12 株式会社光波 β−Ga2O3結晶の製造方法
JP2007042928A (ja) * 2005-08-04 2007-02-15 National Institute For Materials Science 発光素子
CN100452463C (zh) * 2005-12-14 2009-01-14 丰田合成株式会社 发光元件及其制造方法
JP2007254174A (ja) * 2006-03-20 2007-10-04 Nippon Light Metal Co Ltd 酸化ガリウム単結晶及びその製造方法、並びに窒化物半導体用基板及びその製造方法
JP2008016694A (ja) * 2006-07-07 2008-01-24 Toyoda Gosei Co Ltd 半導体素子の製造方法
JP2008066591A (ja) * 2006-09-08 2008-03-21 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
JP2008098249A (ja) * 2006-10-06 2008-04-24 Koha Co Ltd 発光素子
WO2008044440A1 (fr) * 2006-10-06 2008-04-17 Koha Co., Ltd. Dispositif électroluminescent
WO2008056530A1 (fr) * 2006-11-06 2008-05-15 Koha Co., Ltd. Laser à semiconducteur et son procédé de fabrication
JP2008156141A (ja) * 2006-12-21 2008-07-10 Koha Co Ltd 半導体基板及びその製造方法
US8680569B2 (en) 2008-11-17 2014-03-25 Lg Innotek Co., Ltd. Method for manufacturing gallium oxide based substrate, light emitting device, and method for manufacturing the light emitting device
JP2012508974A (ja) * 2008-11-17 2012-04-12 エルジー イノテック カンパニー リミテッド 酸化ガリウム基板の製造方法、発光素子、及び発光素子の製造方法
JP2009081468A (ja) * 2009-01-19 2009-04-16 Univ Waseda Ga2O3系半導体素子及びGa2O3系半導体素子の製造方法
JP2011146652A (ja) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd 貼り合わせ基板、貼り合わせ基板の製造方法、及び発光素子
JP2011153054A (ja) * 2010-01-28 2011-08-11 Namiki Precision Jewel Co Ltd 酸化ガリウム単結晶の製造方法および酸化ガリウム単結晶
JP2011190134A (ja) * 2010-03-12 2011-09-29 Namiki Precision Jewel Co Ltd 酸化ガリウム単結晶の製造方法及び製造装置
JP2011102235A (ja) * 2010-11-15 2011-05-26 Waseda Univ Ga2O3系単結晶の導電率制御方法
JP2014199935A (ja) * 2011-04-08 2014-10-23 株式会社タムラ製作所 半導体積層体及びその製造方法、並びに半導体素子
JP2011236125A (ja) * 2011-06-23 2011-11-24 Waseda Univ β−Ga2O3単結晶
US9202876B2 (en) 2011-09-08 2015-12-01 Tamura Corporation Method for controlling concentration of donor in GA2O3-based single crystal
WO2013035465A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法
JP2015179850A (ja) * 2011-09-08 2015-10-08 株式会社タムラ製作所 β−Ga2O3系単結晶及びβ−Ga2O3系単結晶体
JPWO2013035465A1 (ja) * 2011-09-08 2015-03-23 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法
US8951897B2 (en) 2011-09-08 2015-02-10 Tamura Corporation Method for controlling concentration of donor in GA2O3—based single crystal
JP2013067524A (ja) * 2011-09-21 2013-04-18 Namiki Precision Jewel Co Ltd 酸化ガリウム基板とその製造方法
JP2013082587A (ja) * 2011-10-11 2013-05-09 Tamura Seisakusho Co Ltd β−Ga2O3系単結晶の成長方法
JP2013086976A (ja) * 2011-10-13 2013-05-13 Tamura Seisakusho Co Ltd 結晶積層構造体の製造方法
JP2013089616A (ja) * 2011-10-13 2013-05-13 Tamura Seisakusho Co Ltd 結晶積層構造体及びその製造方法
WO2013054916A1 (ja) * 2011-10-13 2013-04-18 株式会社タムラ製作所 結晶積層構造体及びその製造方法、並びに半導体素子
JP2013103863A (ja) * 2011-11-15 2013-05-30 Tamura Seisakusho Co Ltd β−Ga2O3結晶の製造方法
JP2013124216A (ja) * 2011-12-16 2013-06-24 Tamura Seisakusho Co Ltd Ga2O3系単結晶の成長方法及びGa2O3系基板の製造方法
JP2013227160A (ja) * 2012-04-24 2013-11-07 Namiki Precision Jewel Co Ltd 酸化ガリウム単結晶、及び、酸化ガリウム単結晶基板
WO2013172227A1 (ja) 2012-05-16 2013-11-21 並木精密宝石株式会社 酸化ガリウム単結晶、及び、酸化ガリウム単結晶基板
JP2013237591A (ja) * 2012-05-16 2013-11-28 Namiki Precision Jewel Co Ltd 酸化ガリウム融液、酸化ガリウム単結晶、酸化ガリウム基板、および酸化ガリウム単結晶の製造方法
JPWO2013172227A1 (ja) * 2012-05-16 2016-01-12 並木精密宝石株式会社 酸化ガリウム単結晶、及び、酸化ガリウム単結晶基板
JP2013241316A (ja) * 2012-05-23 2013-12-05 Namiki Precision Jewel Co Ltd 酸化ガリウム単結晶、及び、酸化ガリウム単結晶基板
JP2013012760A (ja) * 2012-08-23 2013-01-17 Waseda Univ Ga2O3系半導体素子
WO2014073314A1 (ja) * 2012-11-07 2014-05-15 株式会社タムラ製作所 β-Ga2O3系単結晶の育成方法
US9926646B2 (en) 2012-11-07 2018-03-27 Tamura Corporation Method for growing B-Ga2O3-based single crystal
JP2014094839A (ja) * 2012-11-07 2014-05-22 Tamura Seisakusho Co Ltd β−Ga2O3系単結晶の育成方法
US9611567B2 (en) 2013-03-01 2017-04-04 Tamura Corporation Method for controlling donor concentration in Ga2O3-based and method for forming ohmic contact
WO2014132970A1 (ja) * 2013-03-01 2014-09-04 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法、及びオーミックコンタクト形成方法
JP2015026796A (ja) * 2013-03-01 2015-02-05 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法、及びオーミックコンタクト形成方法
WO2016002845A1 (ja) * 2014-07-02 2016-01-07 株式会社タムラ製作所 酸化ガリウム基板
JP2015008317A (ja) * 2014-08-20 2015-01-15 学校法人早稲田大学 Ga2O3系半導体基板構造
JP2016079080A (ja) * 2014-10-21 2016-05-16 国立大学法人信州大学 β−Ga2O3結晶の製造方法及び製造装置並びにるつぼ容器
JP2018501184A (ja) * 2015-01-09 2018-01-18 フォルシュングスフェアブント・ベルリン・アインゲトラーゲナー・フェライン 金属るつぼ内に含まれる金属からベータ相の酸化ガリウム(β−Ga2O3)単結晶を成長させる方法
JP2020164415A (ja) * 2015-01-09 2020-10-08 フォルシュングスフェアブント・ベルリン・アインゲトラーゲナー・フェライン 金属るつぼ内に含まれる金属からベータ相の酸化ガリウム(β−Ga2O3)単結晶を成長させる方法
JP7046117B2 (ja) 2015-01-09 2022-04-01 フォルシュングスフェアブント・ベルリン・アインゲトラーゲナー・フェライン 金属るつぼ内に含まれる金属からベータ相の酸化ガリウム(β-Ga2O3)単結晶を成長させる方法
JP2016013970A (ja) * 2015-09-02 2016-01-28 株式会社タムラ製作所 β−Ga2O3系単結晶基板の製造方法
US10570528B2 (en) 2016-04-21 2020-02-25 Shinshu University Apparatus and method for producing gallium oxide crystal
WO2021084941A1 (ja) 2019-10-28 2021-05-06 Agc株式会社 単結晶インゴット、結晶育成用ダイ、及び単結晶の製造方法

Also Published As

Publication number Publication date
KR100993408B1 (ko) 2010-11-09
CN101320780B (zh) 2010-06-16
JP3679097B2 (ja) 2005-08-03
ATE487239T1 (de) 2010-11-15
US20100038652A1 (en) 2010-02-18
US20080237607A1 (en) 2008-10-02
US20130248902A1 (en) 2013-09-26
US7319249B2 (en) 2008-01-15
US7629615B2 (en) 2009-12-08
US7608472B2 (en) 2009-10-27
US8791466B2 (en) 2014-07-29
CN1474466A (zh) 2004-02-11
US6977397B2 (en) 2005-12-20
EP1367657A2 (en) 2003-12-03
EP1367657B1 (en) 2010-11-03
TWI292623B (en) 2008-01-11
TW200406915A (en) 2004-05-01
CN100405618C (zh) 2008-07-23
US9117974B2 (en) 2015-08-25
US20080070337A1 (en) 2008-03-20
DE60334754D1 (de) 2010-12-16
US8450747B2 (en) 2013-05-28
KR20030094031A (ko) 2003-12-11
US20060001031A1 (en) 2006-01-05
US20140306237A1 (en) 2014-10-16
EP1367657A3 (en) 2008-04-30
CN101320780A (zh) 2008-12-10
US20040007708A1 (en) 2004-01-15
HK1063377A1 (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP3679097B2 (ja) 発光素子
JP4831940B2 (ja) 半導体素子の製造方法
TWI450865B (zh) β氧化鎵系單結晶生長方法
JP4001170B2 (ja) Iii族元素窒化物単結晶の製造方法およびそれにより得られたiii族元素窒化物透明単結晶
TWI408733B (zh) Iii族氮化物化合物半導體發光元件之製造方法、及iii族氮化物化合物半導體發光元件、以及燈
JP2809690B2 (ja) 化合物半導体材料とこれを用いた半導体素子およびその製造方法
WO2005078812A1 (ja) Ga2O3系単結晶の導電率制御方法
US8049227B2 (en) Group III nitride semiconductor light emitting device, method for producing the same, and lamp thereof
JP2004300024A (ja) Iii族元素窒化物結晶の製造方法、それにより得られたiii族元素窒化物結晶およびそれを用いた半導体装置
JP3980035B2 (ja) 発光素子およびその製造方法
JP4045499B2 (ja) ZnO系半導体素子の製造方法
JP4705384B2 (ja) 窒化ガリウム系半導体素子
JP4647287B2 (ja) 半導体装置
JP4647286B2 (ja) 半導体装置およびその製造方法
JP4156873B2 (ja) エピタキシャルウエハの製造方法
JP2006032738A (ja) 発光素子
JP2804093B2 (ja) 光半導体装置
JPH0555630A (ja) 発光素子材料およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041216

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees