EP2492300B1 - Copolymère d'organopolysiloxane inédit - Google Patents

Copolymère d'organopolysiloxane inédit Download PDF

Info

Publication number
EP2492300B1
EP2492300B1 EP10825092.9A EP10825092A EP2492300B1 EP 2492300 B1 EP2492300 B1 EP 2492300B1 EP 10825092 A EP10825092 A EP 10825092A EP 2492300 B1 EP2492300 B1 EP 2492300B1
Authority
EP
European Patent Office
Prior art keywords
group
hydrophilic
expressed
cosmetic composition
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10825092.9A
Other languages
German (de)
English (en)
Other versions
EP2492300A4 (fr
EP2492300A1 (fr
Inventor
Tomohiro Iimura
Akito Hayashi
Seiki Tamura
Haruhiko Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Co Ltd filed Critical Dow Corning Toray Co Ltd
Publication of EP2492300A1 publication Critical patent/EP2492300A1/fr
Publication of EP2492300A4 publication Critical patent/EP2492300A4/fr
Application granted granted Critical
Publication of EP2492300B1 publication Critical patent/EP2492300B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • A61K8/893Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by an alkoxy or aryloxy group, e.g. behenoxy dimethicone or stearoxy dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • C08L83/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q13/00Formulations or additives for perfume preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations

Definitions

  • the present invention relates to a novel AB-type organopolysiloxane copolymer and a method of manufacturing the same; a surfactant and a powder treatment agent comprising the organopolysiloxane copolymer; and a topical composition and a cosmetic composition comprising the organopolysiloxane copolymer.
  • Organopolysiloxane derivatives are proactively compounded as cosmetic composition-use oil solutions for the purpose of reducing stickiness and oiliness of cosmetics.
  • polydimethyl siloxanes have structural characteristics that lead to poor compatibility with skin, resulting in a multitude of problems such as insufficient moisturizing.
  • Patent Documents 1 and 2 JP-S-61-123635 and the like describe a graft-type polyoxyethylene-modified silicone and JP-S-57-149290 and the like describe a polyglyceryl-modified silicone which are produced by addition reacting a polyether compound having an allyl group on an end thereof with the SiH group of an organohydrogenpolysiloxane via a hydrosilylation reaction.
  • H05-112424A discloses cosmetic materials comprising oil gelling agents, and alkyl glyceryl ether modified silicone and a silicone oil which form stable gels that are not greasy to the touch.
  • Gel compositions with an improved feel are disclosed in WO 2009/025146A1 .
  • the gel compositions are composed of organosiloxane derivatives having a carboxyl group, a monohydric aliphatic alcohol having 10 to 30 carbon atoms, and water.
  • organohydrogenpolysiloxane with a large degree of polymerization is frequently used as a raw material, the feel derived from the silicone becomes excessively strong and there are cases in which a natural feel cannot be obtained.
  • the polyorgano-polysiloxane as a raw material is nothing more than the mean structure, unmodified polyorgano-polysiloxane in which the polyoxyethylene group and the polyglyceryl group are not bonded is produced as an unavoidable by-product or remains in the system.
  • compatibility with compounded cosmetic raw materials is negatively affected, which may lead to heterogeneity of the system, a cloudy visual appearance, and a decline in emulsion stability.
  • JP-H-04-211605 and the like propose an (AB)n-type organopolysiloxane copolymer in which the silicone unit and the polyoxyethylene unit are alternately bonded (Patent Documents 3 to 5). Additionally, JP-H-2005-042097 and the like propose an (AB)n-type organopolysiloxane copolymer in which the silicone unit and the polyglycerine unit are alternately bonded (Patent Document 6).
  • the amount of unreacted polyorgano-polysiloxane can be reduced because these alternating copolymers have repeating units and, moreover, when used as a cosmetic composition component, are an extremely useful cosmetic raw material because they impart superior feel.
  • organopolysiloxane copolymers have been proposed in which molecular weight is suppressed and only two or three of the silicone units, having a relatively simple molecular design, and the polyether units such as the polyoxyethylene units are bonded.
  • These organopolysiloxane copolymers comprise hydrophobic silicone units and hydrophilic units and, therefore, are suggested to be useful as surfactants and cosmetic raw materials (Patent Documents 7 to 10).
  • an object of the present invention is to provide a novel AB-type organopolysiloxane copolymer that, compared with conventional polyether-modified silicones and silicone-based alternating copolymers, has superior compounding stability in cosmetics and feeling to touch improvement characteristics, can be used in combination with a wide range of cosmetic ingredients, and that has superior surface activity. Furthermore, an object of the present invention is to provide a surfactant or a powder treatment agent comprising the organopolysiloxane copolymer, and a topical composition, particularly a cosmetic composition, comprising the organopolysiloxane copolymer.
  • the present inventors arrived at the present invention. That is, the objects of the present invention are achieved by an AB-type organopolysiloxane copolymer having a silylalkyl group having a carbosiloxane dendrimer structure on one terminal and a hydrophilic segment on the other terminal of the molecular chain; a surfactant or powder treatment agent comprising the organopolysiloxane copolymer; and a topical composition, particularly a cosmetic composition, each comprising the organopolysiloxane copolymer according to claim 1.
  • Various embodiments are the subject of dependent claims.
  • the disclosed organopolysiloxane copolymer may comprise a branch unit selected from groups expressed by structural formulae (3-5) to (3-7) below.
  • the organopolysiloxane copolymer disclosed may be one wherein in the general formula (1), Q is a hydrophilic segment expressed by general formulae (4-1) to (4-4) below.
  • R 3 is an organic group having (p+1) valency, and p is a number that is greater than or equal to 1.
  • X 1 are each independently at least one hydrophilic unit selected from the hydrophilic units expressed by the general formulae (3-1) to (3-4) above, and m is a number in a range of 1 to 100.
  • R 4 is a hydrogen atom or a group selected from the group consisting of acyl groups, glycidyl groups, and alkyl groups having from 1 to 20 carbons.
  • R 3 is a group synonymous with the groups described above, and p is a number synonymous with the number described above and X 2 is a hydrophilic segment expressed by structural formula (4-2-1) below.
  • the at least one hydrophilic unit selected from the hydrophilic units expressed by the general formulae (3-1) to (3-4) is bonded to two oxygen atoms, each independently.
  • R 3 is a group synonymous with the groups described above, and p is a number synonymous with the number described above and X 3 is a hydrophilic segment expressed by structural formula (4-3-1) below;
  • the at least one hydrophilic unit selected from the hydrophilic units expressed by the general formulae (3-1) to (3-4) is bonded to two oxygen atoms, each independently.
  • R 3 is a group synonymous with the groups described above, and p is a number synonymous with the number described above and X 4 is a hydrophilic segment expressed by structural formula (4-4-1) below.
  • the at least one hydrophilic unit selected from the hydrophilic units expressed by the general formulae (3-1) to (3-4) is bonded to two oxygen atoms, each independently.
  • organopolysiloxane copolymer disclosed herein may be expressed by any one of structural formulae (1-1) to (1-4) below.
  • n is a number in a range from 0 to 10 and m is a number in a range from 1 to 100.
  • X 1 are each independently at least one hydrophilic unit selected from the hydrophilic units expressed by the general formulae (3-1) to (3-4) above.
  • R' 3 is a group selected from divalent organic groups expressed by general formulae (5-1), (5-1-2), (5-1-3), and (5-2) below.
  • R 6 may have a substituent, and are each independently a straight or branched chain alkylene group or alkenylene group having from 2 to 22 carbons, or an arylene group having from 6 to 22 carbons.
  • R 4 is a hydrogen atom or a group selected from the group consisting of acyl groups, glycidyl groups, and alkyl groups having from 1 to 20 carbons.
  • R 5 is a group selected from divalent organic groups expressed by general formulae (5-1) to (5-7) below. -R 6 - (5-1) -R 6 -R 7 - (5-7)
  • R 6 is a group synonymous with the groups described above; and R 7 is a group selected from divalent organic groups expressed by the following formulae.
  • the organopolysiloxane copolymer may be any one disclosed above, wherein n is equal to 0.
  • An emulsion composition may comprise: (a-1) a surfactant comprising the claimed organopolysiloxane copolyme (b) an oil agent selected from a silicone oil, a nonpolar organic compound, or a low polarity organic compound, and water.
  • a powder composition may comprise: a powder treatment agent comprising the claimed organopolysiloxane copolymer and (d) a powder or a colorant.
  • the powder composition may comprise from 1.0 to 30 parts by weight of the powder treatment agent comprising the claimed organopolysiloxane copolymer per 100 parts by weight of (d) the powder or the colorant are used to surface treat the component (d).
  • the powder composition may comprise a component (d) which is one or two or more selected from the group consisting of an inorganic pigment powder, an organic pigment powder, and a resin powder, having an average diameter in a range of 1 nm to 20 ⁇ m.
  • the powder composition may be one wherein part or all of the component (d) is a water-repellent treated powder or colorant.
  • a powder in oil dispersion may comprise the claimed organopolysiloxane copolymer (d) a powder or a colorant, and (c) an oil agent selected from a silicone oil, a nonpolar organic compound, and a low polarity organic compound.
  • a topical composition may comprise the claimed organopolysiloxane copolymer (including cases when compounded in the form of an emulsion composition, a powder composition, or a powder in oil dispersion as a raw material of the topical composition.
  • the cosmetic composition may comprise the following components:
  • the component (b) may be a silicone oil, more specifically a hydrophobic silicone oil having a viscosity at 25°C of 0.65 to 100,000 mm 2 /s.
  • the [component (b) may be a nonpolar organic compound or a low polarity organic compound, and said component (b) may be a liquid at 5 to 100°C.
  • the cosmetic composition may be one wherein a part or all of the silicone oil is a straight organopolysiloxane expressed by general formula (6), a cyclic organopolysiloxane expressed by general formula (7), or a branched organopolysiloxane expressed by general formula (8) below.
  • Me is a methyl group
  • R is a hydrogen atom or a group selected from a hydroxyl group, or a monovalent nonsubstituted- or fluorine substituted-alkyl group having from 2 to 30 carbons, an aryl group, an amino substituted alkyl group, an alkoxy groups, and a group expressed by (CH 3 ) 3 SiO ⁇ (CH 3 ) 2 SiO ⁇ h Si(CH 3 ) 2 CH 2 CH 2 -;
  • the cosmetic composition may further comprise: (c) one or two or more selected from the group consisting of an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, and a semipolar surfactant.
  • the cosmetic composition may further comprise (d) a powder or a colorant.
  • the cosmetic composition may be one wherein the component (d) is one or two or more selected from the group consisting of an inorganic pigment powder, an organic pigment powder, and a resin powder, having an average diameter in a range of 1 nm to 20 ⁇ m.
  • the cosmetic composition may be one wherein part or all of the component (d) is a water-repellent treated powder or colorant.
  • the cosmetic composition may comprise (e) a water-soluble polymer.
  • the cosmetic composition may comprise (f) a silicone resin.
  • the cosmetic composition may comprise (g) a silicone elastomer.
  • the cosmetic composition may comprise: (h) an ultraviolet light blocking component.
  • the cosmetic composition may be a skin care product, a cosmetic product for hair, an anti-perspirant product, a makeup product, or an ultraviolet light blocking product.
  • the cosmetic composition may be in the a form of a product which is liquid, milk-like, cream-like, solid, paste-like, gel-like, powder-like, multi-layer, mousse-like, or spray-like.
  • an object of the present invention is preferably achieved by a method according to claim 13 in which the organopolysiloxane copolymer is manufactured via a hydrosilylation reaction.
  • a novel organopolysiloxane copolymer can be provided that, compared with conventional polyether-modified silicones and silicone-based alternating copolymers, has superior compounding stability in cosmetics and feeling to touch improvement characteristics, can be used in combination with a wide range of cosmetic ingredients, and that has superior surface activity and powder treating capability.
  • a surfactant and a powder treatment agent formed from the organopolysiloxane copolymer, or a topical composition comprising said surfactant and powder treatment agent, particularly a cosmetic composition can be provided.
  • a novel organopolysiloxane copolymer according to claim 1 has a carbosiloxane dendrimer structure on one molecular terminal and a hydrophilic segment on the other terminal of the molecular chain, and specifically is an AB-type organopolysiloxane copolymer.
  • a linked group having at least divalency is a bonding site with respect to the siloxane included in the hydrophilic segment (Q), and a structure thereof is not particularly limited.
  • a structure thereof is not particularly limited. Examples thereof include, ethylene groups, propylene groups, butylene groups, hexylene groups, and similar alkylene groups; ethylene phenylene groups, propylene phenylene groups, and similar alkylene phenylene groups; ethylene benzylene groups and similar alkylene aralkylene groups; ethyleneoxy phenylene groups, propyleneoxy phenylene groups, and similar alkyleneoxy phenylene groups; methyleneoxy benzylene groups, ethyleneoxy benzylene groups, propyleneoxy benzylene groups, and similar alkyleneoxy benzylene groups; and, furthermore, groups described below. Note that there are preferably from 0 to 3 and more preferably 0 or 1 ether bonds in the linking group that is at least divalent.
  • the disclosed organopolysiloxane copolymer can be obtained by an addition reaction that is not particularly limited but, from the standpoint of reaction control, purity, and yield, the addition reaction is preferably performed in the presence of a hydrosilylation reaction catalyst.
  • the hydrosilylation reaction is preferably performed in the presence of a catalyst.
  • the catalyst include platinum, ruthenium, rhodium, palladium, osmium, iridium, and similar compounds, and platinum compounds are particularly effective due to their high catalytic activity.
  • the platinum compound include chloroplatinic acid; platinum metal; platinum metal supported on a carrier such as platinum supported on alumina, platinum supported on silica, platinum supported on carbon black, or the like; and a platinum complex such as platinum-vinylsiloxane complex, platinum phosphine complex, platinum-phosphite complex, platinum alcholate catalyst, or the like.
  • a usage amount of the catalyst is about 0.5 to 100 ppm in terms of platinum metal, when using a platinum catalyst.
  • the hydrophilic compound (D) having one alkenyl group on the molecular terminal is a hydrophilic compound having a reactive functional group such as an alkenyl group on a molecular terminal, and examples thereof include an allyl polyether, an allyl polyglycerol, an allyl polyglycidyl ether, a polyglyceryl eugenol, a glycerin monoallyl ether, and the like.
  • the hydrophilic compound (D) can be synthesized according to a known method, or may be a commercially available product.
  • the crude organopolysiloxane copolymer obtained via the addition reaction described above can be refined by performing a deodorizing treatment by a hydrogenation treatment in the presence of a hydrogenation catalyst in a solvent or without a solvent.
  • This refined product can be preferably used in cases where the organopolysiloxane copolymer is used in a topical composition application in which odor reduction and compatibility with other cosmetic ingredients is needed.
  • the deodorizing treatment preferably has, as a pre-process or a post-process, a stripping process in which nitrogen gas is brought into contact with the crude organopolysiloxane copolymer or the hydrogenated product to remove light substance.
  • solvents, reaction conditions, pressure-reduction conditions, and the like used in the refining of conventional organopolysiloxane copolymers can be used or selected without any restrictions.
  • the odor of the crude organopolysiloxane copolymer obtained via the addition reaction described above can easily be reduced by performing a stripping process in which light substance is removed by bringing nitrogen gas into contact with the crude product, after an unreacted unsaturated compound is hydrolyzed by adding an acidic substance.
  • the disclosed organopolysiloxane is particularly useful as a surfactant or a powder treatment agent because it is hydrophobic, and has a carbosiloxane dendrimer structure that provides high water repellency and a hydrophilic segment in the same molecule. Therefore, the disclosed organopolysiloxane copolymer is particularly suited for use as a nonionic surfactant or a powder treatment agent for use in a cosmetic composition.
  • the disclosed organopolysiloxane copolymer displays superior surface activity effects (dispersibility, emulsifiability) at small amounts and, therefore has the benefits of being able to stably emulsify various oil agents and provide an emulsion with a unique texture and a superior feeling to touch.
  • the novel organopolysiloxane copolymer disclosed is extremely useful as a surfactant for an topical composition, and, particularly, other than cosmetics, as a foam stabilizer used when manufacturing urethane foam, a release agent, an antifoam agent, a fiber treatment agent, an adhesive, an antifogging agent, a burnishing agent, a water repellent, a coating, a resin additive, an antistatic agent, and the like.
  • a highly volatile polyether is used as the hydrophilic segment, the novel organopolysiloxane copolymer disclosed can be suitably used in applications such as cleaning electronics or electronic parts.
  • the disclosed organopolysiloxane copolymer is, independently, a superior surfactant, but may also be suitably used in a mixture with a hydrophilic compound having a reactive functional group such as an alkenyl group or the like at a molecular terminal, such as an allyl polyether, an allyl polyglycerol, an allyl polyglycidyl ether, or the like.
  • the hydrophilic compound having the reactive functional group is preferably exemplified by the same compound as the hydrophilic compound used in the manufacture of the organopolysiloxane copolymer.
  • the surfactant included in the organopolysiloxane copolymer can stably emulsify various oil agents and water to form an emulsion composition.
  • the emulsion composition can be in the form of an oil-in-water emulsion or a water-in-oil emulsion.
  • emulsion compositions comprising such an emulsion as an inner phase (particulate material), such as O/W/O type emulsions and the like can be obtained.
  • the emulsion composition preferably is an emulsion composition comprising (a) the organopolysiloxane copolymer according to the present invention, water, and an oil agent; and can be used as-is for a topical composition (particularly a cosmetic composition) or can be compounded as a raw material (particularly a cosmetic raw material) of various topical compositions.
  • the oil agent preferably is a (b) a silicone oil, a nonpolar organic compound, or a low polarity organic compound preferably used in a cosmetic raw material; and is preferably one or more oil agents selected from silicone oils, hydrocarbon oils, and ester oils that are liquid from 5 to 100°C.
  • emulsification can be carried out by combining one or two or more commonly known vegetable oils and fats, animal oils and fats, higher alcohols, liquid triglyceride fatty acid, and artificial sebum with the oil agents described above. Note that this component (b) will be described in detail in the description related to the cosmetic composition disclosed herein.
  • Water is free of ingredients that are harmful to the human body and needs only be clean. Examples thereof include tap water, purified water, mineral water, and the like. Additionally, a compounded amount of the water can be selected appropriately, but is generally within a range of 5 to 99 wt.% of the entire emulsion composition.
  • Examples of methods of dispersing/emulsifying the oil agent in water include using a mechanical force by means of an apparatus such as a homomixer, a paddle mixer, a Henschel mixer, a homodisper, a colloid mill, a propeller stirrer, a homogenizer, an in-line type continuous emulsifier, an ultrasonic emulsifier, a vacuum kneader, or the like to disperse the oil agent in water.
  • an apparatus such as a homomixer, a paddle mixer, a Henschel mixer, a homodisper, a colloid mill, a propeller stirrer, a homogenizer, an in-line type continuous emulsifier, an ultrasonic emulsifier, a vacuum kneader, or the like to disperse the oil agent in water.
  • dispersion stability in mixed oil agent systems is excellent and, after preparing a powder composition obtained by treating the powder surface using a treatment agent, even when a method is used where the powder composition is dispersed in an oil agent dispersing medium, a powder in oil dispersion having superior stability is provided in which the powder does not agglomerate or precipitate.
  • the powder that can be treated or dispersed by the novel organopolysiloxane copolymer disclosed herein is preferably (d) a powder or colorant.
  • the component (d) is a powder and/or a colorant for use in a cosmetic composition, and this powder and/or colorant can be any powder provided that it is normally used in cosmetic compositions, and is not limited to form (sphere, bar, needle, plate, amorphous, spindle or the like), particle size (aerosol, micro-particle, pigment-grade particle, or the like), or particle structure (porous, nonporous, or the like) thereof.
  • the powder and/or colorant as a pigment, preferably one or two or more selected from an inorganic pigment powder, an organic pigment powder, and a resin powder having an average diameter in a range of 1 nm to 20 ⁇ m is compounded.
  • powder or colorant (d) examples include inorganic powders, organic powders, surfactant metal salt powders (metallic soaps), colored pigments, pearl pigments, metal powder pigments, and the like.
  • compound products of the pigments can also be used.
  • inorganic powders include titanium oxide, zirconium oxide, zinc oxide, cerium oxide, magnesium oxide, barium sulfate, calcium sulfate, magnesium sulfate, calcium carbonate, magnesium carbonate, talc, mica, kaolin, sericite, white mica, synthetic mica, phlogopite, lepidolite, black mica, lithia mica, silicic acid, silicic acid anhydride, aluminum silicate, sodium silicate, magnesium sodium silicate, magnesium silicate, aluminum magnesium silicate, calcium silicate, barium silicate, strontium silicate, metal salts of tungstic acid, hydroxyapatite, vermiculite, higilite, bentonite, montmorillonite, hectorite, zeolite, ceramic powder, secondary Calcium phosphate, alumina, aluminum hydroxide, boron nitride, and the like.
  • organic powders examples include polyamide powder, polyester powder, polyethylene powder, polypropylene powder, polystyrene powder, polyurethane powder, benzoguanamine powder, polymethylbenzoguanamine powder, polytetrafluoroethylene powder, poly(methyl methacrylate) powder, cellulose, silk powder, nylon powder, nylon 12, nylon 6, silicone powder, silicone rubber powder, silicone elastomer spherical particles surface-coated with polymethylsilsesquioxane, polymethylsilsesquioxane spherical particles, copolymers of styrene and acrylic acid, copolymers of divinylbenzene and styrene, vinyl resin, urea resin, phenol resin, fluorine resin, silicone resin, acrylic resin, melamine resin, epoxy resin, polycarbonate resin, microcrystalline fiber powder, starch powder, lauroyl lysine, and the like.
  • surfactant metal salt powders include zinc stearate, aluminum stearate, calcium stearate, magnesium stearate, zinc myristate, magnesium myristate, zinc palmitate, zinc laurate, zinc cetylphosphate, calcium cetylphosphate, sodium zinc cetylphosphate, and the like.
  • colored pigments include inorganic red pigments such as red iron oxide, iron oxide, iron hydroxide, iron titanate and the like; inorganic brown pigments such as gamma-iron oxide and the like; inorganic yellow pigments such as yellow iron oxide, ocher, and the like; inorganic black iron pigments such as black iron oxide, carbon black, and the like; inorganic purple pigments such as manganese violet, cobalt violet, and the like; inorganic green pigments such as chromium hydroxide, chromium oxide, cobalt oxide, cobalt titanate, and the like; inorganic blue pigments such as Prussian blue, ultramarine blue, and the like; laked pigments of tar pigments such as Red No. 3, Red No.
  • Red No. 106 Red No. 201, Red No. 202, Red No. 204, Red No. 205, Red No. 220, Red No. 226, Red No. 227, Red No. 228, Red No. 230, Red No. 401, Red No. 505, Yellow No. 4, Yellow No. 5, Yellow No. 202, Yellow No. 203, Yellow No. 204, Yellow No. 401, Blue No. 1, Blue No. 2, Blue No. 201, Blue No. 404, Green No. 3, Green No. 201, Green No. 204, Green No. 205, Orange No. 201, Orange No. 203, Orange No. 204, Orange No. 206, Orange No. 207, and the like, laked pigments of natural pigments such as carminic acid, laccaic acid, carthamin, brazilin, crocin, and the like.
  • laked pigments of natural pigments such as carminic acid, laccaic acid, carthamin, brazilin, crocin, and the like.
  • pearl pigments examples include titanium oxide-coated mica, titanium mica, iron oxide-treated titanium mica, titanium oxide-coated mica, bismuth oxychloride, titanium oxide-coated bismuth oxychloride, titanium oxide-coated talc, fish scale foil, titanium oxide-coated colored mica, and the like.
  • Examples of the metal powder pigment include powders of metals such as aluminum, gold, silver, copper, platinum, stainless steel, and the like.
  • a UV-ray absorbing or scattering powder such as microparticle titanium oxide, microparticle iron-containing titanium oxide, microparticle zinc oxide, microparticle cerium oxide, compound products thereof, and the like may be used.
  • the powder and/or colorant is preferably partially or entirely subjected to a water-repellent treatment.
  • a product can be used in which these powders and/or colorants are compounded together; or subjected to surface treatment using a general oil agent, a silicone oil other than the organopolysiloxane copolymer according to the present invention, a fluorine compound, a surfactant, or the like.
  • a general oil agent e.g., a silicone oil other than the organopolysiloxane copolymer according to the present invention, a fluorine compound, a surfactant, or the like.
  • the compounded amount of the powder and/or colorant is preferably in a range from 0.1 to 99 wt.% of the entire cosmetic composition.
  • the compounded amount when using in a powdered solid cosmetic composition is preferably in a range from 80 to 99 wt.% of the entire cosmetic composition.
  • water-repellent treatments include various treatments in which the powder and/or colorant is surface treated with a water repellency agent.
  • organosiloxane treatments such as a methylhydrogenpolysiloxane treatment, a silicone resin treatment, a silicone gum treatment, an acryl silicone treatment, a fluorinated silicone treatment, and the like; metallic soap treatments such as a zinc stearate treatment and the like; silane treatments such as a silane coupling agent treatment, an alkylsilane treatment, and the like; fluorine compound treatments such as a perfluoroalkylsilane treatment, a perfluoroalkyl phosphate treatment, a perfluoro polyether treatment, and the like; amino acid treatments such as an N-lauroyl-L-lysine treatment and the like; oil agent treatments such as a squalane treatment and the like; acryl treatments such as an alkyl acrylate treatment and the like.
  • the treatments described above can be used in combinations of one or more
  • a compounded amount of the organopolysiloxane copolymer (a) and the powder and/or colorant (b) is preferably in a range from 0.1 to 30 parts by weight, and more preferably from 0.5 to 10 parts by weight per 100 parts by mass of the powder and/or colorant.
  • the organopolysiloxane copolymer disclosed herein can be used to treat a powder surface using a conventional method. This method is not particularly limited, and an appropriate method from those described below can be selected.
  • powder in oil dispersion refers to a product in which a powder composition obtained as described above is dispersed in an oil agent or, alternately, a product in which an organopolysiloxane copolymer is dissolved or dispersed in an oil agent, and then the powder is added by being mixed or dispersed therein; and a form thereof is that of a liquid dispersed product.
  • the powder in oil dispersion disclosed herein can be appropriately prepared according to a known method such as the methods described below.
  • the obtained powder in oil dispersion can be compounded as-is in a cosmetic composition.
  • novel organopolysiloxane copolymer disclosed herein can also be used in combination with a wide range of cosmetic ingredients.
  • the novel organopolysiloxane copolymer disclosed herein is extremely useful as a raw material in all types of preparations for external use that are topically applied to the skin or hair, specifically cosmetic raw materials or medicament raw materials.
  • the novel organopolysiloxane copolymer disclosed herein is suitable as a raw material of a cosmetic composition, can be used preferably as a water-based cosmetic raw material of the emulsion or the like, or can be used in a substantially water-free nonaqueous-based cosmetic composition.
  • the compounded amount of the organopolysiloxane copolymer is preferably in a range of 0.1 to 40 wt.% of the entire cosmetic product.
  • the cosmetic composition disclosed herein preferably comprises from 0.1 to 99.9 wt.% of (a) the organopolysiloxane copolymer according to the present invention and from 99.9 to 0.1 wt.% of (b) the silicone oil, the nonpolar organic compound, or the low polarity organic compound components.
  • the component (b) is what is referred to as the "oil agent” and preferable examples thereof include hydrophobic silicone oils that have a viscosity at 25°C from 0.65 to 1000,000 mm 2 /s and nonpolar organic compounds or low polarity organic compounds that are a liquid at from 5 to 100°C.
  • silicone oil component (b) examples include straight organopolysiloxanes expressed by the following general formula (6), cyclic organopolysiloxanes expressed by the general formula (7), and branched organopolysiloxanes expressed by the general formula (8).
  • Me is a methyl group
  • R is a hydrogen atom, a hydroxyl group, or a group selected from an nonsubstituted or fluorine substituted monovalent alkyl group having from 2 to 30 carbons, an aryl group, an amino substituted alkyl group, an alkoxy group, and a group expressed by (CH3)3SiO ⁇ (CH3)2SiO ⁇ h Si(CH3)2CH2CH2-.
  • saturated aliphatic hydrocarbon groups such as ethyl groups, propyl groups, butyl groups, pentyl groups, hexyl groups, heptyl groups, octyl groups, decyl groups, dodecyl groups, and the like
  • unsaturated aliphatic hydrocarbon groups such as vinyl groups, allyl groups, hexenyl groups, and the like
  • saturated cycloaliphatic hydrocarbon groups such as cyclopentyl groups, cyclohexyl groups, and the like
  • aromatic hydrocarbon groups such as phenyl groups, tolyl groups, naphthyl groups, and the like
  • groups wherein the hydrogen atoms bonded to the carbon atoms of these groups are substituted partially by an organic group having a halogen atom, an epoxy group, a carboxyl group, an amino group, a (meth)acryl group, a mercapto group, or the like, or a group substituted by a trimethylsil
  • a are each individually an integer from 0 to 3.
  • b is an integer in a range from 0 to 1,000
  • d is an integer in a range from 0 to 1,000
  • (b+d) is an integer in a range from 1 to 2,000.
  • e and f are integers in a range from 0 to 8, and satisfy the relationship 3 ⁇ e+f ⁇ 8.
  • g is an integer in a range of 1 to 4
  • h is an integer in a range of 0 to 500.
  • silicone oils having the structure described above include cyclic organopolysiloxanes such as hexamethyl cyclotrisiloxane (D3), octamethyl cyclotetrasiloxane (D4), decamethyl cyclopentasiloxane (D5), dodecamethyl-cyclohexasiloxane (D6), 1,1-diethylhexamethyl cyclotetrasiloxane, phenylheptamethyl cyclotetrasiloxane, 1,1-diphenylhexamethyl cyclotetrasiloxane, 1,3,5,7-tetravinyltetramethyl cyclotetrasiloxane, 1,3,5,7-tetramethyl cyclotetrasiloxane, 1,3,5,7-tetracyclohexyltetramethyl cyclotetrasiloxane, tris(3,3,3-trifluoropropyl) trimethylcyclo
  • Examples of straight organopolysiloxanes include a dimethylpolysiloxane in which both molecular terminals are capped with trimethylsiloxy groups (dimethylsilicone with a low viscosity such as 2 cst or 6 cst to dimethylsilicone with a high viscosity such as 1,000,000 cst), an organohydrogenpolysiloxane, a methylphenylpolysiloxane in which both molecular terminals are capped with trimethylsiloxy groups, a copolymer of methylphenylsiloxane and dimethylsiloxane in which both molecular terminals are capped with trimethylsiloxy groups, a diphenylpolysiloxane in which both molecular terminals are capped with trimethylsiloxy groups, a copolymer of diphenylsiloxane and dimethylsiloxane in which both molecular terminals are capped with trimethyls
  • the refreshing feeling to touch particular to silicone oil can be realized.
  • spreadability of the cosmetic composition on the skin and a refreshing feeling to touch can be imparted by including the silicone oil in a range from 0.5 to 25 wt.%, of the organosiloxane copolymer, in combination with a low viscosity organopolysiloxane.
  • a compounded amount of the silicone oil is preferably in a range of 0.5 to 25 wt.% of the entire cosmetic composition.
  • Preferable oil agents other than silicone oils are oil agents that are liquid at 5 to 100°C.
  • Preferably oil agents other than silicone oil are hydrocarbon oils and/or fatty ester oils. While these oil agents are components that are widely used, particularly as base materials for make-up cosmetic compositions, because they have a dendrimer structure, the oil agents have benefits of excellent compatibility with non-silicone based oil agents and the ability to maintain the moisturizing durability of these hydrocarbon oils and/or fatty ester oils.
  • the organosiloxane copolymer according to the present invention functions as a surfactant or surfactant aid. Therefore, there are the benefits of improved compounding stability and stability over time of these oil agents in the cosmetic composition.
  • the hydrocarbon oil and/or fatty ester oil in combination with the silicone oil in addition to the refreshing feeling to touch particular to the silicone oil being imparted, moisture on the skin is retained, and a feeling that the cosmetic composition is moisturizing the skin or hair (also referred to as a "rich feeling to touch") and a smooth feeling to touch can be imparted. Moreover, stability over time of the cosmetic composition is not inhibited.
  • these moisturizing components can be applied more stably and uniformly on the skin or hair, the moisturizing effects of the moisturizing component on the skin are improved and, compared to a cosmetic composition comprising only the oil agent other than the silicone oil (the hydrocarbon oil and/or fatty ester oil), a smoother, richer feeling to touch is imparted.
  • hydrocarbon oil component (b) examples include liquid paraffin, light liquid isoparaffin, heavy liquid isoparaffin, vaseline, n-paraffin, isoparaffin, isododecane, isohexadecane, polyisobutylene, hydrogenated polyisobutylene, polybutene, ozokerite, ceresin, microcrystalline wax, paraffin wax, polyethylene wax, polyethylene/polypropylene wax, squalane, squalene, pristane, polyisoprene, and the like.
  • ester oil component (b) examples include hexyldecyl octanoate, cetyl octanoate, isopropyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, myristyl myristate, oleyl oleate, decyl oleate, octyldodecyl myristate, hexyldecyl dimethyloctanoate, cetyl lactate, myristyl lactate, diethyl phthalate, dibutyl phthalate, lanolin acetate, ethylene glycol monostearate, propylene glycol monostearate, propylene glycol dioleate, glyceryl monostearate, glyceryl monooleate, glyceryl tri(2-ethylhexanoate), trimethylolpropane tri(2-ethyl)
  • fats or oils, higher alcohols, or higher fatty acids examples include natural animal or vegetable fats and oils and semisynthetic fats and oils such as avocado oil, linseed oil, almond oil, ibota wax, perilla oil, olive oil, cacao butter, kapok wax, kaya oil, carnauba wax, liver oil, candelilla wax, beef tallow, neatsfoot oil, beef bone fat, hydrogenated beef tallow, apricot kernel oil, spermaceti wax, hydrogenated oil, wheat germ oil, sesame oil, rice germ oil, rice bran oil, sugar cane wax, sasanqua oil, safflower oil, shea butter, Chinese tung oil, cinnamon oil, jojoba wax, olive squalane, shellac wax, turtle oil, soybean oil, tea seed oil, camellia oil, evening primrose oil, corn oil, lard, rapeseed oil, Japanese tung oil, rice bran wax, germ oil, horse fat,
  • higher alcohols examples include lauryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol, behenyl alcohol, hexadecyl alcohol, oleyl alcohol, isostearyl alcohol, hexyldodecanol, octyldodecanol, cetostearyl alcohol, 2-decyltetradecinol, cholesterol, sitosterol, phytosterol, lanosterol, POE cholesterol ether, monostearyl glycerol ether (batyl alcohol), monooleyl glycerol ether (selachyl alcohol), and the like.
  • higher fatty acids examples include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, undecylenic acid, oleic acid, linolic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), isostearic acid, 12-hydroxystearic acid, and the like.
  • fluorine-based oil component (b) examples include perfluoropolyether, perfluorodecalin, perfluorooctane, and the like, and one or two or more types of these oil agents can be used as necessary.
  • the topical composition and preferably the cosmetic composition disclosed herein can, as necessary, further comprise another surfactant component (c).
  • another surfactant component (c) Particularly, one or two or more surfactants (c) selected from the group consisting of an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, and a semipolar surfactant can be used in combination for the purpose of dispersing the oil agent in water with higher stability.
  • a silicone-based nonionic surfactant is preferably used.
  • a compounded amount of these surfactants (c) is in a range from 0.1 to 25 wt.% and preferably in a range from 0.5 to 10 wt.% of the entire cosmetic composition.
  • the compounded amount can be adjusted to within a range from 0.1 to 90 wt.% of the entire cosmetic composition and, from the standpoint of cleansing ability, the surfactant component is preferably compounded at an amount not less than 25 wt.% of the entire cosmetic composition.
  • organopolysiloxane copolymer disclosed herein is used in a cleansing agent, from the standpoint of cleansing activity, two or more types of surfactants can be preferably compounded.
  • anionic surfactants include saturated or unsaturated fatty acid salts (e.g. sodium laurate, sodium stearate, sodium oleate, sodium linolenate, and the like); alkylsulfuric acid salts; alkylbenzene sulfonic acids (e.g.
  • polyoxyalkylene alkyl ether sulfuric acid salts polyoxyalkylene alkenyl ether sulfuric acid salts; polyoxyethylene alkylsulfuric ester salts; sulfosuccinic acid alkyl ester salts; polyoxyalkylene sulfosuccinic acid alkyl ester salts; polyoxyalkylene alkylphenyl ether sulfuric acid salts; alkanesulfonic acid salts; octyltrimethylammonium hydroxide; dodecyltrimethylammonium hydroxide; alkyl sulfonates; polyoxyethylene alkylphenyl ether sulfuric acid salts; polyoxyalkylene alkyl ether acetic acid salts; alkyl phosphoric acid salts; polyoxyethylene alkylphenyl ether sulfuric acid salts; polyoxyalkylene alkyl ether acetic acid salts; alkyl phosphoric acid salts; polyoxyethylene alkylphenyl
  • cationic surfactants include alkyltrimethylammonium chloride, stearyltrimethylammonium chloride, lauryltrimethylammonium chloride, cetyltrimethylammonium chloride, beef tallow alkyltrimethylammonium chloride, behenyltrimethylammonium chloride, stearyltrimethylammonium bromide, behenyltrimethylammonium bromide, distearyldimethylammonium chloride, dicocoyldimethylammonium chloride, dioctyldimethylammonium chloride, di(POE)oleylmethylammonium (2 EO) chloride, benzalkonium chloride, alkyl benzalkonium chloride, alkyl dimethylbenzalkonium chloride, benzethonium chloride, stearyl dimethylbenzylammonium chloride, lanolin derivative quaternary ammonium salt, diethylaminoethylamide stearate, dimethylacetate
  • nonionic surfactants include polyoxyalkylene ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene fatty acid esters, polyoxyalkylene fatty acid diesters, polyoxyalkylene resin acid esters, polyoxyalkylene (hardened) castor oils, polyoxyalkylene alkyl phenols, polyoxyalkylene alkyl phenyl ethers, polyoxyalkylene phenyl phenyl ethers, polyoxyalkylene alkyl esters, polyoxyalkylene alkyl esters, sorbitan fatty acid esters, polyoxyalkylene sorbitan alkyl esters, polyoxyalkylene sorbitan fatty acid esters, polyoxyalkylene sorbitol fatty acid esters, polyoxyalkylene glycerol fatty acid esters, polyglycerol alkyl ethers, polyglycerol fatty acid esters, sucrose fatty acid esters, fatty acid alkanolamides
  • polyoxyalkylene-modified silicones polyglyceryl-modified silicones, and glyceryl-modified silicones in which an alkyl branch, a straight chain silicone branch, a siloxane dendrimer branch, or the like is provided with the hydrophilic group can be preferably used.
  • amphoteric surfactants include imidazoline-type, amidobetaine-type, alkylbetaine-type, alkylamidobetaine-type, alkylsulfobetaine-type, amidosulfobetaine-type, hydroxysulfobetaine-type, carbobetaine-type, phosphobetaine-type, aminocarboxylic acid-type, and amidoamino acid-type amphoteric surfactants.
  • imidazoline-type amphoteric surfactants such as sodium 2-undecyl-N,N,N-(hydroxyethylcarboxymethyl)-2-imidazoline, 2-cocoyl-2-imidazolinium hydroxide-1-carboxyethyloxy disodium salt, and the like
  • alkylbetaine-type amphoteric surfactants such as lauryl dimethylaminoacetic acid betaine, myristyl betaine, and the like
  • amidobetaine-type amphoteric surfactants such as coconut oil fatty acid amidopropyl dimethylamino acetic acid betaine, palm kernel oil fatty acid amidopropyl dimethylamino acetic acid betaine, beef tallow fatty acid amidopropyl dimethylamino acetic acid betaine, hardened beef tallow fatty acid amidopropyl dimethylamino acetic acid betaine, lauric amidopropyl dimethylamino acetic acid
  • semipolar surfactants include alkylamine oxide-type surfactants, alkylamine oxides, alkylamide amine oxides, alkylhydroxyamine oxides, and the like. Alkyldimethylamine oxides having from 10 to 18 carbons, alkoxyethyl dihydroxyethylamine oxides having from 8 to 18 carbons, and the like are preferably used.
  • Specific examples thereof include dodecyldimethylamine oxide, dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecylamine oxide, dipropyltetradecylamine oxide, methylethylhexadecylamine oxide, dodecylamidopropyldimethylamine oxide, cetyldimethylamine oxide, stearyldimethylamine oxide, tallow dimethylamine oxide, dimethyl-2-hydroxyoctadecylamine oxide, lauryldimethylamine oxide, myristyldimethylamine oxide, stearyldimethylamine oxide, isostearyldimethylamine oxide, coconut fatty acid alkyldimethylamine oxide, caprylic amide propyldimethylamine oxide, capric amide propyldimethylamine oxide, lauric amide propyldimethylamine oxide, myristic amide propyldimethylamine oxide, palmi
  • the topical composition particularly the cosmetic composition, disclosed herein can, as necessary, further comprise a powder or colorant that is the same as the component (d).
  • the topical composition, particularly the cosmetic composition, disclosed herein can, as necessary, further comprise a water-soluble polymer (e).
  • the water-soluble polymer is compounded in order to enhance the sensation during use of the cosmetic composition. Any of amphoteric, cationic, anionic, and nonionic polymers, and water-swellable clay minerals can be used provided that it is commonly used in a cosmetic composition. One type or a combination of two or more types of water-soluble polymers can be used.
  • the water-soluble polymers described above have an effect of thickening a hydrous component and, for this reason, are particularly useful in obtaining a gel-like water-based emulsion type cosmetic composition.
  • the water-soluble polymer can be compounded in order to prepare a cosmetic composition in the desired form, improve sensation during use of the cosmetic composition such as feeling to touch with respect to hair or the like, improving conditioning effects, and the like.
  • Any of amphoteric, cationic, anionic, and nonionic polymers, and water-swellable clay minerals can be used provided that it is commonly used in a cosmetic composition.
  • One type or a combination of two or more types of water-soluble polymers can be used.
  • the water-soluble polymers described above have an effect of thickening a hydrous component and, for this reason, are particularly useful in obtaining a gel-like hydrous cosmetic composition, a water-in-oil emulsion cosmetic composition, and an oil-in-water emulsion cosmetic composition.
  • natural water-soluble polymers include vegetable-based polymers such as gum Arabic, tragacanth gum, galactan, guar gum, carob gum, karaya gum, carrageenan, pectin, agar, quince seed (Cydonia oblonga), algal colloid (seaweed extract), starch (rice, corn, potato, or wheat), glycyrrhizinic acid, and the like; microorganism-based polymers such as xanthan gum, dextran, succinoglucan, pullulan, and the like; and animal-based polymers such as collagen, casein, albumin, gelatin, and the like.
  • vegetable-based polymers such as gum Arabic, tragacanth gum, galactan, guar gum, carob gum, karaya gum, carrageenan, pectin, agar, quince seed (Cydonia oblonga), algal colloid (seaweed extract), starch (rice, corn, potato, or wheat
  • examples of semisynthetic water-soluble polymers include starch-based polymers such as carboxymethyl starch, methylhydroxypropyl starch, and the like; cellulose-based polymers such as methylcellulose, nitrocellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate, hydroxypropylcellulose, sodium carboxymethylcellulose (CMC), crystalline cellulose, cellulose powder, and the like; and alginate-based polymers such as sodium alginate, propylene glycol alginate, and the like.
  • starch-based polymers such as carboxymethyl starch, methylhydroxypropyl starch, and the like
  • cellulose-based polymers such as methylcellulose, nitrocellulose, ethylcellulose, methylhydroxypropylcellulose, hydroxyethylcellulose, sodium cellulose sulfate, hydroxypropylcellulose, sodium carboxymethylcellulose (CMC), crystalline cellulose, cellulose powder, and the like
  • Examples of synthetic water-soluble polymers include vinyl-based polymers such as polyvinylalcohol, polyvinyl methyl ether-based polymer, polyvinylpyrrolidone, and carboxyvinyl polymer (CARBOPOL 940, CARBOPOL 941; manufactured by BF Goodrich Corporation), and the like; polyoxyethylene-based polymers such as polyethyleneglycol 20,000, polyethyleneglycol 6,000, polyethyleneglycol 4,000, and the like; copolymer-based polymers such as a copolymer of polyoxyethylene and polyoxypropylene, PEG/PPG-methylether, and the like; acryl-based polymers such as poly(sodium acrylate), poly(ethyl acrylate), polyacrylamide, and the like; polyethylene imines; cationic polymers; and the like.
  • vinyl-based polymers such as polyvinylalcohol, polyvinyl methyl ether-based polymer, polyvinylpyrrolidone, and carboxyviny
  • Examples of other cationic water-soluble polymers include quaternary nitrogen-modified polysaccharides (e.g. cation-modified cellulose, cation-modified hydroxyethylcellulose, cation-modified guar gum, cation-modified locust bean gum, cation-modified starch, and the like); dimethyldiallylammonium chloride derivatives (e.g. a copolymer of dimethyldiallylammonium chloride and acrylamide, poly(dimethylmethylene piperidinium chloride), and the like); and vinylpyrrolidone derivatives (e.g.
  • quaternary nitrogen-modified polysaccharides e.g. cation-modified cellulose, cation-modified hydroxyethylcellulose, cation-modified guar gum, cation-modified locust bean gum, cation-modified starch, and the like
  • dimethyldiallylammonium chloride derivatives e
  • the topical composition particularly a cosmetic composition, disclosed herein can, depending on the purpose thereof, further comprise a silicone resin (f).
  • silicone resins used in the cosmetic composition disclosed herein depending on the purpose of the cosmetic composition include solid silicone net-like compounds such as MQ resins, MDQ resin, MTQ resin, MDTQ resin, TD resin, TQ resin, and TDQ resin formed from any combination of a trialkylsiloxy unit (M unit), a dialkylsiloxy unit (D unit), a monoalkylsiloxy unit (T unit), and a tetrafunctional siloxy unit (Q unit).
  • M unit trialkylsiloxy unit
  • D unit dialkylsiloxy unit
  • T unit monoalkylsiloxy unit
  • Q unit tetrafunctional siloxy unit
  • the substituent on the silicon of these silicone resins may include a substituted alkyl group, a phenyl group, an aryl group, or the like, in addition to the alkyl group.
  • fluorine-modified silicone resins trimethylsiloxy silicic acid (MQ resin), and dimethylsiloxy group-containing trimethylsiloxy silicic acid (MDQ resin) are particularly preferable.
  • Compounding the silicone resin (D) in conjunction with the organopolysiloxane copolymer (A) according to the present disclosure is useful because the following improvement effects can be obtained due to the compounding of the silicone resin (D): improvements in feeling to touch of the cosmetic composition, uniform adhesion to the applied area, and adhesion of the powder to the skin.
  • the topical composition particularly a cosmetic composition, disclosed herein can, depending on the purpose thereof, further comprise a silicone elastomer (g).
  • the silicone elastomer (g) can be compounded in the cosmetic composition in any form, depending on the purpose of the cosmetic composition, but is preferably compounded as an organopolysiloxane elastomers spherical powder or a crosslinking organopolysiloxane.
  • Adding a powder silicone elastomer to a cosmetic composition comprising the organopolysiloxane copolymer (A) according to the present disclosure is advantageous because a feeling to touch that is substantial, such as that obtained when an oil agent is dispersed, is imparted, unevennesses of the skin are concealed, and, in contrast with oil agents, a natural impression is given due to oily shininess of the skin and oily texture being suppressed.
  • a primary particle size of silicone elastomer spherical particles is preferably in a range from 0.1 to 50 ⁇ m.
  • the organopolysiloxane elastomer spherical powder may be surface treated using silicone resin, silica, or the like.
  • organopolysiloxane elastomer spherical powder examples include Trefil E-506S, Trefil E-508, 9701 Cosmetic Powder, and 9702 Powder, manufactured by Dow Corning Toray Co., Ltd., and the like
  • the organopolysiloxane elastomer spherical powder can be used in the cosmetic composition disclosed herein in the form of an aqueous dispersion.
  • examples of commercially available products of the aqueous dispersion include BY 29-129 and PF-2001 PIF Emulsion, manufactured by Dow Corning Toray Co., Ltd., and the like.
  • the crosslinking organopolysiloxane (the component (g)) is an organopolysiloxane having a structure in which the organopolysiloxane chain is three-dimensionally crosslinked via a reaction with a crosslinking component or the like, and preferably does not have a hydrophilic portion such as a polyoxyalkylene unit or the like, and is non-emulsifiable.
  • Any crosslinking organopolysiloxane can be used without limitations to physical modes or preparation methods such as dilution, properties, and the like, provided that it is a crosslinking organopolysiloxane.
  • Particularly preferable examples include ⁇ , ⁇ -diene crosslinking silicone elastomers (commercially available products include DC 9040 Silicone Elastomer Blend, DC 9041 Silicone Elastomer Blend, DC 9045 Silicone Elastomer Blend, and DC 9046 Silicone Elastomer Blend, manufactured by Dow Corning Corporation, in the USA) described in US Patent No. 5,654,362 .
  • examples of partially crosslinking organopolysiloxane polymers include (dimethicone/vinyldimethicone) crosspolymers, (dimethicone/phenylvinyldimethicone) crosspolymers, (PEG-8 to 30/C6 to C30 alkyldimethicone) crosspolymers, (vinyldimethicone/C6 to C30 alkyldimethicone) crosspolymers, (dimethicone/polyglycerol) crosspolymers, and the like, using INCI names (International Nomenclature Cosmetic Ingredient labeling names)
  • the organopolysiloxane copolymer (A) functions as a surfactant or, alternately, a surfactant aid. For this reason, there is an advantage in that a uniform emulsification system can be formed. Furthermore, because the crosslinking organopolysiloxane functions as a surfactant, even when used in small amounts, a hydrous gel structure can be formed stably. This is advantageous because a water-containing cosmetic composition or emulsion cosmetic composition can be obtained that is soft and has superior water retention properties.
  • One or two or more types of the silicone elastomer can be compounded depending on the purpose thereof.
  • a compounded amount of the silicone elastomer is preferably in a range from 0.05 to 25 wt.% and more preferably in a range from 0.1 to 15 wt.% of the entire cosmetic composition, depending on purpose and compounding intention.
  • the cosmetic composition disclosed herein can include one or two or more ultraviolet light blocking components as a component (h).
  • examples thereof include benzoic acid-based UV absorbers such as paraaminobenzoic acid (hereinafter, referred to as "PABA"), PABA monoglycerol ester, N,N-dipropoxy-PABA ethyl ester, N,N-diethoxy-PABA ethyl ester, N,N-dimethyl-PABA ethyl ester, N,N-dimethyl-PABA butyl ester, 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoic acid hexylester (trade designation: Uvinul A plus), and the like; anthranilic acid-based UV absorbers such as homomenthyl-N-acetylanthranilate and the like; salicylic acid-based UV absorbers such as amyl salicylate, menthyl salicylate, homomenthy
  • the organo-ultraviolet light blocking component is comprised in a hydrophobic polymer powder.
  • the polymer powder may be hollow, and preferably has an average primary particle size in a range from 0.1 to 50 ⁇ m. Particle size distribution may be broad or sharp.
  • types of the polymer include acrylic resins, methacryl resins, styrene resins, polyurethane resins, polyethylene, polypropylene, polyethylene terephthalate, silicone resins, nylons, acrylamide resins, and silylated polypeptide resins.
  • a polymer powder comprising from 0.1 to 30 wt.% of an organo-ultraviolet light blocking component is preferable, and a polymer powder comprising 4-tert-butyl-4'-methoxydibenzoylmethane, a UV-A absorber, is particularly preferable.
  • the ultraviolet light blocking component that can be preferably used in the cosmetic composition disclosed herein is at least one selected from the group consisting of fine particulate titanium oxide, microparticulate zinc oxide, paramethoxy cinnamic acid-2-ethylhexyl, 4-tert-butyl-4'-methoxydibenzoylmethane, benzotriazole-based UV absorbers, and triazine-based UV absorbers.
  • These ultraviolet light blocking components are generally used, are easy to acquire, and have high ultraviolet light blocking effects and, thus can be beneficially used.
  • a combination of an inorganic-based and an organo-ultraviolet light blocking component be used, and it is even more preferable that a combination of an ultraviolet light blocking component corresponding to UV-A and an ultraviolet light blocking component corresponding to UV-B be used.
  • the ultraviolet light blocking component is stably dispersed in the cosmetic composition while the emulsion stability thereof is maintained and, thus superior ultraviolet light blocking capacity is imparted to the cosmetic composition.
  • a compounded amount of the ultraviolet light blocking component with respect to the entire cosmetic composition is in a range from 0.1 to 40.0 wt.%, and more preferably in a range from 0.5 to 15.0 wt.%.
  • the cosmetic composition disclosed herein can include an inorganic ultraviolet light blocking component in addition to the ultraviolet light blocking component described above.
  • the inorganic ultraviolet light blocking component may be a component in which an inorganic powder or the like recited for the powder or colorant is compounded. Examples thereof include metal oxides such as titanium oxide, zinc oxide, cerium oxide, titanium suboxide, iron-doped titanium oxides, and the like; metal hydroxides such as iron hydroxides and the like; metal flakes such as platy iron oxide, aluminum flake, and the like; and ceramics such as silicon carbide, and the like. Of these, at least one type of a material selected from fine particulate metal oxides and fine particulate metal hydroxides with an average particle size in a range from 1 to 100 nm is preferable.
  • the powder is preferably subjected to, for example, a conventional surface treatment such as fluorine compound treatments, of which a perfluoroalkyl phosphate treatment, a perfluoroalkylsilane treatment, a perfluoropolyether treatment, a fluorosilicone treatment, or a fluorinated silicone resin treatment is preferable; silicone treatments, of which a methylhydrogenpolysiloxane treatment, a dimethylpolysiloxane treatment, or a vapor-phase tetramethyltetrahydrogen cyclotetrasiloxane treatment is preferable; silicone resin treatments, of which a trimethylsiloxysilicic acid treatment is preferable; pendant treatments which are methods of adding alkyl chains after a vapor-phase silicone treatment; silane coupling agent treatments; titanium coupling agent treatments; silane treatments, of which an alkylsilane treatment or an alkylsilazane treatment is preferable; oil agent treatments; N-acylated lysine treatments
  • the surface of the fine particulate titanium oxide can be coated with a metal oxide such as silicon oxide, alumina, or the like and, thereafter, surface treating using an alkylsilane can be carried out.
  • a total amount of material used for the surface treatment is preferably in a range from 0.1 to 50 wt.% of the weight of the powder.
  • compositions may be added to the cosmetic composition disclosed herein, provided that such components do not inhibit the effectiveness disclosed herein: alcohols, water-soluble polymers, organic resins, oil-soluble gelling agents, organically modified clay minerals, anti-perspiration active components, deodorant agents, moisturizing agents, preservatives, antimicrobial agents, perfumes, salts, antioxidants, pH adjusting agents, chelating agents, refreshing agents, anti-inflammatory agents, skin beautifying components (skin-lightening agents, cell activating agents, agents for ameliorating skin roughness, circulation promoters, astringents, antiseborrheic agents, and the like), vitamins, amino acids, nucleic acids, hormones, clathrates, and the like.
  • alcohols water-soluble polymers, organic resins, oil-soluble gelling agents, organically modified clay minerals, anti-perspiration active components, deodorant agents, moisturizing agents, preservatives, antimicrobial agents, perfumes, salts, antioxidants, pH adjusting agents, chelating agents
  • the cosmetic composition disclosed herein can include at least one selected from the group consisting of an acryl silicone dendrimer copolymer, a silicone raw rubber, a polyamide-modified silicone, an alkyl-modified silicone wax, and an alkyl-modified silicone resin wax as a component.
  • the cosmetic composition disclosed herein can include one or two or more polyhydric alcohols and/or lower monohydric alcohols as the alcohol.
  • lower alcohols include ethanol, isopropanol, n-propanol, t-butanol, s-butanol, and the like.
  • polyhydric alcohols include divalent alcohols such as 1,3-butylene glycol, 1,2-butylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, 2,3-butylene glycol, pentamethylene glycol, 2-buten-1,4-diol, dibutylene glycol, pentyl glycol, hexylene glycol, octylene glycol, and the like; trivalent alcohols such as glycerol, trimethylol propane, 1,2,6-hexanetriol, and the like; polyhydric alcohols having 4 or more valences such as pentaerythritol, xylitol, and the like; and sugar alcohols such as sorbitol, mannitol, maltitol, maltotriose, sucrose, erythritol, glucose, fructose, a starch-decomposed product, maltose, xylitose, starch
  • examples other than low-molecule polyhydric alcohols include polyhydric alcohol polymers such as diethylene glycol, dipropylene glycol, triethylene glycol, polypropylene glycol, tetraethylene glycol, diglycerol, polyethylene glycol, triglycerol, tetraglycerol, polyglycerol, and the like. Of these, 1,3-butylene glycol, sorbitol, dipropylene glycol, glycerol, and polyethylene glycol are particularly preferable. A compounded amount thereof is preferably from 0.1 to 50 wt.% of the entire cosmetic composition. Polyhydric alcohol can be blended in order to improve storage stability of the cosmetic composition, in an amount ranging from about 5 to 30 wt.% of the entire cosmetic composition. This is an example of a preferable mode of the present invention.
  • polyhydric alcohol polymers such as diethylene glycol, dipropylene glycol, triethylene glycol, polypropylene glycol, tetraethylene glycol, diglycerol,
  • an acryl silicone dendrimer copolymer can be used in the cosmetic composition disclosed herein.
  • acryl silicone dendrimer copolymers include a vinyl-based polymer having a carbosiloxane dendrimer structure at the side chain such as that described in Japanese Patent No. 4009382 (Japanese Unexamined Patent Application Publication No. 2000-063225 ).
  • examples of commercially available products thereof include FA4001 CM Silicone Acrylate, FA4002 ID Silicone Acrylate (manufactured by Dow Corning Toray Co., Ltd.), and the like.
  • organosiloxane copolymer (a) together with the acryl silicone dendrimer copolymer, there are advantages in that a surface protective property such as sebum resistance can be improved due to strong water repellency provided by the carbosiloxane dendrimer structure; and at the same time, excellent feeling to touch and brightness are imparted when applying, and irregularities such as pores and wrinkles of the skin to which the cosmetic composition is applied can be effectively concealed due to the high emulsion stability of the disclosed product being maintained.
  • the organosiloxane copolymer (a) according to the present disclosure displays excellent miscibility with other oil agents, powders, the colorants, and the acryl silicone dendrimer copolymer and, therefore, there is an advantage in that makeup running or gathering on the skin can be controlled. Furthermore, when powders or colorants are treated in accordance with a conventional method by using the organosiloxane copolymer (a) together with the acryl silicone dendrimer copolymer, a powder composition for use in a cosmetic composition with superior compounding stability can be prepared.
  • a compounded amount of the acryl silicone dendrimer copolymer can be suitably selected based on the purpose and compounding intent thereof, but is preferably in a range from 1 to 99 wt.% and more preferably in a range from 30 to 70 wt.% of the entire cosmetic composition.
  • the cosmetic composition disclosed herein can include a silicone raw rubber (referred to also as "silicone gum").
  • Silicone raw rubber is differentiated from the oily silicones described above because the degree of polymerization of silicone raw rubber is high and, as a result, has a degree of plasticity that is measurable.
  • Examples of such a silicone raw rubber include substituted or nonsubstituted organopolysiloxanes having a dialkylsiloxy unit (D unit). Examples thereof include dimethylpolysiloxane, methylphenylpolysiloxane, aminopolysiloxane, methylfluoroalkylpolysiloxane, and the like, products that have a micro crosslinked structure thereof, and the like. Of these, a dimethylpolysiloxane raw rubber having a degree of polymerization from 3,000 to 20,000 is preferable.
  • Silicone gum has an ultra-high degree of polymerization and, therefore forms a protective film with superior breathability and retention on hair or skin. Therefore, the silicone gum is a component which can particularly provide glossiness and luster to hair and can impart a texture of firmness and body to the entire hair during use and after use.
  • a compounded amount of the silicone gum is from 0.05 to 30 wt.% and preferably from 1 to 15 wt.% of the entire cosmetic composition.
  • the silicone gum can easily be compounded, and can be stably compounded in the various cosmetic compositions disclosed herein.
  • the cosmetic composition disclosed herein is a hair cosmetic composition or the like, an effect of imparting a specific feeling to touch or glossiness of the hair may be insufficient if the compounded amount of the silicone gum is less than the lower limit described above.
  • a polyamide-modified silicone can be compounded in the cosmetic composition disclosed herein.
  • the polyamide-modified silicone include a siloxane-based polyamide described in US Patent No. 5,981,680 ; and examples of commercially available products include 2-8178 Gellant, 2-8179 Gellant, and the like (manufactured by Dow Corning Corporation, in the USA).
  • Such polyamide-modified silicones are useful as an oil-based raw material, and in particular, a thickening/gelling agent of a silicone oil, similar to the oil-soluble gelling agent described above.
  • Compatibility with the oil agent such as a silicone oil or the like can be further improved by using the polyamide-modified silicone together with the organosiloxane copolymer disclosed herein.
  • the cosmetic composition according to the present invention delivers a superior sense of stability and adhesion, and excellent spreading and setting when applied to the skin or hair. Additionally, there are advantages from a quality standpoint such that a glossy, sheer sensation and superior luster can be provided, the viscosity or hardness (softness) of the entire cosmetic composition containing the oil-based raw material can be appropriately adjusted, and an oily sensation (oily and sticky feeling to touch) can be totally controlled.
  • the obtained cosmetic composition is characterized by being able to maintain a uniform and fine cosmetic sensation for an extended period of time.
  • a compounded amount of the polyamide-modified silicone can be suitably selected based on the purpose and compounding intent thereof but, when using the polyamide-modified silicone as a gelling agent for an oil-based raw material, is in a range from 0.5 to 80 parts by weight and preferably in a range from 1 to 50 parts by weight per 100 parts by weight of the oil-based component such as the oil agent or the like.
  • the cosmetic composition disclosed herein can include an alkyl-modified silicone wax.
  • the alkyl-modified silicone wax need only be an alkyl-modified silicone wax in wax form at room temperature, and examples thereof include methyl (long chain alkyl) polysiloxanes having both molecular terminals capped with trimethylsiloxy groups, copolymers of a dimethylpolysiloxane having both molecular terminals capped with trimethylsiloxy groups and a methyl (long chain alkyl) siloxane, dimethylpolysiloxane modified with long chain alkyls at both terminals, and the like.
  • Examples of commercially available products include AMS-C30 Cosmetic Wax, 2503 Cosmetic Wax, and the like (manufactured by Dow Corning Corporation, in the USA).
  • the alkyl-modified silicone wax preferably has a melting point of not lower than 60°C because such will lead to cosmetic retainability effects and stability at high temperatures.
  • a compounded amount thereof can be suitably selected based on the purpose and compounding intent thereof, and can be compounded in a range from 1 to 50 wt.% of the entire cosmetic composition.
  • the compounded amount is preferably in a range from 5 to 40 wt.% because such leads to improvements in the formability and cosmetic retainability of the oil-based cosmetic composition.
  • the alkyl-modified silicone wax displays high compatibility with silicone oil having a long chain alkyl group such as the alkyl-modified silicone or the like and the crosslinking organopolysiloxanes and, therefore, is preferably used in combination with these optional components.
  • a compounded amount of the alkyl-modified silicone resin wax can be suitably selected based on the purpose and compounding intent thereof, and can be compounded in a range from 0.5 to 50 wt.% of the entire cosmetic composition.
  • the compounded amount is preferably in a range from 1 to 30 wt.% in order to attain sebum durability and a fine texture feeling to touch of the cosmetic composition.
  • organic resin used in the cosmetic composition disclosed herein depending on the purpose of the cosmetic composition examples include polyvinylalcohol, polyvinylpyrrolidone, polyalkyl acrylate copolymers, and the like.
  • Benton 27 benzyldimethylstearylammonium chloride-treated hectorite, manufactured by Nationalred Co.
  • Benton 38 disearyldimethylammonium chloride-treated hectorite, manufactured by Nationalred Co.
  • the cosmetic composition disclosed herein can include an anti-perspiration active component.
  • the anti-perspiration active component include astringent salts such as aluminum chlorohydrate, aluminum-zirconium tetrachlorohydrex glycine (ZAG), and the like; but aluminum, hafnium, zinc, and zirconium salts (e.g. aluminum halide, aluminum hydroxy halide, zirconium halide, zirconium oxyhalide, zirconium hydroxy halide, zirconyl hydroxide halide, aluminium chloride zirconium, zirconium lactate-aluminum, and basic aluminum halide) can be used.
  • astringent salts such as aluminum chlorohydrate, aluminum-zirconium tetrachlorohydrex glycine (ZAG), and the like
  • ZAG aluminum-zirconium tetrachlorohydrex glycine
  • zirconium salts e.g. aluminum halide
  • Examples thereof include Al 2 (OH) 5 Cl, aluminum bromide, buffer aluminium sulphate, alum, dried alum, various aqueous, alcohol, or glycine complexes thereof (e.g. a complex of an aluminum-zirconium chlorohydrate and glycine comprising aluminum, zirconium, and glycine (a ZAG complex), and the like.
  • a single anti-perspiration active component may be used or a combination of two or more may be used.
  • these anti-perspiration active components are an aqueous phase component.
  • soybean extracts and isoflavones are known for their anti-perspirant effects;and, because they have low water solubility, are preferably used by dissolving them in the oil phase.
  • a compounded amount of the anti-perspiration active component is an amount sufficient to reduce perspiration, and restricting the compounded amount to a small amount can be beneficial in personal care compositions.
  • the compounded amount of the anti-perspiration active component in an anti-perspirant composition is preferably from 5 to 25 wt.% of the entire cosmetic composition.
  • a water soluble anti-perspiration active component from the standpoint of cost effectiveness, it is preferable to increase the proportion of water in the composition to a maximum limit, while maintaining anti-perspirant effects, but the anti-perspiration active component can also be added to the aqueous phase at amount near the saturation amount.
  • the cosmetic composition disclosed herein can include a deodorant agent in conjunction with or in place of the anti-perspirant component.
  • the deodorant agent include deodorizers, perfumes, and substances that prevent or remove odors caused by perspiration.
  • deodorant agents are antimicrobial agents (germicides or fungicides), bacteriostatic agents, odor absorbing substances, deodorizers, perfumes, or the like, and are compounded for the purpose of preventing underarm odor, odor from perspiration, foot odor, and other bodily odors. Note that these deodorant agents are useful in cosmetic compositions other than anti-perspirants and it goes without saying that they can be beneficially compounded in the cosmetic composition disclosed herein.
  • antimicrobial agents examples include alkyltrimethylammonium bromide, cetylpyridinium chloride, benzethonium chloride, benzalkonium chloride, chlorhexidine hydrochloride, chlorhexidine gluconate, [[(diisobutylphenoxy)ethoxy]ethyl] dimethylbenzylammonium chloride, N-lauroyl sarcosine sodium, N-palmitoyl sarcosine sodium, N-myristoyl glycine, N-lauroyl sarcosine potassium, trimethyl ammonium chloride, aluminum chlorohydroxy sodium lactate, triethyl citrate, tricetyl methyl ammonium chloride, 1,5-pentanediol, 1,6-hexanediol, 2,4,4'-trichloro-2'-hydroxy diphenylether (triclosan), and 3,4,4'-trichlorocarbanilide(triclocarban);
  • bacteriostatic agents examples include 1-heptyl glyceryl ether, 1-(2-ethylhexyl)glyceryl ether, 1-octyl glyceryl ether, 1-decyl glyceryl ether, 1-dodecyl glyceryl ether, and similar glyceryl monoalkyl ethers.
  • the odor absorbing substance is not particularly limited, provided that it absorbs odor causing substances and reduces odor, is constituted by a portion of the inorganic powders and organic polymers described above, and displays the same characteristics.
  • odor absorbing substance examples include zinc oxide, magnesium oxide, zeolite, aluminometasilicate, silicic anhydride, colloidal silica, talc, mica, hydroxyapatite, cellulose, corn starch, silk, nylon powder, crosslinking organopolysiloxane powder, organopolysiloxane elastomer spherical powder, and the like.
  • carbonates such as alkali metal carbonates, alkali metal bicarbonate salts, and the like and hydrogen carbonates, ammonium salts, tetraalkylammonium salts, and the like can be used.
  • sodium salts and potassium salts are more preferable.
  • organic or inorganic porous particles carrying silver, copper, zinc, cerium, or similar metal ions e.g. silver ion-carrying zeolite, silver ion/zinc ion/ammonium ion-carrying zeolite), or aggregates of needle-like crystals including silver cancrinite can be used. Because these function as antimicrobial agents and odor absorbing substances, they can be used beneficially as the deodorant agent.
  • hydroxyalkylated cyclodextrin sake cake extract containing rice fermenting liquid
  • various extracts derived from animals, vegetables, microorganisms, fungi, and the like such as brown seaweed extract, cinnamon bark, clove, fennel, ginger, mentha, citron, gentiana lutea, apricot, eucalyptus, Sophora flavescens, mulberry, althea, sage, Anthemis nobilis, Scutellaria root, nutgall, gardenia, hamamelis, herbs, and the like can be used as the deodorant agent.
  • a part of these components overlaps with a bioactive component described below, but selecting these extracts as the deodorant agent for the purpose of the functional effects thereof is both beneficial and preferable from the standpoint of the composition design of the cosmetic composition.
  • the compounded amount of the odor absorbing substance is within this range, there is an advantage that deodorizing performance can be improved while not negatively affecting the strength and feeling to touch of the formulation.
  • An anti-perspirant composition according to the present invention can be selected from any of a water-in-oil emulsion (water-based formulation), a stick form formulation, and a spray or similar aerosol formulation. Components thereof are dependent on the type of formulation selected, and can be appropriately selected from the cosmetic ingredients described above.
  • the cosmetic composition disclosed herein can include a preservative for the purpose of preventing decomposition and the like.
  • exemplary preservatives include alkyl paraoxybenzoates, benzoic acid, sodium benzoate, sorbic acid, potassium sorbate, phenoxyethanol, and the like.
  • antimicrobial agents include benzoic acid, salicylic acid, carbolic acid, sorbic acid, alkyl paraoxybenzoates, parachloromethacresol, hexachlorophene, benzalkonium chloride, chlorhexidine chloride, trichlorocarbanilide, trichlosan, photosensitizers, and the like.
  • the cosmetic composition is a rouge, it is preferable that these are not included.
  • bioactive components used in the cosmetic composition depending on the purpose of the cosmetic composition include substances that impart some sort of bioactivity to the skin when applied on the skin.
  • examples thereof include anti-inflammatory agents, anti-aging agents, ultraviolet light blocking agents, tightening agents, anti-oxidizing agents, hair regrowth agents, hair growth promoters, moisturizing agents, circulation promoters, antimicrobial agents, germicides, drying agents, cooling agents, warming agents, vitamins, amino acids, wound healing accelerators, irritation mitigation agents, analgesics, cell activating agents, enzyme components, and the like.
  • natural vegetable extract components, seaweed extract components, and herbal medicine components are particularly preferable.
  • a single bioactive component may be used or, preferably, two or more bioactive components are used.
  • bioactive component examples include Angelica keiskei extract, avocado extract, Hydrangea serrata extract, Althaea officinalis extract, Arnica montana extract, aloe extract, apricot extract, apricot kernel extract, Gingko biloba extract, fennel fruit extract, turmeric root extract, oolong tea extract, Rosa multiflora extract, Echinacea angustifolia leaf extract, Scutellaria baicalensis root extract, Phellodendron amurense bark extract, Coptis rhizome extract, Hordeum vulgare seed extract, Hypericum perforatum extract, Lamium album extract, Nasturtium officinale extract, orange extract, dried sea water solution, seaweed extract, hydrolyzed elastin, hydrolyzed wheat powders, hydrolyzed silk, Chamomilla recutita extract, carrot extract, Artemisia capillaris flower extract, Glycyrrhiza glabra extract, Hibiscus sabdariffa extract
  • bioactive component examples include biological macromolecules such as deoxyribonucleic acid, mucopolysaccharides, sodium hyaluronate, sodium chondroitin sulfate, collagen, elastin, chitin, chitosan, hydrolytic membrana testae, and the like; amino acids such as glycine, valine, leucine, isoleucine, serine, threonine, phenylalanine, arginine, lysine, aspartic acid, glutamic acid, cystine, cysteine, methionine, tryptophan, and the like; hormones such as estradiol, ethenyl estradiol, and the like; oil-based components such as sphingo lipid, ceramide, cholesterol derivatives, phosphatides, and the like; anti-inflammatory agents such as ⁇ -aminocaproic acid, glycyrrhizinic acid, ⁇ -glycyrrhe
  • examples of skin beautifying components include whitening agents such as placenta extracts, arbutin, glutathione, saxifrageous extracts, and the like; cell activating agents such as royal jelly and the like; agents for ameliorating skin roughness; circulation promoters such as nonylic acid vanillylamide, benzyl nicotinate, beta-butoxyethyl nicotinate, capsaicin, zingerone, cantharide tincture, ichthammol, caffeine, tannic acid, ⁇ -borneol, tocopherol nicotinate, inositol hexanicotinate, cyclandelate, cinnarizine, tolazoline, acetylcholine, verapamil, cepharanthine, ⁇ -oryzanol, and the like; astringents such as zinc oxide, tannic acid, and the like; antiseborrheic agents such as sulfur, thianthol, and
  • vitamins include vitamin As such as vitamin A oil, retinol, retinol acetate, retinol palmitate, and the like; vitamin Bs such as vitamin B2s such as riboflavin, riboflavin butyrate, flavin adenine dinucleotide, and the like; vitamin B6s such as pyridoxine hydrochloride, pyridoxine dioctanoate, pyridoxine tripalmitate, and the like; vitamin B12 and derivatives thereof; vitamin B15 and derivatives thereof, and the like; vitamin Cs such as L-ascorbic acid, L-ascorbyl dipalmitic acid esters, sodium L-ascorbyl 2-sulfate, dipotassium L-ascorbyl phosphoric acid diester, and the like; vitamin Ds such as ergocalciferol, cholecalciferol, and the like; vitamin Es such as ⁇ -tocopherol, ⁇ -tocopherol, ⁇
  • pH adjusting agents used in the cosmetic composition disclosed herein depending on the purpose of the cosmetic composition include lactic acid, citric acid, glycolic acid, succinic acid, tartaric acid, dl-malic acid, potassium carbonate, sodium hydrogen carbonate, ammonium hydrogen carbonate, and the like.
  • Examples of the solvent compounded in the cosmetic composition disclosed herein depending on the purpose of the cosmetic composition include light isoparaffin, ethers, LPG, N-methylpyrrolidone, next-generation chlorofluorocarbons, and the like, in addition to water such as purified water, mineral water, and the like.
  • antioxidants compounded in the cosmetic composition disclosed herein depending on the purpose of the cosmetic composition include tocopherol, butylhydroxyanisole, dibutylhydroxytoluene, phytic acid, and the like.
  • chelating agent include alanine, sodium salt of edetic acid, sodium polyphosphate, sodium metaphosphate, phosphoric acid, and the like.
  • Examples of other moisturizing components compounded in the cosmetic composition disclosed herein depending on the purpose of the cosmetic composition include hyaluronic acid, chondroitin sulfate, pyrrolidone carboxylic acid salts, polyoxyethylene methylglucoside, polyoxypropylene methylglucoside, and the like. It goes without saying that the polyhydric alcohols and the like exhibit a function of retaining moisture on the skin or hair.
  • the cosmetic composition disclosed herein there are cases in which moisture retention properties of the moisturizing agent can be improved by using these moisturizing components in combination with other oil-based raw materials, selecting a gel-like formulation form for the cosmetic composition, or using the moisturizing components in combination with a membrane forming component.
  • cosmetic composition disclosed herein can be used for include skin cleansing agent products, skin care products, makeup products, anti-perspirant products, ultraviolet light blocking products, and similar skincare cosmetic products; hair cleansing agent products, hair dressing products, hair coloration products, hair growth products, hair rinsing products, hair conditioning products, hair treatment products, and similar hair cosmetic products; and bath use cosmetic products.
  • the cosmetic composition disclosed herein is preferably a skin care product, a cosmetic product for hair, an anti-perspirant product, a makeup product, or an ultraviolet light blocking product.
  • the medicament disclosed herein include hair regrowth agents, hair growth promoters, analgesics, germicides, anti-inflammatory agents, refreshing agents, and skin anti-aging agents, but are not limited thereto.
  • the skincare cosmetic products can be used on any site of the entire body including the scalp, face (including lips, eyebrows, and cheeks), fingers, and fingernails.
  • Specific examples thereof include cleansing gels, cleansing creams, cleansing foams, cleansing milks, cleansing lotions, face washing creams, eye makeup removers, face washing foams, liquid soaps (body soaps), hand soaps, gel-like soaps, bar soaps, facial rinses, body rinses, shaving creams, removers, acne treatment cosmetics, and similar skin cleansing agent products; skin creams, scalp treatments, skin milks, milk lotions, emulsions, toners, moisturizing liquids, beautifying liquids, facial packs, body powders, essences, shaving lotions, massage lotions, and similar skin care products; foundations, liquid foundations, oil-based foundations, makeup bases, powders, face powders, lipsticks, lip creams, muddy colored lipsticks or rouges, lip glosses, eye shadows, eye liners, eye creams, eyebrow pencils, eyelash cosmetic
  • hair-care cosmetic products include shampoos, rinse-in shampoos, and similar hair cleansing agents; hair oils, hair waxes, hair curl holding agents, setting agents, hair creams, hairsprays, hair liquids, and similar hair dressing products; hair coloring substances, hair color sprays, hair color rinses, hair color sticks, and similar hair coloration products; hair tonics, hair treatment essences, hair packs, and similar hair growing products; and oil rinses, cream rinses, treatment rinses, hair conditioners, hair treatments, and similar hair rinse or hair conditioning products.
  • bath use cosmetic products include bath oils, bath salts, and bath foams.
  • the cosmetic composition according to the present disclosure is not particularly limited to a cosmetic product form, and can be preferably applied to liquid, W/O emulsion O/W emulsion, W/O cream, O/W cream, solid (e.g. stick and the like), paste, gel, powder, multi-layer, mousse, mist, granule, flake, crushed stone, and similar forms.
  • Particularly preferable forms thereof are W/O emulsion, W/O cream, solid, paste, gel, powder, multi-layered, mousse, and spray forms.
  • a container for the disclosed cosmetic composition and cosmetic product is not particularly limited either, and any container such as a jar, pump, tube, bottle, pressurized can dispensing container, pressure resistant aerosol container, light blocking container, compact container, cosmetic receptacle (kanazara), stick container, repeating container, spray container, divided container provided with a compound liquid dispensing opening, and the like can be filled with the cosmetic composition.
  • any container such as a jar, pump, tube, bottle, pressurized can dispensing container, pressure resistant aerosol container, light blocking container, compact container, cosmetic receptacle (kanazara), stick container, repeating container, spray container, divided container provided with a compound liquid dispensing opening, and the like can be filled with the cosmetic composition.
  • Normal silicone-based formulations tend to separate easily in tubes, but the topical composition according to the present disclosure, particularly the cosmetic composition, has superior stability and, therefore, there is a benefit that the disclosed topical composition can be stored stably, even when charged into a tube container.
  • AB-type organopolysiloxane copolymers (P1 to P6) according to the present invention were synthesized according to the synthesis examples (synthesis methods) described below. Furthermore, in order to clarify the usefulness of the obtained organopolysiloxane copolymers, use as a surfactant (dispersing agent), use as an topical composition, and use as a cosmetic composition are described.
  • the excess 1,3-dihydrodisiloxane was removed under reduced pressure and, thereafter, a mixed solution of 412 g of tetraglycerin monoallyl ether and 412 g of IPA was added dropwise. After aging for six hours at 100°C, ablation of the Si-H bonds was confirmed using IR spectroscopy. Then, the volatile content was removed under reduced pressure. Thus, the organopolysiloxane copolymer P1 was obtained. Yield thereof was 600 g (79% yield). The molecular weight was 810. The product was identified and verified using NMR spectroscopy. The refractive index of the product was 1.451, and the product had light yellow, viscous liquid properties.
  • the excess 1,3-dihydrodisiloxane was removed under reduced pressure and, thereafter, a mixed solution of 198 g of tetraglycerin monoallyl ether and 198 g of IPA was added dropwise. After aging for six hours at 100°C, ablation of the Si-H bonds was confirmed using IR spectroscopy. Then, the volatile content was removed under reduced pressure. Thus, the organopolysiloxane copolymer P2 was obtained. Yield thereof was 310 g (80% yield). The molecular weight was 866. The product was identified and verified using NMR spectroscopy. The refractive index of the product was 1.450, and the product had light yellow, viscous liquid properties.
  • the excess 1,3-dihydrodisiloxane was removed under reduced pressure and, thereafter, 231 g of glycerin monoallyl ether was added dropwise. After aging for seven hours at 100°C, ablation of the Si-H bonds was confirmed using IR spectroscopy. Then, the volatile content was removed under reduced pressure. Thus, the organopolysiloxane copolymer P3 was obtained. Yield thereof was 800 g (97% yield). The molecular weight was 588.
  • the product was identified and verified using NMR spectroscopy. The refractive index of the product was 1.431, and the product had light yellow, viscous liquid properties.
  • the excess 1,3-dihydrodisiloxane was removed under reduced pressure and, thereafter, a mixed solution of 200 g of diglycerin monoallyl ether and 200 g of IPA was added dropwise. After aging for two hours at 100°C, ablation of the Si-H bonds was confirmed using IR spectroscopy. Then, the volatile content was removed under reduced pressure. Thus, the organopolysiloxane copolymer P4 was obtained. Yield thereof was 515 g (79% yield). The molecular weight was 662. The product was identified and verified using NMR spectroscopy. The refractive index of the product was 1.439, and the product had light yellow, viscous liquid properties.
  • the excess 1,3-dihydrodisiloxane was removed under reduced pressure and, thereafter, 371 g of allyl polyether was added dropwise. After aging for three hours at 100°C, ablation of the Si-H bonds was confirmed using IR spectroscopy. Then, the volatile content was removed under reduced pressure. Thus, the organopolysiloxane copolymer P5 was obtained. Yield thereof was 930 g (99% yield). The molecular weight was 668. The product was identified and verified using NMR spectroscopy. The refractive index of the product was 1.433, and the product had light yellow, viscous liquid properties.
  • the excess 1,3-dihydrodisiloxane was removed under reduced pressure and, thereafter, a solution of 381 g of allyl polyether was added dropwise. After aging for four hours at 100°C, ablation of the Si-H bonds was confirmed using IR spectroscopy. Then, the volatile content was removed under reduced pressure. Thus, the organopolysiloxane copolymer P6 was obtained. Yield thereof was 671 g (88% yield). The molecular weight was 919.
  • the product was identified and verified using NMR spectroscopy. The refractive index of the product was 1.443, and the product had light yellow, viscous liquid properties.
  • Synthesis Example -- refers to the AB-type organopolysiloxane copolymer of the synthesis example (where "--" is replaced by a synthesis example number). Additionally, in the table, SS2910 and FZ2233 used in the Comparative Experiments are the following products.
  • the water-in-oil emulsion composition of each formulation was allowed to sit at rest for one month at room temperature (25°C) and 40°C. Then, changes in the emulsion state before and after the sitting at rest were evaluated according to the following standards.
  • Each panelist was made to answer a questionnaire in which the quality of feeling to touch and spreadability were scored on a scale of 1 to 5, with 1 being inferior, 5 being superior, and 2, 3, and 4 being mid-range scores. The scores were averaged and recorded as the evaluation results for sensation during use.
  • Slurry-like micro-particle dispersions were prepared according to the formulations and preparation methods shown in Dispersion Preparation 1 to Dispersion Preparation 3 below. These micro-particle dispersions were then evaluated from the standpoints of dispersion characteristics and flow characteristics. The results are shown in Tables 1 and 2. The components used in the preparation of each dispersion are as follows.
  • a slurry-like dispersion (D1) was produced by mixing 20 g of the micro-particle powder, 5 g of the organopolysiloxane copolymer (PI) of Synthesis Example 1, and 25 g of decamethyl cyclopentasiloxane; adding 200g of zirconia beads ( ⁇ 0.8 mm) thereto; and mixing the mixture using a paint shaker for one hour.
  • a slurry-like dispersion (D2) was produced the same as in the Preparation of dispersion D1, except that a polyether-modified silicone (Comparative Sample 1) was used in place of the organopolysiloxane copolymer (PI) of Synthesis Example 1.
  • a slurry-like dispersion (D3) was produced the same as in the Preparation of dispersion D1, except that a polyglycerin-modified silicone (Comparative Sample 2) was used in place of the organopolysiloxane copolymer (PI) of Synthesis Example 1.
  • a slurry-like dispersion (D4) was produced by mixing 20 g of the micro-particle powder, 5 g of the organopolysiloxane copolymer (PI) of Synthesis Example 1, 20 g of decamethyl cyclopentasiloxane, and 5 g of torioctanoin; adding 200g of zirconia beads ( ⁇ 0.8 mm) thereto; and mixing the mixture using a paint shaker for one hour.
  • PI organopolysiloxane copolymer
  • a slurry-like dispersion (D5) was produced the same as in the Preparation of dispersion D4, except that a polyether-modified silicone (Comparative Sample 1) was used in place of the organopolysiloxane copolymer (PI) of Synthesis Example 1.
  • a slurry-like dispersion (D6) was produced the same as in the Preparation of dispersion D4, except that a polyglycerin-modified silicone (Comparative Sample 2) was used in place of the organopolysiloxane copolymer (PI) of Synthesis Example 1.
  • the flow characteristics thereof ideally reflect the flow characteristics of the silicone dispersing medium, and display Neutonian behavior in which viscosity is constant, and not restricted by the shear rate.
  • the obtained toilet water has a stable emulsified state, displays little stickiness, and has a superior feeling to touch.
  • the obtained cleansing gel has a high silicone content, displays little stickiness, and has a superior feeling to touch.
  • the obtained sunscreen cream has a stable emulsified state, and displays water repellency when applied to skin.
  • the obtained sunscreen has reduced stickiness and superior sensation during use when applied on skin, and provides lasting ultraviolet light protection effects.
  • the obtained sunscreen cream has reduced stickiness and superior sensation during use when applied on skin, and provides lasting ultraviolet light protection effects.
  • a liquid foundation is obtained by mixing components 1 to 6 and adding/dispersing therein componets 6 to 9, which have been pre-crushed. Then, the mixture is emulsified while adding the dissolved/mixed components 10 and 11 in small amounts.
  • the obtained foundation has superior emulsion stability and superior cosmetic retainability.
  • the obtained cosmetic composition has superior emulsion stability, displays little stickiness, and has superior sensation during use.
  • the obtained rouge has excellent compatibilty with the oil-based raw materials, has superior storage stability, and has superior color development and luster when applied.
  • Components 1 to 9 are uniformly mixed. Then, a container is filled with the mixture. Thus, a mascara is obtained.
  • the obtained mascara has a deep appearance when applied and has superior luster. Moreover adhesion to eyelashes is excellent and durability is superior.
  • the novel organopolysiloxane copolymer according to the present invention can be used as a topical composition, particularly in applications other than those of cosmetic compositions.
  • examples thereof include varnishes or coating additives having superior heat resistance, weather resistance, or electrical properties; foam stabilzers or modifying agents for polyol base compounds used in various urethane and foam materials; debonding agents or release agents; antifoaming agents; grease or oil compounds; modifying agents, additives, or surface treatment agents use for oil, rubber, or resin of insulating, glazing, water repelling, heating mediums, cooling mediums, and lubricants; compounds, modifying agents, and precursors for silane coupling agents; coating materials or sealing materials for buildings or linings; protective agents, lubricants, or buffer agents for fiber optics and electrical wiring; and the like.
  • the novel organopolysiloxane copolymer according to the present invention is not limited to such applications.

Claims (13)

  1. Un copolymère organopolysiloxane exprimé par la formule générale suivante (1) :
    Figure imgb0100
    où R1 représente indépendamment un groupe aryle ou un groupe alkyle ayant de 1 à 10 carbones, L1 est un groupe fonctionnel exprimé par les formule générale (2-1) ou formule générale (2-2) suivantes :
    Figure imgb0101
    Figure imgb0102
    où R1 est synonyme du groupe décrit ci-dessus, R2 est un groupe phényle ou un groupe alkyle ayant de 1 à 6 carbones, Z est un groupe organique divalent, et a1 et a2 valent chacun 0, Q est un segment hydrophile dérivé d'un composé hydrophile sélectionné parmi des alcools polyhydriques comprenant la glycérine ou des polyglycérines, ledit segment hydrophile étant lié à l'atome de silicium via un groupe de liaison qui est au moins divalent, et est un segment hydrophile comprenant au moins un motif hydrophile sélectionné parmi des motifs hydrophiles exprimés par les formules structurales (3-2) à (3-4) suivantes
    Figure imgb0103
    où W est un atome d'hydrogène ou un groupe alkyle ayant de 1 à 20 carbones ; et
    Figure imgb0104
    où W est synonyme du groupe décrit ci-dessus ;
    Figure imgb0105
    et n est un nombre compris dans un intervalle de 0 à 10.
  2. Le copolymère organopolysiloxane selon la revendication 1, où dans la formule générale (I)
    Q est un segment hydrophile dérivé d'un composé hydrophile sélectionné parmi des alcools polyhydriques comprenant la glycérine ou des polyglycérines lié à l'atome de silicium via un groupe de liaison qui est au moins divalent, comprenant au moins un motif hydrophile lié de manière linéaire sélectionné parmi des motifs hydrophiles exprimés par les formules structurales (3-2) à (3-4) ci-dessus ; ou Q est un groupe hydrophile dérivé d'un composé hydrophile sélectionné parmi des alcools polyhydriques comprenant la glycérine ou des polyglycérines, ledit segment hydrophile étant lié à l'atome de silicium via un groupe de liaison qui est au moins divalent, comprenant au moins un motif hydrophile sélectionné parmi des motifs hydrophiles exprimés par les formules structurales (3-2) à (3-4) ci-dessus, et un motif de ramification sélectionné parmi des groupes exprimés par les formules structurales (3-5) à (3-7) ci-dessous :
    Figure imgb0106
    Figure imgb0107
    Figure imgb0108
  3. Le copolymère organopolysiloxane selon l'une ou l'autre des revendications 1 et 2, où dans la formule générale (1), Q est un segment hydrophile dérivé d'un composé hydrophile sélectionné parmi des alcools polyhydriques comprenant la glycérine ou des polyglycérines exprimé par les formules générales (4-1) à (4-4) ci-dessous :
    Formule générale (4-1) :

            -R3(-O-X1 m-R4)p     (4-1)

    où R3 est un groupe organique ayant une valence de (p + 1), et p est un nombre qui est supérieur ou égal à 1 ; X1 sont chacun indépendamment au moins un motif hydrophile sélectionné parmi les motifs hydrophiles exprimés par les formules générales (3-1) à (3-4) ci-dessus, et m est un nombre compris dans un intervalle de 1 à 100 ; et R4 est un atome d'hydrogène ou un groupe sélectionné dans le groupe constitué de groupes acyle, de groupes glycidyle, et de groupes alkyle ayant de 1 à 20 carbones ;
    Formule générale (4-2) :

            -R3(-O-X2)p     (4-2)

    où R3 est un groupe synonyme des groupes décrits ci-dessus, et p est un nombre synonyme du nombre décrit ci-dessus ; X2 est un segment hydrophile exprimé par la formule structurale (4-2-1) ci-dessous ;
    Figure imgb0109
    où l'au moins un motif hydrophile sélectionné parmi les motifs hydrophiles exprimés par les formules générales (3-2) à (3-4) est lié à deux atomes d'oxygène, chacun indépendamment ;
    Formule générale (4-3) :

            -R3(-O-X3)p     (4-3)

    où R3 est un groupe synonyme des groupes décrits ci-dessus, et p est un nombre synonyme du nombre décrit ci-dessus ; X3 est un segment hydrophile exprimé par la formule structurale (4-3-1) ci-dessous ;
    Figure imgb0110
    où l'au moins un motif hydrophile sélectionné parmi les motifs hydrophiles exprimés par les formules générales (3-2) à (3-4) est lié à deux atomes d'oxygène, chacun indépendamment ;
    Formule générale (4-4) :

            -R3(-O-X4)p     (4-4)

    où R3 est un groupe synonyme des groupes décrits ci-dessus, et p est un nombre synonyme du nombre décrit ci-dessus ; X4 est un segment hydrophile exprimé par la formule structurale (4-4-1) ci-dessous ; et
    Figure imgb0111
    où l'au moins un motif hydrophile sélectionné parmi les motifs hydrophiles exprimés par les formules générales (3-2) à (3-4) est lié à deux atomes d'oxygène, chacun indépendamment.
  4. Le copolymère organopolysiloxane selon l'une quelconque des revendications 1 à 3, exprimé par l'une quelconque des formules structurales (1-1) à (1-4) ci-dessous :
    Figure imgb0112
    Figure imgb0113
    Figure imgb0114
    Figure imgb0115
    Figure imgb0116
    où dans les formules structurales (1-1) à (1-4), n est un nombre compris dans un intervalle allant de 0 à 10 et m est un nombre compris dans un intervalle allant de 1 à 100 ;
    X1 sont chacun indépendamment au moins un motif hydrophile sélectionné parmi les motifs hydrophiles exprimés par les formules générales (3-2) à (3-4) ci-dessus ;
    R'3 est un groupe sélectionné parmi des groupes organiques divalents exprimés par les formules générales (5-1), (5-1-2), (5-1-3), et (5-2) ci-dessous ;


            -R6-     (5-1)

    Figure imgb0117
    Figure imgb0118
    Figure imgb0119
    où R6 peuvent avoir un substituant, et sont chacun indépendamment un groupe alkylène ou groupe alkénylène à chaîne droite ou ramifiée ayant de 2 à 22 carbones, ou un groupe arylène ayant de 6 à 22 carbones ;
    R4 est un atome d'hydrogène ou un groupe sélectionné dans le groupe constitué de groupes acyle, de groupes glycidyle, et de groupes alkyle ayant de 1 à 20 carbones ; R5 est un groupe sélectionné parmi des groupes organiques divalents exprimés par les formules générales (5-1) à (5-7) ci-dessous ;


            -R6-     (5-1)

    Figure imgb0120
    Figure imgb0121
    Figure imgb0122
    Figure imgb0123
    Figure imgb0124


            -R6-R7-     (5-7)

    où R6 est un groupe synonyme des groupes décrits ci-dessus ; et
    R7 est un groupe sélectionné parmi des groupes organiques divalents exprimés par la formule suivante :
    Figure imgb0125
    Figure imgb0126
    Figure imgb0127
    Figure imgb0128
  5. Le copolymère organopolysiloxane selon l'une quelconque des revendications 1 à 4, où n est égal à 0.
  6. Le copolymère organosiloxane de la revendication 5 exprimé par la formule structurale (PI) ci-dessous :
    Figure imgb0129
    où [a = 1 et b = 4] ou [a = 3 et b = 4] ou [a = 1 et b = 1] ou [a = 1 et b = 2].
  7. Un tensioactif comprenant le copolymère organopolysiloxane décrit dans l'une quelconque des revendications 1 à 6.
  8. Un agent de traitement de poudre comprenant le copolymère organopolysiloxane décrit dans l'une quelconque des revendications 1 à 7.
  9. Une composition topique comprenant le copolymère organopolysiloxane décrit dans l'une quelconque des revendications 1 à 6.
  10. La composition topique selon la revendication 9, laquelle est une composition cosmétique ou un médicament.
  11. La composition cosmétique selon la revendication 10 comprenant les constituants suivants :
    (a) de 0,1 à 99,9 % en poids du copolymère organopolysiloxane décrit dans l'une quelconque des revendications 1 à 7 ; et
    (b) de 99,9 à 0,1 % en poids d'une huile de silicone, d'un composé organique non polaire, ou d'un composé organique de faible polarité.
  12. La composition cosmétique selon la revendication 10 ou la revendication 11, où la composition cosmétique est un produit pour le soin de la peau, un produit cosmétique destiné aux cheveux, un produit anti-perspirant, un produit de maquillage, ou un produit bloquant la lumière ultraviolette.
  13. Un procédé destiné à la fabrication du copolymère organopolysiloxane selon la revendication 1, comprenant : la réaction d'addition de (A) un organopolysiloxane ayant des atomes d'hydrogène liés au silicium au niveau des deux terminaisons moléculaires exprimé par la formule générale (1') ci-dessous, et de (B) un composé ayant une structure de dendron carbosiloxane qui a une double liaison carbone-carbone au niveau d'une terminaison moléculaire exprimé par la formule générale (2') ci-dessous (à une quantité inférieure ou égale à 1/2 d'un équivalent molaire du constituant (A)) en présence de (C) un catalyseur de réaction d'hydrosilylation ; et, par la suite, la réaction d'addition en sus de (D) un composé hydrophile ayant un groupe alkényle au niveau d'une terminaison moléculaire (à une quantité inférieure ou égale à 1/2 d'un équivalent molaire du constituant (A)) :
    Figure imgb0130
    où R1 représentent chacun indépendamment un groupe aryle ou un groupe alkyle ayant de 1 à 10 carbones, et n est un nombre compris dans un intervalle de 0 à 10 ; et
    Figure imgb0131
    où L'1 est un groupe méthyle ou, lorsque j = 1, est un groupe silylalkyle exprimé par la formule générale (2-2) ci-dessous, et Z' est un groupe organique divalent ;
    Figure imgb0132
    où R2 est un groupe phényle ou un groupe alkyle ayant de 1 à 6 carbones, et Z est un groupe organique divalent et a1 et a2 valent chacun 0.
EP10825092.9A 2009-10-23 2010-10-22 Copolymère d'organopolysiloxane inédit Active EP2492300B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009244976 2009-10-23
PCT/JP2010/069237 WO2011049246A1 (fr) 2009-10-23 2010-10-22 Copolymère d'organopolysiloxane inédit

Publications (3)

Publication Number Publication Date
EP2492300A1 EP2492300A1 (fr) 2012-08-29
EP2492300A4 EP2492300A4 (fr) 2013-10-09
EP2492300B1 true EP2492300B1 (fr) 2018-10-03

Family

ID=43900465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10825092.9A Active EP2492300B1 (fr) 2009-10-23 2010-10-22 Copolymère d'organopolysiloxane inédit

Country Status (6)

Country Link
US (1) US9133309B2 (fr)
EP (1) EP2492300B1 (fr)
JP (1) JP5770094B2 (fr)
KR (1) KR101768154B1 (fr)
CN (1) CN102666663A (fr)
WO (1) WO2011049246A1 (fr)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049248A1 (fr) 2009-10-23 2011-04-28 東レ・ダウコーニング株式会社 Nouvel organopolysiloxane co-modifié
JP5878760B2 (ja) 2009-10-23 2016-03-08 東レ・ダウコーニング株式会社 油性原料の増粘剤またはゲル化剤
JP2013525452A (ja) * 2010-04-29 2013-06-20 ダウ コーニング コーポレーション 化粧料原料
JP5756344B2 (ja) * 2011-05-30 2015-07-29 東レ・ダウコーニング株式会社 新規液状オルガノポリシロキサン及びその利用
US20140193353A1 (en) * 2011-05-30 2014-07-10 Dow Corning Toray Co. Ltd. Novel Organopolysiloxane Elastomer And Use Therefor
JP6105920B2 (ja) 2011-12-27 2017-03-29 東レ・ダウコーニング株式会社 共変性オルガノポリシロキサン、それを含有してなる油中水型エマルション用乳化剤、外用剤および化粧料
JP6355224B2 (ja) 2011-12-27 2018-07-11 東レ・ダウコーニング株式会社 低臭性グリセリン誘導体変性シリコーンまたはそれを含む組成物の製造方法
JP6369887B2 (ja) * 2011-12-27 2018-08-08 東レ・ダウコーニング株式会社 新規な共変性オルガノポリシロキサン、それを含有してなる処理剤および外用剤
JP6313540B2 (ja) 2011-12-27 2018-04-18 東レ・ダウコーニング株式会社 ジグリセリン誘導体変性シリコーン、それを含有してなる油中水型エマルション用乳化剤、外用剤および化粧料
KR101425545B1 (ko) * 2012-03-09 2014-08-01 스미토모 오사카 세멘토 가부시키가이샤 표면 수식 금속산화물 입자 재료 및 광반도체 소자 밀봉 조성물, 및 광반도체 장치
JP5583710B2 (ja) 2012-03-22 2014-09-03 信越化学工業株式会社 新規オルガノポリシロキサン、これを含む化粧料及びオルガノポリシロキサンの製造方法
JP2014024765A (ja) * 2012-07-24 2014-02-06 Shiseido Co Ltd 水中油型乳化日焼け止め化粧料
JP6092545B2 (ja) 2012-08-22 2017-03-08 東レ・ダウコーニング株式会社 カルボシロキサンデンドリマー構造および親水性基を有する共重合体およびその用途
JP5797618B2 (ja) 2012-08-22 2015-10-21 東レ・ダウコーニング株式会社 カルボシロキサンデンドリマー構造を有する共重合体、並びに、それを含む組成物及び化粧料
JP6063197B2 (ja) 2012-10-02 2017-01-18 東レ・ダウコーニング株式会社 新規な共変性オルガノポリシロキサン、それを含有してなる粉体処理剤および粉体組成物
JP6022289B2 (ja) 2012-10-02 2016-11-09 東レ・ダウコーニング株式会社 共変性オルガノポリシロキサンを含有してなる処理剤および化粧料
CA2827355C (fr) 2012-10-29 2020-09-15 Rohm And Haas Company Preparation avec agent anti-mousse
JP6054722B2 (ja) * 2012-12-03 2016-12-27 株式会社 資生堂 油性固形化粧料
CN105189430B (zh) 2012-12-28 2018-08-10 道康宁东丽株式会社 高纯度含单烯基甘油衍生物及其制造方法
US10066060B2 (en) 2012-12-28 2018-09-04 Dow Corning Toray Co., Ltd. Production method for high-purity organosilicon compound
WO2014104258A1 (fr) 2012-12-28 2014-07-03 東レ・ダウコーニング株式会社 Procédé de production de composition de silicone modifiée par un dérivé de glycérine liquide transparente ou semi-transparente
JPWO2014104256A1 (ja) 2012-12-28 2017-01-19 東レ・ダウコーニング株式会社 高純度グリセリン誘導体変性シリコーンの製造法
JP6114176B2 (ja) * 2013-03-15 2017-04-12 信越化学工業株式会社 対称ハイパーブランチ型シリコーン変性重合性化合物、及びそのモジュール化した製造方法
KR102270897B1 (ko) * 2013-06-13 2021-07-01 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 장쇄 탄화수소기 함유 다이글리세린 유도체 변성 실리콘 및 그 이용
CN106459585B (zh) 2014-04-03 2021-05-28 道康宁东丽公司 新型硅酮表面活性剂、w/o乳液组合物、粉末组合物及其美容/医药应用
US10174170B2 (en) 2014-04-21 2019-01-08 Dow Corning Toray Co., Ltd. Method for producing liquid high-purity polyhydric alcohol derivative-modified silicone or composition thereof
JP6387885B2 (ja) * 2015-04-06 2018-09-12 信越化学工業株式会社 剥離紙又は剥離フィルム用オルガノポリシロキサンエマルション組成物及びその製造方法、並びに剥離紙及び剥離フィルム
CN105086517A (zh) * 2015-07-27 2015-11-25 安徽明珠颜料科技有限公司 一种具有提神醒脑作用的氧化铁黑颜料及其制备方法
EP3448863A1 (fr) * 2016-04-27 2019-03-06 Dow Silicones Corporation Silanes hydrophiles
EP3448350A1 (fr) * 2016-04-27 2019-03-06 Dow Corning Corporation Silanes hydrophiles
JP6546127B2 (ja) * 2016-07-14 2019-07-17 信越化学工業株式会社 新規シリコーン化合物およびこれを含む化粧料
US11058626B2 (en) 2017-01-31 2021-07-13 L'oreal Long-wear compositions containing silicone acrylate copolymer, silicone elastomer resin and surface-treated pigment
US11058627B2 (en) 2017-01-31 2021-07-13 L'oreal Long-wear compositions containing silicone acrylate copolymer and surface-treated pigment
US11058625B2 (en) 2017-01-31 2021-07-13 L'oreal Long-wear compositions containing silicone acrylate copolymer and silicone elastomer resin
KR20200020881A (ko) 2017-06-28 2020-02-26 다우 도레이 캄파니 리미티드 화장료용 피막형성제 및 이를 함유하는 화장료
JP6923487B2 (ja) * 2018-06-26 2021-08-18 信越化学工業株式会社 分散性粉体
CN112399845B (zh) * 2018-07-10 2023-12-29 株式会社资生堂 化妆品
JP7278748B2 (ja) * 2018-11-08 2023-05-22 株式会社ナリス化粧品 エアゾール型の油中水型デオドラントスプレー
JP7362243B2 (ja) * 2018-11-09 2023-10-17 花王株式会社 レオロジー改質剤
CN109504083B (zh) * 2018-11-21 2021-06-04 杭州本松新材料技术股份有限公司 聚酰胺树脂用双组份除味剂及含其的聚酰胺树脂复合材料
CN113661183A (zh) 2019-04-01 2021-11-16 陶氏东丽株式会社 具有碳硅氧烷树枝状大分子结构的共聚物、以及含有该共聚物的组合物、化妆料原料、成膜剂及化妆料
US11373921B2 (en) * 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
KR102166080B1 (ko) * 2019-05-16 2020-10-15 도레이첨단소재 주식회사 캐리어 필름용 점착제 조성물 및 이를 포함하는 캐리어 필름
JP2022053604A (ja) 2020-09-25 2022-04-06 ダウ・東レ株式会社 共変性オルガノポリシロキサンおよびその用途
JPWO2022138330A1 (fr) 2020-12-21 2022-06-30
JPWO2022138646A1 (fr) * 2020-12-24 2022-06-30
KR102658841B1 (ko) 2021-06-17 2024-04-19 주식회사 진영바이오 실리콘 기반 화장품 성분에 의한 사용감 구현용 실리콘 대체 조성물
WO2023032834A1 (fr) * 2021-09-03 2023-03-09 株式会社 資生堂 Matériau cosmétique émulsifié de type huile-dans-eau
WO2023032832A1 (fr) * 2021-09-03 2023-03-09 株式会社 資生堂 Produit cosmétique émulsifié de type huile dans l'eau
KR102420773B1 (ko) * 2021-10-22 2022-07-15 주식회사 코리아나화장품 아스코빅애씨드를 안정하게 포함하는 크림 또는 페이스트형 화장료 조성물
CN115160922B (zh) * 2022-06-09 2023-07-04 广东新翔星科技股份有限公司 一种高渗透防腐型有机硅防水剂及制备方法和应用

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133840B2 (fr) * 1973-05-17 1976-09-22
JPS57139123A (en) * 1981-01-30 1982-08-27 Union Carbide Corp Organosilicone ternary copolymers and use for fiber treatment
JPS57149290A (en) 1981-03-13 1982-09-14 Shin Etsu Chem Co Ltd Production of glycerol-modified silicone
DE3436177A1 (de) 1984-10-03 1986-04-03 Goldschmidt Ag Th Verwendung von polyoxyalkylen-polysiloxan-copolymerisaten mit an siliciumatomen gebundenen langkettigen alkylresten als emulgatoren zur herstellung von w/o-emulsionen
GB8428401D0 (en) 1984-11-09 1984-12-19 Dow Corning Ltd Organosiloxane-oxy-alkylene copolymers
JPS61127733A (ja) 1984-11-27 1986-06-16 Toray Silicone Co Ltd 新規なオルガノポリシロキサン化合物
JPS61293903A (ja) 1985-05-20 1986-12-24 Shiseido Co Ltd 油中水型乳化化粧料
JPS61293904A (ja) 1985-05-20 1986-12-24 Shiseido Co Ltd 油中水型乳化メーキャップ化粧料
JPH0663973B2 (ja) 1985-08-07 1994-08-22 東ソー株式会社 免疫反応測定に用いる蛍光検出装置
JPS62187406A (ja) 1986-02-13 1987-08-15 Shiseido Co Ltd 油中水型乳化化粧料
JP2583412B2 (ja) 1986-02-24 1997-02-19 チッソ株式会社 ヒドロキシル基含有シロキサン化合物
JPH0662385B2 (ja) 1986-03-18 1994-08-17 株式会社資生堂 乳化組成物
JPS62216635A (ja) 1986-03-18 1987-09-24 Shiseido Co Ltd 油中水および多価アルコ−ル型乳化組成物
JPS6316414A (ja) 1986-07-08 1988-01-23 Mitsubishi Electric Corp 磁気記録体
JP3061434B2 (ja) 1990-05-07 2000-07-10 日本ユニカー株式会社 毛髪化粧料
US5472686A (en) 1990-12-28 1995-12-05 Nippon Unicar Company Limited Cosmetic formulations
JPH0689147B2 (ja) 1990-05-15 1994-11-09 信越化学工業株式会社 変性シリコーン化合物及びその製造方法
ES2110967T3 (es) 1990-08-30 1998-03-01 Kao Corp Producto derivado de polisiloxano, utilizacion como emulsionante y preparaciones cosmeticas.
JP2613124B2 (ja) 1990-08-30 1997-05-21 花王株式会社 新規シロキサン誘導体、その製造方法及びこれを含有する化粧料
JPH0822811B2 (ja) 1990-09-26 1996-03-06 花王株式会社 皮膚外用剤
JP3071222B2 (ja) 1990-12-28 2000-07-31 日本ユニカー株式会社 皮膚化粧料
JP2601738B2 (ja) 1991-10-22 1997-04-16 花王株式会社 化粧料
JP3283277B2 (ja) 1991-12-16 2002-05-20 日本ユニカー株式会社 オルガノポリシロキサン組成物
JP3172787B2 (ja) 1992-01-14 2001-06-04 日本精化株式会社 糖残基を有するオルガノシロキサン誘導体およびその製造方法
JP3333782B2 (ja) 1992-05-01 2002-10-15 東レ・ダウコーニング・シリコーン株式会社 ゲル状シリコーン組成物
JP3389271B2 (ja) 1992-11-13 2003-03-24 株式会社コーセー 化粧料
US5484950A (en) * 1992-12-21 1996-01-16 Polyset Company, Inc. Process for selective monoaddition to silanes containing two silicon-hydrogen bonds and products thereof
JP3477222B2 (ja) 1993-04-21 2003-12-10 花王株式会社 油性固型化粧料
JP3160427B2 (ja) 1993-07-09 2001-04-25 花王株式会社 油性化粧料
JP3200247B2 (ja) 1993-07-27 2001-08-20 花王株式会社 油性化粧料
JP2719303B2 (ja) 1993-08-12 1998-02-25 鐘紡株式会社 メイクアップ化粧料
JP3639315B2 (ja) 1993-09-30 2005-04-20 株式会社資生堂 ゲル状化粧料
JP2587797B2 (ja) 1994-12-21 1997-03-05 花王株式会社 化粧料
JP3407770B2 (ja) 1995-02-09 2003-05-19 株式会社資生堂 ゲル状化粧料
JP3580384B2 (ja) 1995-03-31 2004-10-20 株式会社資生堂 乳化化粧料
JP3580385B2 (ja) 1995-03-31 2004-10-20 株式会社資生堂 乳化化粧料
JP3513682B2 (ja) 1995-09-08 2004-03-31 株式会社コーセー 油性化粧料
JP3719540B2 (ja) 1996-01-12 2005-11-24 株式会社資生堂 ゲル状化粧料
US5654362A (en) 1996-03-20 1997-08-05 Dow Corning Corporation Silicone oils and solvents thickened by silicone elastomers
US5919441A (en) 1996-04-01 1999-07-06 Colgate-Palmolive Company Cosmetic composition containing thickening agent of siloxane polymer with hydrogen-bonding groups
US5874069A (en) 1997-01-24 1999-02-23 Colgate-Palmolive Company Cosmetic composition containing silicon-modified amides as thickening agents and method of forming same
JP2001517206A (ja) * 1996-08-16 2001-10-02 ザ ジョンズ ホプキンズ ユニヴァーシティ スクール オヴ メディシン 免疫優性な共有黒色腫抗原を発現する黒色腫細胞株およびその使用方法
JP2844453B2 (ja) 1996-10-02 1999-01-06 花王株式会社 新規シロキサン誘導体
JPH10167946A (ja) 1996-12-09 1998-06-23 Fuji Shikiso Kk 分散性良好な組成物およびその組成物含有皮膚保護剤
JP3313043B2 (ja) 1997-03-05 2002-08-12 株式会社資生堂 油中水型乳化組成物
JP3533553B2 (ja) 1997-05-09 2004-05-31 株式会社コーセー 乳化化粧料
JP3496133B2 (ja) 1997-05-09 2004-02-09 株式会社コーセー 改質粉体及びそれを含有する化粧料
JPH10310509A (ja) 1997-05-09 1998-11-24 Kose Corp 頭髪化粧料
JP3533554B2 (ja) 1997-05-09 2004-05-31 株式会社コーセー 粉末化粧料
JPH10310507A (ja) 1997-05-09 1998-11-24 Kose Corp 油性化粧料
JPH10310506A (ja) 1997-05-09 1998-11-24 Kose Corp 低刺激性化粧料
JPH10316536A (ja) 1997-05-19 1998-12-02 Kose Corp 改質粉体及びそれを配合した化粧料
US5889108A (en) 1997-06-02 1999-03-30 Dow Corning Corporation Thickening solvents with elastomeric silicone polyethers
JP4270607B2 (ja) 1998-08-27 2009-06-03 東レ・ダウコーニング株式会社 カルボシロキサンデンドリマー
US6184407B1 (en) 1998-05-29 2001-02-06 Dow Corning Toray Silicone Co., Ltd. Carbosiloxane dendrimers
JP4009382B2 (ja) 1998-06-12 2007-11-14 東レ・ダウコーニング株式会社 化粧品原料、化粧品および化粧品の製造方法
US5981680A (en) 1998-07-13 1999-11-09 Dow Corning Corporation Method of making siloxane-based polyamides
JP2000239390A (ja) 1999-02-25 2000-09-05 Dow Corning Toray Silicone Co Ltd カルボシロキサンデンドリマー
US6168782B1 (en) 1999-05-24 2001-01-02 Dow Corning Corporation Elastomeric silicone containing an active ingredient
JP3912961B2 (ja) 1999-06-30 2007-05-09 信越化学工業株式会社 新規なシリコーン粉体処理剤及びそれを用いて表面処理された粉体、並びにこの粉体を含有する化粧料
JP3724988B2 (ja) * 1999-07-30 2005-12-07 信越化学工業株式会社 新規シリコーン化合物及びそれを含有してなる化粧料
JP2001316473A (ja) 2000-04-28 2001-11-13 Dow Corning Toray Silicone Co Ltd デンドリマー構造含有重合体
FR2808679B1 (fr) 2000-05-09 2006-09-22 Oreal Procede pour accroitre la persistance d'au moins un effet cosmetique et/ou de soin d'une composition cosmetique, composition cosmetique et son utilisation
JP2002038013A (ja) 2000-07-21 2002-02-06 Shin Etsu Chem Co Ltd 粉体組成物、その油中粉体分散物及びそれらを含有する化粧料
US7001971B2 (en) 2000-12-08 2006-02-21 Shin-Etsu Chemical Co., Ltd. Polyhydric alcohol-modified silicone and cosmetic material containing same
JP4723083B2 (ja) 2000-12-08 2011-07-13 信越化学工業株式会社 シリコーン分岐型ポリエーテル変性シリコーン化合物の製造方法及びこの方法によって得られた化合物を含有する化粧料
JP3976226B2 (ja) 2000-12-08 2007-09-12 信越化学工業株式会社 多価アルコール変性シリコーン及びそれを含有する化粧料
JP3678420B2 (ja) 2001-11-15 2005-08-03 信越化学工業株式会社 粘度鉱物を有する化粧料
WO2003075864A1 (fr) 2002-03-11 2003-09-18 Shin-Etsu Chemical Co., Ltd. Produits cosmetiques huileux
US7655744B2 (en) 2002-03-25 2010-02-02 Kao Corporation Branched polyglycerol-modified silicone
JP4485134B2 (ja) 2002-03-25 2010-06-16 花王株式会社 分岐ポリグリセロール変性シリコーン
JP2004169015A (ja) 2002-11-01 2004-06-17 Shin Etsu Chem Co Ltd 粉体組成物及び油中粉体分散物.並びにそれらを有する化粧料
JP4015539B2 (ja) 2002-12-05 2007-11-28 東レ・ダウコーニング株式会社 アミノ酸誘導体変性シリコーンを含有する油性化粧料
JP4246513B2 (ja) 2003-01-31 2009-04-02 株式会社コーセー 乳化化粧料
JP5037782B2 (ja) 2003-07-07 2012-10-03 信越化学工業株式会社 新規なオルガノポリシロキサン・グリセリン誘導体交互共重合体およびそれを含有する化粧料
JP4357909B2 (ja) 2003-09-12 2009-11-04 花王株式会社 分岐ポリグリセロール変性シリコーンの製法
JP4584697B2 (ja) 2003-12-10 2010-11-24 花王株式会社 変性ポリシロキサン及び該変性ポリシロキサンを用いた化粧料
JP4880588B2 (ja) 2004-04-12 2012-02-22 ダウ・コーニング・コーポレイション パーソナルケア製品
JP4429812B2 (ja) 2004-06-07 2010-03-10 信越化学工業株式会社 Aba型グリセリン変性シリコーン
US7998903B2 (en) * 2004-05-19 2011-08-16 Shin-Etsu Chemical Co., Ltd. Glycerol-modified silicone spreading agent and a composition comprising the same
US8080239B2 (en) 2005-01-17 2011-12-20 Shiseido Co., Ltd. Cosmetic
JP4567584B2 (ja) 2005-01-17 2010-10-20 株式会社資生堂 粉体分散安定剤及びこれを配合した粉体分散組成物
US7652072B2 (en) 2005-10-13 2010-01-26 Momentive Performance Materials Inc. Hydrolysis resistant organomodified disiloxane surfactants
US7507775B2 (en) 2005-10-13 2009-03-24 Momentive Performance Materials Inc. Hydrolysis resistant organomodified disiloxane surfactants
US7601680B2 (en) 2005-12-13 2009-10-13 Momentive Performance Materials Gemini silicone surfactant compositions and associated methods
WO2007135771A1 (fr) 2006-05-19 2007-11-29 Dow Corning Toray Co., Ltd. Organopolysiloxane modifié au polyéther, copolymère séquencé diorganopolyxiloxane-polyéther, procédés de production de ceux-ci, et préparation cosmétique
JP2008115358A (ja) 2007-06-18 2008-05-22 Shin Etsu Chem Co Ltd オルガノポリシロキサン及びその製法ならびに該オルガノポリシロキサンを含む化粧料組成物
WO2009025146A1 (fr) * 2007-07-26 2009-02-26 Shiseido Company Ltd. Composition de gel et préparation cosmétique
US20110182846A1 (en) 2007-08-10 2011-07-28 Shiseido Company Ltd. Surface Treating Agent, Surface-Treated Powder, And Cosmetic
JP5878760B2 (ja) 2009-10-23 2016-03-08 東レ・ダウコーニング株式会社 油性原料の増粘剤またはゲル化剤
WO2011049248A1 (fr) 2009-10-23 2011-04-28 東レ・ダウコーニング株式会社 Nouvel organopolysiloxane co-modifié

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JPWO2011049246A1 (ja) 2013-03-14
EP2492300A4 (fr) 2013-10-09
JP5770094B2 (ja) 2015-08-26
US9133309B2 (en) 2015-09-15
US20120269747A1 (en) 2012-10-25
KR20120094933A (ko) 2012-08-27
KR101768154B1 (ko) 2017-08-16
EP2492300A1 (fr) 2012-08-29
CN102666663A (zh) 2012-09-12
WO2011049246A1 (fr) 2011-04-28

Similar Documents

Publication Publication Date Title
EP2492300B1 (fr) Copolymère d'organopolysiloxane inédit
EP2492301B1 (fr) Nouvel organopolysiloxane co-modifié
EP2507248B1 (fr) Siloxanes cycliques et lineaires et compositions cosmetiques fabriqués à l'aide de ceux-ci
US9580600B2 (en) Thickening or gelling agent for oily raw materials
EP2563845B1 (fr) Nouvel organopolysiloxane, tensio-actif, composition d'émulsion, agent de traitement en poudre, agent épaississant d'un matériau brut à base de pétrole, agent gélifiant, composition en gel, et matière première pour produit cosmétique comprenant le nouvel organopolysiloxane, et préparation pour utilisation externe et produit cosmétique comprenant un tel organopolysiloxane
US9975999B2 (en) Liquid organopolysiloxane and uses thereof
EP2658899B1 (fr) Produit cosmétique contenant un organopolysiloxane liquide
US9475828B2 (en) Organopolysiloxane and use thereof as surfactant, powder treatment agent, thickening agent of oil-based raw material or gelling agent. gel and emulsion compositions, as well as, preparations for external use and cosmetics comprising the same
EP2585033B1 (fr) Préparation cosmétique et topique pour la peau comprenant du silicone modifié par de l'alcool supérieur
US20130096206A1 (en) Powder treatment agent comprising sugar alcohol-modified organopolysiloxane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOW CORNING TORAY CO., LTD.

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20130910

RIC1 Information provided on ipc code assigned before grant

Ipc: A61Q 17/04 20060101ALI20130903BHEP

Ipc: A61K 8/894 20060101ALI20130903BHEP

Ipc: A61Q 1/00 20060101ALI20130903BHEP

Ipc: A61Q 19/00 20060101ALI20130903BHEP

Ipc: A61Q 5/00 20060101ALI20130903BHEP

Ipc: C08G 77/50 20060101ALI20130903BHEP

Ipc: C08G 77/38 20060101AFI20130903BHEP

Ipc: C08G 77/46 20060101ALI20130903BHEP

Ipc: C09C 3/12 20060101ALI20130903BHEP

Ipc: A61K 8/06 20060101ALI20130903BHEP

Ipc: A61Q 15/00 20060101ALI20130903BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171017

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180504

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1048517

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010054106

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181003

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1048517

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190103

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190203

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190203

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010054106

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

26N No opposition filed

Effective date: 20190704

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181022

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010054106

Country of ref document: DE

Representative=s name: MURGITROYD & COMPANY, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010054106

Country of ref document: DE

Owner name: DOW TORAY CO., LTD., JP

Free format text: FORMER OWNER: DOW CORNING TORAY CO., LTD., TOKYO, JP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181003

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101022

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230830

Year of fee payment: 14