EP1734066B1 - Polyrotaxan enthaltendes polymermaterial und herstellungsverfahren dafür - Google Patents

Polyrotaxan enthaltendes polymermaterial und herstellungsverfahren dafür Download PDF

Info

Publication number
EP1734066B1
EP1734066B1 EP05727602.4A EP05727602A EP1734066B1 EP 1734066 B1 EP1734066 B1 EP 1734066B1 EP 05727602 A EP05727602 A EP 05727602A EP 1734066 B1 EP1734066 B1 EP 1734066B1
Authority
EP
European Patent Office
Prior art keywords
group
polyrotaxane
polymer
molecule
cyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05727602.4A
Other languages
English (en)
French (fr)
Other versions
EP1734066A1 (de
EP1734066A4 (de
Inventor
Kohzo c/o The University of Tokyo ITO
Masatoshi c/o The University of Tokyo KIDOWAKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Publication of EP1734066A1 publication Critical patent/EP1734066A1/de
Publication of EP1734066A4 publication Critical patent/EP1734066A4/de
Application granted granted Critical
Publication of EP1734066B1 publication Critical patent/EP1734066B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/007Polyrotaxanes; Polycatenanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof

Definitions

  • the present invention relates to a material comprising polyrotaxane, and a method for producing the material.
  • Patent Document 1 discloses a crosslinked polyrotaxane, which is formed by crosslinking polyrotaxanes, each of which is comprised of pseudopolyrotaxane, which comprises a linear molecule (axis) and cyclic molecules (rota) in which the linear molecule is included in cavities of cyclic molecules in a skewered manner, and capping groups, each of which locates at each end of the pseudopolyrotaxane (each end of the linear molecule) in order to prevent the dissociation of the cyclic molecules.
  • the crosslinked polyrotaxane has viscoelasticity generated by the movement of a cyclic molecule. Thus, even if strain is applied to the crosslinked polyrotaxane, the strain is dispersed uniformly in the cross linked polyrotaxane by this action. Therefore, crack or scratch is not generated, differing from the crosslinked polymer.
  • Patent Document 2 describes polyrotaxanes, which are bound to each other through the cyclic molecule in the polyrotaxane, for use as electrolyte components.
  • Patent Document 3 describes a compound comprising a first and a second polyrotaxane, the polyrotaxanes being crosslinked by linking through the first cyclic molecules and the second cyclic molecules by a chemical bonding.
  • Patent Document 4 describes a crosslinked polyrotaxane, wherein at least two molecules of polyrotaxane are crosslinked with each other through physical bonding. The cyclodextrins aggregate on the same linear molecule and between polyrotaxane molecules.
  • Patent Document 5 describes at least one hydroxyl group of at least one cyclodextrin molecule in each of the at least two molecules of polyrotaxane is involved in crosslinking.
  • Patent Document 6 describes an absorbent polymer, which incorporates cyclodextrins and/or cyclodextrin derivatives, which is covalently and/or ionically bound therein.
  • Scientific Publication 1 describes polyrotaxane, in which ⁇ -Cyclodextrin are threaded onto a PEG chain, is later acetylated using acetic anhydride.
  • Scientific Publication 2 describes polyrotaxanes in which ⁇ -Cyclodextrins are threaded onto poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)(PEG-b-PPG-b-PEG) triblock copolymers (pluronic).
  • Patent Document 7 describes an aminated polyrotaxane, in which at least some of hydroxy groups in the cyclodextrin structure are each substituted with a substituent having an amino group.
  • Scientific Publication 3 describes a preparation of modified polyurethanes by blending sulfonated polyrotaxanes (and physically bonding through PPG) with polyurethane solution. The sulfonated polyrotaxanes are obtained by threading sulfonated ⁇ -Cyclodextrins onto the PEG segments in a PEG-b-PPG-b-PEG triblock copolymer.
  • Scientific Publication 4 describes synthesis of a polyrotaxane consisting of ⁇ -Cyclodextrins and poly(ethyleneglycol) . Carboxyethylester-groups and taurine are successively conjugated with a polyrotaxane, and the formed taurine- Carboxyethylester- polyrotaxane polymer is used as an anticoagulant agent.
  • Scientific Publication 5 describes synthesis of maltose-polyrotaxane conjugates by a condensation reaction between b-maltosylamine and carboxyethylester-polyrotaxanes to enhance binding with protein.
  • An object of the present invention is to solve the problem described above.
  • an object of the present invention is to provide a material having a property of a crosslinked polymer together with a property of crosslinked polyrotaxane, and a method of producing the material.
  • an object of the present invention is to provide a material having a property of a crosslinked polymer together with stretchability or viscoelasticity, and a method of producing the material.
  • the present inventors have found that, by adopting a material comprising polyrotaxane and polymer, in which the polyrotaxane is bound to a part or all of the polymer through a cyclic molecule(s) of the polyrotaxane, the object can be attained.
  • the present inventors have found following inventions.
  • the present invention can provide a material having a property of a crosslinked polymer together with a property of crosslinkedpolyrotaxane, and a method of producing the material.
  • the present invention can provide a material having a property of a crosslinked polymer together with stretchability or viscoelasticity, and a method of producing the material.
  • the present invention provides a material comprising polyrotaxane and polymer.
  • polyrotaxane comprises a cyclic molecule, a linear molecule which is included in cavities of the cyclic molecules in a skewered manner, and a capping group which is located at each end of the linear molecule to prevent the dissociation of the cyclic molecules.
  • the material of the present invention is characterized in that at least a part of the polyrotaxane and the polymer is bound to each other through the cyclic molecule.
  • the material of the present invention having the constitution provides an action described below:
  • the cyclic molecule can move along the linear molecule.
  • force tension and/or stress
  • the material is capable of expansion and contraction by the movement of the cyclic molecule.
  • Fig. 1 shows a schematic view of a material 1 of the present invention.
  • the material 1 of the present invention comprises a polymer 3 and polyrotaxane 5.
  • the polyrotaxane 5 has a linear molecule 6, a cyclic molecule 7 and a capping group 8.
  • the polymer 3 and polymer 3' and the polyrotaxane 5 are bound through the cyclic molecule 7.
  • stress of deformation along an arrow direction is loaded on the material 1 as shown in Fig. 1(a)
  • the material 1 can adopt a configuration as shown in Fig. 1(b) .
  • the polyrotaxane and the polymer are bound or crosslinked.
  • Polymers may be mutually crosslinked or, polyrotaxanes may be mutually crosslinked.
  • the present invention can provide i) a material in which the polyrotaxane and the polymer are bound or crosslinked, and polymers are crosslinked and polyrotaxanes are crosslinked; ii) a material in which the polyrotaxane and the polymer are bound or crosslinked, and the polyrotaxanes are crosslinked, while polymers are not crosslinked; iii) a material in which the polyrotaxane and the polymer are bound or crosslinked, and the polymers are crosslinked, while the polyrotaxanes are not crosslinked; and iv) a material in which the polyrotaxane and the polymer are bound or crosslinked, while polymers are not crosslinked and polyrotaxanes are not crosslinked.
  • a polymer forms
  • polyrotaxane in a material according to the present invention can provide expansion and contraction of the material as described above. Accordingly, polyrotaxane may be present in the material according to the present invention.
  • the amount of polyrotaxane in a material depends on a nature required for the material. For example, the weight ratio of the polyrotaxane to the polymer ((polyrotaxane) / (polymer)) may be 1/1000 or more, namely, polyrotaxane is present in a proportion of 1 or more based on 1000 of a polymer.
  • At least a part of the polymers in a material according to the present invention may be physically and/or chemically crosslinked.
  • the polymer in a material according to the present invention may have on a backbone chain or side chain at least one selected from the group consisting of a -OH group, a -NH 2 group, a -COOH group, an epoxy group, a vinyl group, a thiol group and a photo-crosslinkable group.
  • the photo-crosslinkable group may include, but are not limited to, cinnamic acid, coumarin, chalcone, anthracene, styrylpyridine, styrylpyridinium salt, styrylquinolium salt and the like.
  • the polymer in the present invention may be a homopolymer or copolymer. Two or more polymers may be present. In a case where two or more polymers are present, at least one polymer may be bound to polyrotaxane through a cyclic molecule. In a case where the polymer of a material according to the present invention is a copolymer, it may be composed of two, or three or more monomers. In the case of a copolymer, the copolymer may be one of a block copolymer, alternating copolymer, random copolymer, graft copolymer and the like.
  • polymer may include, but not limited to, polyvinyl alcohol, polyvinylpyrrolidone, poly(meth)acrylic acid, cellulose-based resins (carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and the like), polyacrylamide, polyethylene oxide, polyethylene glycol, polypropylene glycol, polyvinyl acetal-based resins, polyvinyl methyl ether, polyamine, polyethyleneimine, casein, gelatin, starch and the like and/or copolymers thereof, polyolefin-based resins such as polyethylene, polypropylene, and copolymer resins with other olefinic monomers, polyester resins, polyvinyl chloride resins, polystyrene-based resins such as polystyrene, acrylonitrile-styrene copolymer resin and the like, acrylic resins such as polymethyl methacrylate, copolymer of (meth)acrylate, acrylonitrile
  • the derivatives may contain the above-described group, i.e., at least one selected from the group consisting of a -OH group, a -NH 2 group, a -COOH group, an epoxy group, a vinyl group, a thiol group and a photo-crosslinkable group.
  • the linear molecule of polyrotaxane in a material according to the present invention may include polyvinyl alcohol, polyvinylpyrrolidone, poly(meth)acrylic acid, cellulose-based resins (carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and the like), polyacrylamide, polyethylene oxide, polyethylene glycol, polypropylene glycol, polyvinyl acetal-based resins, polyvinyl methyl ether, polyamine, polyethyleneimine, casein, gelatin, starch and the like and/or copolymers thereof, polyolefin-based resins such as polyethylene, polypropylene, and copolymer resins with other olefinic monomers, polyester resins, polyvinyl chloride resins, polystyrene-based resins such as polystyrene, acrylonitrile-styrene copolymer resin and the like, acrylic resins such as polymethyl methacrylate, copolymer of (me
  • a molecular weight of the linear molecule according to the present invention may be 10,000 or more, preferably 20,000 or more, more preferably 35,000 or more.
  • the capping group of the polyrotaxane in the material according to the present invention is not limited, as long as the group has an action of preventing dissociation of a cyclic molecule from a linear molecule.
  • the capping group may be selected from the group consisting of dinitrophenyl groups; cyclodextrins; adamantane groups; trityl groups; fluoresceins; pyrenes; substituted benzenes (example of the substituent may include, but are not limited to, alkyl, alkyloxy, hydroxy, halogen, cyano, sulfonyl, carboxyl, amino, phenyl and the like.
  • the substituent may be single or plural.); polycyclic aromatics which may be substituted (examples of the substituent may include, but are not limited to, those described above.
  • the substituent maybe single or plural.) ; and steroids.
  • the capping group may be selected from the group consisting of dinitrophenyl groups; cyclodextrins; adamantane groups; trityl groups; fluoresceins; and pyrenes, more preferably adamantane groups; or trityl groups.
  • the cyclic molecule in the polyrotaxane according to the present invention may comprise at least one selected from the group consisting of a -OH group, a -NH 2 group, a -COOH group, an epoxy group, a vinyl group, a thiol group, and a photo-crosslinkable group.
  • the photo-crosslinkable group may include, but are not limited to, cinnamic acid, coumarin, chalcone, anthracene, styrylpyridine, styrylpyridinium salt, styrylquinolium salt and the like.
  • the cyclic molecule may be a cyclodextrin molecule which may be substituted.
  • the cyclodextrin may be selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin, and derivatives thereof.
  • At least a part of a cyclic molecule in a polyrotaxane is bound to at least a part of a polymer as described above.
  • a group carried on the cyclic molecule for example, a -OH group, -NH 2 group, -COOH group, epoxy group, vinyl group, thiol group, photo-crosslinkable group or the like may be bound to a group carried on the backbone chain and/or side chain of the polymer, for example, a -OH group, -NH 2 group, -COOH group, epoxygroup, vinyl group, thiol group, photo-crosslinkablegroup or the like, via a chemical reaction.
  • the cyclic molecule may be a cyclodextrin molecule, and the linear molecule may be polyethylene glycol.
  • the linear molecule may have the cyclic molecules included in a skewered manner at an amount of 0.001 to 0.6, preferably 0.01 to 0.5, and more preferably 0.05 to 0.4 of a maximum inclusion amount, which is defined as an amount at which the cyclic molecules can be included at maximum when the linear molecule has the cyclic molecules included in a skeweredmanner, and the amount at maximum is normalized to be 1.
  • the maximum inclusion amount of a cyclic molecule can be determined depending on the length of a linear molecule and the thickness of a cyclic molecule .
  • the maximum inclusion amount is measured empirically (see, Macromolecules 1993, 26, 5698-5703 , whole contents of which is incorporated herein).
  • the polyrotaxane and the polymer may be chemically bound to each other by a crosslinking agent.
  • the crosslinking agent may have a molecular weight of less than 2,000, preferably less than 1, 000, more preferably less than 600, and most preferably less than 400.
  • the crosslinking agent may be selected from the group consisting of cyanuric chloride, trimesoyl chloride, terephthaloyl chloride, epichlorohydrin, dibromobenzene, glutaraldehyde, phenylene diisocyanate, tolylenediisocyanate, divinyl sulfone, 1,1'-carbonyldiimidazole and alkoxysilanes.
  • the material of the present invention can provide stretchability owing to the presence of polyrotaxane. As described above, stretchability depends on the amount of polyrotaxane, the inclusion amount described above, and the like, and it is preferable to control these amounts depending on a property required for the material.
  • the material according to the present invention can be applied to a polymer material required to have stretchability.
  • the polymer material may include, but are not limited to, optical materials, contact lenses, biomaterials, medical materials, tire materials, application agents, adhesives and the like; andenvironment-relatedmaterials, livingwares, civil engineering and construction materials, battery-related materials, foods, health materials, sports equipment and materials thereof, cloth and fashion materials, fibers, toy and entertainment materials, art-related materials, automobile-related materials, and the like.
  • Examples of the material may include, but are not limited to, the following materials.
  • examples of the application range of the material according to the present invention may include rubber band, packing material, agar medium, clothing fabric, shoe sole of sport shoes and the like, cushioning material or impulse absorbing material of helmet, protector and the like, bumper of automobile and various apparatuses, toy, coating material for friction part of apparatus (for example, coating material for sliding part or housing of pump), adhesive, sealing material for tight seal, dehumidification agent or dew removing material, filler for bed mat analogous to water bed, material for special effect photograph or material for miniature model, optical material such as material for soft contact lens (particularly, material for soft contact lens having high moisture content and/or excellent strength), material for tire, gel for electrophoresis, novel foodstuff pursuant to gum and the like, gum for dog, biomaterials including biocompatible materials such as artificial cornea, artificial crystalline lens, artificial vitreous body, artificial skin, artificial muscle, artificial joint, artificial cartilage and the like and material for breast enlargement and the like, medical materials used for outside of the body such as wet dressing material, wound covering material, medical
  • One embodiment of the method of producing the material according to the present invention comprises a) a step of mixing polyrotaxane comprising a cyclic molecule, a linear molecule which is included in cavities of the cyclic molecule in a skewered manner, and a capping group which is located at each end of the linear molecule to prevent the dissociation of the cyclic molecule, with a polymer; b) a step of physically and/or chemically crosslinking at least a part of the polymer, and c) a step of binding the at least a part of the polymer and polyrotaxane through the cyclic molecule.
  • the at least a part of the polymer may be chemically crosslinked.
  • the chemical crosslinking can be carried out, for example, using a crosslinking agent.
  • the crosslinking agent may include, but not limited to, the above-mentioned agents.
  • the step c) may be carried out before or after the step b).
  • the step b) and the step c) may be carried out at the substantially same time.
  • the mixing step a) may be carried out without solvent or in a solvent, depending on the polymer to be used.
  • the solvent may include, but are not limited to, water, toluene, xylene, benzene, anisol, cyclohexanone, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, chloroform, dichloromethane, carbon tetrachloride, hexafluoroisopropyl alcohol, tetrahydrofuran, dioxane, acetone, ethyl acetate, dimethyl sulfoxide, acetonitrile and the like.
  • the crosslinking step b) may be carried out under polymer crosslinking conditions conventionally known. Examples thereof may include, but not limited to, the following conditions.
  • a cross linking reaction can be generated by heating or in the presence of active hydrogen such as in amine or acid anhydride. Further, a crosslinking reaction can be generated also by irradiation with light in the presence of a photo-acid generator or photo-base generator.
  • a crosslinking reaction can be generated by heating or irradiation with light in the presence of heat or photo-radical generator.
  • a crosslinking reaction can be generated by heating or irradiation with light.
  • a crosslinking reaction can be generated in the presence of poly-substituted isocyanates, carbodiimides, triazines or silanes.
  • a crosslinking reaction can also be generated by irradiation with electron beam.
  • the binding step c) may be carried out by a chemical reaction of a group carried on the polymer on its main chain and/or side chain, for example, a -OH group, -NH 2 group, -COOH group, epoxy group, vinyl group, thiol group, photo-crosslinkable group or the like with a group carried on the cyclic molecule, for example, a -OH group, -NH 2 group, -COOH group, epoxy group, vinyl group, thiol group, photo-crosslinkable group or the like.
  • the conditions for the binding step c) depend on the group carried on the polymer, the group carried on the cyclic molecule, and the like.
  • the conditions for the binding step may use, but not limited to, for example, the above-described crosslinking conditions.
  • the material according to the present invention can also be produced by the following production methods.
  • One embodiment of the method of producing the material according to the present invention comprises a) a step of mixing polyrotaxane comprising a cyclic molecule, a linear molecule which is included in cavities of the cyclic molecules in a skewered manner, and a capping group which is located at each end of the linear molecule to prevent the dissociation of the cyclic molecule, with a monomer constituting a polymer; b) a step of polymerizing the monomer to form a polymer, c) a step of physically and/or chemically crosslinking at least a part of the polymer, and d) a step of binding at least a part of the polymer and the polyrotaxane through the cyclic molecule.
  • the polymer may be chemically crosslinked.
  • the chemical crosslinking can be carried out, for example, using a crosslinking agent.
  • the crosslinking agent may include, but not limited to, the above-mentioned agents.
  • the steps b) and c) may be carried out at the substantially same time.
  • the steps c) and d) maybe carried out at the substantially same time. Further, the steps b), c) and d) may also be carried out at the substantially same time.
  • step d) may also be carried out before or after the step c).
  • the conditions for the step of polymerizing a monomer to form a polymer depend on the monomer to be used, and the like. As these conditions, conventionally known conditions can be used.
  • polyrotaxane polymer, cyclic molecule, linear molecule, capping group and the like to be used in the production method of the present invention
  • the same compounds as described above can be used.
  • the monomer constituting a polymer depends on the polymer, but is not particularly limited, as long as it can form the polymer.
  • the reaction was quenched by adding ethanol with an amount of up to 5 ml.
  • Ingredients other than inorganic salts were extracted with 50 ml of methylene chloride three times, and methylene chloride was removed with an evaporator.
  • the residue was dissolved in 250 ml of hot ethanol, and allowed to stand in a freezer at -4°C overnight to precipitate a PEG-carboxylic acid, in which each end of the PEG was substituted with carboxylic acid (-COOH).
  • the precipitated PEG-carboxylic acid was collected by centrifugation.
  • the collected PEG-carboxylic acid was subjected to the procedure consisting of dissolving in hot ethanol, precipitating and centrifuging, for several times, and finally dried in vacuum, to give a purified PEG-carboxylic acid. Yield was 95% or more. A degree of carboxylation was 95% or more.
  • Polyvinyl alcohol (hereinafter may be abbreviated as "PVA", degree of polymerization: 2,000) was dissolved in a 0.03N NaOH aqueous solution, to prepare a 1.0 ml of a 5 wt % solution.
  • PVA polyvinyl alcohol
  • PVA degree of polymerization: 2,000
  • Viscoelastic curves of the gelated bodies A-1 and A-2 were measured, to obtain results shown in Table 1 and Fig. 2 .
  • Table 1 and Fig. 2 show that the gelated body A-1 as the material according to the present invention was improved in extension ratio, owing to the presence of methylated polyrotaxane.
  • Table 1. Viscoelastic characteristics of gelated bodies A-1 and A-2 Gelated body Extension ratio (%) Maximum stress (kPa) Stiffness (kPa) A-1 320 35 12 A-2 149 25 20
  • PVA degree of polymerization: 2,000
  • methylated polyrotaxane Mw PEG : 500,000; degree of methylation: 30 %; degree of inclusion: 29%)
  • Mw PEG 500,000; degree of methylation: 30 %; degree of inclusion: 29%)
  • Mw PEG 500,000; degree of methylation: 30 %; degree of inclusion: 29%)
  • To 1.0 ml of the PVA solution was added 3 mg of the methylated polyrotaxane solution, and dissolved.
  • PVA degree of polymerization: 2,000
  • a 0.03N NaOH aqueous solution was dissolved in a 0.03N NaOH aqueous solution, to prepare 1.0 ml of a 5 wt % solution, and cooled at 5°C.
  • To the solution was added 10 ⁇ L of DVS, and then allowed to stand at temperature of 5°C for 20 hours, to obtain a gelated body A-4 of PVA.
  • Viscoelastic curves of the gelated bodies A-3 and A-4 were measured, to obtain results shown in Table 2 and Fig. 3 .
  • Table 2 and Fig. 3 show that the gelated body A-3 as the material according to the present invention was improved in extension ratio, owing to the presence of methylated polyrotaxane.
  • Table 2. Viscoelastic characteristics of gelated bodies A-3 and A-4 Gelated body Extension ratio (%) Maximum stress (kPa) Stiffness (kPa) A-3 334 3.3 0.8 A-4 291 6.6 2.3
  • a polyrotaxane was prepared in a manner similar to Example 1.
  • PVA degree of polymerization: 500
  • a 1NNaOH aqueous solution to prepare 1.0 ml of a 5 wt % PVA solution.
  • the hydroxypropylated polyrotaxane Mw PEG : 500,000; degree of hydroxypropylation: 35 %; degree of inclusion: 29%) was dissolved in a 1N NaOH aqueous solution, to prepare a 5 wt % hydroxypropylated polyrotaxane solution.
  • To 1.0 ml of the PVA solution was added 3 mg of the hydroxypropylated polyrotaxane solution, and dissolved.
  • Polyacrylic acid (hereinafter maybe abbreviated as "PAA", average molecular weight: 25,000) was dissolved in a 1N NaOH aqueous solution, to prepare 1.0 ml of a 15 wt % PAA solution.
  • PAA Polyacrylic acid
  • a polyrotaxane prepared in a manner similar to Example 1 Mw PEG : 35,000; degree of inclusion: 29%) was dissolved in a 1N NaOH aqueous solution, to prepare a 15 wt % polyrotaxane solution.
  • To 1.0 ml of the PAA solution was added 50 ⁇ L of the polyrotaxane solution, and mixed.
  • PAA average molecular weight: 25,000
  • a methylated polyrotaxane prepared in a manner similar to Example 1 (Mw PEG : 35,000; degree of methylation: 30 %; degree of inclusion: 29%) was dissolved in a 1N NaOH aqueous solution, to prepare a 15 wt % methylated polyrotaxane solution.
  • To 1.0 ml of the PAA solution was added 20 ⁇ L of the methylated polyrotaxane solution, and mixed.
  • PAA average molecular weight: 25,000
  • a hydroxypropylated polyrotaxane prepared in a manner similar to Example 4 (Mw PEG : 500,000; degree of hydroxypropylation: 35 %; degree of inclusion: 29%) was dissolved in a 1N NaOH aqueous solution, to prepare a 10 wt % hydroxypropylated polyrotaxane solution.
  • To 1.0 ml of the PAA solution was added 10 ⁇ L of the hydroxypropylated polyrotaxane solution, and mixed.
  • Collagen was dissolved in a 0.03N NaOH aqueous solution, to prepare 1.0 ml of a 2 wt % collagen solution.
  • a methylated polyrotaxane prepared in a manner similar to Example 1 (Mw PEG : 35,000; degree of methylation: 30 %; degree of inclusion: 29%) was dissolved in a 0.03N NaOH aqueous solution, to prepare a 2 wt % methylated polyrotaxane solution.
  • To 0.5 ml of the collagen solution was added 0.5 ml of the methylated polyrotaxane solution, and mixed.
  • Collagen was dissolved in a 0.03N NaOH aqueous solution, to prepare 1.0 ml of a 2 wt % collagen solution.
  • a hydroxypropylated polyrotaxane prepared in a manner similar to Example 4 (Mw PEG : 500,000; degree of hydroxypropylation: 35 %; degree of inclusion: 29%) was dissolved in a 0.03N NaOH aqueous solution, to prepare a 2 wt % hydroxypropylated polyrotaxane solution.
  • To 1 ml of the collagen solution was added 25 ⁇ L of the hydroxypropylated polyrotaxane solution, and mixed.
  • Collagen was dissolved in a 0.03N NaOH aqueous solution, to prepare 1.0 ml of a 2 wt% collagen solution. To the solution was added 10 ⁇ L of DVS, and then allowed to stand at temperature of 25°C for 20 hours, to obtain a gelated body of collagen.
  • the resulting gelated body was very fragile as compared with the gelated bodies of Examples 8 and 9, and was broken when touched with a hand. On the other hand, the gelated bodies of Examples 8 and 9 had elasticity and were not broken easily by touch. This teaches that the strength of the gelated body was improved by the presence of polyrotaxane.
  • HEC Hydroxyethyl cellulose
  • a methylated polyrotaxane prepared in a manner similar to Example 1 Mw PEG : 35,000; degree of methylation: 30 %; degree of inclusion: 29%) was dissolved in a 0.03N NaOH aqueous solution, to prepare a 5 wt % methylated polyrotaxane solution.
  • To 1 ml of the HEC solution was added 0.1 ml of the methylated polyrotaxane solution, and mixed.
  • Hydroxypropyl cellulose (abbreviated as "HPC") was dissolved in a 0.03N NaOH aqueous solution, to prepare 1.0 ml of a 5 wt % HPC solution.
  • HPC Hydroxypropyl cellulose
  • a hydroxypropylated polyrotaxane prepared in a manner similar to Example 4 Mw PEG : 500,000; degree of hydroxypropylation: 35 %; degree of inclusion: 29%) was dissolved in a 0.03N NaOH aqueous solution, to prepare a 5 wt % hydroxypropylated polyrotaxane solution.
  • To 1 ml of the HPC solution was added 10 ⁇ L of the hydroxypropylated polyrotaxane solution, and mixed.
  • a hydroxypropylated polyrotaxane was prepared in a manner similar to Example 3.
  • MAPVA methacryloylated polyvinyl alcohol
  • Mw PEG methacryloylated polyrotaxane
  • PAA average molecular weight: 25,000
  • Mw PEG methylated polyrotaxane
  • To the resulting solution were added 20 mg of N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide and 20 ⁇ L of diisopropylethylamine, and the mixture was left at room temperature for 5 hours, to obtain a mixed gelated body including crosslinking of PAA and polyrotaxane via an ester bond (PAA:methylated polyrotaxane (weight ratio) 1:1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Claims (28)

  1. Material umfassend ein Polyrotaxan und ein Polymer, wobei das Polyrotaxan ein zyklisches Molekül, ein lineares Molekül, das in den Kavitäten des darauf aufgereihten zyklischen Moleküls (Moleküle) eingeschlossen ist, und Endgruppen umfasst, die zur Verhinderung der Dissoziation des zyklischen Moleküls (Moleküle) jeweils an den Enden des linearen Moleküls angeordnet sind, und wobei ein Teil des Polyrotaxans und das Polymer über das zyklische Molekül miteinander verbunden sind durch eine auf dem zyklischen Molekül befindlichen Gruppe, die an eine auf dem Rückgrat und/oder einer Seitenkette des Polymers befindlichen Gruppe gebunden ist.
  2. Material nach Anspruch 1, wobei das Gewichtsverhältnis des Polyrotaxans zu dem Polymer (Polyrotaxan / Polymer) mindestens 1/1000 beträgt.
  3. Material nach Anspruch 1 oder 2, wobei eine Rückgratkette oder eine Seitenkette des Polymers wenigstens eine Gruppe aufweist, die unter einer OH-Gruppe, einer NH2-Gruppe, einer COOH-Gruppe, einer Epoxygruppe, einer Vinylgruppe, einer Thiolgruppe und einer photovernetzbaren Gruppe ausgewählt ist.
  4. Material nach einem der Ansprüche 1 bis 3, wobei das lineare Molekül unter Polyethylenglycol, Polyisopren, Polyisobutylen, Polybutadien, Polypropylenglycol, Polytetrahydrofuran, Polydimethylsiloxan, Polyethylen und Polypropylen ausgewählt ist.
  5. Material nach einem der Ansprüche 1 bis 4, wobei das lineare Molekül ein Molekulargewicht von mindestens 10.000 hat.
  6. Material nach einem der Ansprüche 1 bis 5, wobei die Endgruppe unter Dinitrophenylgruppen, Cyclodextrinen, Adamantangruppen, Tritylgruppen, Fluoresceinen, Pyrenen, substituierten Benzolen, unsubstituierten und substituierten polycyclischen Aromaten und Steroiden ausgewählt ist.
  7. Material nach einem der Ansprüche 1 bis 6, wobei das zyklische Molekül wenigstens eine Gruppe aufweist, die unter einer OH-Gruppe, einer NH2-Gruppe, einer COOH-Gruppe, einer Epoxygruppe, einer Vinylgruppe, einer Thiolgruppe und einer photovernetzbaren Gruppe ausgewählt ist.
  8. Material nach einem der Ansprüche 1 bis 7, wobei das zyklische Molekül ein unsubstituiertes oder substituiertes Cyclodextrinmolekül ist.
  9. Material nach einem der Ansprüche 1 bis 7, wobei das zyklische Molekül ein unsubstituiertes oder substituiertes Cyclodextrinmolekül ist, das unter α-Cyclodextrin, β-Cyclodextrin und γ-Cyclodextrin und deren Derivaten ausgewählt ist.
  10. Material nach einem der Ansprüche 1 bis 9, wobei das zyklische Molekül ein unsubstituiertes oder substituiertes α-Cyclodextrin ist und das lineare Molekül Polyethylenglycol ist.
  11. Material nach einem der Ansprüche 8 bis 10, wobei ein Substituent des substituierten Cyclodextrinmoleküls oder des substituierten α-Cyclodextrinmoleküls mindestens ein Substituent ist, der unter einer Methylgruppe, einer Hydroxylgruppe und einer Gruppe, die eine (Meth)acryloylgruppe aufweist, ausgewählt ist.
  12. Material nach einem der Ansprüche 1 bis 11, wobei das lineare Molekül das darauf aufgereihte zyklische Molekül (Moleküle) in einer Menge einschließt, die 0,001 bis 0,6 der maximalen Einschlussmenge beträgt, wobei die maximale Einschlussmenge als die Menge definiert ist, bis zu der die zyklischen Moleküle maximal eingeschlossen werden können, wenn das lineare Molekül die darauf aufgereihten zyklische Moleküle einschließt, und die maximale Einschlussmenge auf 1 normiert ist.
  13. Material nach einem der Ansprüche 1 bis 12, wobei das Polymer und das zyklische Molekül im Polyrotaxan durch ein Vernetzungsmittel chemisch miteinander verbunden sind.
  14. Material nach einem der Ansprüche 1 bis 13, wobei das Vernetzungsmittel ein Molekulargewicht von unter 2.000 hat.
  15. Material nach einem der Ansprüche 1 bis 14, wobei das Vernetzungsmittel unter Cyanurchlorid, Trimesoylchlorid, Terephthaloylchlorid, Epichlorhydrin, Dibrombenzol, Glutaraldehyd, Phenylendiisocyanat, Toluylendiisocyanat, Divinylsulfon, 1,1'-Carbonyldiimidazol und Alkoxysilanen ausgewählt ist.
  16. Material nach einem der Ansprüche 1 bis 15, das unter optischen Materialien, Kontaktlinsen, Biomaterialien, medizinischen Materialien, Reifenmaterialien, Auftragsmitteln und Klebstoffen ausgewählt ist.
  17. Verfahren zur Herstellung eines Materials, das ein Polyrotaxan und ein Polymer umfasst, wobei man:
    a) das Polymer und das Polyrotaxan miteinander mischt, wobei das Polyrotaxan ein zyklisches Molekül, ein lineares Molekül, das in den Kavitäten der darauf aufgereihten zyklischen Moleküle eingeschlossen ist, und Endgruppen umfasst, die zur Verhinderung der Dissoziation der zyklischen Moleküle jeweils an den Enden des linearen Moleküls angeordnet sind;
    b) zumindest einen Teil des Polymers physikalisch und/oder chemisch vernetzt; und
    c) den zumindest einen Teil des Polymers und das Polyrotaxan über das zyklische Molekül (Moleküle) miteinander verbindet, indem eine auf dem zyklischen Molekül befindliche Gruppe mit einer auf dem Rückgrat und/oder einer Seitenkette des Polymers befindlichen Gruppe verbunden wird.
  18. Verfahren nach Anspruch 17, wobei in Schritt b) zumindest ein Teil des Polymers chemisch vernetzt wird.
  19. Verfahren nach Anspruch 17 oder 18, wobei der Schritt c) nach dem Schritt b) durchgeführt wird.
  20. Verfahren nach Anspruch 17 oder 18, wobei der Schritt c) vor dem Schritt b) durchgeführt wird.
  21. Verfahren nach Anspruch 17 oder 18, wobei die Schritte b) und c) im Wesentlichen gleichzeitig durchgeführt werden.
  22. Verfahren zur Herstellung eines Materials, das ein Polyrotaxan und ein Polymer umfasst, wobei man:
    a) ein Monomer, aus dem das Polymer aufgebaut ist, und das Polyrotaxan miteinander mischt, wobei das Polyrotaxan ein zyklisches Molekül, ein lineares Molekül, das in den Kavitäten der darauf aufgereihten zyklischen Moleküle eingeschlossen ist, und Endgruppen umfasst, die zur Verhinderung der Dissoziation der zyklischen Moleküle jeweils an den Enden des linearen Moleküls angeordnet sind;
    b) das Monomer polymerisiert, um das Polymer zu erzeugen;
    c) zumindest einen Teil des Polymers physikalisch und/oder chemisch vernetzt; und
    d) den zumindest einen Teil des Polymers und das Polyrotaxan über das zyklische Molekül (Moleküle) miteinander verbindet, indem eine auf dem zyklischen Molekül befindliche Gruppe mit einer auf dem Rückgrat und/oder einer Seitenkette des Polymers befindlichen Gruppe verbunden wird.
  23. Das Verfahren nach Anspruch 22, wobei in Schritt c) zumindest ein Teil des Polymers chemisch vernetzt wird.
  24. Verfahren nach Anspruch 22 oder 23, wobei die Schritte b) und c) im Wesentlichen gleichzeitig durchgeführt werden.
  25. Verfahren nach einem der Ansprüche 22 bis 24, wobei die Schritte c) und d) im Wesentlichen gleichzeitig durchgeführt werden.
  26. Verfahren nach einem der Ansprüche 22 bis 25, wobei die Schritte b), c) und d) im Wesentlichen gleichzeitig durchgeführt werden.
  27. Verfahren nach Anspruch 22 oder 23, wobei der Schritt d) vor dem Schritt c) durchgeführt wird.
  28. Verfahren nach Anspruch 22 oder 23, wobei der Schritt d) nach dem Schritt c) durchgeführt wird.
EP05727602.4A 2004-03-31 2005-03-30 Polyrotaxan enthaltendes polymermaterial und herstellungsverfahren dafür Active EP1734066B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004102702 2004-03-31
PCT/JP2005/006062 WO2005095493A1 (ja) 2004-03-31 2005-03-30 ポリロタキサンを有するポリマー材料、並びにその製造方法

Publications (3)

Publication Number Publication Date
EP1734066A1 EP1734066A1 (de) 2006-12-20
EP1734066A4 EP1734066A4 (de) 2009-06-03
EP1734066B1 true EP1734066B1 (de) 2020-06-24

Family

ID=35063740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05727602.4A Active EP1734066B1 (de) 2004-03-31 2005-03-30 Polyrotaxan enthaltendes polymermaterial und herstellungsverfahren dafür

Country Status (7)

Country Link
US (1) US7622527B2 (de)
EP (1) EP1734066B1 (de)
JP (1) JP4482633B2 (de)
KR (1) KR101180169B1 (de)
CN (1) CN100489015C (de)
CA (1) CA2562179C (de)
WO (1) WO2005095493A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239543A (zh) * 2020-10-19 2021-01-19 华中科技大学 一种交联型梳状聚合物电解质、其制备方法与应用

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG124419A1 (en) * 2005-02-03 2006-08-30 Agency Science Tech & Res Polycations capable of forming complexes with nucleic acids
JP5386702B2 (ja) * 2005-02-21 2014-01-15 国立大学法人 東京大学 ポリロタキサン及びポリマーを有する材料、及びその製造方法
JP4521875B2 (ja) * 2005-08-31 2010-08-11 日産自動車株式会社 疎水性修飾ポリロタキサン
JP2007063412A (ja) * 2005-08-31 2007-03-15 Nissan Motor Co Ltd 親水性修飾ポリロタキサン及び架橋ポリロタキサン
JP5145548B2 (ja) * 2005-09-02 2013-02-20 国立大学法人 東京大学 ポリロタキサン含有溶液及びその使用
JP2007092024A (ja) * 2005-09-02 2007-04-12 Univ Of Tokyo ポリロタキサンのポリマーブレンド及びその使用
EP1942163B1 (de) 2005-10-06 2011-11-23 Nissan Motor Company Limited Stoff für härtbaren lösungsmittelbasierten deckbeschichtungsstoff sowie ihn enthaltender oder daraus hergestellter beschichtungsstoff und beschichtungsfilm
WO2007040264A1 (ja) * 2005-10-06 2007-04-12 Nissan Motor Co., Ltd. 常温乾燥型溶剤系上塗り塗料用材料、これを用いた塗料及び塗膜
JP4376848B2 (ja) * 2005-10-06 2009-12-02 日産自動車株式会社 硬化型溶剤系クリア塗料
EP1942164A1 (de) * 2005-10-06 2008-07-09 Nissan Motor Co., Ltd. Stoff für härtbaren wässrigen deckbeschichtungsstoff und davon gebrauch machender beschichtungsstoff
KR20080047592A (ko) * 2005-10-06 2008-05-29 닛산 지도우샤 가부시키가이샤 상온 건조형 수계 상도 도료용 재료 및 이것을 이용한 도료
JP2007099988A (ja) * 2005-10-06 2007-04-19 Nissan Motor Co Ltd 硬化型溶剤系上塗り塗料用材料、これを用いた塗料及び塗膜
JP5176086B2 (ja) * 2005-10-13 2013-04-03 日産自動車株式会社 ポリロタキサン含有自動車用着色プラスチック
JP5176087B2 (ja) * 2005-10-13 2013-04-03 日産自動車株式会社 ポリロタキサン含有自動車用透明プラスチック
KR100802767B1 (ko) 2005-11-04 2008-02-12 현대자동차주식회사 하이브리드 차량의 배터리유닛 및 모터제어유닛 냉각시스템
JP5311530B2 (ja) 2006-02-23 2013-10-09 リンテック株式会社 粘着シート
JP2008001997A (ja) * 2006-06-20 2008-01-10 Advanced Softmaterials Inc ポリロタキサン及び繊維を有する繊維材料、及びその製造方法
JP2009292727A (ja) * 2006-09-21 2009-12-17 Advanced Softmaterials Inc パック用シート
KR20100021454A (ko) * 2007-06-15 2010-02-24 도꾜 다이가꾸 주쇄 골격이 ―Si―O―로 본질적으로 이루어지는 폴리로탁산 및 그의 제조 방법, 및 상기 폴리로탁산을 가교시켜 이루어지는 가교 폴리로탁산 및 그의 제조 방법
JP5522891B2 (ja) * 2007-08-29 2014-06-18 リンテック株式会社 高分子架橋前駆体、高分子架橋体およびそれらの製造方法
JP5727138B2 (ja) * 2007-09-07 2015-06-03 株式会社ブリヂストン ゴム組成物及びそれを用いたタイヤ
JP4961369B2 (ja) * 2008-02-27 2012-06-27 富士フイルム株式会社 光学フィルム、偏光板、画像表示装置および光学フィルムの製造方法
US8497320B2 (en) 2008-05-07 2013-07-30 Advanced Softmaterials Inc. Polyrotaxane, crosslinked structure comprising polyrotaxane and polymer, and processes for producing these
ES2335958B2 (es) 2008-08-06 2010-11-02 Universidad De Santiago De Compostela Hidrogeles acrilicos con ciclodextrinas colgantes, su preparacion y su aplicacion como sistemas de liberacion y componentes de lentes de contacto.
KR101631724B1 (ko) 2008-09-01 2016-06-17 아도반스토 소후토 마테리아루즈 가부시키가이샤 용매 무함유의 가교 폴리로탁산을 갖는 재료, 및 그의 제조 방법
JP6013191B2 (ja) 2010-12-16 2016-10-25 住友精化株式会社 擬ポリロタキサン水性分散体の製造方法
KR101817379B1 (ko) 2010-12-16 2018-01-11 스미또모 세이까 가부시키가이샤 유사 폴리로탁산의 제조 방법
JP6013190B2 (ja) 2010-12-16 2016-10-25 住友精化株式会社 擬ポリロタキサンの製造方法
JP5676282B2 (ja) * 2011-01-07 2015-02-25 株式会社豊田中央研究所 摺動部材および摺動部品
CA2829862C (en) * 2011-03-14 2017-10-24 Advanced Softmaterials Inc PROCESS FOR THE PRODUCTION OF POWDERED HYDROPHILIC MODIFIED POLYROTAXANE
WO2012124218A1 (ja) 2011-03-14 2012-09-20 住友精化株式会社 親水性修飾ポリロタキサンの製造方法
CN102391445B (zh) * 2011-08-28 2013-04-17 山东理工大学 聚丙烯酸酯类聚合物封端环糊精聚轮烷及其制备方法
JP5855394B2 (ja) * 2011-09-07 2016-02-09 リンテック株式会社 粘着性組成物、粘着剤および粘着シート
JP6018747B2 (ja) * 2011-12-06 2016-11-02 リンテック株式会社 ウエハ加工用粘着シート、該シートを用いた半導体ウエハの加工方法
JP5975977B2 (ja) * 2011-12-19 2016-08-23 キヤノン株式会社 帯電部材、プロセスカートリッジ及び電子写真装置
JP5844201B2 (ja) * 2012-03-30 2016-01-13 リンテック株式会社 粘着性組成物、粘着剤および粘着シート
JP2013209460A (ja) * 2012-03-30 2013-10-10 Sumitomo Chemical Co Ltd 樹脂反応生成物、およびそれを含む成形体
KR102011170B1 (ko) * 2012-03-30 2019-08-14 우베 고산 가부시키가이샤 히드록시알킬화 폴리로탁산의 제조 방법
US20150051390A1 (en) 2012-03-30 2015-02-19 Ube Industries, Ltd. Blocked polyrotaxane production method
JP5460776B2 (ja) * 2012-04-26 2014-04-02 リンテック株式会社 粘着シート
US9523539B2 (en) * 2012-05-23 2016-12-20 Sharp Kabushiki Kaisha Latent heat storage member and building material provided with same, microcapsules and thermal storage material using microcapsules
WO2014112234A1 (ja) * 2013-01-21 2014-07-24 住友精化株式会社 軟質材料用組成物及び軟質材料
JP6391569B2 (ja) 2013-06-07 2018-09-19 アドバンスト・ソフトマテリアルズ株式会社 ポリロタキサン、並びにオキシラン基及び/又はオキセタン基を2以上有する化合物を有する架橋用組成物
KR20140147041A (ko) * 2013-06-18 2014-12-29 주식회사 엘지화학 셀 포장재료 및 그 제조방법
JP6380942B2 (ja) 2013-10-10 2018-08-29 パナソニックIpマネジメント株式会社 樹脂組成物及びそれを用いたフィルム
KR102229046B1 (ko) 2013-10-31 2021-03-16 스미또모 세이까 가부시키가이샤 폴리로탁산 함유 조성물
JP6526972B2 (ja) * 2014-01-14 2019-06-05 日東電工株式会社 接着剤、偏光フィルム、液晶パネル、光学フィルム、および画像表示装置
CN103955072A (zh) * 2014-05-20 2014-07-30 丹阳市精通眼镜技术创新服务中心有限公司 一种使用遇水膨胀材料制作的防脱落眼镜
JP6300926B2 (ja) * 2014-07-08 2018-03-28 国立大学法人大阪大学 自己修復性を有する高分子材料及びその製造方法
JP6748577B2 (ja) * 2014-08-25 2020-09-02 住友精化株式会社 ポリエステル樹脂組成物及び成形体
JP6283289B2 (ja) * 2014-09-05 2018-02-21 矢崎総業株式会社 シール部材
MX2017005824A (es) 2014-11-04 2017-07-19 Dws Srl Método estereolitográfico y composición.
US10299379B2 (en) * 2014-11-27 2019-05-21 Panasonic Intellectual Property Management Co., Ltd. Sheet-shaped stretchable structure, and resin composition for stretchable resin sheet and stretchable resin sheet used for the structure
JP6369788B2 (ja) 2014-11-27 2018-08-08 パナソニックIpマネジメント株式会社 エレクトロニクス用構造体
JP2016204434A (ja) * 2015-04-17 2016-12-08 東洋ゴム工業株式会社 軟質ポリウレタンフォーム製造用ポリオール組成物および軟質ポリウレタンフォーム
JP6785766B2 (ja) * 2015-07-23 2020-11-18 住友化学株式会社 樹脂、および表面保護板または自動車用材料
CN107922605B (zh) 2015-09-03 2020-12-11 株式会社德山 聚轮烷及其制法以及含有该聚轮烷的光学用组合物
WO2017086272A1 (ja) * 2015-11-18 2017-05-26 株式会社ニコン・エシロール 眼鏡レンズ
JP6724356B2 (ja) * 2015-12-11 2020-07-15 住友ゴム工業株式会社 ゴルフボール
JP6638374B2 (ja) * 2015-12-17 2020-01-29 住友ゴム工業株式会社 ゴルフボール
CN105601874A (zh) * 2015-12-31 2016-05-25 天津微瑞超分子材料科技有限公司 采用交联滑动接枝聚合物增韧改性四氢呋喃乳液及其制备
CN105504201A (zh) * 2015-12-31 2016-04-20 天津微瑞超分子材料科技有限公司 采用交联滑动接枝聚合物增韧改性聚四氢呋喃膜材料
CN105754069A (zh) * 2015-12-31 2016-07-13 天津微瑞超分子材料科技有限公司 采用交联滑动接枝聚合物增韧改性聚己内酯乳液及其制备
EP3418037B1 (de) * 2016-03-07 2021-07-28 Sumitomo Rubber Industries Ltd. Kautschukzusammensetzung zur dreidimensionalen generativen fertigung
US20190119408A1 (en) * 2016-04-27 2019-04-25 Osaka University Method for producing polyrotaxane
JP6977242B2 (ja) * 2016-05-25 2021-12-08 住友ゴム工業株式会社 ゴルフボール
JP2019163344A (ja) * 2016-07-25 2019-09-26 国立大学法人 東京大学 擬ポリロタキサン、ポリロタキサン、及びそれらの製造方法
JP2018024768A (ja) * 2016-08-10 2018-02-15 株式会社ブリヂストン ゴム組成物及びタイヤ
JP6753253B2 (ja) * 2016-09-30 2020-09-09 住友ゴム工業株式会社 ゴルフボール
JP6946095B2 (ja) * 2017-03-03 2021-10-06 キヤノン株式会社 立体造形用の光硬化性組成物、それを用いた立体物の製造方法、および樹脂
JP6931829B2 (ja) 2017-07-05 2021-09-08 パナソニックIpマネジメント株式会社 熱硬化性樹脂組成物及びそれを用いたフィルム
US10700357B2 (en) * 2017-08-14 2020-06-30 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a protected sulfur cathode material and manufacturing method
WO2019067786A1 (en) 2017-09-29 2019-04-04 The Regents Of The University Of California MULTI-ARM POLYROTAXANE PLATFORM FOR PROTECTED ADMINISTRATION OF NUCLEIC ACIDS
CN108276643A (zh) * 2018-02-01 2018-07-13 广州市新稀冶金化工有限公司 塑料抗菌的复合纳米材料及其制备方法
JP6944885B2 (ja) * 2018-02-02 2021-10-06 オリンパス株式会社 超音波振動子及び超音波内視鏡
US20210122874A1 (en) 2018-05-17 2021-04-29 Tokuyama Corporation Low moisture content polyrotaxane monomer and curable composition comprising said monomer
JP7218536B2 (ja) * 2018-10-16 2023-02-07 住友ゴム工業株式会社 ゴルフボール
US11345784B2 (en) 2018-11-09 2022-05-31 Panasonic Intellectual Property Management Co., Ltd. Resin composition, and resin film, metal foil with resin, metal clad laminate, wiring board, and circuit mount component using same
CN109749322B (zh) * 2019-01-09 2021-04-27 黄山市尚义橡塑制品有限公司 一种滑动交联网络丙烯酸酯橡胶密封件及其制备方法
US11230497B2 (en) 2019-04-10 2022-01-25 Saudi Arabian Oil Company Cement additives
JPWO2020256046A1 (de) * 2019-06-19 2020-12-24
US20220332859A1 (en) * 2019-09-05 2022-10-20 Osaka University Polymer material and method for producing same, and polymer compatibilizing agent
US11279864B2 (en) 2019-10-04 2022-03-22 Saudi Arabian Oil Company Method of application of sliding-ring polymers to enhance elastic properties in oil-well cement
JP2021100484A (ja) * 2019-12-24 2021-07-08 信越ポリマー株式会社 カテーテル
US11401369B2 (en) * 2019-12-26 2022-08-02 Sumitomo Rubber Industries, Ltd. Rotaxane, crosslinked product of rotaxane, and methods for producing the same
JP7369461B2 (ja) * 2021-01-04 2023-10-26 平岡織染株式会社 接合強度に優れたターポリン
US12071589B2 (en) 2021-10-07 2024-08-27 Saudi Arabian Oil Company Water-soluble graphene oxide nanosheet assisted high temperature fracturing fluid
EP4410863A1 (de) * 2021-10-28 2024-08-07 China Petroleum & Chemical Corporation Zusammensetzung zur herstellung von polycaprolactonformgedächtnismaterial und polycaprolactonformgedächtnismaterial, herstellungsverfahren dafür und anwendung davon
US11858039B2 (en) 2022-01-13 2024-01-02 Saudi Arabian Oil Company Direct ink printing of multi-material composite structures

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2097482T3 (es) 1992-08-05 1997-04-01 Ciba Geigy Ag Lentes de contacto de ciclodextrinas lipofilizadas.
US5538655A (en) * 1994-06-29 1996-07-23 Arthur D. Little, Inc. Molecular complexes for use as electrolyte components
US6100329A (en) * 1998-03-12 2000-08-08 Virginia Tech Intellectual Properties, Inc. Reversible, mechanically interlocked polymeric networks which self-assemble
DE19825486C2 (de) * 1998-06-08 2000-07-06 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit supramolekularen Hohlraummolekülen, Verfahren zu deren Herstellung und deren Verwendung
WO2001057140A1 (en) * 2000-02-04 2001-08-09 Massachusetts Institute Of Technology Insulated nanoscopic pathways, compositions and devices of the same
DE60139683D1 (de) * 2000-04-28 2009-10-08 Toudai Tlo Ltd Verbindung enthaltend vernetzte polyrotaxane
WO2002002159A1 (fr) * 2000-07-03 2002-01-10 Japan Tissue Engineering Co., Ltd. Materiaux de base pour regeneration de tissus, materiaux de transplantation, et procede de fabrication
US6527887B1 (en) * 2002-01-18 2003-03-04 Mach I, Inc. Polymeric cyclodextrin nitrate esters
US20040162275A1 (en) * 2002-02-27 2004-08-19 Nobuhiko Yui Multivalently interactive molecular assembly, capturing agent, drug carrier, calcium chelating agent, and drug enhancer
JP3700970B2 (ja) * 2002-03-12 2005-09-28 北辰工業株式会社 ロタキサン構造をもつポリウレタンエラストマー及びその製造方法
JP3680133B2 (ja) * 2002-08-27 2005-08-10 独立行政法人産業技術総合研究所 ロタキサン複合体及びその製造方法。
JP2004327271A (ja) * 2003-04-25 2004-11-18 Toyo Ink Mfg Co Ltd 高分子ゲル電解質、およびそれを用いた光電変換素子
JP4467262B2 (ja) * 2003-08-28 2010-05-26 株式会社ブリヂストン 架橋体及びその製造方法、並びにそのリサイクル方法
US8450415B2 (en) * 2004-01-08 2013-05-28 The University Of Tokyo Compound having crosslinked polyrotaxane and process for producing the same
WO2005080470A1 (ja) * 2004-01-08 2005-09-01 The University Of Tokyo 架橋ポリロタキサン及びその製造方法
JP4161106B2 (ja) * 2004-09-30 2008-10-08 独立行政法人科学技術振興機構 細胞剥離剤及び細胞シート剥離方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239543A (zh) * 2020-10-19 2021-01-19 华中科技大学 一种交联型梳状聚合物电解质、其制备方法与应用

Also Published As

Publication number Publication date
EP1734066A1 (de) 2006-12-20
CN100489015C (zh) 2009-05-20
US7622527B2 (en) 2009-11-24
JP4482633B2 (ja) 2010-06-16
CA2562179C (en) 2013-07-23
WO2005095493A1 (ja) 2005-10-13
EP1734066A4 (de) 2009-06-03
JPWO2005095493A1 (ja) 2008-02-21
US20080097039A1 (en) 2008-04-24
KR20070000504A (ko) 2007-01-02
CA2562179A1 (en) 2005-10-13
CN1938367A (zh) 2007-03-28
KR101180169B1 (ko) 2012-09-05

Similar Documents

Publication Publication Date Title
EP1734066B1 (de) Polyrotaxan enthaltendes polymermaterial und herstellungsverfahren dafür
EP1852454B1 (de) Erstes polyrotaxan und zweites polyrotaxan enthaltenes material und herstellungsverfahren dafür
KR20060136474A (ko) 폴리로탁산을 갖는 중합체 재료, 및 그의 제조 방법
JP3475252B2 (ja) 架橋ポリロタキサンを有する化合物
KR100962771B1 (ko) 소수성 폴리로탁산 및 가교 폴리로탁산
EP1900776A1 (de) Gelzusammensetzung und herstellungsverfahren dafür
JP4521875B2 (ja) 疎水性修飾ポリロタキサン
WO2006090819A1 (ja) ポリロタキサン及びポリマー並びにイオン性液体を有する材料、及びその製造方法
WO2005080470A1 (ja) 架橋ポリロタキサン及びその製造方法
US20130331562A1 (en) Method for producing refined polyrotaxane
JP2009270119A (ja) 疎水性修飾ポリロタキサン
CN111574756B (zh) 一种壳聚糖基/功能化的壳聚糖基水凝胶及其制备以及应用
JP5051491B2 (ja) 環状分子減量ポリロタキサンの製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: C08G 65/333 20060101ALI20090422BHEP

Ipc: C08G 85/00 20060101AFI20051020BHEP

Ipc: C08L 101/00 20060101ALI20090422BHEP

Ipc: C08L 71/02 20060101ALI20090422BHEP

Ipc: C08G 65/00 20060101ALI20090422BHEP

Ipc: C08G 65/329 20060101ALI20090422BHEP

Ipc: C08G 83/00 20060101ALI20090422BHEP

Ipc: B01J 20/24 20060101ALI20090422BHEP

Ipc: C08L 101/14 20060101ALI20090422BHEP

Ipc: C08B 37/00 20060101ALI20090422BHEP

Ipc: C08L 5/16 20060101ALI20090422BHEP

Ipc: C08G 65/32 20060101ALI20090422BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20090507

17Q First examination report despatched

Effective date: 20090820

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005056888

Country of ref document: DE

Owner name: THE UNIVERSITY OF TOKYO, JP

Free format text: FORMER OWNER: THE UNIVERSITY OF TOKYO, TOKIO/TOKYO, JP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005056888

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1283838

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1283838

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005056888

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210330

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210330

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210330

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050330

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240321

Year of fee payment: 20