EP1556985A2 - Pilotes pour systemes de communication mimo - Google Patents

Pilotes pour systemes de communication mimo

Info

Publication number
EP1556985A2
EP1556985A2 EP03781530A EP03781530A EP1556985A2 EP 1556985 A2 EP1556985 A2 EP 1556985A2 EP 03781530 A EP03781530 A EP 03781530A EP 03781530 A EP03781530 A EP 03781530A EP 1556985 A2 EP1556985 A2 EP 1556985A2
Authority
EP
European Patent Office
Prior art keywords
pilot
mimo
antennas
symbol
symbols
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03781530A
Other languages
German (de)
English (en)
Other versions
EP1556985B1 (fr
Inventor
John W. Ketchum
Mark Wallace
Jay R. Walton
Steven J. Howard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to DK11153572.0T priority Critical patent/DK2363970T3/en
Priority to EP11153572.0A priority patent/EP2363970B1/fr
Publication of EP1556985A2 publication Critical patent/EP1556985A2/fr
Application granted granted Critical
Publication of EP1556985B1 publication Critical patent/EP1556985B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0684Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0083Signalling arrangements
    • H04L2027/0089In-band signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Definitions

  • the present invention relates generally to data communication, and more specifically to pilots suitable for use in multiple-input multiple-output (MIMO) communication systems.
  • MIMO multiple-input multiple-output
  • a MIMO system employs multiple (N ⁇ ) transmit antennas and multiple (NR) receive antennas for data transmission.
  • a MIMO channel formed by the ⁇ /r transmit and NR receive antennas may be decomposed into N s independent channels, which are also referred to as eigenmodes, where N s ⁇ min ⁇ N T , N R ⁇ .
  • Each of the Ns independent channels corresponds to a dimension.
  • the MIMO system can provide improved performance (e.g., increased transmission capacity and/or greater reliability) if the additional dimensionalities created by the multiple transmit and receive antennas are utilized.
  • data to be transmitted is first modulated onto a radio frequency (RF) carrier signal to generate an RF modulated signal that is more suitable for transmission over a wireless channel.
  • RF radio frequency
  • up to N ⁇ RF modulated signals may be generated and transmitted simultaneously from the ⁇ /r transmit antennas.
  • the transmitted RF modulated signals may reach the NR receive antennas via a number of propagation paths in the wireless channel.
  • the characteristics of the propagation paths typically vary over time due to a number of factors such as, for example, fading, multipath, and external interference.
  • the transmitted RF modulated signals may experience different channel conditions (e.g., different fading and multipath effects) and may be associated with different complex gains and signal-to-noise ratios (SNRs).
  • SNRs signal-to-noise ratios
  • a pilot is transmitted by the transmitter to assist the receiver in performing a number of functions.
  • the pilot is typically generated based on known symbols and processed in a known manner.
  • the pilot may be used by the receiver for channel estimation, timing and frequency acquisition, data demodulation, and so on.
  • Various challenges are encountered in the design of a pilot structure for a MIMO system. As one consideration, the pilot structure needs to address the additional dimensionalities created by the multiple transmit and multiple receive antennas. As another consideration, since pilot transmission represents overhead in the MIMO system, it is desirable to minimize pilot transmission to the extent possible.
  • the pilot structure needs to be designed such that the pilots needed to support the multiple users do not consume a large portion of the available system resources.
  • pilots suitable for use in MIMO systems are provided herein. These pilots can support various functions that may be needed for proper system operation, such as timing and frequency acquisition, channel estimation, calibration, and so on.
  • the pilots may be considered as being of different types that are designed and used for different functions.
  • the various types of pilot may include: a beacon pilot, a MIMO pilot, a steered reference or steered pilot, and a carrier pilot.
  • the beacon pilot is transmitted from all transmit antennas and may be used for timing and frequency acquisition.
  • the MIMO pilot is also transmitted from all transmit antennas but is covered with different orthogonal codes assigned to the transmit antennas.
  • the MIMO pilot may be used for channel estimation.
  • the steered reference is transmitted on specific eigenmodes of a MIMO channel and is user terminal specific. The steered reference may be used for channel estimation and possibly rate control.
  • the carrier pilot may be transmitted on certain designated subbands/antennas and may be used for phase tracking of a carrier signal.
  • an access point may transmit a beacon pilot, a MIMO pilot, and a carrier pilot for all user terminals within its coverage area and may optionally transmit a steered reference to any active user terminal that is receiving a downlink transmission from the access point.
  • a user terminal may transmit a MIMO pilot for calibration and may transmit a steered reference and a carrier pilot when scheduled (e.g., for downlink and/or uplink data transmissions). The processing to transmit and receive these various types of pilot is described in further detail below.
  • FIG. 1 shows a multiple-access MIMO system
  • FIG. 2 shows an exemplary frame structure for data transmission in a
  • FIG. 3 shows downlink and uplink pilot transmissions for an exemplary pilot transmission scheme
  • FIG. 4 shows a block diagram of an access point and a user terminal
  • FIG. 5 shows a block diagram of a TX spatial processor that can generate a beacon pilot
  • FIG. 6A shows a block diagram of a TX spatial processor that can generate a MIMO pilot
  • FIG. 6B shows a block diagram of an RX spatial processor that can provide a channel response estimate based on a received MIMO pilot
  • FIG. 7A shows a block diagram of a TX spatial processor that can generate a steered reference
  • FIG. 7B shows a block diagram of an RX spatial processor that can provide a channel response estimate based on a received steered reference.
  • FIG. 1 shows a multiple-access MIMO system 100 that supports a number of users and is capable of implementing the pilots described herein.
  • MIMO system 100 includes a number of access points (APs) 110 that support communication for a number of user terminals (UTs) 120.
  • APs access points
  • UTs user terminals
  • An access point is generally a fixed station that is used for communicating with the user terminals.
  • An access point may also be referred to as a base station or using some other terminology.
  • User terminals 120 may be dispersed throughout the system. Each user terminal may be a fixed or mobile terminal that can communicate with the access point. A user terminal may also be referred to as an access terminal, a mobile station, a remote station, a user equipment (UE), a wireless device, or some other terminology. Each user terminal may communicate with one or possibly multiple access points on the downlink and/or uplink at any given moment.
  • the downlink i.e., forward link
  • the uplink i.e., reverse link
  • an "active" user terminal is one that is receiving a downlink transmission from an access point and/or transmitting an uplink transmission to the access point.
  • access point 110a communicates with user terminals 120a through 120f
  • access point 110b communicates with user terminals 120f through 120k.
  • the assignment of user terminals to access points is typically based on received signal strength and not distance.
  • a user terminal may receive downlink transmission from one or multiple access points.
  • a system controller 130 couples to access points 110 and may be designed to perform a number of functions such as (1) coordination and control for the access points coupled to it, (2) routing of data among these access points, and (3) access and control of communication with the user terminals served by these access points.
  • Pilots suitable for use in MIMO systems are provided herein. These pilots can support various functions that may be needed for proper system operation, such as timing and frequency acquisition, channel estimation, calibration, and so on.
  • the pilots may be considered as being of different types that are designed and used for different functions. Table 1 lists four types of pilot and their short description for an exemplary pilot design. Fewer, different, and/or additional pilot types may also be defined, and this is within the scope of the invention.
  • Steered reference and steered pilot are synonymous terms.
  • Various pilot transmission schemes may be devised based on any combination of these various types of pilot.
  • an access point may transmit a beacon pilot, a MIMO pilot, and a carrier pilot for all user terminals within its coverage area and may optionally transmit a steered reference to any active user terminal that is receiving a downlink transmission from the access point.
  • a user terminal may transmit a MIMO pilot for calibration and may transmit a steered reference and a carrier pilot when scheduled (e.g., for downlink and/or uplink data transmissions).
  • the processing to transmit and receive these various types of pilot is described in further detail below.
  • the pilots described herein may be used for various types of MIMO systems.
  • the pilots may be used for (1) single-carrier MIMO systems, (2) multi-carrier MIMO systems that employ orthogonal frequency division multiplexing (OFDM) or some other multi-carrier modulation technique, (3) MIMO systems that implement multiple-access techniques such as frequency division multiple-access (FDMA), time division multiple-access (TDMA), and code division multiple-access (CDMA), (4) MIMO systems that implement frequency division multiplexing (FDM), time division multiplexing (TDM), and/or code division multiplexing (CDM) for data transmission, (5) MIMO systems that implement time division duplexing (TDD), frequency division duplexing (FDD), and/or code division duplexing (CDD) for the downlink and uplink channels, and (6) other types of MIMO systems.
  • OFDM orthogonal frequency division multiplexing
  • CDMA code division multiple-access
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • CDD code division duplexing
  • OFDM effectively partitions the overall system bandwidth into a number of (N F ) orthogonal subbands, which are also referred to as tones, frequency bins, or frequency subchannels.
  • N F orthogonal subbands
  • each subband is associated with a respective subcarrier upon which data may be modulated.
  • each subband may be associated with a number of eigenmodes, and each eigenmode of each subband may be viewed as an independent transmission channel.
  • 64 subbands 48 subbands (e.g., with indices of ⁇ 1 , ..., 6, 8, ..., 20, 22, ...
  • the 52 "usable" subbands include the 48 data subbands and 4 pilot subbands, and the remaining 12 subbands are not used.
  • This OFDM subband structure is described in further detail in the aforementioned provisional U.S. Patent Application Serial No. 60/421 ,309.
  • the data to be transmitted on each usable subband is first modulated (i.e., symbol mapped) using a particular modulation scheme (e.g., BPSK, QPSK, or M-QAM) selected for use for that subband.
  • a particular modulation scheme e.g., BPSK, QPSK, or M-QAM
  • One modulation symbol may be transmitted on each usable subband in each symbol period.
  • Each modulation symbol is a complex value for a specific point in a signal constellation corresponding to the selected modulation scheme. Signal values of zero may be sent on the unused subbands.
  • the modulation symbols for the usable subbands and zero signal values for the unused subbands are transformed to the time domain using an inverse fast Fourier transform (1FFT) to obtain a transformed symbol that comprises NF time-domain samples.
  • 1FFT inverse fast Fourier transform
  • a portion of each transformed symbol is often repeated (which is also referred to as adding a cyclic prefix) to form a corresponding OFDM symbol, which is then transmitted over the wireless channel.
  • An OFDM symbol period which is also referred to herein as a symbol period, corresponds to the duration of one OFDM symbol.
  • the beacon pilot includes a specific set of pilot symbols that is transmitted from each of the ⁇ rr transmit antennas. The same set of pilot symbols is transmitted for N B symbol periods designated for beacon pilot transmission. In general, NB may be any integer value of one or greater.
  • the set of pilot symbols for the beacon pilot is a set of 12 BPSK modulation symbols for 12 specific subbands, which is referred to as a "B" OFDM symbol.
  • the 12 BPSK modulation symbols for the B OFDM symbol are given in Table 2. Signal values of zeros are transmitted on the remaining 52 unused subbands.
  • the BPSK modulation symbol (1 + j) is transmitted in subbands - 24, -16, -4, 12, 16, 20, and 24, and the BPSK modulation symbol -(1+ j) is transmitted in subbands -20, -12, -8, 4, and 8.
  • Zero signal values are transmitted on the remaining 52 subbands for the beacon pilot.
  • the B OFDM symbol is designed to facilitate system timing and frequency acquisition by the user terminals. For the exemplary embodiment of the B OFDM symbol described above, only 12 of the 64 total subbands are used, and these subbands are spaced apart by four subbands. This 4-subband spacing allows the user terminal to have an initial frequency error of up to two subbands.
  • the beacon pilot allows the user terminal to correct for its initial coarse frequency error, and to correct its frequency so that the phase drift over the duration of the beacon pilot is small (e.g., less than 45 degrees over the beacon pilot duration at a sample rate of 20 MHz). If the beacon pilot duration is 8 ⁇ sec, then the 45 degrees (or less) of phase drift over 8 ⁇ sec is equal to 360 degrees over 64 ⁇ sec, which is approximately 16 kHz. [1038] The 16 kHz frequency error is typically too large for operation. Additional frequency correction may be obtained using the MIMO pilot and the carrier pilot. These pilots span a long enough time duration that the user terminal frequency can be corrected to within the desired target (e.g., 250 Hz).
  • the desired target e.g. 250 Hz
  • TDD frame is 2 msec (as described below) and if the user terminal frequency is accurate to within 250Hz, then there will be less than half a cycle of phase change over one TDD frame.
  • the phase difference from TDD frame to TDD frame of the beacon pilot may be used to lock the frequency of the user terminal to the clock at the access point, thereby effectively reducing the frequency error to zero.
  • the set of pilot symbols used for the beacon pilot may be derived using any modulation scheme.
  • other OFDM symbols derived using BPSK or some other modulation scheme may also be used for the beacon pilot, and this is within the scope of the invention.
  • four transmit antennas are available for beacon pilot transmission. Table 4 lists the OFDM symbols to be transmitted from each of the four transmit antennas for a beacon pilot transmission that spans two symbol periods.
  • the MIMO pilot includes a specific set of pilot symbols that is transmitted from each of the N ⁇ transmit antennas. For each transmit antenna, the same set of pilot symbols is transmitted for N P symbol periods designated for MIMO pilot transmission. However, the set of pilot symbols for each transmit antenna is "covered" with a unique orthogonal sequence or code assigned to that antenna. Covering is a process whereby a given pilot or data symbol (or a set of L pilot data symbols with the same value) to be transmitted is multiplied by all L chips of an -chip orthogonal sequence to obtain L covered symbols, which are then transmitted.
  • Decovering is a complementary process whereby received symbols are multiplied by the L chips of the same L-chip orthogonal sequence to obtain L decovered symbols, which are then accumulated to obtain an estimate of the transmitted pilot or data symbol.
  • the covering achieves orthogonality among the ⁇ /r pilot transmissions from the ⁇ /r transmit antennas and allows a receiver to distinguish the individual transmit antennas, as described below.
  • the duration of the MIMO pilot transmission may be dependent on its use, as described below.
  • Np may be any integer value of one or greater.
  • One set or different sets of pilot symbols may be used for the NT transmit antennas.
  • one set of pilot symbols is used for all ⁇ /r transmit antennas for the MIMO pilot and this set includes 52 QPSK modulation symbols for the 52 usable subbands, which is referred to as a "P" OFDM symbol.
  • the 52 QPSK modulation symbols for the P OFDM symbol are given in Table 2. Signal values of zero are transmitted on the remaining 12 unused subbands.
  • the 52 QPSK modulation symbols form a unique "word" that is designed to facilitate channel estimation by the user terminals. This unique word is selected to have a minimum peak-to-average variation in a waveform generated based on these 52 modulation symbols.
  • OFDM is generally associated with higher peak- to-average variation in the transmitted waveform than for some other modulation technique (e.g., CDMA).
  • OFDM symbols are typically transmitted at a reduced power level, i.e., backed off from the peak transmit power level.
  • the back-off is used to account for variations in the waveform for these OFDM symbols.
  • the MIMO pilot may be transmitted at a higher power level (i.e., a smaller back-off may be applied for the MIMO pilot).
  • the higher transmit power for the MIMO pilot would then result in improved received signal quality for the MIMO pilot at the receiver.
  • the smaller peak-to- average variation may also reduce the amount of distortion and non-linearity generated by the circuitry in the transmit and receive chains. These various factors may result in improved accuracy for a channel estimate obtained based on the MIMO pilot.
  • An OFDM symbol with minimum peak-to-average variation may be obtained in various manners. For example, a random search may be performed in which a large number of sets of pilot symbols are randomly formed and evaluated to find the set that has the minimum peak-to-average variation.
  • the P OFDM symbol shown in Table 2 represents an exemplary OFDM symbol that may be used for the MIMO pilot.
  • the set of pilot symbols used for the MIMO pilot may be derived using any modulation scheme.
  • various other OFDM symbols derived using QPSK or some other modulation scheme may also be used for the MIMO pilot, and this is within the scope of the invention.
  • orthogonal codes may be used to cover the P OFDM symbols sent on the ⁇ /r transmit antennas.
  • orthogonal codes include Walsh codes and orthogonal variable spreading factor (OVSF) codes.
  • Pseudo- orthogonal codes and quasi-orthogonal codes may also be used to cover the P OFDM symbols.
  • An example of a pseudo-orthogonal code is the M-sequence that is well known in the art.
  • An example of a quasi-orthogonal code is the quasi-orthogonal function (QOF) defined by IS-2000.
  • QOF quasi-orthogonal function
  • various types of codes may be used for covering, some of which are noted above.
  • orthogonal code is used herein to generically refer to any type of code suitable for use for covering pilot symbols.
  • the length (L) of the orthogonal code is selected to be greater than or equal to the number of transmit antennas (e.g., L ⁇ N T ), and L orthogonal codes are available for use.
  • Each transmit antenna is assigned a unique orthogonal code.
  • the Np P OFDM symbols to be sent in Np symbol periods from each transmit antenna are covered with the orthogonal code assigned to that transmit antenna.
  • each of the 52 QPSK modulation symbols in the P OFDM symbol is inverted (i.e., multiplied with -1).
  • the result of the covering for each transmit antenna is a sequence of covered P OFDM symbols for that transmit antenna.
  • the covering is in effect performed separately for each of the subbands to generate a sequence of covered pilot symbols for that subband.
  • the sequences of covered pilot symbols for all subbands form the sequence of covered P OFDM symbols.
  • the matrix H(fc) for each subband includes N T N R values, ⁇ h tJ (k) ⁇ , for ie ⁇ l ... N R ⁇ and j ' ⁇ ⁇ l ...
  • the MIMO pilot may be used by the receiver to estimate the response of the wireless channel.
  • the received OFDM symbols on antenna / are first multiplied with the Walsh sequence assigned to transmit antenna j.
  • the "decovered" OFDM symbols for all Np symbol periods for the MIMO pilot are then accumulated, where the accumulation may be performed individually for each of the 52 usable subbands.
  • the accumulation may also be performed in the time domain on the received OFDM symbols (after removing the cyclic prefix in each OFDM symbol).
  • the accumulation is performed on a sample-by-sample basis over multiple received OFDM symbols, where the samples for each OFDM symbol correspond to different subbands if the accumulation is performed after the FFT and to different time indices if the accumulation is performed prior to the FFT.
  • the result of the accumulation is
  • [h (k) ⁇ , for ke K which are estimates of the channel response from transmit antenna j to receive antenna / ' for the 52 usable subbands.
  • the same processing may be performed to estimate the channel response from each transmit antenna to each receive antenna.
  • the pilot processing provides N T N R complex values for each subband, where the complex values are elements of the matrix H(&) for the channel response estimate for that subband.
  • the pilot processing described above may be performed by the access point to obtain the channel response estimate H up (&) for the uplink, and may also be performed by the user terminal to obtain the channel response estimate S W for the downlink. 3.
  • the channel response matrix ⁇ .(k) for each subband may be "diagonalized" to obtain the Ns eigenmodes for that subband, where N s ⁇ min ⁇ N r , N R ⁇ .
  • singular value decomposition is used for the following description.
  • Hp Hp
  • V(k) is an (N R xN R ) unitary matrix of left eigenvectors of Hp) ; ⁇ (k) is an (N R xN T ) diagonal matrix of singular values of H(fc) ; Y(k) is an (N T xN T ) unitary matrix of right eigenvectors of Hp) ; and " H " denotes the conjugate transpose.
  • eigenmode normally refers to a theoretical construct.
  • the MIMO channel may also be viewed as including Ns spatial channels that may be used for data/pilot transmission.
  • Each spatial channel may or may not correspond to an eigenmode, depending on whether or not the spatial processing at the transmitter was successful in diagonalizing the MIMO channel.
  • data streams are transmitted on spatial channels (and not eigenmodes) of a MIMO channel if the transmitter has no knowledge or an imperfect estimate of the MIMO channel.
  • the term "eigenmode" is also used herein to denote the case where an attempt is made to diagonalize the MIMO channel, even though it may not be fully successful due to, for example, an imperfect channel estimate.
  • the diagonal matrix ⁇ (k) for each subband contains non-negative real values along the diagonal and zeros everywhere else. These diagonal entries are referred to as the singular values of gp) and represent the gains for the independent channels (or eigenmodes) of the MIMO channel for the /c-th subband.
  • the eigenvalue decomposition may be performed independently for the channel response matrix Hp) for each of the 52 usable subbands to determine the Ns eigenmodes for the subband.
  • the singular values for each diagonal matrix ⁇ (k) may be ordered such that ⁇ (k) ⁇ ⁇ 2 (k) ⁇ ... ⁇ Ns (k) ⁇ , where ⁇ ⁇ (k) is the largest singular value, ⁇ 2 (k) is the second largest singular value, and so on, and ⁇ Ns (k) is the smallest singular value for the /c-th subband.
  • ⁇ t (k) represents the singular value for the best eigenmode for subband k, which is also often referred to as the "principal" eigenmode.
  • a "wideband" eigenmode may be defined as the set of same-order eigenmodes of all subbands after the ordering.
  • the m-th wideband eigenmode includes the m-th eigenmode of all subbands.
  • Each wideband eigenmode is associated with a respective set of eigenvectors for all of the subbands.
  • the "principal" wideband eigenmode is the one associated with the largest singular value in each matrix ⁇ (k) of each subband after the ordering.
  • a steered reference (i.e., a steered pilot) comprises one or more sets of pilot symbols that are transmitted from the N ⁇ transmit antennas.
  • one set of pilot symbols is transmitted on one set of subbands for one wideband eigenmode in a given symbol period by performing spatial processing with a set of steering vectors for that wideband eigenmode.
  • multiple sets of pilot symbols are transmitted on multiple disjoint sets of subbands for multiple wideband eigenmodes in a given symbol period by performing spatial processing with multiple sets of steering vectors for these wideband eigenmodes (using subband multiplexing, which is described below). For clarity, the following description assumes that one set of pilot symbols is transmitted on one wideband eigenmode in a given symbol period (i.e., no subband multiplexing).
  • the set of pilot symbols for the steered reference is the same P OFDM symbol used for the MIMO pilot.
  • various other OFDM symbols may also be used for the steered reference, and this is within the scope of the invention.
  • a steered reference transmitted for the m-th wideband eigenmode (using beam-forming, which is described below) may be expressed as:
  • x m (k) is an (N ⁇ xl) transmit vector for the m-th eigenmode of the c-th subband
  • m (k) is the steering vector for the m-th eigenmode of the /c-th subband
  • p(k) is the pilot symbol for the /c-th subband (e.g., as given in Table 2).
  • the vector ⁇ m (k) includes ⁇ /r transmit symbols to be sent from the NT transmit antennas for the /c-th subband.
  • the steered reference may be used by the receiver to estimate a vector that may be used for spatial processing of both data reception and transmission, as described below. The processing for the steered reference is described in further detail below. 4. Carrier Pilot
  • the exemplary OFDM subband structure described above includes four pilot subbands with indices of -21, -7, 7, and 21.
  • a carrier pilot is transmitted on the four pilot subbands in all symbol periods that are not used for some other types of pilot.
  • the carrier pilot may be used by the receiver to track the changes in the phase of an RF carrier signal and drifts in the oscillators at both the transmitter and receiver. This may provide improved data demodulation performance.
  • the carrier pilot comprises four pilot sequences, P cl ( ⁇ ), P cZ (n), P c3 (n), and P c4 (n), that are transmitted on the four pilot subbands.
  • the four pilot sequences are defined as follows:
  • n is an index for symbol period (or OFDM symbol).
  • the pilot sequences may be defined based on various data sequences.
  • the four pilot sequences P ⁇ (n) , P c2 (n) , P c3 ( ⁇ ) , and P c4 (n) are transmitted on four different subband/antenna pairings.
  • Table 5 shows an exemplary assignment of the four pilot sequences to the four pilot subbands and four transmit antennas.
  • the pilot sequence P c ⁇ (n) is transmitted on subband -21 of antenna 1
  • the pilot sequence P c2 ( ⁇ ) is transmitted on subband -7 of antenna 2
  • the pilot sequence P c3 (n) is transmitted on subband 7 of antenna 3
  • the pilot sequence P c (n) is transmitted on subband 21 of antenna 4.
  • Each pilot sequence is thus transmitted on a unique subband and a unique antenna.
  • This carrier pilot transmission scheme avoids interference that would result if a pilot sequence is transmitted over multiple transmit antennas on a given subband.
  • the four pilot sequences are transmitted on the principal eigenmode of their assigned subbands.
  • the spatial processing for the carrier pilot symbols is similar to the spatial processing for the steered reference, which is described above and shown in equation (2).
  • the steering vector v x (k) is used for the spatial processing.
  • the pilot sequence P ⁇ ( ) is spatially processed with the steering vector v ⁇ -26)
  • the pilot sequence P c2 (n) is spatially processed with the steering vector Vj(-7)
  • the pilot sequence R c3 (n) is spatially processed with the steering vector ⁇ (7)
  • the pilot sequence P c4 (n) is spatially processed with the steering vector ⁇ (26) .
  • the pilots described herein may also be used for single-carrier MIMO systems that do not employ OFDM. In that case, much of the description above still applies but without the subband index k.
  • a specific pilot modulation symbol b may be transmitted from each of the ⁇ /r transmit antennas.
  • a specific pilot modulation symbol p may be covered with ⁇ /r orthogonal sequences and transmitted from the ⁇ /r transmit antennas.
  • the pilot symbol b may be the same or different from the pilot symbol p.
  • the steered reference may be transmitted as shown in equation (2). However, the transmit vector x m , steering vector m , and pilot symbol p axe not functions of subband index k.
  • the carrier pilot may be transmitted in a time division multiplexed manner or may simply be omitted.
  • the cyclic prefix is typically used to ensure orthogonality across the subbands in the presence of delay spread in the system, and the orthogonal codes allow for identification of the individual transmit antennas.
  • the orthogonal codes are relied upon for both orthogonality and antenna identification.
  • the orthogonal codes used for covering the pilot symbols in a single-carrier MIMO system may be selected to have good cross-correlation and peak-to-sidelobe properties (i.e., the correlation between any two orthogonal sequences used for covering is small in the presence of delay spread in the system).
  • orthogonal code with good cross-correlation and peak-to-sidelobe properties is the M-sequence and its time-shifted versions.
  • other types of codes may also be used for covering pilot symbols for the single-carrier MIMO system.
  • the steered reference may be transmitted in various manners to account for frequency selective fading (i.e., a frequency response that is not flat across the operating band).
  • frequency selective fading i.e., a frequency response that is not flat across the operating band.
  • a transmitter can transmit a reference waveform that is processed in the same or similar manner as the processing used to transmit traffic data on specific wideband eigenmodes.
  • the receiver can then in some manner correlate the received waveform against a locally generated copy of the transmitted reference waveform, and extract information about the channel that allows the receiver to estimate a channel matched filter.
  • a transmitter initially obtains a steering vector m (k) for an eigenmode.
  • the steering vector m (k) may be obtained by periodically transmitting OFDM pilot symbols, by performing frequency-domain analysis on a received MIMO pilot that has been transmitted without OFDM, or by some other means. For each value of /c, where l ⁇ k ⁇ N F , m (k) is an N r -vector with
  • N r entries for N r transmit antennas The transmitter then performs an inverse fast Fourier transform on each of the N r vector positions of the steering vector m (k) , with k as the frequency variable in the IFFT computation, to obtain a corresponding time-domain pulse for an associated transmit antenna.
  • Each vector position of the vector ⁇ m (k) includes N F values for N F frequency subbands, and the corresponding time-domain pulse is a sequence of N F time- domain values.
  • the terminal then appends a cyclic prefix to this time-domain pulse to obtain a steered reference pulse for the transmit antenna.
  • One set of N r steered reference pulses is generated for each eigenmode and may be transmitted in the same time interval from all N r transmit antennas. Multiple sets of pulses may be generated for multiple eigenmodes and may be transmitted in a TDM manner.
  • a receiver samples the received signal to obtain a received vector r m ( ⁇ ) , removes the cyclic prefix, and performs a fast Fourier transform on each vector position of the received vector ⁇ m ( ) to obtain an estimate of a corresponding entry of Hp)v m (&) .
  • Each vector position of the received vector r m (n) (after the cyclic prefix removal) includes N F time-domain samples.
  • the receiver uses the estimate of Hp)v m (£) to synthesize a time-domain matched filter that may be used to filter a received data transmission.
  • the time-domain matched filter includes a matched filter pulse for each of the received antennas.
  • the synthesis of the time-domain matched filter is described in commonly assigned U.S. Patent Application Serial No. 10/017,308, entitled “Time-Domain Transmit and Receive Processing with Channel Eigen-mode Decomposition for MIMO Systems,” filed December 7, 2001.
  • the transmitter processing for the steered reference in a single-carrier MIMO system is similar to the transmitter processing for the steered reference in a MIMO-OFDM system.
  • other transmission after the steered reference is transmitted on a single-carrier waveform, such as the one described in the aforementioned U.S. Patent Application Serial No. 10/017,308.
  • the receiver uses the steered reference to synthesize time domain matched filters, as described above.
  • a transmitter isolates a single multipath component for the wideband channel. This may be achieved, for example, by searching a received MIMO pilot with a sliding correlator in similar manner as often performed in CDMA systems to search for multipath components.
  • the transmitter treats this multipath component as a narrowband channel and obtains a single steering vector m for the multipath component for each eigenmode. Again, multiple steering vectors may be generated for multiple eigenmodes for this multipath component.
  • the pilots described herein may be used for various MIMO and MIMO-OFDM systems. These pilots may be used for systems that use a common or separate frequency bands for the downlink and uplink. For clarity, an exemplary pilot structure for an exemplary MIMO-OFDM system is described below. For this MIMO-OFDM system, the downlink and uplink are time-division duplexed (TDD) on a single frequency band.
  • TDD time-division duplexed
  • FIG. 2 shows an embodiment of a frame structure 200 that may be used for a TDD MIMO-OFDM system.
  • Data transmission occurs in units of TDD frames, each of which spans a particular time duration (e.g., 2 msec).
  • Each TDD frame is partitioned into a downlink phase and an uplink phase.
  • the downlink phase is further partitioned into multiple segments for multiple downlink transport channels.
  • the downlink transport channels include a broadcast channel (BCH), a forward control channel (FCCH), and a forward channel (FCH).
  • BCH broadcast channel
  • FCCH forward control channel
  • FCH forward channel
  • the uplink phase is partitioned into multiple segments for multiple uplink transport channels.
  • FIG. 1 shows an embodiment of a frame structure 200 that may be used for a TDD MIMO-OFDM system.
  • Data transmission occurs in units of TDD frames, each of which spans a particular time duration (e.g., 2 msec).
  • Each TDD frame is partitioned into
  • the uplink transport channels include a reverse channel (RCH) and a random access channel (RACH).
  • a BCH segment 210 is used to transmit one BCH protocol data unit (PDU) 212, which includes a portion 214 for a beacon pilot, a portion 216 for a MIMO pilot, and a portion 218 for a BCH message.
  • the BCH message carries system parameters for the user terminals in the system.
  • An FCCH segment 220 is used to transmit one FCCH PDU, which carries assignments for downlink and uplink resources and other signaling for the user terminals.
  • An FCH segment 230 is used to transmit one or more FCH PDUs 232. Different types of FCH PDU may be defined.
  • an FCH PDU 232a includes a portion 234a for a pilot and a portion 236a for a data packet.
  • An FCH PDU 232b includes a single portion 236b for a data packet.
  • An FCH PDU 232c includes a single portion 234c for a pilot.
  • an RCH segment 240 is used to transmit one or more RCH PDUs 242 on the uplink.
  • RCH PDU 242a includes a single portion 246a for a data packet.
  • An RCH PDU 242b includes a portion 244b for a pilot and a portion 246b for a data packet.
  • An RCH PDU 242c includes a single portion 244c for a pilot.
  • An RACH segment 250 is used by the user terminals to gain access to the system and to send short messages on the uplink.
  • An RACH PDU 252 may be sent within RACH segment 250 and includes a portion 254 for a pilot and a portion 256 for a message.
  • the beacon and MIMO pilots are sent on the downlink in each TDD frame in the BCH segment.
  • a pilot may or may not be sent in any given FCH/RCH PDU. If the pilot is sent, then it may span all or only a portion of the PDU, as shown in FIG. 2.
  • a pilot is sent in an RACH PDU to allow the access point to estimate pertinent vectors during access.
  • the pilot portion is also referred to as a "preamble".
  • the pilot that is sent in any given FCH/RCH PDU may be a steered reference or a MIMO pilot, depending on the purpose for which the pilot is used.
  • the pilot sent in an RACH PDU is typically a steered reference, although a MIMO pilot may also be sent instead.
  • the carrier pilot is transmitted on the pilot subbands and in the portions that are not used for other pilot transmissions. The carrier pilot is not shown in FIG. 2 for simplicity. The durations of the various portions in FIG. 2 are not drawn to scale.
  • the downlink and uplink channel responses may be assumed to be reciprocal of one another. That is, if Hp) represents a channel response matrix from antenna array A to antenna array B for subband k, then a reciprocal channel implies that the coupling from array B to array A is given by H r (£) , where H r denotes the transpose of H.
  • H r denotes the transpose of H.
  • the reciprocal channel characteristics can be exploited to simplify the channel estimation and spatial processing at both the transmitter and receiver.
  • an "effective" downlink channel response, H ⁇ -p) , and an “effective” uplink channel response, H up (fc) which include the responses of the applicable transmit and receive chains, may be expressed as:
  • H up (fc) R ap (*)H r (£)T ut (£) , ox ke K , where T a -p) and R ap (&) are N ap xN ap diagonal matrices for the frequency responses of the transmit chain and receive chain, respectively, at the access point for subband k, T rt (Jfc) and R-r t Cfc) are N ut xN ut diagonal matrices for the frequency responses of the transmit chain and receive chain, respectively, at the user terminal for subband k, N ap is the number of antennas at the access point; and
  • N is the number of antennas at the user terminal.
  • T ap p) , and R ap (fc) are diagonal matrices, K ap (fc) and K (k) are also diagonal matrices.
  • Calibration may be performed to obtain estimates, K ap (fc) and
  • K ut (fc) of the actual diagonal matrices, K ap (£) and K ut p) , for ke K .
  • K ap (fc) and K ut (fc) contain correction factors that can account for differences in the frequency responses of the transmit/receive chains at the access point and user terminal.
  • a "calibrated" downlink channel response, H cdr p) , observed by the user terminal and a “calibrated” uplink channel response, H cup (fc) , observed by the access point may then be expressed as:
  • the accuracy of the relationship in equation (6c) is dependent on the accuracy of the correction matrices, K--P) and K ut (fc) , which is in turn dependent on the quality of the estimates of the effective downlink and uplink channel responses, 0,,-p) and H up p) , used to derive these correction matrices.
  • a correction vector k ut (fe) may be defined to include only the N ut diagonal elements of K ut (&)
  • a correction vector k ap (£) may be defined to include only the N ap diagonal elements of K ap (/c) .
  • the beacon pilot and MIMO pilot are transmitted on the downlink in the BCH for each TDD frame.
  • the beacon pilot may be used by the user terminals for timing and frequency acquisition.
  • the MIMO pilot may be used by the user terminals to (1) obtain an estimate of the downlink MIMO channel, (2) derive steering vectors for uplink transmission, and (3) derive a matched filter for downlink transmission, as described below.
  • the beacon pilot is transmitted for two symbol periods and the MIMO pilot is transmitted for eight symbol periods at the start of the BCH segment. Table 6 shows the beacon and MIMO pilots for this exemplary scheme.
  • the beacon pilot transmitted on the downlink may be expressed as:
  • the beacon pilot is scaled by the correction vector k ap (fc) but not subjected to any other spatial processing.
  • the MIMO pilot transmitted on the downlink may be expressed as:
  • X dn,mp, ,P is an (N ap xl) transmit vector for subband k in symbol period n for the downlink MIMO pilot; ⁇ . ⁇ ,n iS an ( N aP ⁇ l vector with N ap Walsh chips for the N ap transmit antennas at the access point in symbol period n for the downlink
  • the MIMO pilot is covered by the vector W dn, « ancl further scaled by the correction matrix K ap (&) , but not subjected to any other spatial processing.
  • the same Walsh vector w ⁇ , is used for all subbands, and thus dr ⁇ holiday is not a function of the subband index k.
  • each Walsh sequence is a unique sequence of 4 Walsh chips for 4 symbol periods, w ⁇ -, is a function of symbol period n.
  • the vector ⁇ departure thus includes N ap Walsh chips to be used for the N ap transmit antennas at the access point for symbol period n.
  • the MIMO pilot transmitted on the uplink may be expressed as:
  • x up>mp, composer(fc) is an (N Canal, xl) transmit vector for subband / in symbol period n for the uplink MIMO pilot.
  • the Walsh vector w up steel used for the uplink MIMO pilot may be the same or different from the Walsh vector w dn ⁇ n used for the downlink MIMO pilot. For example, if a user terminal is equipped with only two transmit antennas, then up ⁇ may include two Walsh sequences with length of
  • the channel response matrix for each subband may be diagonalized to obtain the Ns eigenmodes for that subband.
  • the singular value decomposition of the calibrated uplink channel response matrix, H cup (fc) may be expressed as:
  • U ap (fc) is an (N ut xN ut ) unitary matrix of left eigenvectors of H cup (/c) ; ⁇ p) is an (N ut xN ap ) diagonal matrix of singular values of H cup (fc) ; and V ut (fc) is an (N ap xN ap ) unitary matrix of right eigenvectors of H cup (£) .
  • H cdn (&) the singular value decomposition of the calibrated downlink channel response matrix
  • H cdn (fc) V t (fc) ⁇ (fc)U;(fc) Xor k e K , Eq (11)
  • V * t (£) and U ap (fe) are unitary matrices of left and right eigenvectors, respectively, of H cdn p) .
  • the matrices of left and right eigenvectors for one link are the complex conjugate of the matrices of right and left eigenvectors, respectively, for the other link.
  • reference to the matrices U a[ P) and Y ⁇ t (k) in the following description may also refer to their various other forms (e.g., V ut (£) may refer to Y al (k) , Y_ t (k) , Y ⁇ (k) , and Y_" t (k) ).
  • V ut (fc) may be used by the access point and user terminal, respectively, for spatial processing and are denoted as such by their subscripts.
  • the user terminal can estimate the calibrated downlink channel response based on a MIMO pilot transmitted by the access point. The user terminal may then perform singular value decomposition of the calibrated downlink channel response estimate H cdr p) , for k e K , to obtain the diagonal matrix ⁇ p) and the matrix Y ni (k) of left eigenvectors of H cdn (fc) for each subband. This singular value decomposition may be given as
  • H cdn W Yl t (Jfc) ⁇ (fc)U ap (fc) , where the hat (" ⁇ ") above each matrix indicates that it is an estimate of the actual matrix.
  • the access point can estimate the calibrated uplink channel response based on a MIMO pilot transmitted by the user terminal. The access point may then perform singular value decomposition of the calibrated uplink channel response estimate H cup (&) , for
  • the access point and user terminal may also obtain the required eigenvectors based on a steered reference, as described below.
  • Data transmission can occur on one or multiple wideband eigenmodes for each link.
  • the specific number of wideband eigenmodes to use for data transmission is typically dependent on the channel conditions and may be selected in various manners.
  • the wideband eigenmodes may be selected by using a water-filling procedure that attempts to maximize the overall throughput by (1) selecting the best set of one or more wideband eigenmodes to use, and (2) distributing the total transmit power among the selected wideband eigenmode(s).
  • the MIMO-OFDM system may thus be designed to support multiple operating modes, including:
  • Data transmission on multiple wideband eigenmodes may be achieved by performing spatial processing with multiple sets of eigenvectors in the matrices U ap ( ) or V ut (£) , for k e K (i.e., one set of eigenvectors for each wideband eigenmode).
  • Table 7 summarizes the spatial processing at the access point and user terminal for both data transmission and reception for the spatial multiplexing mode.
  • s(k) is a "data" vector with up to N s non-zero entries for the modulation symbols to be transmitted on the N s eigenmodes of subband k
  • xp) is a transmit vector for subband k
  • r(k) is a received vector for subband k
  • s(k) is an estimate of the transmitted data vector s(k) .
  • the subscripts "dn” and “up” for these vectors denote downlink and uplink transmissions, respectively.
  • Data transmission on one wideband eigenmode may be achieved by using either "beam-forming” or “beam-steering".
  • the modulation symbols are spatially processed with a set of eigenvectors v ut l (fc) or u ap l (£) , for k e K , for the principal wideband eigenmode.
  • the modulation symbols are spatially processed with a set of "normalized” (or “saturated") eigenvectors ⁇ nt (k) or u ap P) , for ke K , for the principal wideband eigenmode.
  • the normalized eigenvectors ⁇ at (k) and u ap (&) can be derived as described below.
  • a steered reference may be transmitted by the user terminal and used by the access point to obtain estimates of both U ap (/c) and ⁇ p) , for k e K , without having to estimate the MIMO channel or perform the singular value decomposition.
  • a steered reference may be transmitted by the access point and used by the user terminal to obtain estimates of both V ⁇ t (k) and ⁇ (k) , for k e K .
  • the steered reference comprises a set of pilot symbols (e.g., the P OFDM symbol) that is transmitted on one wideband eigenmode in a given symbol period by performing spatial processing with a set of unnormalized or normalized eigenvectors for that wideband eigenmode.
  • the steered reference comprises multiple sets of pilot symbols that are transmitted on multiple wideband eigenmodes in the same symbol period by performing spatial processing with multiple sets of unnormalized or normalized eigenvectors for these wideband eigenmodes.
  • the steered reference is transmitted from all N ap antennas at the access point (for the downlink) and all N ut antennas at the user terminal (for the uplink). For clarity, the following description assumes that the steered reference is transmitted for one wideband eigenmode in a given symbol period.
  • the downlink steered reference transmitted on the m-th wideband eigenmode by the access point may be expressed as:
  • ⁇ .. ⁇ , (k) is the transmit vector for the /c-th subband of the m-th wideband eigenmode
  • ⁇ ap,m (&) is tne eigenvector for the /c-th subband of the m-th wideband eigenmode
  • p(k) is the pilot symbol to be transmitted on subband k for the steered reference (e.g., as given in Table 2).
  • the steering vector ⁇ ap>m (fc) is the m-th column of the matrix U ap (fc) , where
  • the received downlink steered reference at the user terminal for the spatial multiplexing mode may be expressed as:
  • ⁇ m (k) is the singular value for the /c-th subband of the m-th wideband eigenmode.
  • the spatial processing at the transmitter is performed using a set of "normalized" eigenvectors for the principal wideband eigenmode.
  • the overall transfer function with a normalized eigenvector u ap (fc) is different from the overall transfer function with an unnormalized eigenvector v ⁇ (k) (i.e., ⁇ H dn (fc)K ap (fc)u ap (fe)).
  • a steered reference generated using the set of normalized eigenvectors for the principal wideband eigenmode may then be sent by the transmitter and used by the receiver to derive the matched filter for the beam-steering mode.
  • the downlink steered reference transmitted on the principal wideband eigenmode by the access point may be expressed as:
  • u ap (&) is the normalized eigenvector for the /c-th subband of the principal wideband eigenmode, which may be expressed as:
  • the N ⁇ p elements of the vector u ap (fc) have equal magnitudes but possibly different phases.
  • the phase of each element in the vector u ap (fc) is obtained from the corresponding element of the vector u * p4 (fc) (i.e., ⁇ m (k) is obtained from
  • the received downlink steered reference at the user terminal for the beam-steering mode may be expressed as:
  • the uplink steered reference transmitted on the m-th wideband eigenmode by the user terminal may be expressed as:
  • the received uplink steered reference at the access point for the spatial multiplexing mode may be expressed as:
  • the uplink steered reference transmitted on the principal wideband eigenmode by the user terminal may be expressed as:
  • the normalized eigenvector ⁇ ut (k) for the /c-th subband for the principal wideband eigenmode may be expressed as:
  • the received uplink steered reference at the access point for the beam-steering mode may be expressed as:
  • Table 8 summarizes the spatial processing at the access point and user terminal for the steered reference for the spatial multiplexing and beam- steering modes.
  • the steered reference may be transmitted in the preamble or pilot portion of an FCH PDU (for the downlink) or an RCH PDU (for the uplink).
  • the steered reference may be transmitted in various manners.
  • the steered reference is transmitted for one or more wideband eigenmodes for each TDD frame.
  • the specific number of wideband eigenmodes to transmit in each TDD frame may be dependent on the duration of the steered reference.
  • Table 9 lists the wideband eigenmodes used for the steered reference in the preamble of an FCH/RCH PDU for various preamble sizes, for an exemplary design with four transmit antennas.
  • the steered reference is transmitted for all four wideband eigenmodes within the same TDD frame when the preamble size is four or eight symbol periods.
  • the steered reference transmitted in the preamble of an FCH PDU by the access point for the n-th symbol period may be expressed as:
  • the steered reference transmitted in the preamble of an RCH PDU by the user terminal for the n-th symbol period may be expressed as:
  • equations (24) and (25) the four wideband eigenmodes are cycled through in each 4-symbol period by the "mod" operation for the steering vector. This scheme may be used if the channel changes more rapidly and/or during the early part of a communication session when a good channel estimate needs to be obtained quickly for proper system operation.
  • the steered reference is transmitted for one wideband eigenmode for each TDD frame.
  • the steered reference for four wideband eigenmodes may be cycled through in four TDD frames.
  • the steering vectors n l (k), y ut ⁇ 2 (£), i ut,3 (&), and ⁇ mA (k) may be used for four consecutive TDD frames by the user terminal.
  • the particular steering vector to use for the steered reference in each TDD frame may be specified by a frame counter, which may be sent in the BCH message. This scheme may allow a shorter preamble to be used for the FCH and RCH PDUs. However, a longer time period may be needed to obtain a good estimate of the channel.
  • the normalized steering vector for the principal wideband eigenmode is used for the steered reference, as shown in equations (14) and (20).
  • the duration of the steered reference may be selected, for example, based on the channel conditions.
  • the user terminal may transmit multiple symbols of steered reference, for example, one or more symbols using the normalized eigenvector y ut (fc) , one or more symbols using the eigenvector y ⁇ (&) for the principal eigenmode, and possibly one or more symbols using the eigenvectors for the other eigenmodes.
  • the steered reference symbols generated with y ut (k) may be used by the access point to derive an uplink matched filter vector. This vector is used by the access point to perform matched filtering of the uplink data transmission sent by the user terminal using beam-steering.
  • the steered reference symbols generated with y ut l (k) may be used to obtain u ap . (k) , which may then be used to derive the normalized eigenvector u ap (fc) that is used for beam-steering on the downlink.
  • the steered reference symbols generated with the eigenvectors y ut ⁇ 2 (£) through y ut ⁇ W (k) for the other eigenmodes may be used by the access point to obtain ⁇ ap 2 (£) through ⁇ ap ⁇ Ns (k) and the singular value estimates for these other eigenmodes. This information may then be used by the access point to determine whether to use the spatial multiplexing mode or the beam-steering mode for downlink data transmission.
  • the user terminal may derive a downlink matched filter vector for the beam-steering mode based on the calibrated downlink channel response estimate H cdn p) .
  • the user terminal has u aP) P) from the singular value decomposition of H cdn (fc) and can then derive the normalized eigenvector u ap (fc) .
  • the user terminal can then multiply u ap (&) with
  • S- cdn W t0 obtain H cdn (£)u ap (fc) , and may then derive the downlink matched filter vector for the beam-steering mode based on H cdn p)u ap (k) .
  • a steered reference may be sent by the access point using the normalized eigenvector u af P) , and this steered reference may be processed by the user terminal in the manner described above to obtain the downlink matched filter vector for the beam-steering mode.
  • the steered reference may also be transmitted for multiple wideband eigenmodes for a given symbol period using subband multiplexing.
  • the usable subbands may be partitioned into multiple disjoint sets of subbands, one set for each wideband eigenmode selected for steered reference transmission. Each set of subbands may then be used to transmit a steered reference for the associated wideband eigenmode.
  • the term "wideband eigenmode" is used here even though the steered reference is sent on only a subset of all usable subbands.
  • the steered reference may be transmitted on all four wideband eigenmodes in one symbol period.
  • the 52 usable subbands may be partitioned into four disjoint sets (e.g., labeled as sets 1 , 2, 3, and 4), with each set including 13 subbands.
  • the 13 subbands in each set may be uniformly distributed across 52 usable subbands.
  • the steered reference for the principal wideband eigenmode may then be transmitted on the 13 subbands in set 1
  • steered reference for the second wideband eigenmode may be transmitted on the 13 subbands in set 2
  • steered reference for the third wideband eigenmode may be transmitted on the 13 subbands in set 3
  • steered reference for the fourth wideband eigenmode may be transmitted on the 13 subbands in set 4.
  • the multiple sets of subbands may include the same or different number of subbands.
  • the number of subbands to include in each set may be dependent on the SNR of the wideband eigenmode associated with the set (e.g., more subbands may be assigned to a set associated with a poor quality wideband eigenmode).
  • the subbands in each set may be uniformly or non-uniformly distributed across the usable subbands.
  • the multiple sets of subbands may also be associated with the same or different sets of pilot symbols.
  • Subband multiplexing may be used to reduce the amount of overhead needed to transmit the steered reference, which can improve the efficiency of the system.
  • the received downlink steered reference for the spatial multiplexing mode is approximately y * t m (k) ⁇ m (k)p(k) .
  • the received uplink steered reference for the spatial multiplexing mode is approximately u apm (k) ⁇ m (k)p(k). The access point can thus obtain an estimate of u ap admirp) and ⁇ m (k) based on a steered reference sent by the user terminal, and vice versa.
  • the received vector r up sr m (£) for the steered reference sent on the m-th wideband eigenmode is first multiplied with the complex conjugate of the pilot symbol, p * (k) , that is used for the steered reference.
  • the result may then be integrated over multiple received steered reference symbols for each wideband eigenmode to obtain an estimate of u ap m (k) ⁇ m (k) , which is a scaled left eigenvector of
  • each of the N ap entries of the vector u ap ffl (&) is obtained based on a corresponding one of the N ap entries for the vector r up m (&) , where the N ap entries of r up m (£) are the symbols received from the N ap antennas at the access point.
  • the singular value ⁇ m (k) may be estimated based on the received power of the steered reference, which can be measured for each subband of each wideband eigenmode.
  • the singular value estimate ⁇ m (k) is then equal to the square root of the received power divided by the magnitude of the pilot symbol p(k) .
  • a minimum mean square error (MMSE) technique is used to obtain an estimate of the vector u ap m (&) based on the received vector r up sr m (&) for the steered reference. Since the pilot symbols p(k) are known, the access point can derive an estimate of u apm (&) such that the mean square error between the received pilot symbols (obtained after performing the matched filtering on the received vector r up sr m (£) ) and the transmitted pilot symbols is minimized.
  • the use of the MMSE technique for spatial processing at the receiver is described in commonly assigned U.S. Patent Application Serial No.
  • the steered reference is sent for one wideband eigenmode in any given symbol period (without subband multiplexing), and may in turn be used to obtain an estimate of one eigenvector for each subband of that wideband eigenmode.
  • the receiver is able to obtain an estimate of only one eigenvector in a unitary matrix for any given symbol period.
  • the estimated eigenvectors for the unitary matrix (which are individually derived) are not likely be orthogonal to one another.
  • the estimated eigenvectors may thereafter be used for matched filtering of a data transmission received on the same link and/or spatial processing of a data transmission sent on the other link. In this case, any errors in orthogonality among these estimated eigenvectors would result in cross-talk among the data streams sent on the eigenmodes corresponding to the eigenvectors. The cross-talk may degrade performance.
  • the estimated eigenvectors for each unitary matrix are forced to be orthogonal to each other.
  • the orthogonalization of the eigenvectors may be achieved using the Gram-Schmidt technique, which is described in detail in the aforementioned reference from Gilbert Strang, or some other technique.
  • the access point can thus estimate both U ap p) and ⁇ (k) based on the steered reference sent by the user terminal, without having to estimate the uplink channel response or perform singular value decomposition of H CUI P) .
  • the processing at the user terminal to estimate the matrices V ut (/c) and ⁇ (k) , for k e K , based on the downlink steered reference may be performed similar to that described above for the uplink steered reference.
  • the received vector r upsrm (fc) for the steered reference may be processed by the access point in a similar manner to obtain an estimate of H cup (£)y ut (k) .
  • the conjugate transpose of this estimate is then the matched filter for the uplink transmission in the beam-steering mode.
  • the carrier pilot may be transmitted on the pilot subbands in various manners for the TDD frame structure shown in FIG. 2.
  • the four pilot sequences are reset for each transport channel.
  • the pilot sequences are reset for the first OFDM symbol of the BCH message, reset again for the first OFDM symbol of the FCCH message, and reset for the first OFDM symbol sent on the FCH.
  • the pilot sequences are reset at the start of each TDD frame and repeated as often as needed.
  • the pilot sequences may be stalled during the preamble portions of the BCH and FCH.
  • the carrier pilot may also be transmitted in other manners, and this is within the scope of the invention.
  • pilot Four types of pilot have been described above and may be used for MIMO and MIMO-OFDM systems. These four different types of pilot may be transmitted in various manners.
  • FIG. 3 shows downlink and uplink pilot transmissions for an exemplary pilot transmission scheme.
  • block 310 corresponds to a system access phase
  • block 320 corresponds to a calibration phase
  • block 330 corresponds to a normal operation phase.
  • a beacon pilot and a MIMO pilot are transmitted on the downlink by the access point in each TDD frame (block 312) to allow all user terminals in the system to acquire the system frequency and timing and to estimate the downlink channel (block 314).
  • Block 314 may be performed as necessary to access the system.
  • Calibration may be performed prior to normal operation to calibrate out differences in the transmit/receive chains at the access point and user terminal.
  • MIMO pilots may be transmitted by both the access point and the user terminal (blocks 322 and 326).
  • the uplink MIMO pilot may be used by the access point to derive an estimate of the uplink channel (block 324), and the downlink MIMO pilot may be used by the user terminal to derive or update an estimate of the downlink channel (block 328).
  • the downlink and uplink channel estimates are then used to derive the correction factors for the access point and the user terminal.
  • a steered reference may be transmitted on the uplink by the user terminal (1) if and when it desires a data transmission or (2) if it is scheduled for data transmission (block 332).
  • the uplink steered reference may be used by the access point to estimate the pertinent unitary and diagonal matrices for the user terminal (block 334).
  • a steered reference may optionally be transmitted by the access point to the user terminal (as shown by dashed block 336).
  • the user terminal can continually update its estimate of the downlink channel based on the downlink MIMO pilot and update the pertinent unitary and diagonal matrices based on the downlink steered reference (if transmitted) (block 338).
  • Carrier pilots are transmitted by the access point (block 340) and the user terminal (block 344) on the pilot subbands during portions that are not used for other pilots.
  • the downlink carrier pilot is used by the user terminal to track the phase of the downlink carrier signal (block 342)
  • the uplink carrier pilot is used by the access point to track the phase of the uplink carrier signal (block 346).
  • the user terminal estimates the downlink channel response based on the downlink MIMO pilot and transmits a steered reference on the uplink, which is then used by the access point to estimate the pertinent unitary and diagonal matrices for the user terminal.
  • the user terminal may have obtained a bad estimate of the downlink channel response, in which case the uplink steered reference may be equally bad or possibly worse.
  • the steering vector used by the user terminal may result in a beam null being pointed at the access point. If this occurs, then the access point would not be able to detect the uplink steered reference.
  • the user terminal can perturb the phases of the N ut elements of the steering vector it uses for the steered reference in situations where it detects that the access point is not receiving the steered reference properly. For example, if the user terminal is designated to transmit an uplink steered reference as part of a system access procedure, and if access to the system is not gained after a particular number of access attempts, then the user terminal can start to perturb the phases of the steering vector elements.
  • beacon and carrier pilots may be combined into a single pilot that can be used for frequency and timing acquisition and carrier phase tracking.
  • the active user terminals may transmit MIMO pilots, instead of steered references, on the uplink.
  • FIG. 4 shows a block diagram of an embodiment of an access point 110x and a user terminal 120x in MIMO-OFDM system 100.
  • access point 11 Ox is equipped with four antennas that can be used for data transmission and reception
  • user terminal 120x is also equipped with four antennas for data transmission/reception.
  • the access point and user terminal may each be equipped with any number of transmit antennas and any number of receive antennas.
  • a transmit (TX) data processor 414 receives traffic data from a data source 412 and signaling and other data from a controller 430.
  • TX data processor 414 formats, codes, interleaves, and modulates (i.e., symbol maps) the data to provide modulation symbols.
  • a TX spatial processor 420 receives and multiplexes the modulation symbols from TX data processor 414 with pilot symbols, performs the required spatial processing, and provides four streams of transmit symbols for the four transmit antennas.
  • Each modulator (MOD) 422 receives and processes a respective transmit symbol stream to provide a corresponding downlink modulated signal. The four downlink modulated signals from modulators 422a through 422d are then transmitted from antennas 424a through 424d, respectively.
  • each antenna 452a through 452d receives the transmitted downlink modulated signals, and each antenna provides a received signal to a respective demodulator (DEMOD) 454.
  • Each demodulator 454 performs processing complementary to that performed at modulator 422 and provides received symbols.
  • a receive (RX) spatial processor 460 then performs spatial processing on the received symbols from all demodulators 454a through 454d to provide recovered symbols, which are estimates of the modulation symbols transmitted by the access point.
  • An RX data processor 470 further processes (e.g., symbol demaps, deinterleaves, and decodes) the recovered symbols to provide decoded data, which may be provided to a data sink 472 for storage and/or a controller 480 for further processing.
  • the processing for the uplink may be the same or different from the processing for the downlink.
  • Data and signaling are processed (e.g., coded, interleaved, and modulated) by a TX data processor 488, multiplexed with pilot symbols, and further spatially processed by a TX spatial processor 490.
  • the transmit symbols from TX spatial processor 490 are further processed by modulators 454a through 454d to generate four uplink modulated signals, which are then transmitted via antennas 452a through 452d.
  • the uplink modulated signals are received by antennas 424a through 424d, demodulated by demodulators 422a through 422d, and processed by an RX spatial processor 440 and an RX data processor 442 in a complementary manner to that performed at the user terminal.
  • the decoded data for the uplink may be provided to a data sink 444 for storage and/or controller 430 for further processing.
  • Controllers 430 and 480 control the operation of various processing units at the access point and user terminal, respectively.
  • Memory units 432 and 482 store data and program codes used by controllers 430 and 480, respectively.
  • FIG. 5 shows a block diagram of a TX spatial processor 420a that can generate a beacon pilot and which may be implemented within TX spatial processor 420 in FIG. 4.
  • Processor 420a includes a number of beacon pilot subband processors 510a through 510k, one for each subband used to transmit the beacon pilot.
  • Each subband processor 510 receives a pilot symbol b(k) for the beacon pilot and a correction matrix K ap (fc) for the associated subband.
  • the pilot symbol b(k) is scaled by four multipliers 514a through 514d with four correction factors K ap l (k) through K apA (k) , respectively, from the matrix K ap (fc) .
  • Each multiplier 514 performs complex multiplication of the complex pilot symbol with a respective complex correction factor.
  • the scaled pilot symbols from multipliers 514a through 514d are then provided to four buffers/multiplexers 520a through 520d, respectively, which also receive the scaled pilot symbols from other subband processors 510.
  • Each buffer/multiplexer 520 multiplexes the scaled pilot symbols for all subbands used for beacon pilot transmission and signal values of zero for the unused subbands and provides a stream of transmit symbols for the associated transmit antenna.
  • FIG. 6A shows a block diagram of a TX spatial processor 420b that can generate a MIMO pilot.
  • Processor 420b may be implemented within TX spatial processor 420 or 490 in FIG. 4, but for clarity is described below for an implementation in TX spatial processor 420.
  • Processor 420b includes a number of MIMO pilot subband processors 610a through 610k, one for each subband used to transmit the MIMO pilot.
  • Each subband processor 610 receives a pilot symbol p(k) for the MIMO pilot and a correction matrix K ap (fc) for the associated subband.
  • Each subband processor 610 also receives four Walsh sequences, w l through w 4 , assigned to the four transmit antennas at the access point.
  • the complex pilot symbol p(k) is covered by the four Walsh sequences w. through w 4 by four complex multipliers 612a through 612d, respectively.
  • the covered pilot symbols are further scaled by four complex multipliers 614a through 614d with four complex correction factors K ap l (k) through K ap 4 (k) , respectively, from the matrix K ap (/ ) .
  • the scaled pilot symbols from multipliers 614a through 614d are then provided to four buffers/multiplexers 620a through 620d, respectively.
  • the subsequent processing is as described above for FIG. 5.
  • FIG. 6B shows a block diagram of an RX spatial processor 460b that can provide a channel response estimate based on a received MIMO pilot.
  • Processor 460b may be implemented within RX spatial processor 440 or 460 in FIG. 4, but for clarity is described below for an implementation in RX spatial processor 460.
  • Processor 460b includes a number of MIMO pilot subband processors 650a through 650k, one for each subband used for MIMO pilot transmission.
  • Each MIMO pilot subband processor 650 receives a vector r(k) and a conjugated pilot symbol p * (k) for the associated subband. Each subband processor 650 also receives the four Walsh sequences w x through w 4 assigned to the four transmit antennas at the access point. [1160] Each MIMO pilot subband processor 650 includes four MIMO pilot subband/antenna processors 660a through 660d for the four receive antennas at the user terminal. Each processor 660 receives one entry r t (k) of the vector r(k) . Within each processor 660, the received symbol ⁇ (k) is first multiplied with the conjugated pilot symbol p * (k) by a complex multiplier 662.
  • multiplier 662 The output of multiplier 662 is further multiplied with the four Walsh sequences w 1 through w 4 by four complex multipliers 664a through 664d, respectively.
  • the outputs from multipliers 664a through 664d are then accumulated by accumulators 666a through 666d, respectively, for the duration of the MIMO pilot transmission.
  • Each pair of multiplier 664 and accumulator 666 performs decovering for one transmit antenna at the access point.
  • the output from each accumulator 666 represents an estimate h J (k) of the channel gain from transmit antenna j to
  • each MIMO pilot subband/antenna processor may further be averaged over multiple MIMO pilot transmissions (not shown in FIG. 6B) to provide a more accurate estimate of the channel response.
  • each MIMO pilot subband/antenna processor may further be averaged over multiple MIMO pilot transmissions (not shown in FIG. 6B) to provide a more accurate estimate of the channel response.
  • Processors 660a through 660d collectively provide the four rows of the calibrated channel response matrix
  • FIG. 7A shows a block diagram of a TX spatial processor 420c that can generate a steered reference.
  • Processor 420c may also be implemented within TX spatial processor 420 or 490 in FIG. 4, but for clarity is described below for an implementation in TX spatial processor 420.
  • Processor 420c includes a number of steered reference subband processors 710a through 710k, one for each subband used to transmit the steered reference.
  • each subband processor 710 receives a pilot symbol p(k) , the steering vector u ap m (k) for each wideband eigenmode on which the steered reference is to be transmitted, and a correction matrix K ap (£) for the associated subband.
  • the pilot symbol p(k) is multiplied with the four elements i ⁇ p m (k) through i ⁇ pA m (k) of the steering vector u ap m (fc) for the m-th wideband eigenmode by four complex multipliers
  • multipliers 712a through 712d are further scaled by four complex multipliers 714a through 714d with four correction factors K ⁇ p l (k) through K ap 4 (k) , respectively, from the matrix K ap (fe) .
  • the scaled pilot symbols from multipliers 714a through 714d are then provided to four buffers/multiplexers 720a through 720d, respectively.
  • the subsequent processing is as described above.
  • each subband processor 710 would receive a normalized steering vector u ap (&) , instead of the unnormalized steering vector ⁇ * ⁇ p m (k) .
  • each subband processor 710 would receive either (1) the steering vector ⁇ u m (k) for each wideband eigenmode used for the steered reference, for the spatial multiplexing mode, or (2) the steering vector ⁇ at (k) for the beam-steering mode.
  • steering vectors for multiple wideband eigenmodes may be used for multiple disjoint sets of subbands, as described above.
  • FIG. 7B shows a block diagram of an RX spatial processor 460c that can provide estimates of steering vectors and singular values based on a received steered reference.
  • Processor 460c may be implemented within RX spatial processor 440 or 460 in FIG. 4, but for clarity is described below for an implementation in RX spatial processor 460.
  • Processor 460c includes a number of steered reference subband processors 750a through 750k, one for each subband used for steered reference transmission. Each subband processor 750 receives a vector ⁇ (k) and a conjugated pilot symbol p * (k) for the associated subband.
  • each subband processor 750 the four symbols in the received vector r(k) are multiplied with the conjugated pilot symbol p * (k) by complex multipliers 762a through 762d, respectively.
  • the outputs of multipliers 762a through 762d are then accumulated for the duration of the steered reference transmission for each wideband eigenmode by accumulators 764a through 764d, respectively.
  • the steered reference may be sent for multiple wideband eigenmodes within the same steered reference transmission, in which case the accumulation is performed separately for each of these wideband eigenmodes.
  • Accumulators 764a through 764d provide four elements which are the estimate of ⁇ m (k) ⁇ m (k) , as shown in equation (13).
  • the singular value ⁇ m (k) for each wideband eigenmode may be estimated based on the received power of the steered reference.
  • a power calculation unit 766 receives the outputs of multipliers 762a through 762d and computes the received power of the steered reference, P m (k) , for each eigenmode of subband k.
  • the singular value estimate ⁇ m (k) is then equal to the square root of the computed received power of the steered reference divided by the magnitude of the pilot symbol (i.e.,
  • the pilots described herein may be implemented by various means.
  • the processing for the various types of pilot at the access point and the user terminal may be implemented in hardware, software, or a combination thereof.
  • the elements used to process the pilots for transmission and/or reception may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
  • some of the processing for the various types of pilot may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • the software codes may be stored in a memory unit (e.g., memory units 432 and 482 in FIG. 4) and executed by a processor (e.g., controllers 430 and 480).
  • the memory unit may be implemented within the processor or external to the processor, in which case it can be communicatively coupled to the processor via various means as is known in the art.
EP03781530A 2002-10-25 2003-10-24 Pilotes pour systemes de communication mimo Expired - Lifetime EP1556985B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DK11153572.0T DK2363970T3 (en) 2002-10-25 2003-10-24 Pilots for MIMO communication systems
EP11153572.0A EP2363970B1 (fr) 2002-10-25 2003-10-24 Pilotes pour systèmes de communication MIMO

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US610446 1984-05-15
US42146202P 2002-10-25 2002-10-25
US42130902P 2002-10-25 2002-10-25
US42142802P 2002-10-25 2002-10-25
US421428P 2002-10-25
US421309P 2002-10-25
US421462P 2002-10-25
US43261702P 2002-12-10 2002-12-10
US432617P 2002-12-10
US43860103P 2003-01-07 2003-01-07
US438601P 2003-01-07
US10/610,446 US7986742B2 (en) 2002-10-25 2003-06-30 Pilots for MIMO communication system
PCT/US2003/034520 WO2004038988A2 (fr) 2002-10-25 2003-10-24 Pilotes pour systemes de communication mimo

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP11153572.0 Division-Into 2011-02-07

Publications (2)

Publication Number Publication Date
EP1556985A2 true EP1556985A2 (fr) 2005-07-27
EP1556985B1 EP1556985B1 (fr) 2011-09-21

Family

ID=32996541

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03781530A Expired - Lifetime EP1556985B1 (fr) 2002-10-25 2003-10-24 Pilotes pour systemes de communication mimo
EP11153572.0A Expired - Lifetime EP2363970B1 (fr) 2002-10-25 2003-10-24 Pilotes pour systèmes de communication MIMO

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11153572.0A Expired - Lifetime EP2363970B1 (fr) 2002-10-25 2003-10-24 Pilotes pour systèmes de communication MIMO

Country Status (17)

Country Link
US (4) US7986742B2 (fr)
EP (2) EP1556985B1 (fr)
JP (2) JP4657918B2 (fr)
KR (1) KR101046824B1 (fr)
AT (1) ATE525823T1 (fr)
AU (2) AU2003287297C1 (fr)
BR (2) BR122016029898B1 (fr)
CA (2) CA2751604C (fr)
DK (2) DK2363970T3 (fr)
ES (2) ES2371460T3 (fr)
HK (1) HK1084266A1 (fr)
MX (1) MXPA05004393A (fr)
PT (2) PT1556985E (fr)
RU (1) RU2349042C2 (fr)
TW (1) TWI337478B (fr)
UA (1) UA83472C2 (fr)
WO (1) WO2004038988A2 (fr)

Families Citing this family (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952454B1 (en) 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
US8363744B2 (en) 2001-06-10 2013-01-29 Aloft Media, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US8134976B2 (en) * 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US7151809B2 (en) * 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
WO2004075451A1 (fr) * 2003-01-29 2004-09-02 Mitsubishi Denki Kabushiki Kaisha Systeme de communication radio a ondes porteuses multiples, dispositif emetteur et dispositif recepteur
CN1806407B (zh) * 2003-06-30 2011-05-18 日本电气株式会社 使用多个发送接收天线的编码扩展无线通信中的扩展编码分配方法及使用了该方法的编码扩展无线通信系统
US20050047496A1 (en) * 2003-08-13 2005-03-03 Mcintire William K. Modem with pilot symbol synchronization
DE10338053B4 (de) * 2003-08-19 2005-12-15 Siemens Ag Verfahren zur Zuweisung von Funkressourcen und Netzeinrichtung in einem Mehrträgerfunkkommunikationssystem
US7668201B2 (en) * 2003-08-28 2010-02-23 Symbol Technologies, Inc. Bandwidth management in wireless networks
US7742546B2 (en) * 2003-10-08 2010-06-22 Qualcomm Incorporated Receiver spatial processing for eigenmode transmission in a MIMO system
US7680461B2 (en) 2003-11-05 2010-03-16 Sony Corporation Wireless communications system, wireless communications method, and wireless communications apparatus
KR100975720B1 (ko) * 2003-11-13 2010-08-12 삼성전자주식회사 다중 송수신 안테나를 구비하는 직교주파수분할다중화 시스템에서 공간 분할 다중화를 고려하여 채널 할당을 수행하는 방법 및 시스템
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US20050135321A1 (en) * 2003-12-17 2005-06-23 Jacob Sharony Spatial wireless local area network
EP1712019B1 (fr) 2004-01-29 2014-01-15 Neocific, Inc. Procedes et appareil de superpositon de signaux multi-porteuses et a spectre etale a sequence directe dans un systeme de transmission sans fil a bande large
US8077691B2 (en) * 2004-03-05 2011-12-13 Qualcomm Incorporated Pilot transmission and channel estimation for MISO and MIMO receivers in a multi-antenna system
US7742533B2 (en) * 2004-03-12 2010-06-22 Kabushiki Kaisha Toshiba OFDM signal transmission method and apparatus
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US7599420B2 (en) * 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
US9826537B2 (en) * 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US7633994B2 (en) * 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
US7711030B2 (en) * 2004-07-30 2010-05-04 Rearden, Llc System and method for spatial-multiplexed tropospheric scatter communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US8571086B2 (en) * 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US8542763B2 (en) * 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US7418053B2 (en) * 2004-07-30 2008-08-26 Rearden, Llc System and method for distributed input-distributed output wireless communications
US7636381B2 (en) * 2004-07-30 2009-12-22 Rearden, Llc System and method for distributed input-distributed output wireless communications
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US10200094B2 (en) * 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US9819403B2 (en) * 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US8170081B2 (en) * 2004-04-02 2012-05-01 Rearden, LLC. System and method for adjusting DIDO interference cancellation based on signal strength measurements
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10886979B2 (en) * 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US8160121B2 (en) * 2007-08-20 2012-04-17 Rearden, Llc System and method for distributed input-distributed output wireless communications
US8923785B2 (en) * 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
JP2005328312A (ja) * 2004-05-13 2005-11-24 Ntt Docomo Inc チャネル推定装置、チャネル推定方法及び無線受信機
KR101053610B1 (ko) * 2004-06-25 2011-08-03 엘지전자 주식회사 Ofdm/ofdma 시스템의 무선자원 할당 방법
US8027243B2 (en) 2004-06-25 2011-09-27 Lg Electronics Inc. Allocation of radio resource in orthogonal frequency division multiplexing system
CA2472671A1 (fr) * 2004-06-29 2005-12-29 Ignis Innovation Inc. Procede de programmation par tensions pour affichages a del excitees par courant
US8000221B2 (en) 2004-07-20 2011-08-16 Qualcomm, Incorporated Adaptive pilot insertion for a MIMO-OFDM system
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US7372913B2 (en) * 2004-07-22 2008-05-13 Qualcomm Incorporated Pilot tones in a multi-transmit OFDM system usable to capture transmitter diversity benefits
EP1622288B1 (fr) * 2004-07-27 2012-10-24 Broadcom Corporation Transmission de symboles pilotes pour systèmes de communication à émission multiple
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
JP2006054705A (ja) * 2004-08-12 2006-02-23 Toshiba Corp 無線送信装置及び無線送信方法
KR101158153B1 (ko) 2004-09-09 2012-06-19 에이저 시스템즈 인크 다중 안테나 통신 시스템에서의 데이터 전송 방법, 다중 안테나 통신 시스템의 송신기, 다중 안테나 통신 시스템에서의 데이터 수신 방법 및 다중 안테나 통신 시스템의 수신기
EP2688058A3 (fr) * 2004-12-15 2014-12-10 Ignis Innovation Inc. Procédé et système pour programmer, étalonner et commander un affichage de dispositif électroluminescent
JP4464836B2 (ja) * 2005-01-14 2010-05-19 パナソニック株式会社 マルチアンテナ通信装置の通信方法及びマルチアンテナ通信装置
CN101138167B (zh) * 2005-01-14 2011-09-21 派平霍特网络有限公司 用于双负载和自适应调制的方法和无线宽带通信系统
US8363604B2 (en) 2005-02-01 2013-01-29 Qualcomm Incorporated Method and apparatus for controlling a transmission data rate based on feedback relating to channel conditions
JP4562542B2 (ja) * 2005-02-15 2010-10-13 三洋電機株式会社 キャリブレーション方法ならびにそれを利用した基地局装置、端末装置および無線装置
JP4599192B2 (ja) * 2005-03-02 2010-12-15 株式会社日立製作所 無線データ通信システム、および、無線データ通信方法
JP4646680B2 (ja) * 2005-03-04 2011-03-09 三洋電機株式会社 キャリブレーション方法ならびにそれを利用した無線装置および通信システム
KR101229768B1 (ko) 2005-03-07 2013-02-06 퀄컴 인코포레이티드 무선 패킷 네트워크용 블록 확인응답 프로토콜
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US7813383B2 (en) 2005-03-10 2010-10-12 Qualcomm Incorporated Method for transmission of time division multiplexed pilot symbols to aid channel estimation, time synchronization, and AGC bootstrapping in a multicast wireless system
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US20060221873A1 (en) * 2005-03-31 2006-10-05 Jacob Sharony System and method for wireless multiple access
US20060221928A1 (en) * 2005-03-31 2006-10-05 Jacob Sharony Wireless device and method for wireless multiple access
US20060221904A1 (en) * 2005-03-31 2006-10-05 Jacob Sharony Access point and method for wireless multiple access
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
JP4646682B2 (ja) * 2005-04-13 2011-03-09 三洋電機株式会社 キャリブレーション方法ならびにそれを利用した無線装置および通信システム
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US7590183B2 (en) * 2005-05-12 2009-09-15 Intellon Corporation Generating signals for transmission of information
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US20060262874A1 (en) * 2005-05-17 2006-11-23 Interdigital Technology Corporation Method and apparatus for power control in a multiple antenna system
EP1727297A1 (fr) * 2005-05-25 2006-11-29 Siemens Aktiengesellschaft Procédé et terminal pour réduire l'interférence dans un système de radio communication
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
WO2006129166A1 (fr) * 2005-05-31 2006-12-07 Nokia Corporation Procede et appareil de creation de sequences pilotes pour reduire le rapport de la valeur maximum a la valeur moyenne de la puissance
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US7643843B2 (en) * 2005-06-14 2010-01-05 Interdigital Technology Corporation Method and system for transmit power control in a multiple-input multiple-output wireless communication system
US9055552B2 (en) 2005-06-16 2015-06-09 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
EP1737176A1 (fr) * 2005-06-20 2006-12-27 NTT DoCoMo, Inc. Signalisation pour l'allocation d'une liaison de communication dans un système MIMO
USRE47633E1 (en) 2005-06-22 2019-10-01 Odyssey Wireless Inc. Systems/methods of conducting a financial transaction using a smartphone
US8670493B2 (en) 2005-06-22 2014-03-11 Eices Research, Inc. Systems and/or methods of increased privacy wireless communications
US8233554B2 (en) 2010-03-29 2012-07-31 Eices Research, Inc. Increased capacity communications for OFDM-based wireless communications systems/methods/devices
CA2510855A1 (fr) * 2005-07-06 2007-01-06 Ignis Innovation Inc. Methode de commande rapide d'affichages amoled
EP1908242B1 (fr) * 2005-07-15 2016-10-12 LG Electronics Inc. Procédé et appareil pour la transmission de symboles pilotes dans un système de communication sans fil
KR101108054B1 (ko) * 2005-07-15 2012-01-25 엘지전자 주식회사 Mimo-ofdm 시스템에서의 전치부호 전송 방법 및데이터 전송 장치
US7916694B2 (en) * 2005-07-19 2011-03-29 Broadcom Corporation Method and system reducing peak to average power ratio (PAPR) in a communication network
US8169994B2 (en) 2005-07-27 2012-05-01 Rockstar Bidco Lp System and method for frequency division multiple access communications
US20070183386A1 (en) * 2005-08-03 2007-08-09 Texas Instruments Incorporated Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
CN101854689B (zh) 2005-08-16 2013-10-30 高通股份有限公司 无线通信中用于选择自适应服务器的方法和系统
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US7826555B2 (en) 2005-08-24 2010-11-02 Panasonic Corporation MIMO-OFDM transmission device and MIMO-OFDM transmission method
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
EP2858264B1 (fr) 2005-09-30 2019-12-18 Apple Inc. Système de communication mimo
TWI259614B (en) * 2005-10-14 2006-08-01 Realtek Semiconductor Corp Beam forming apparatus applied in multiple input multiple output system and related method
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8971222B2 (en) 2005-10-27 2015-03-03 Qualcomm Incorporated Method and apparatus for decrementing assignments in wireless communication systems
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US20090207790A1 (en) * 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
EP1780968A1 (fr) * 2005-10-28 2007-05-02 Alcatel Lucent Transmission sur base de OFDM dans un réseau cellulaire à fréquence unique avec une structure de multiplexage de canaux adaptée au pilote
CN101297512A (zh) * 2005-10-28 2008-10-29 松下电器产业株式会社 发送装置、接收装置、发送方法、接收方法以及无线通信系统
US8594151B2 (en) * 2005-10-31 2013-11-26 Nokia Corporation Pilot sequence detection
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US20070160016A1 (en) * 2006-01-09 2007-07-12 Amit Jain System and method for clustering wireless devices in a wireless network
EP1808989A1 (fr) * 2006-01-12 2007-07-18 Siemens Aktiengesellschaft Procédé de communication numérique sans-fil dans un canal radio-mobile à bande large
US8130857B2 (en) 2006-01-20 2012-03-06 Qualcomm Incorporated Method and apparatus for pilot multiplexing in a wireless communication system
TWI415430B (zh) * 2006-01-20 2013-11-11 Qualcomm Inc 無線通信系統中用於引導多工之方法及裝置
KR101221706B1 (ko) * 2006-01-25 2013-01-11 삼성전자주식회사 고속 패킷 데이터 시스템의 순방향 링크에서 다중 입력 다중 출력 기술을 지원하는 송수신 장치 및 방법
KR101003431B1 (ko) 2006-02-03 2010-12-23 엘지전자 주식회사 무선 통신 시스템에서 피드백 정보에 기반한 하나 이상의 서브패킷을 전송하는 방법
EP1987507B1 (fr) * 2006-02-10 2014-06-04 Ignis Innovation Inc. Procede et systeme pour afficheurs electroluminescents
GB2436414A (en) 2006-02-20 2007-09-26 British Broadcasting Corp OFDM - MIMO radio frequency transmission system
US9461736B2 (en) 2006-02-21 2016-10-04 Qualcomm Incorporated Method and apparatus for sub-slot packets in wireless communication
US8077595B2 (en) 2006-02-21 2011-12-13 Qualcomm Incorporated Flexible time-frequency multiplexing structure for wireless communication
US7782806B2 (en) 2006-03-09 2010-08-24 Qualcomm Incorporated Timing synchronization and channel estimation at a transition between local and wide area waveforms using a designated TDM pilot
KR101285885B1 (ko) * 2006-03-14 2013-07-11 엘지전자 주식회사 무선 통신 시스템에서 파일롯 심볼 전송 방법 및 장치
US8165018B2 (en) 2006-03-17 2012-04-24 Rockstar Bidco, LP Closed-loop MIMO systems and methods
US9130791B2 (en) 2006-03-20 2015-09-08 Qualcomm Incorporated Uplink channel estimation using a signaling channel
WO2007109679A2 (fr) 2006-03-20 2007-09-27 Qualcomm Incorporated Estimation de canal de liaison ascendante au moyen d'un canal de signalisation
JP2007300383A (ja) * 2006-04-28 2007-11-15 Fujitsu Ltd Mimo−ofdm送信機
CA2556961A1 (fr) 2006-08-15 2008-02-15 Ignis Innovation Inc. Technique de compensation de diodes electroluminescentes organiques basee sur leur capacite
KR101249942B1 (ko) 2006-08-31 2013-04-03 아주대학교산학협력단 통신 시스템에서 업링크 무선 프레임 생성 방법
WO2008036772A2 (fr) * 2006-09-19 2008-03-27 Qualcomm Incorporated Bande de multiplexage et canaux de données dans un système de communication duplex à répartition dans le temps
WO2008036687A1 (fr) * 2006-09-19 2008-03-27 Qualcomm Incorporated Décalage de positions de balises dans un système de communication bidirectionnel à répartition dans le temps
ES2702804T3 (es) * 2006-10-24 2019-03-05 Qualcomm Inc Estructuras de trama para sistemas de comunicación inalámbrica
WO2008059985A1 (fr) * 2006-11-17 2008-05-22 Nec Corporation Système de communication mimo à trajets de communication déterministes, et procédé
CN101548571B (zh) * 2006-12-08 2012-04-11 富士通株式会社 相邻扇区间干扰降低方法及基站装置
WO2008068547A1 (fr) * 2006-12-08 2008-06-12 Nokia Corporation, Étalonnage dans un système de communication à spectre étalé
US8009639B2 (en) * 2006-12-27 2011-08-30 Wireless Technology Solutions Llc Feedback control in an FDD TDD-CDMA system
CN101222301B (zh) * 2007-01-11 2011-10-26 中兴通讯股份有限公司 一种时分双工模式系统实现多输入多输出闭环传输的方法
KR20080114452A (ko) * 2007-06-26 2008-12-31 엘지전자 주식회사 다중 안테나 시스템에서 데이터 전송방법 및 코드북구성방법
KR100975313B1 (ko) * 2007-07-05 2010-08-12 삼성전자주식회사 다중 입출력 무선통신 시스템에서 다변 다항식을 이용한신호검출 장치 및 방법
US8989155B2 (en) 2007-08-20 2015-03-24 Rearden, Llc Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
EP2187544B1 (fr) * 2007-09-04 2018-04-18 SHARP Kabushiki Kaisha Dispositif de station de base, dispositif de station mobile, système de communication sans fil à antenne distribuée, procédé de génération d'un canal pilote, procédé de génération d'un canal de synchronisation et procédé de sélection d'une antenne
US20090093222A1 (en) * 2007-10-03 2009-04-09 Qualcomm Incorporated Calibration and beamforming in a wireless communication system
US8798665B2 (en) * 2007-11-15 2014-08-05 Qualcomm Incorporated Beacon-based control channels
US9326253B2 (en) * 2007-11-15 2016-04-26 Qualcomm Incorporated Wireless communication channel blanking
US8761032B2 (en) 2007-11-16 2014-06-24 Qualcomm Incorporated Random reuse based control channels
US8477874B2 (en) * 2007-12-31 2013-07-02 Mobilicom Ltd. Method, device and system of wireless communication
KR20140084341A (ko) 2008-01-04 2014-07-04 인터디지탈 패튼 홀딩스, 인크 Hspa에서 wtru 상태 이행을 수행하기 위한 방법 및 장치
US9009573B2 (en) * 2008-02-01 2015-04-14 Qualcomm Incorporated Method and apparatus for facilitating concatenated codes for beacon channels
US9107239B2 (en) 2008-04-07 2015-08-11 Qualcomm Incorporated Systems and methods to define control channels using reserved resource blocks
US8675537B2 (en) * 2008-04-07 2014-03-18 Qualcomm Incorporated Method and apparatus for using MBSFN subframes to send unicast information
KR101502625B1 (ko) * 2008-04-16 2015-03-16 엘지전자 주식회사 무선 통신 시스템에서 파일럿 시퀀스 맵핑 방법
CN102017448B (zh) * 2008-04-30 2015-07-29 皇家飞利浦电子股份有限公司 用于向无线电站用信令告知资源的方法及用于此的无线电站
CN101610135B (zh) * 2008-06-20 2012-12-26 电信科学技术研究院 分布式天线系统及其数据传输方法、中心控制器
US9374746B1 (en) * 2008-07-07 2016-06-21 Odyssey Wireless, Inc. Systems/methods of spatial multiplexing
JPWO2010013468A1 (ja) * 2008-07-29 2012-01-05 パナソニック株式会社 無線通信基地局装置、無線通信端末装置および巡回遅延設定方法
US8259825B2 (en) * 2008-08-08 2012-09-04 Motorola Mobility, Inc. Mapping and signaling of common reference symbols for multiple antennas
US8155138B2 (en) * 2008-08-19 2012-04-10 Qualcomm Incorporated Training sequences for very high throughput wireless communication
US8767524B2 (en) * 2008-08-19 2014-07-01 Qualcomm Incorporated Training sequences for very high throughput wireless communication
US8472309B2 (en) * 2008-08-20 2013-06-25 Qualcomm Incorporated Using CDMA to send uplink signals in WLANs
CN104301017A (zh) * 2008-09-22 2015-01-21 岩星比德科有限公司 用于pucch的空间代码传送分集的方法和系统
WO2010046890A1 (fr) * 2008-10-23 2010-04-29 Designart Networks Ltd Procédé d’estimation de canal dans un réseau de communication point-à-point
EP2219316A1 (fr) * 2009-02-13 2010-08-18 Alcatel Lucent Procédé et appareil d'attribution de séquences pilotes pour évaluation de diaphonie complémentaire
US9312978B2 (en) 2009-03-04 2016-04-12 Centre Of Excellence In Wireless Technology Pilot aided data transmission and reception with interference mitigation in wireless systems
JP2012519998A (ja) * 2009-03-04 2012-08-30 センター オブ エクセレンス イン ワイアレス テクノロジー 無線システムにおける干渉軽減を含むパイロット支援データ送受信
US9647810B2 (en) * 2009-03-17 2017-05-09 Samsung Electronics Co., Ltd. Method and system for mapping pilot signals in multi-stream transmissions
JP5203409B2 (ja) * 2009-06-23 2013-06-05 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置、無線基地局装置および通信制御方法
KR20110044155A (ko) * 2009-10-22 2011-04-28 삼성전자주식회사 무선통신시스템에서 임의 접근 채널 전송 장치 및 방법
EP2522190B1 (fr) * 2010-01-08 2018-02-07 Sharp Kabushiki Kaisha Procédé et système de communication mobile pour la transmission d'un signal de référence de sondage, et station de base, équipement utilisateur et circuit intégré incorporés
EP2540107B1 (fr) 2010-02-24 2019-12-11 InterDigital Patent Holdings, Inc. Procédé et appareil pour la registration dans un réseau utilisant une balise
CN101834629B (zh) * 2010-04-06 2014-10-22 中兴通讯股份有限公司 一种指示传输参数的方法及系统
US8625631B2 (en) * 2010-04-08 2014-01-07 Ntt Docomo, Inc. Method and apparatus for pilot-reuse in reciprocity-based training schemes for downlink multi-user MIMO
US9160431B2 (en) 2010-04-27 2015-10-13 Qualcomm Incorporated Efficient group definition and overloading for multiuser MIMO transmissions
US9887754B2 (en) 2010-05-04 2018-02-06 Qualcomm Incorporated Method and apparatus for optimizing power distribution between symbols
US9089002B2 (en) 2010-05-16 2015-07-21 Qualcomm Incorporated Efficient group ID management for wireless local area networks (WLANs)
WO2012058648A2 (fr) * 2010-10-29 2012-05-03 Neocific, Inc. Transmission de signaux de synchronisation et de commande dans un système sans fil à large bande
KR20200085931A (ko) 2011-02-18 2020-07-15 선 페이턴트 트러스트 신호생성방법 및 신호생성장치
US8774124B2 (en) * 2011-04-24 2014-07-08 Broadcom Corporation Device coexistence within single user, multiple user, multiple access, and/or MIMO wireless communications
US8792372B2 (en) * 2011-06-20 2014-07-29 Xiao-an Wang Carrier-phase difference detection with mismatched transmitter and receiver delays
US8817678B2 (en) 2011-10-17 2014-08-26 Golba Llc Method and system for centralized or distributed resource management in a distributed transceiver network
CN103096379B (zh) * 2011-11-07 2015-07-08 华为技术有限公司 控制信息传输方法
US9661612B2 (en) * 2012-06-29 2017-05-23 Samsung Electronics Co., Ltd. Methods and apparatus for uplink control channel multiplexing in beamformed cellular systems
US9226092B2 (en) 2012-08-08 2015-12-29 Golba Llc Method and system for a distributed configurable transceiver architecture and implementation
CN103840851A (zh) * 2012-11-21 2014-06-04 中兴通讯股份有限公司 一种多工器
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
KR101772040B1 (ko) * 2013-01-02 2017-08-29 삼성전자주식회사 이동통신 시스템에서 빠른 빔 링크 형성을 위한 방법 및 장치
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US10855346B2 (en) * 2014-05-07 2020-12-01 National Instruments Corporation Massive MIMO architecture
KR101973721B1 (ko) 2014-06-17 2019-04-29 후아웨이 테크놀러지 컴퍼니 리미티드 사용자 장치, 액세스 노드 장치, 중앙 네트워크 처리 제어기 및 대응하는 방법
WO2016155770A1 (fr) * 2015-03-30 2016-10-06 Sony Corporation Systèmes, procédés et produits de programmes informatiques pour optimiser un canal hertzien entre un équipement d'utilisateur et une station de base
JP2016195331A (ja) * 2015-03-31 2016-11-17 三星電子株式会社Samsung Electronics Co.,Ltd. アレーアンテナ送受信装置及び校正値算出方法
US10181966B1 (en) 2015-05-01 2019-01-15 Marvell International Ltd. WiFi classification by pilot sequences
US10382598B1 (en) 2015-05-01 2019-08-13 Marvell International Ltd. Physical layer frame format for WLAN
US10038518B1 (en) 2015-06-11 2018-07-31 Marvell International Ltd. Signaling phy preamble formats
JP6480286B2 (ja) * 2015-08-07 2019-03-06 日本電信電話株式会社 無線通信システム及び無線通信方法
US9401824B1 (en) * 2015-09-24 2016-07-26 Hong Kong Applied Science and Technology Research Institute Company Limited Method and apparatus of channel estimation in multi-user massive MIMO systems
US9654188B2 (en) 2015-09-30 2017-05-16 National Instruments Corporation Scalable massive MIMO
KR20230104998A (ko) * 2016-02-04 2023-07-11 데카웨이브 리미티드 보안 채널 사운딩
CN108604913B (zh) * 2016-02-08 2022-02-22 索尼集团公司 操作蜂窝mimo系统
CN112202541B (zh) 2016-08-04 2022-02-22 中兴通讯股份有限公司 一种信号传输方法及装置
CN107689839B (zh) 2016-08-04 2020-09-22 中兴通讯股份有限公司 一种信号传输方法及装置
BR112019009259B1 (pt) 2017-03-25 2023-02-14 Lg Electronics Inc Método de recebimento de um sinal de referência de rastreamento de fase, equipamento de usuário e mídia legível por processador não transitório
TWI618374B (zh) * 2017-04-21 2018-03-11 國立臺灣大學 束波成型索引空間調變的方法
US10321332B2 (en) 2017-05-30 2019-06-11 Movandi Corporation Non-line-of-sight (NLOS) coverage for millimeter wave communication
US20210143931A1 (en) * 2017-06-16 2021-05-13 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatuses, and computer programs for link adaptation
US10484078B2 (en) 2017-07-11 2019-11-19 Movandi Corporation Reconfigurable and modular active repeater device
EP3673275A1 (fr) 2017-08-23 2020-07-01 Fraunhofer Gesellschaft zur Förderung der Angewand Étalonnage et test par liaison radio de dispositifs à antennes multiples basés sur la formation de faisceau dans des environnements anéchoïques et non anéchoïques
US10348371B2 (en) 2017-12-07 2019-07-09 Movandi Corporation Optimized multi-beam antenna array network with an extended radio frequency range
US10862559B2 (en) 2017-12-08 2020-12-08 Movandi Corporation Signal cancellation in radio frequency (RF) device network
US10090887B1 (en) 2017-12-08 2018-10-02 Movandi Corporation Controlled power transmission in radio frequency (RF) device network
US11088457B2 (en) 2018-02-26 2021-08-10 Silicon Valley Bank Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication
US10637159B2 (en) 2018-02-26 2020-04-28 Movandi Corporation Waveguide antenna element-based beam forming phased array antenna system for millimeter wave communication
CN108601075A (zh) * 2018-04-03 2018-09-28 赣南师范大学 Ofdm认知无线电系统的单用户注水功率分配方法
US10348388B1 (en) 2018-04-30 2019-07-09 Khalifa University of Science and Technology Direct data detection for MIMO communications systems
CN109005133B (zh) * 2018-07-12 2021-04-16 南京邮电大学 双稀疏多径信道模型及基于此模型的信道估计方法
US10673555B2 (en) 2018-07-23 2020-06-02 DecaWave, Ltd. Secure channel sounding
JP7176967B2 (ja) 2019-02-01 2022-11-22 株式会社アルバック 真空アクチュエータ、仕切りバルブ
CN110289894B (zh) * 2019-07-17 2021-07-02 电子科技大学 一种新型调制方法
FR3107152B1 (fr) * 2020-02-07 2022-09-09 Fond B Com Procédé et dispositif de détermination d’une séquence pilote, procédé d’estimation de canal et programme d’ordinateur associés

Family Cites Families (564)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1730801A (en) 1927-11-01 1929-10-08 Warren S D Co Method of treating molds
US4679227A (en) 1985-05-20 1987-07-07 Telebit Corporation Ensemble modem structure for imperfect transmission media
CA1261080A (fr) 1985-12-30 1989-09-26 Shunichiro Tejima Systeme de communication par satellite a acces multiple aleatoire et a reservation de tranches de temps
JPH063956Y2 (ja) 1986-03-14 1994-02-02 松下電工株式会社 電動ガレ−ジ扉
US4750198A (en) * 1986-12-12 1988-06-07 Astronet Corporation/Plessey U.K. Cellular radiotelephone system providing diverse separately-accessible groups of channels
US4797879A (en) * 1987-06-05 1989-01-10 American Telephone And Telegraph Company At&T Bell Laboratories Packet switched interconnection protocols for a star configured optical lan
JPH01132027A (ja) 1987-11-17 1989-05-24 Toshiba Corp 陰極線管のパネルのシール面の洗浄装置
JP2873320B2 (ja) 1989-09-19 1999-03-24 日本電信電話株式会社 移動局の在圏セクタ判定方式
JPH03104430U (fr) 1990-02-14 1991-10-30
US5081679A (en) 1990-07-20 1992-01-14 Ericsson Ge Mobile Communications Holding Inc. Resynchronization of encryption systems upon handoff
IL100213A (en) 1990-12-07 1995-03-30 Qualcomm Inc Mikrata Kedma phone system and its antenna distribution system
US5239677A (en) 1991-07-01 1993-08-24 Motorola, Inc. Method and apparatus for initiating communication on an assigned frequency
IT1250515B (it) 1991-10-07 1995-04-08 Sixtel Spa Rete per area locale senza fili.
US5241544A (en) * 1991-11-01 1993-08-31 Motorola, Inc. Multi-channel tdm communication system slot phase correction
US5592490A (en) 1991-12-12 1997-01-07 Arraycomm, Inc. Spectrally efficient high capacity wireless communication systems
US6850252B1 (en) 1999-10-05 2005-02-01 Steven M. Hoffberg Intelligent electronic appliance system and method
US5295159A (en) * 1992-04-17 1994-03-15 Bell Communications Research, Inc. Coordinated coding for digital transmission
JPH063956A (ja) 1992-06-17 1994-01-14 Seiko Epson Corp 記録材料の残量検出装置
RU2015281C1 (ru) 1992-09-22 1994-06-30 Борис Михайлович Кондрашов Запорное устройство
GB2300337B (en) 1992-10-05 1997-03-26 Ericsson Ge Mobile Communicat Digital control channel
US5404355A (en) 1992-10-05 1995-04-04 Ericsson Ge Mobile Communications, Inc. Method for transmitting broadcast information in a digital control channel
DE69327837T2 (de) 1992-12-01 2000-10-12 Koninkl Philips Electronics Nv Teilband-Diversityübertragungssystem
US5471647A (en) 1993-04-14 1995-11-28 The Leland Stanford Junior University Method for minimizing cross-talk in adaptive transmission antennas
US5479447A (en) 1993-05-03 1995-12-26 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for adaptive, variable bandwidth, high-speed data transmission of a multicarrier signal over digital subscriber lines
US5483667A (en) 1993-07-08 1996-01-09 Northern Telecom Limited Frequency plan for a cellular network
DE69423546T2 (de) * 1993-07-09 2000-09-21 Koninkl Philips Electronics Nv Telekommunikationsnetzwerk, Hauptstation und Nebenstation zum Gebrauch in solchem Netzwerk
ZA946674B (en) 1993-09-08 1995-05-02 Qualcomm Inc Method and apparatus for determining the transmission data rate in a multi-user communication system
US5506861A (en) * 1993-11-22 1996-04-09 Ericsson Ge Mobile Comminications Inc. System and method for joint demodulation of CDMA signals
US5418813A (en) 1993-12-06 1995-05-23 Motorola, Inc. Method and apparatus for creating a composite waveform
US5490087A (en) 1993-12-06 1996-02-06 Motorola, Inc. Radio channel access control
US5422733A (en) 1994-02-04 1995-06-06 Motorola, Inc. Method and apparatus for facsimile communication of first and second type information with selective call communication systems
US5491837A (en) 1994-03-07 1996-02-13 Ericsson Inc. Method and system for channel allocation using power control and mobile-assisted handover measurements
US5493712A (en) 1994-03-23 1996-02-20 At&T Corp. Fast AGC for TDMA radio systems
JP3055085B2 (ja) 1994-04-22 2000-06-19 株式会社アドバンテスト デジタル変調解析装置
EP0759256A4 (fr) 1994-05-02 1999-03-31 Motorola Inc Procede et appareil pour protocole selectif a multiples voies
US5677909A (en) 1994-05-11 1997-10-14 Spectrix Corporation Apparatus for exchanging data between a central station and a plurality of wireless remote stations on a time divided commnication channel
US6157343A (en) * 1996-09-09 2000-12-05 Telefonaktiebolaget Lm Ericsson Antenna array calibration
DE4425713C1 (de) 1994-07-20 1995-04-20 Inst Rundfunktechnik Gmbh Verfahren zur Vielträger Modulation und Demodulation von digital codierten Daten
FR2724084B1 (fr) 1994-08-31 1997-01-03 Alcatel Mobile Comm France Systeme de transmission d'informations par un canal de transmission variant dans le temps, et equipements d'emission et de reception correspondants
US5710768A (en) 1994-09-30 1998-01-20 Qualcomm Incorporated Method of searching for a bursty signal
ZA957858B (en) 1994-09-30 1996-04-22 Qualcomm Inc Multipath search processor for a spread spectrum multiple access communication system
JPH08274756A (ja) 1995-03-30 1996-10-18 Toshiba Corp 無線通信システム
JP3231575B2 (ja) 1995-04-18 2001-11-26 三菱電機株式会社 無線データ伝送装置
KR0155818B1 (ko) 1995-04-29 1998-11-16 김광호 다중 반송파 전송시스템에서 적응형 전력 분배 방법 및 장치
US6018317A (en) 1995-06-02 2000-01-25 Trw Inc. Cochannel signal processing system
US5606729A (en) * 1995-06-21 1997-02-25 Motorola, Inc. Method and apparatus for implementing a received signal quality measurement in a radio communication system
US5729542A (en) 1995-06-28 1998-03-17 Motorola, Inc. Method and apparatus for communication system access
US7929498B2 (en) * 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
US5638369A (en) 1995-07-05 1997-06-10 Motorola, Inc. Method and apparatus for inbound channel selection in a communication system
EP0753948B1 (fr) 1995-07-11 2006-06-07 Alcatel Allocation de capacité pour MDFO
GB9514659D0 (en) 1995-07-18 1995-09-13 Northern Telecom Ltd An antenna downlink beamsteering arrangement
US5867539A (en) * 1995-07-21 1999-02-02 Hitachi America, Ltd. Methods and apparatus for reducing the effect of impulse noise on receivers
FI98674C (fi) 1995-08-18 1997-07-25 Nokia Mobile Phones Ltd Menetelmä lähetystehon säätämiseksi yhteydenmuodostuksen aikana sekä solukkoradiojärjestelmä
JP2802255B2 (ja) 1995-09-06 1998-09-24 株式会社次世代デジタルテレビジョン放送システム研究所 直交周波数分割多重伝送方式及びそれを用いる送信装置と受信装置
GB9521739D0 (en) 1995-10-24 1996-01-03 Nat Transcommunications Ltd Decoding carriers encoded using orthogonal frequency division multiplexing
US6005876A (en) 1996-03-08 1999-12-21 At&T Corp Method and apparatus for mobile data communication
US5699365A (en) 1996-03-27 1997-12-16 Motorola, Inc. Apparatus and method for adaptive forward error correction in data communications
JPH09266466A (ja) 1996-03-28 1997-10-07 Sumitomo Electric Ind Ltd デジタル伝送システム
US5799005A (en) 1996-04-30 1998-08-25 Qualcomm Incorporated System and method for determining received pilot power and path loss in a CDMA communication system
US5924015A (en) 1996-04-30 1999-07-13 Trw Inc Power control method and apparatus for satellite based telecommunications system
JPH09307526A (ja) 1996-05-17 1997-11-28 Mitsubishi Electric Corp デジタル放送受信機
DE69705356T2 (de) 1996-05-17 2002-05-02 Motorola Ltd Verfahren und Vorrichtung zur Gewichtung eines Uebertragungsweges
FI101920B (fi) 1996-06-07 1998-09-15 Nokia Telecommunications Oy Kanavanvarausmenetelmä pakettiverkkoa varten
JPH09327073A (ja) 1996-06-07 1997-12-16 N T T Ido Tsushinmo Kk Cdma移動通信システムにおけるパイロットチャネル配置および送信方法
US5822374A (en) 1996-06-07 1998-10-13 Motorola, Inc. Method for fine gains adjustment in an ADSL communications system
US6798735B1 (en) 1996-06-12 2004-09-28 Aware, Inc. Adaptive allocation for variable bandwidth multicarrier communication
US6072779A (en) 1997-06-12 2000-06-06 Aware, Inc. Adaptive allocation for variable bandwidth multicarrier communication
US6097771A (en) 1996-07-01 2000-08-01 Lucent Technologies Inc. Wireless communications system having a layered space-time architecture employing multi-element antennas
JPH1028077A (ja) 1996-07-11 1998-01-27 Takuro Sato 通信装置
JPH1051402A (ja) 1996-08-01 1998-02-20 Nec Corp 受信電界検出回路
US6014429A (en) 1996-08-12 2000-01-11 Lucent Technologies, Inc. Two-way wireless messaging system with transaction server
US6067292A (en) 1996-08-20 2000-05-23 Lucent Technologies Inc Pilot interference cancellation for a coherent wireless code division multiple access receiver
EP0931388B1 (fr) 1996-08-29 2003-11-05 Cisco Technology, Inc. Traitement spatio-temporel pour telecommunications
JP2001359152A (ja) 2000-06-14 2001-12-26 Sony Corp 無線通信システム、無線基地局装置、無線移動局装置、無線ゾーン割当て方法及び無線通信方法
JP2846860B2 (ja) 1996-10-01 1999-01-13 ユニデン株式会社 スペクトル拡散通信方式を用いた送信機、受信機、通信システム及び通信方法
US6275543B1 (en) 1996-10-11 2001-08-14 Arraycomm, Inc. Method for reference signal generation in the presence of frequency offsets in a communications station with spatial processing
TW496620U (en) 1996-10-16 2002-07-21 Behavior Tech Computer Corp Wireless data transmitting apparatus
US5886988A (en) * 1996-10-23 1999-03-23 Arraycomm, Inc. Channel assignment and call admission control for spatial division multiple access communication systems
US6049548A (en) * 1996-11-22 2000-04-11 Stanford Telecommunications, Inc. Multi-access CS-P/CD-E system and protocols on satellite channels applicable to a group of mobile users in close proximity
IL130034A (en) 1996-11-26 2003-04-10 Trw Inc Cochannel signal processing system
KR200198861Y1 (ko) 1996-12-10 2000-10-02 정몽규 오일 레벨 점검 구조
US5896376A (en) 1996-12-13 1999-04-20 Ericsson Inc. Optimal use of logical channels within a mobile telecommunications network
US5859965A (en) * 1996-12-17 1999-01-12 Sun Microsystems, Inc. Method and apparatus for maintaining data consistency in raid
US6232918B1 (en) * 1997-01-08 2001-05-15 Us Wireless Corporation Antenna array calibration in wireless communication systems
JPH10209956A (ja) 1997-01-28 1998-08-07 Nippon Telegr & Teleph Corp <Ntt> 無線パケット通信方法
US6128276A (en) 1997-02-24 2000-10-03 Radix Wireless, Inc. Stacked-carrier discrete multiple tone communication technology and combinations with code nulling, interference cancellation, retrodirective communication and adaptive antenna arrays
JPH10303794A (ja) 1997-02-27 1998-11-13 Mitsubishi Electric Corp 既知系列検出器
US6084915A (en) 1997-03-03 2000-07-04 3Com Corporation Signaling method having mixed-base shell map indices
US6175550B1 (en) 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
KR100267856B1 (ko) 1997-04-16 2000-10-16 윤종용 이동통신시스템에서오버헤드채널관리방법및장치
US6308080B1 (en) 1997-05-16 2001-10-23 Texas Instruments Incorporated Power control in point-to-multipoint systems
US6347217B1 (en) 1997-05-22 2002-02-12 Telefonaktiebolaget Lm Ericsson (Publ) Link quality reporting using frame erasure rates
US6008760A (en) 1997-05-23 1999-12-28 Genghis Comm Cancellation system for frequency reuse in microwave communications
FR2764143A1 (fr) 1997-05-27 1998-12-04 Philips Electronics Nv Procede de determination d'un format d'emission de symboles dans un systeme de transmission et systeme
US6141555A (en) 1997-06-09 2000-10-31 Nec Corporation Cellular communication system, and mobile and base stations used in the same
US5867478A (en) * 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
US6067458A (en) 1997-07-01 2000-05-23 Qualcomm Incorporated Method and apparatus for pre-transmission power control using lower rate for high rate communication
US6108369A (en) 1997-07-11 2000-08-22 Telefonaktiebolaget Lm Ericsson Channelization code allocation for radio communication systems
JPH1141159A (ja) 1997-07-15 1999-02-12 Nippon Telegr & Teleph Corp <Ntt> 通信装置
US6333953B1 (en) 1997-07-21 2001-12-25 Ericsson Inc. System and methods for selecting an appropriate detection technique in a radiocommunication system
EP0895387A1 (fr) 1997-07-28 1999-02-03 Deutsche Thomson-Brandt Gmbh Détection du mode de transmission d'un signal vidéo numérique télédiffusé
US6141542A (en) 1997-07-31 2000-10-31 Motorola, Inc. Method and apparatus for controlling transmit diversity in a communication system
CN1086061C (zh) 1997-08-12 2002-06-05 鸿海精密工业股份有限公司 电连接器的固持装置
JP2991167B2 (ja) 1997-08-27 1999-12-20 三菱電機株式会社 Tdma可変スロット割当方法
EP0899896A1 (fr) 1997-08-27 1999-03-03 Siemens Aktiengesellschaft Procédé et dispositif d'estimation de paramètres spatiaux de canaux de transmission
US6131016A (en) 1997-08-27 2000-10-10 At&T Corp Method and apparatus for enhancing communication reception at a wireless communication terminal
US6167031A (en) 1997-08-29 2000-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Method for selecting a combination of modulation and channel coding schemes in a digital communication system
BR9812816A (pt) 1997-09-15 2000-08-08 Adaptive Telecom Inc Processos para comunicação sem fio, e para eficientemente determinar na estação base um canal espacial da unidade móvel em um sistema de comunicação sem fio, e, estação base de cdma
US6389000B1 (en) 1997-09-16 2002-05-14 Qualcomm Incorporated Method and apparatus for transmitting and receiving high speed data in a CDMA communication system using multiple carriers
US6590928B1 (en) 1997-09-17 2003-07-08 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping piconets in an uncoordinated wireless multi-user system
AUPO932297A0 (en) * 1997-09-19 1997-10-09 Commonwealth Scientific And Industrial Research Organisation Medium access control protocol for data communications
KR100234329B1 (ko) 1997-09-30 1999-12-15 윤종용 Ofdm 시스템 수신기의 fft 윈도우 위치 복원장치 및 그 방법_
US6178196B1 (en) * 1997-10-06 2001-01-23 At&T Corp. Combined interference cancellation and maximum likelihood decoding of space-time block codes
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US6377812B1 (en) * 1997-11-20 2002-04-23 University Of Maryland Combined power control and space-time diversity in mobile cellular communications
US6122247A (en) 1997-11-24 2000-09-19 Motorola Inc. Method for reallocating data in a discrete multi-tone communication system
JPH11163823A (ja) 1997-11-26 1999-06-18 Victor Co Of Japan Ltd 直交周波数分割多重信号伝送方法、送信装置及び受信装置
US5936569A (en) 1997-12-02 1999-08-10 Nokia Telecommunications Oy Method and arrangement for adjusting antenna pattern
US6154661A (en) 1997-12-10 2000-11-28 Arraycomm, Inc. Transmitting on the downlink using one or more weight vectors determined to achieve a desired radiation pattern
US6084917A (en) 1997-12-16 2000-07-04 Integrated Telecom Express Circuit for configuring and dynamically adapting data and energy parameters in a multi-channel communications system
US5929810A (en) 1997-12-19 1999-07-27 Northrop Grumman Corporation In-flight antenna optimization
US6175588B1 (en) 1997-12-30 2001-01-16 Motorola, Inc. Communication device and method for interference suppression using adaptive equalization in a spread spectrum communication system
US6088387A (en) 1997-12-31 2000-07-11 At&T Corp. Multi-channel parallel/serial concatenated convolutional codes and trellis coded modulation encoder/decoder
EP2154853B1 (fr) 1998-01-06 2011-11-16 Mosaid Technologies Incorporated Système de modulation multiporteuse à débits de symboles variables
JP3724940B2 (ja) 1998-01-08 2005-12-07 株式会社東芝 Ofdmダイバーシチ受信装置
US5982327A (en) 1998-01-12 1999-11-09 Motorola, Inc. Adaptive array method, device, base station and subscriber unit
US6608874B1 (en) 1998-01-12 2003-08-19 Hughes Electronics Corporation Method and apparatus for quadrature multi-pulse modulation of data for spectrally efficient communication
EP0930752A3 (fr) 1998-01-14 1999-10-20 Motorola, Inc. Procédé d'allocation de données et de pouvoir dans un système de communcication multiporteur
US5973638A (en) 1998-01-30 1999-10-26 Micronetics Wireless, Inc. Smart antenna channel simulator and test system
US7787514B2 (en) 1998-02-12 2010-08-31 Lot 41 Acquisition Foundation, Llc Carrier interferometry coding with applications to cellular and local area networks
EP0938208A1 (fr) 1998-02-22 1999-08-25 Sony International (Europe) GmbH Transmission multiporteuse, compatible au système GSM existant
JP3082756B2 (ja) 1998-02-27 2000-08-28 日本電気株式会社 マルチキャリア伝送システム及びその方法
WO1999044379A1 (fr) 1998-02-27 1999-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Categorisation d'acces multiple destinee a une station mobile
US6141388A (en) 1998-03-11 2000-10-31 Ericsson Inc. Received signal quality determination method and systems for convolutionally encoded communication channels
US6058107A (en) 1998-04-08 2000-05-02 Motorola, Inc. Method for updating forward power control in a communication system
US6317466B1 (en) 1998-04-15 2001-11-13 Lucent Technologies Inc. Wireless communications system having a space-time architecture employing multi-element antennas at both the transmitter and receiver
US6615024B1 (en) 1998-05-01 2003-09-02 Arraycomm, Inc. Method and apparatus for determining signatures for calibrating a communication station having an antenna array
US7123628B1 (en) 1998-05-06 2006-10-17 Lg Electronics Inc. Communication system with improved medium access control sub-layer
JP3286247B2 (ja) 1998-05-08 2002-05-27 松下電器産業株式会社 無線通信システム
US6205410B1 (en) 1998-06-01 2001-03-20 Globespan Semiconductor, Inc. System and method for bit loading with optimal margin assignment
WO1999066661A1 (fr) 1998-06-19 1999-12-23 Telefonaktiebolaget Lm Ericsson (Publ) Techniques de synchronisation de trames et systemes de radiocommunication a spectre etale
US6795424B1 (en) 1998-06-30 2004-09-21 Tellabs Operations, Inc. Method and apparatus for interference suppression in orthogonal frequency division multiplexed (OFDM) wireless communication systems
JP2000092009A (ja) 1998-07-13 2000-03-31 Sony Corp 通信方法、送信機及び受信機
KR100342525B1 (ko) 1998-07-16 2002-06-28 윤종용 이동통신시스템의 패킷 데이터 처리 시스템 및 방법
CA2302269C (fr) * 1998-07-16 2003-11-04 Samsung Electronics Co., Ltd. Traitement de donnees en paquets, dans un systeme de communication mobile
US6154443A (en) 1998-08-11 2000-11-28 Industrial Technology Research Institute FFT-based CDMA RAKE receiver system and method
US6594620B1 (en) 1998-08-17 2003-07-15 Aspen Technology, Inc. Sensor validation apparatus and method
CA2340716A1 (fr) 1998-08-18 2000-03-02 Beamreach Networks, Inc. Technologie dmt a empilement de porteuses
KR100429540B1 (ko) 1998-08-26 2004-08-09 삼성전자주식회사 이동통신시스템의패킷데이터통신장치및방법
US6515617B1 (en) 1998-09-01 2003-02-04 Hughes Electronics Corporation Method and system for position determination using geostationary earth orbit satellite
DE19842712C1 (de) * 1998-09-17 2000-05-04 Siemens Ag Verfahren und Anordnung zur Minimierung des Autokorrelationsfehlers bei der Demodulation eines Spreizspektrum-Signals unter Mehrwegeausbreitung
US6292917B1 (en) 1998-09-30 2001-09-18 Agere Systems Guardian Corp. Unequal error protection for digital broadcasting using channel classification
EP0993212B1 (fr) * 1998-10-05 2006-05-24 Sony Deutschland GmbH Technique de partition d'un canal à accès aléatoire pour système à AMRC
EP0993211B1 (fr) 1998-10-05 2005-01-12 Sony International (Europe) GmbH Technique de partition d'un canal à accès aléatoire pour système à AMRC
US6711121B1 (en) 1998-10-09 2004-03-23 At&T Corp. Orthogonal code division multiplexing for twisted pair channels
DE59902484D1 (de) 1998-10-27 2002-10-02 Siemens Ag Kanalzuweisungsverfahren und vorrichtung für kodierte und kombinierte informationssätze
JP4287536B2 (ja) * 1998-11-06 2009-07-01 パナソニック株式会社 Ofdm送受信装置及びofdm送受信方法
US6314289B1 (en) 1998-12-03 2001-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for transmitting information and apparatus and method for receiving information
GB9827182D0 (en) * 1998-12-10 1999-02-03 Philips Electronics Nv Radio communication system
FI108588B (fi) 1998-12-15 2002-02-15 Nokia Corp Menetelmä ja radiojärjestelmä digitaalisen signaalin siirtoon
JP2000244441A (ja) 1998-12-22 2000-09-08 Matsushita Electric Ind Co Ltd Ofdm送受信装置
US6266528B1 (en) 1998-12-23 2001-07-24 Arraycomm, Inc. Performance monitor for antenna arrays
US6310909B1 (en) 1998-12-23 2001-10-30 Broadcom Corporation DSL rate adaptation
US6463290B1 (en) 1999-01-08 2002-10-08 Trueposition, Inc. Mobile-assisted network based techniques for improving accuracy of wireless location system
US6348036B1 (en) * 1999-01-24 2002-02-19 Genzyme Corporation Surgical retractor and tissue stabilization device
RU2152132C1 (ru) 1999-01-26 2000-06-27 Государственное унитарное предприятие Воронежский научно-исследовательский институт связи Линия радиосвязи с пространственной модуляцией
JP3619729B2 (ja) 2000-01-19 2005-02-16 松下電器産業株式会社 無線受信装置および無線受信方法
KR100651457B1 (ko) 1999-02-13 2006-11-28 삼성전자주식회사 부호분할다중접속 이동통신시스템의 불연속 전송모드에서 연속적인 외부순환 전력제어장치 및 방법
US6574267B1 (en) 1999-03-22 2003-06-03 Golden Bridge Technology, Inc. Rach ramp-up acknowledgement
US6169759B1 (en) 1999-03-22 2001-01-02 Golden Bridge Technology Common packet channel
US6363267B1 (en) 1999-04-07 2002-03-26 Telefonaktiebolaget Lm Ericsson (Publ) Mobile terminal decode failure procedure in a wireless local area network
US6346910B1 (en) * 1999-04-07 2002-02-12 Tei Ito Automatic array calibration scheme for wireless point-to-multipoint communication networks
CN1186893C (zh) 1999-04-12 2005-01-26 三星电子株式会社 码分多址通信系统中的选通传输装置和方法
EP1075093A1 (fr) 1999-08-02 2001-02-07 Interuniversitair Micro-Elektronica Centrum Vzw Procédé et dispositif pour une transmission multi-utilisateurs
US6594798B1 (en) 1999-05-21 2003-07-15 Microsoft Corporation Receiver-driven layered error correction multicast over heterogeneous packet networks
US6532562B1 (en) * 1999-05-21 2003-03-11 Microsoft Corp Receiver-driven layered error correction multicast over heterogeneous packet networks
US6594473B1 (en) 1999-05-28 2003-07-15 Texas Instruments Incorporated Wireless system with transmitter having multiple transmit antennas and combining open loop and closed loop transmit diversities
KR100605978B1 (ko) 1999-05-29 2006-07-28 삼성전자주식회사 부호분할다중접속 이동통신시스템의 불연속 전송모드에서 연속적인 외부순환 전력제어를 위한 송수신 장치 및 방법
US7072410B1 (en) 1999-06-01 2006-07-04 Peter Monsen Multiple access system and method for multibeam digital radio systems
US6141567A (en) 1999-06-07 2000-10-31 Arraycomm, Inc. Apparatus and method for beamforming in a changing-interference environment
US6385264B1 (en) * 1999-06-08 2002-05-07 Qualcomm Incorporated Method and apparatus for mitigating interference between base stations in a wideband CDMA system
US6976262B1 (en) 1999-06-14 2005-12-13 Sun Microsystems, Inc. Web-based enterprise management with multiple repository capability
ATE288639T1 (de) 1999-07-08 2005-02-15 Samsung Electronics Co Ltd Detektionsgerät und -verfahren für datenrate in einer mobilen kommunikationsanordnung
US6163296A (en) 1999-07-12 2000-12-19 Lockheed Martin Corp. Calibration and integrated beam control/conditioning system for phased-array antennas
RU2168278C2 (ru) 1999-07-16 2001-05-27 Корпорация "Самсунг Электроникс" Способ произвольного доступа абонентов мобильной станции
US6532225B1 (en) * 1999-07-27 2003-03-11 At&T Corp Medium access control layer for packetized wireless systems
US6067290A (en) 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
JP2001044930A (ja) 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd 無線通信装置および無線通信方法
US7027464B1 (en) 1999-07-30 2006-04-11 Matsushita Electric Industrial Co., Ltd. OFDM signal transmission scheme, and OFDM signal transmitter/receiver
US6245806B1 (en) 1999-08-03 2001-06-12 Merck & Co., Inc. HIV integrase inhibitors
US6721339B2 (en) 1999-08-17 2004-04-13 Lucent Technologies Inc. Method of providing downlink transmit diversity
US6735188B1 (en) * 1999-08-27 2004-05-11 Tachyon, Inc. Channel encoding and decoding method and apparatus
US6115406A (en) 1999-09-10 2000-09-05 Interdigital Technology Corporation Transmission using an antenna array in a CDMA communication system
US6278726B1 (en) 1999-09-10 2001-08-21 Interdigital Technology Corporation Interference cancellation in a spread spectrum communication system
US6426971B1 (en) 1999-09-13 2002-07-30 Qualcomm Incorporated System and method for accurately predicting signal to interference and noise ratio to improve communications system performance
SG80071A1 (en) 1999-09-24 2001-04-17 Univ Singapore Downlink beamforming method
US6850494B1 (en) 1999-09-27 2005-02-01 Qualcomm Incorporated Method and system for querying attributes in a cellular communications system
JP3421671B2 (ja) 1999-09-30 2003-06-30 独立行政法人通信総合研究所 通信システム、選択装置、送信装置、受信装置、選択方法、送信方法、受信方法、および、情報記録媒体
CN100385838C (zh) 1999-10-02 2008-04-30 三星电子株式会社 在码分多址通信系统中在控制信道上选通数据的设备和方法
DE19950005A1 (de) 1999-10-18 2001-04-19 Bernhard Walke Verfahren zum Betrieb drahtloser Basisstationen für paketvermittelnde Funksysteme mit garantierter Dienstgüte
DE19951525C2 (de) 1999-10-26 2002-01-24 Siemens Ag Verfahren zum Kalibrieren einer elektronisch phasengesteuerten Gruppenantenne in Funk-Kommunikationssystemen
US6492942B1 (en) 1999-11-09 2002-12-10 Com Dev International, Inc. Content-based adaptive parasitic array antenna system
JP3416597B2 (ja) 1999-11-19 2003-06-16 三洋電機株式会社 無線基地局
US7088671B1 (en) 1999-11-24 2006-08-08 Peter Monsen Multiple access technique for downlink multibeam digital radio systems
US7110785B1 (en) 1999-12-03 2006-09-19 Nortel Networks Limited Performing power control in a mobile communications system
US6298092B1 (en) 1999-12-15 2001-10-02 Iospan Wireless, Inc. Methods of controlling communication parameters of wireless systems
US6351499B1 (en) * 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
EP1109326A1 (fr) 1999-12-15 2001-06-20 Lucent Technologies Inc. Détecteur de préambule pour un récepteur AMRC
JP3975629B2 (ja) * 1999-12-16 2007-09-12 ソニー株式会社 画像復号装置及び画像復号方法
US6298035B1 (en) 1999-12-21 2001-10-02 Nokia Networks Oy Estimation of two propagation channels in OFDM
JP2001186051A (ja) 1999-12-24 2001-07-06 Toshiba Corp データ信号判定回路及び方法
CN100385833C (zh) 1999-12-28 2008-04-30 株式会社Ntt都科摩 路径搜索方法与信道估计方法以及通信装置
US6718160B2 (en) 1999-12-29 2004-04-06 Airnet Communications Corp. Automatic configuration of backhaul and groundlink frequencies in a wireless repeater
US6888809B1 (en) 2000-01-13 2005-05-03 Lucent Technologies Inc. Space-time processing for multiple-input, multiple-output, wireless systems
US7254171B2 (en) 2000-01-20 2007-08-07 Nortel Networks Limited Equaliser for digital communications systems and method of equalisation
JP3581072B2 (ja) 2000-01-24 2004-10-27 株式会社エヌ・ティ・ティ・ドコモ チャネル構成方法及びその方法を利用する基地局
KR100325367B1 (ko) 2000-01-28 2002-03-04 박태진 직교 주파수 분할 다중 통신 시스템에서의 비트 오율 측정장치및 방법
JP2001217896A (ja) 2000-01-31 2001-08-10 Matsushita Electric Works Ltd 無線データ通信システム
US7003044B2 (en) 2000-02-01 2006-02-21 Sasken Communication Technologies Ltd. Method for allocating bits and power in multi-carrier communication system
FI117465B (fi) 2000-02-03 2006-10-31 Danisco Sweeteners Oy Menetelmä pureskeltavien ytimien kovapinnoittamiseksi
US6868120B2 (en) 2000-02-08 2005-03-15 Clearwire Corporation Real-time system for measuring the Ricean K-factor
US6704374B1 (en) 2000-02-16 2004-03-09 Thomson Licensing S.A. Local oscillator frequency correction in an orthogonal frequency division multiplexing system
DE10008653A1 (de) 2000-02-24 2001-09-06 Siemens Ag Verbesserungen an einem Funkkommunikationssystem
US6956814B1 (en) 2000-02-29 2005-10-18 Worldspace Corporation Method and apparatus for mobile platform reception and synchronization in direct digital satellite broadcast system
JP2001244879A (ja) 2000-03-02 2001-09-07 Matsushita Electric Ind Co Ltd 送信電力制御装置及びその方法
US6963546B2 (en) 2000-03-15 2005-11-08 Interdigital Technology Corp. Multi-user detection using an adaptive combination of joint detection and successive interface cancellation
EP1137217A1 (fr) 2000-03-20 2001-09-26 Telefonaktiebolaget Lm Ericsson Négociation de paramètres ARQ dans un système de transmission de paquets de données utilisant une adaptation de liaison
US7149253B2 (en) 2000-03-21 2006-12-12 Texas Instruments Incorporated Wireless communication
US20020154705A1 (en) 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
US6952454B1 (en) 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
DE10014676C2 (de) 2000-03-24 2002-02-07 Polytrax Inf Technology Ag Datenübertragung über ein Stromversorgungsnetz
US7113499B2 (en) 2000-03-29 2006-09-26 Texas Instruments Incorporated Wireless communication
US6493331B1 (en) 2000-03-30 2002-12-10 Qualcomm Incorporated Method and apparatus for controlling transmissions of a communications systems
ATE454022T1 (de) 2000-04-04 2010-01-15 Sony Deutschland Gmbh Ereignisgesteuerte änderung der zugriffsdienstklasse in einem zufallzugriffskanal
AU2000238190A1 (en) 2000-04-07 2001-10-23 Nokia Corporation Multi-antenna transmission method and system
US7289570B2 (en) * 2000-04-10 2007-10-30 Texas Instruments Incorporated Wireless communications
US6757263B1 (en) 2000-04-13 2004-06-29 Motorola, Inc. Wireless repeating subscriber units
SE518028C2 (sv) 2000-04-17 2002-08-20 Ericsson Telefon Ab L M Förfarande och metod för att undvika överbelastning i ett cellulärt radiosystem med makrodiversitet
EP1830535B1 (fr) 2000-04-18 2011-06-15 Aware, Inc. Système multiporteuse à plusieurs marges de rapport signal à bruit
US6751199B1 (en) 2000-04-24 2004-06-15 Qualcomm Incorporated Method and apparatus for a rate control in a high data rate communication system
ES2258747T3 (es) * 2000-04-25 2006-09-01 Nortel Networks Limited Sistema de comunicaciones por radio con retrasos reducidos para transmision de datos.
JP3414357B2 (ja) 2000-04-25 2003-06-09 日本電気株式会社 Cdma移動通信システムにおける送信電力制御方式
US7068628B2 (en) 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
EP1158695B1 (fr) 2000-05-23 2008-08-06 NTT DoCoMo, Inc. Procédé et système de communication à multiplexage spatial
US7139324B1 (en) 2000-06-02 2006-11-21 Nokia Networks Oy Closed loop feedback system for improved down link performance
EP1198908B1 (fr) 2000-06-12 2017-08-09 Samsung Electronics Co., Ltd. Procédè permettant d'assigner un accès aléatoire sur canal de liaison montante dans un système de communication mobile cdma
US6744811B1 (en) 2000-06-12 2004-06-01 Actelis Networks Inc. Bandwidth management for DSL modem pool
US7248841B2 (en) 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US6317467B1 (en) 2000-06-14 2001-11-13 Lloyd C. Cox Beamforming and interference cancellation system using general purpose filter architecture
US6628702B1 (en) 2000-06-14 2003-09-30 Qualcomm, Incorporated Method and apparatus for demodulating signals processed in a transmit diversity mode
US6760313B1 (en) 2000-06-19 2004-07-06 Qualcomm Incorporated Method and apparatus for adaptive rate selection in a communication system
SE519303C2 (sv) * 2000-06-20 2003-02-11 Ericsson Telefon Ab L M Anordning för smalbandig kommunikation i ett multicarrier- system
KR20020000337A (ko) 2000-06-23 2002-01-05 이주영 인터넷을 이용한 포토 온라인 서비스 시스템 및 방법
WO2002003557A1 (fr) 2000-06-30 2002-01-10 Iospan Wireless, Inc. Procede et systeme d'adaptation de mode dans un systeme de communication sans fil
US6891858B1 (en) 2000-06-30 2005-05-10 Cisco Technology Inc. Dynamic modulation of modulation profiles for communication channels in an access network
CN1140147C (zh) * 2000-07-01 2004-02-25 信息产业部电信传输研究所 一种外环功率控制的方法和系统
AU2001267891A1 (en) * 2000-07-03 2002-01-14 Matsushita Electric Industrial Co., Ltd. Base station unit and method for radio communication
JP3583353B2 (ja) 2000-07-03 2004-11-04 松下電器産業株式会社 通信端末装置および基地局装置
KR100627188B1 (ko) 2000-07-04 2006-09-22 에스케이 텔레콤주식회사 무선통신 역방향 동기 방식에서의 코드 할당 방법
EP2262157A3 (fr) 2000-07-05 2011-03-23 Sony Deutschland Gmbh Schéma de symboles pilotes pour un arrangement en diversité de transmission espace-temps (STTD) dans un système OFDM
EP2271042A3 (fr) * 2000-07-12 2011-03-23 Qualcomm Incorporated Procédé et appareil pour la transmission dans un système multi-antennes
FI109393B (fi) 2000-07-14 2002-07-15 Nokia Corp Menetelmä mediavirran enkoodaamiseksi skaalautuvasti, skaalautuva enkooderi ja päätelaite
ATE536002T1 (de) 2000-07-17 2011-12-15 Koninkl Philips Electronics Nv Ungleichgewichtiger fehlerschutz für packete mit variabler länge
KR100493152B1 (ko) 2000-07-21 2005-06-02 삼성전자주식회사 이동 통신 시스템에서의 전송 안테나 다이버시티 방법 및이를 위한 기지국 장치 및 이동국 장치
EP1176750A1 (fr) * 2000-07-25 2002-01-30 Telefonaktiebolaget L M Ericsson (Publ) Détermination de la qualité de liaison d'un canal de transmission dans un système de transmission de OFDM
US6721267B2 (en) 2000-08-01 2004-04-13 Motorola, Inc. Time and bandwidth scalable slot format for mobile data system
EP1178641B1 (fr) 2000-08-01 2007-07-25 Sony Deutschland GmbH Schéma de réutilisation de fréquences pour systèmes de multiplexage à répartition de fréquence orthogonale (OFDM)
US6920192B1 (en) 2000-08-03 2005-07-19 Lucent Technologies Inc. Adaptive antenna array methods and apparatus for use in a multi-access wireless communication system
DE60140276D1 (de) 2000-08-03 2009-12-03 Infineon Technologies Ag Dynamisch, rekonfigurierbares, universelles Sendersystem
US6582088B2 (en) * 2000-08-10 2003-06-24 Benq Corporation Optical path folding apparatus
DE60037465T2 (de) 2000-08-10 2008-12-04 Fujitsu Ltd., Kawasaki Vorrichtung zur Kommunikation mit Diversität
KR100617749B1 (ko) 2000-08-16 2006-08-28 삼성전자주식회사 이동통신 시스템에서 쥐피에스 신호를 이용한 기지국안테나 어레이장치 및 송수신 빔 형성 방법
EP1182799A3 (fr) 2000-08-22 2002-06-26 Lucent Technologies Inc. Procédé pour améliorer des communications à AMCR sans fil utilisant une diversité d'emission spatio-temporel
KR100526499B1 (ko) 2000-08-22 2005-11-08 삼성전자주식회사 두 개 이상 안테나를 사용하는 안테나 전송 다이버시티방법 및 장치
JP3886709B2 (ja) 2000-08-29 2007-02-28 三菱電機株式会社 スペクトル拡散受信装置
IT1318790B1 (it) 2000-08-29 2003-09-10 Cit Alcatel Metodo per gestire il cambio di allocazione dei time-slot in reti adanello ms-spring di tipo transoceanico.
US7120657B2 (en) 2000-08-29 2006-10-10 Science Applications International Corporation System and method for adaptive filtering
US6985434B2 (en) * 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US6937592B1 (en) 2000-09-01 2005-08-30 Intel Corporation Wireless communications system that supports multiple modes of operation
US7233625B2 (en) 2000-09-01 2007-06-19 Nortel Networks Limited Preamble design for multiple input—multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system
US7009931B2 (en) * 2000-09-01 2006-03-07 Nortel Networks Limited Synchronization in a multiple-input/multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system for wireless applications
JP2002077098A (ja) 2000-09-01 2002-03-15 Mitsubishi Electric Corp 通信装置および通信方法
US6850481B2 (en) 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
FR2814014B1 (fr) * 2000-09-14 2002-10-11 Mitsubishi Electric Inf Tech Methode de detection multi-utilisateur
US6760882B1 (en) 2000-09-19 2004-07-06 Intel Corporation Mode selection for data transmission in wireless communication channels based on statistical parameters
US6802035B2 (en) 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US6956897B1 (en) 2000-09-27 2005-10-18 Northwestern University Reduced rank adaptive filter
US7062294B1 (en) 2000-09-29 2006-06-13 Arraycomm, Llc. Downlink transmission in a wireless data communication system having a base station with a smart antenna system
US7043259B1 (en) 2000-09-29 2006-05-09 Arraycomm, Inc. Repetitive paging from a wireless data base station having a smart antenna system
US6650714B2 (en) 2000-11-30 2003-11-18 Arraycomm, Inc. Spatial processing and timing estimation using a training sequence in a radio communications system
US7110378B2 (en) 2000-10-03 2006-09-19 Wisconsin Alumni Research Foundation Channel aware optimal space-time signaling for wireless communication over wideband multipath channels
US7016296B2 (en) 2000-10-16 2006-03-21 Broadcom Corporation Adaptive modulation for fixed wireless link in cable transmission system
US6907270B1 (en) 2000-10-23 2005-06-14 Qualcomm Inc. Method and apparatus for reduced rank channel estimation in a communications system
JP4067755B2 (ja) 2000-10-24 2008-03-26 三菱電機株式会社 スペクトラム拡散通信システムの受信機
US6369758B1 (en) 2000-11-01 2002-04-09 Unique Broadband Systems, Inc. Adaptive antenna array for mobile communication
JP3553038B2 (ja) 2000-11-06 2004-08-11 株式会社エヌ・ティ・ティ・ドコモ 信号送信方法、信号受信方法、送信装置、受信装置および記録媒体
US6768727B1 (en) 2000-11-09 2004-07-27 Ericsson Inc. Fast forward link power control for CDMA system
US8634481B1 (en) 2000-11-16 2014-01-21 Alcatel Lucent Feedback technique for wireless systems with multiple transmit and receive antennas
US7006464B1 (en) 2000-11-17 2006-02-28 Lucent Technologies Inc. Downlink and uplink channel structures for downlink shared channel system
US6980601B2 (en) 2000-11-17 2005-12-27 Broadcom Corporation Rate adaptation and parameter optimization for multi-band single carrier transmission
JP3695316B2 (ja) 2000-11-24 2005-09-14 株式会社日本自動車部品総合研究所 スペクトラム拡散受信機の相関検出器
US6751480B2 (en) 2000-12-01 2004-06-15 Lucent Technologies Inc. Method for simultaneously conveying information to multiple mobiles with multiple antennas
US8019068B2 (en) 2000-12-01 2011-09-13 Alcatel Lucent Method of allocating power for the simultaneous downlink conveyance of information between multiple antennas and multiple destinations
JP4505677B2 (ja) 2000-12-06 2010-07-21 ソフトバンクテレコム株式会社 送信ダイバーシチ装置および送信電力調整方法
US6952426B2 (en) 2000-12-07 2005-10-04 Nortel Networks Limited Method and apparatus for the transmission of short data bursts in CDMA/HDR networks
KR100353641B1 (ko) * 2000-12-21 2002-09-28 삼성전자 주식회사 부호분할다중접속 이동통신시스템의 기지국 전송 안테나다이버시티 장치 및 방법
US6850498B2 (en) * 2000-12-22 2005-02-01 Intel Corporation Method and system for evaluating a wireless link
US6987819B2 (en) 2000-12-29 2006-01-17 Motorola, Inc. Method and device for multiple input/multiple output transmit and receive weights for equal-rate data streams
GB0031841D0 (en) * 2000-12-29 2001-02-14 Nokia Networks Oy Interference power estimation for adaptive antenna system
US7050510B2 (en) 2000-12-29 2006-05-23 Lucent Technologies Inc. Open-loop diversity technique for systems employing four transmitter antennas
US20020085641A1 (en) * 2000-12-29 2002-07-04 Motorola, Inc Method and system for interference averaging in a wireless communication system
US6731668B2 (en) * 2001-01-05 2004-05-04 Qualcomm Incorporated Method and system for increased bandwidth efficiency in multiple input—multiple output channels
EP1223776A1 (fr) 2001-01-12 2002-07-17 Siemens Information and Communication Networks S.p.A. Ordonnance d'accès sans collisions dans un réseau cellulaire AMRT-AMRC
US6693992B2 (en) * 2001-01-16 2004-02-17 Mindspeed Technologies Line probe signal and method of use
US6801790B2 (en) 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
US7164669B2 (en) * 2001-01-19 2007-01-16 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading
US7054662B2 (en) 2001-01-24 2006-05-30 Qualcomm, Inc. Method and system for forward link beam forming in wireless communications
JP2002232943A (ja) 2001-01-29 2002-08-16 Sony Corp データ送信処理方法、データ受信処理方法、送信機、受信機、およびセルラー無線通信システム
GB0102316D0 (en) * 2001-01-30 2001-03-14 Koninkl Philips Electronics Nv Radio communication system
US6961388B2 (en) 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
US6885654B2 (en) * 2001-02-06 2005-04-26 Interdigital Technology Corporation Low complexity data detection using fast fourier transform of channel correlation matrix
US7120134B2 (en) 2001-02-15 2006-10-10 Qualcomm, Incorporated Reverse link channel architecture for a wireless communication system
US6975868B2 (en) 2001-02-21 2005-12-13 Qualcomm Incorporated Method and apparatus for IS-95B reverse link supplemental code channel frame validation and fundamental code channel rate decision improvement
JP3736429B2 (ja) 2001-02-21 2006-01-18 日本電気株式会社 セルラシステム、基地局、移動局並びに通信制御方法
US7006483B2 (en) * 2001-02-23 2006-02-28 Ipr Licensing, Inc. Qualifying available reverse link coding rates from access channel power setting
AU2002240506A1 (en) 2001-02-26 2002-09-12 Magnolia Broadband, Inc Smart antenna based spectrum multiplexing using a pilot signal
GB0105019D0 (en) 2001-03-01 2001-04-18 Koninkl Philips Electronics Nv Antenna diversity in a wireless local area network
US7039125B2 (en) 2001-03-12 2006-05-02 Analog Devices, Inc. Equalized SNR power back-off
EP1241824A1 (fr) 2001-03-14 2002-09-18 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Procédé de multiplexage dans un système multiporteur à transmission en diversité
US6763244B2 (en) 2001-03-15 2004-07-13 Qualcomm Incorporated Method and apparatus for adjusting power control setpoint in a wireless communication system
US7046746B1 (en) * 2001-03-19 2006-05-16 Cisco Systems Wireless Networking (Australia) Pty Limited Adaptive Viterbi decoder for a wireless data network receiver
US6478422B1 (en) 2001-03-19 2002-11-12 Richard A. Hansen Single bifocal custom shooters glasses
US7248638B1 (en) 2001-03-23 2007-07-24 Lsi Logic Transmit antenna multi-mode tracking
US6771706B2 (en) 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US7386076B2 (en) 2001-03-29 2008-06-10 Texas Instruments Incorporated Space time encoded wireless communication system with multipath resolution receivers
US8290098B2 (en) 2001-03-30 2012-10-16 Texas Instruments Incorporated Closed loop multiple transmit, multiple receive antenna wireless communication system
GB2373973B (en) 2001-03-30 2003-06-11 Toshiba Res Europ Ltd Adaptive antenna
US20020176485A1 (en) 2001-04-03 2002-11-28 Hudson John E. Multi-cast communication system and method of estimating channel impulse responses therein
US6785513B1 (en) 2001-04-05 2004-08-31 Cowave Networks, Inc. Method and system for clustered wireless networks
US6859503B2 (en) 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
KR100510434B1 (ko) 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 Ofdm신호전달 시스템, ofdm신호 송신장치 및ofdm신호 수신장치
FR2823620B1 (fr) 2001-04-12 2003-08-15 France Telecom Procede de codage/decodage d'un flux de donnees numeriques codees avec entrelacement sur bits en emission et en reception multiple en presence d'interference intersymboles et systeme correspondant
US7310304B2 (en) 2001-04-24 2007-12-18 Bae Systems Information And Electronic Systems Integration Inc. Estimating channel parameters in multi-input, multi-output (MIMO) systems
GB0110223D0 (en) 2001-04-26 2001-06-20 Sensor Highway Ltd Method and apparatus for leak detection and location
FI20010874A (fi) * 2001-04-26 2002-10-27 Nokia Corp Tiedonsiirtomenetelmä ja -laitteisto
US6611231B2 (en) 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US7133459B2 (en) 2001-05-01 2006-11-07 Texas Instruments Incorporated Space-time transmit diversity
CN100446612C (zh) * 2001-05-04 2008-12-24 诺基亚公司 借助定向天线的许可控制
EP1255369A1 (fr) 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Adaptation de liaison pour des systèmes de communication sans fil à entrées multiples et sorties multiples
DE10122788A1 (de) 2001-05-10 2002-06-06 Basf Ag Verfahren der kristallisativen Reinigung einer Roh-Schmelze wenigstens eines Monomeren
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US7047016B2 (en) 2001-05-16 2006-05-16 Qualcomm, Incorporated Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
US7072413B2 (en) 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US6751187B2 (en) 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
US6718493B1 (en) 2001-05-17 2004-04-06 3Com Corporation Method and apparatus for selection of ARQ parameters and estimation of improved communications
US7688899B2 (en) 2001-05-17 2010-03-30 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US7492737B1 (en) * 2001-05-23 2009-02-17 Nortel Networks Limited Service-driven air interface protocol architecture for wireless systems
ES2188373B1 (es) 2001-05-25 2004-10-16 Diseño De Sistemas En Silencio, S.A. Procedimiento de optimizacion de la comunicacion para sistema de transmision digital ofdm multiusuario sobre red electrica.
US6920194B2 (en) 2001-05-29 2005-07-19 Tioga Technologies, Ltd. Method and system for detecting, timing, and correcting impulse noise
US7158563B2 (en) * 2001-06-01 2007-01-02 The Board Of Trustees Of The Leland Stanford Junior University Dynamic digital communication system control
JP3637884B2 (ja) 2001-06-01 2005-04-13 ソニー株式会社 逆拡散装置、伝播路推定装置、受信装置ならびに干渉抑圧装置、逆拡散、伝播路推定、受信および干渉抑圧方法、該プログラムおよび該プログラムを記録した記録媒体
GB2376315B (en) 2001-06-05 2003-08-06 3Com Corp Data bus system including posted reads and writes
US20020183010A1 (en) 2001-06-05 2002-12-05 Catreux Severine E. Wireless communication systems with adaptive channelization and link adaptation
US7190749B2 (en) * 2001-06-06 2007-03-13 Qualcomm Incorporated Method and apparatus for canceling pilot interference in a wireless communication system
US20020193146A1 (en) 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
EP1265411B1 (fr) 2001-06-08 2007-04-18 Sony Deutschland GmbH Systeme a porteuses multiples avec entrelacement au niveau du bit adaptive
US20030012308A1 (en) * 2001-06-13 2003-01-16 Sampath Hemanth T. Adaptive channel estimation for wireless systems
US7027523B2 (en) * 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
WO2003010984A1 (fr) 2001-06-27 2003-02-06 Nortel Networks Limited Communication d'information de controle dans des systemes de communication sans fil
US6842460B1 (en) 2001-06-27 2005-01-11 Nokia Corporation Ad hoc network discovery menu
US7149190B1 (en) 2001-06-28 2006-12-12 Nortel Networks Limited MAC channel operation employable for receiving on more than one forward link channel
US6751444B1 (en) 2001-07-02 2004-06-15 Broadstorm Telecommunications, Inc. Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems
FR2827731B1 (fr) 2001-07-23 2004-01-23 Nexo Haut-parleur a radiation directe et rayonnement optimise
US6996380B2 (en) * 2001-07-26 2006-02-07 Ericsson Inc. Communication system employing transmit macro-diversity
US6738020B1 (en) * 2001-07-31 2004-05-18 Arraycomm, Inc. Estimation of downlink transmission parameters in a radio communications system with an adaptive antenna array
ATE400097T1 (de) 2001-08-13 2008-07-15 Motorola Inc Drahtlose kommunikation mit sendediversität
KR100703295B1 (ko) 2001-08-18 2007-04-03 삼성전자주식회사 이동통신시스템에서 안테나 어레이를 이용한 데이터 송/수신 장치 및 방법
US20030039317A1 (en) 2001-08-21 2003-02-27 Taylor Douglas Hamilton Method and apparatus for constructing a sub-carrier map
US6807429B2 (en) 2001-08-22 2004-10-19 Qualcomm Incorporated Method and apparatus for combining power control commands received in a wireless communication system
FR2828981B1 (fr) 2001-08-23 2004-05-21 Commissariat Energie Atomique Creuset a chauffage par induction et refroidissement par caloducs
KR100459573B1 (ko) 2001-08-25 2004-12-03 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 통신 시스템에서역방향 전송 전력 오프셋과 고속 순방향 공통 채널 전력레벨을 송수신하는 장치 및 방법
EP1289328A1 (fr) 2001-08-28 2003-03-05 Lucent Technologies Inc. Procédé pour la transmission d'information de commande dans un réseau de télécommunications sans fil et appareil correspondant
US6990059B1 (en) * 2001-09-05 2006-01-24 Cisco Technology, Inc. Interference mitigation in a wireless communication system
US7149254B2 (en) 2001-09-06 2006-12-12 Intel Corporation Transmit signal preprocessing based on transmit antennae correlations for multiple antennae systems
FR2829326A1 (fr) 2001-09-06 2003-03-07 France Telecom Procede et systeme de reception iterative sous optimale pour systeme de transmission haut debit cdma
US7133070B2 (en) * 2001-09-20 2006-11-07 Eastman Kodak Company System and method for deciding when to correct image-specific defects based on camera, scene, display and demographic data
US7277679B1 (en) 2001-09-28 2007-10-02 Arraycomm, Llc Method and apparatus to provide multiple-mode spatial processing to a terminal unit
US6788948B2 (en) 2001-09-28 2004-09-07 Arraycomm, Inc. Frequency dependent calibration of a wideband radio system using narrowband channels
US7024163B1 (en) 2001-09-28 2006-04-04 Arraycomm Llc Method and apparatus for adjusting feedback of a remote unit
US7039363B1 (en) 2001-09-28 2006-05-02 Arraycomm Llc Adaptive antenna array with programmable sensitivity
US7269127B2 (en) 2001-10-04 2007-09-11 Bae Systems Information And Electronic Systems Integration Inc. Preamble structures for single-input, single-output (SISO) and multi-input, multi-output (MIMO) communication systems
US7035359B2 (en) * 2001-10-11 2006-04-25 Telefonaktiebolaget L.M. Ericsson Methods and apparatus for demodulation of a signal in a signal slot subject to a discontinuous interference signal
CA2408423C (fr) 2001-10-17 2013-12-24 Nec Corporation Systeme de communication mobile, methode de controle des communications, et station de base et station mobile utilisees dans ce systeme
US7548506B2 (en) 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US7773699B2 (en) 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements
US7248559B2 (en) 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US7116652B2 (en) 2001-10-18 2006-10-03 Lucent Technologies Inc. Rate control technique for layered architectures with multiple transmit and receive antennas
US7349667B2 (en) * 2001-10-19 2008-03-25 Texas Instruments Incorporated Simplified noise estimation and/or beamforming for wireless communications
KR20030032875A (ko) 2001-10-19 2003-04-26 삼성전자주식회사 멀티캐스트 멀티미디어 방송 서비스를 제공하는 이동 통신시스템에서 순방향 데이터 채널 송신 전력을 제어하는장치 및 방법
JP3607238B2 (ja) 2001-10-22 2005-01-05 株式会社東芝 Ofdm信号受信システム
US7130592B2 (en) 2001-10-31 2006-10-31 Matsushita Electric Industrial Co., Ltd. Radio transmission apparatus and radio communication method
US7164649B2 (en) 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
US7218684B2 (en) * 2001-11-02 2007-05-15 Interdigital Technology Corporation Method and system for code reuse and capacity enhancement using null steering
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US8018903B2 (en) 2001-11-21 2011-09-13 Texas Instruments Incorporated Closed-loop transmit diversity scheme in frequency selective multipath channels
JP3989439B2 (ja) 2001-11-28 2007-10-10 富士通株式会社 直交周波数分割多重伝送方法
US7346126B2 (en) * 2001-11-28 2008-03-18 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for channel estimation using plural channels
US7263119B1 (en) 2001-11-29 2007-08-28 Marvell International Ltd. Decoding method and apparatus
US7154936B2 (en) * 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
US6760388B2 (en) 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US7155171B2 (en) 2001-12-12 2006-12-26 Saraband Wireless Vector network analyzer applique for adaptive communications in wireless networks
US20030112745A1 (en) 2001-12-17 2003-06-19 Xiangyang Zhuang Method and system of operating a coded OFDM communication system
AU2002364572A1 (en) 2001-12-18 2003-07-09 Globespan Virata Incorporated System and method for rate enhanced shdsl
US7099398B1 (en) 2001-12-18 2006-08-29 Vixs, Inc. Method and apparatus for establishing non-standard data rates in a wireless communication system
KR100444730B1 (ko) 2001-12-24 2004-08-16 한국전자통신연구원 광대역 부호 분할 다중 접속 시스템용 기지국의 복조 장치및 방법
US7573805B2 (en) 2001-12-28 2009-08-11 Motorola, Inc. Data transmission and reception method and apparatus
JP4052835B2 (ja) 2001-12-28 2008-02-27 株式会社日立製作所 多地点中継を行う無線伝送システム及びそれに使用する無線装置
CA2366397A1 (fr) 2001-12-31 2003-06-30 Tropic Networks Inc. Interface de transfert de donnees entre circuits integres
US7209433B2 (en) 2002-01-07 2007-04-24 Hitachi, Ltd. Channel estimation and compensation techniques for use in frequency division multiplexed systems
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US7020482B2 (en) * 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US7058116B2 (en) * 2002-01-25 2006-06-06 Intel Corporation Receiver architecture for CDMA receiver downlink
US7283508B2 (en) 2002-02-07 2007-10-16 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving serving HS-SCCH set information in an HSDPA communication system
US7046978B2 (en) * 2002-02-08 2006-05-16 Qualcomm, Inc. Method and apparatus for transmit pre-correction in wireless communications
US6650691B2 (en) 2002-02-12 2003-11-18 Motorola, Inc. Power control in spread spectrum communications systems
US6980800B2 (en) 2002-02-12 2005-12-27 Hughes Network Systems System and method for providing contention channel organization for broadband satellite access in a communications network
US7292854B2 (en) 2002-02-15 2007-11-06 Lucent Technologies Inc. Express signaling in a wireless communication system
US7076263B2 (en) 2002-02-19 2006-07-11 Qualcomm, Incorporated Power control for partial channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US6862271B2 (en) * 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US20030162519A1 (en) 2002-02-26 2003-08-28 Martin Smith Radio communications device
US6959171B2 (en) 2002-02-28 2005-10-25 Intel Corporation Data transmission rate control
US6687492B1 (en) 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US6873651B2 (en) * 2002-03-01 2005-03-29 Cognio, Inc. System and method for joint maximal ratio combining using time-domain signal processing
US6636568B2 (en) 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
US20040047284A1 (en) 2002-03-13 2004-03-11 Eidson Donald Brian Transmit diversity framing structure for multipath channels
US7035284B2 (en) 2002-03-14 2006-04-25 Qualcomm Incorporated Method and apparatus for reducing inter-channel interference in a wireless communication system employing a non-periodic interleaver
US7406065B2 (en) 2002-03-14 2008-07-29 Qualcomm, Incorporated Method and apparatus for reducing inter-channel interference in a wireless communication system
JP3561510B2 (ja) 2002-03-22 2004-09-02 松下電器産業株式会社 基地局装置及びパケット伝送方法
US7042858B1 (en) 2002-03-22 2006-05-09 Jianglei Ma Soft handoff for OFDM
US20040198276A1 (en) 2002-03-26 2004-10-07 Jose Tellado Multiple channel wireless receiver
US7012978B2 (en) 2002-03-26 2006-03-14 Intel Corporation Robust multiple chain receiver
US7197084B2 (en) * 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
KR100456693B1 (ko) 2002-03-28 2004-11-10 삼성전자주식회사 다중채널 통신 시스템의 비트 할당을 최적화하여 셋업시간을 최소화하는 방법
US20030186650A1 (en) 2002-03-29 2003-10-02 Jung-Tao Liu Closed loop multiple antenna system
US7224704B2 (en) * 2002-04-01 2007-05-29 Texas Instruments Incorporated Wireless network scheduling data frames including physical layer configuration
US7099377B2 (en) 2002-04-03 2006-08-29 Stmicroelectronics N.V. Method and device for interference cancellation in a CDMA wireless communication system
US6850741B2 (en) 2002-04-04 2005-02-01 Agency For Science, Technology And Research Method for selecting switched orthogonal beams for downlink diversity transmission
US7020226B1 (en) 2002-04-04 2006-03-28 Nortel Networks Limited I/Q distortion compensation for the reception of OFDM signals
WO2003088540A1 (fr) 2002-04-05 2003-10-23 Flarion Technologies, Inc. Sequences de phase pour des signaux de temporisation et d'acces
US7103325B1 (en) 2002-04-05 2006-09-05 Nortel Networks Limited Adaptive modulation and coding
US7623871B2 (en) 2002-04-24 2009-11-24 Qualcomm Incorporated Position determination for a wireless terminal in a hybrid position determination system
US7876726B2 (en) 2002-04-29 2011-01-25 Texas Instruments Incorporated Adaptive allocation of communications link channels to I- or Q-subchannel
US7177658B2 (en) 2002-05-06 2007-02-13 Qualcomm, Incorporated Multi-media broadcast and multicast service (MBMS) in a wireless communications system
US7352722B2 (en) 2002-05-13 2008-04-01 Qualcomm Incorporated Mitigation of link imbalance in a wireless communication system
US6690660B2 (en) * 2002-05-22 2004-02-10 Interdigital Technology Corporation Adaptive algorithm for a Cholesky approximation
US7327800B2 (en) * 2002-05-24 2008-02-05 Vecima Networks Inc. System and method for data detection in wireless communication systems
US6862440B2 (en) 2002-05-29 2005-03-01 Intel Corporation Method and system for multiple channel wireless transmitter and receiver phase and amplitude calibration
US7421039B2 (en) 2002-06-04 2008-09-02 Lucent Technologies Inc. Method and system employing antenna arrays
KR100498326B1 (ko) 2002-06-18 2005-07-01 엘지전자 주식회사 이동통신 단말기의 적응 변조 코딩 장치 및 방법
US7184713B2 (en) 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US7359313B2 (en) 2002-06-24 2008-04-15 Agere Systems Inc. Space-time bit-interleaved coded modulation for wideband transmission
US7095709B2 (en) 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US7613248B2 (en) 2002-06-24 2009-11-03 Qualcomm Incorporated Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
KR100987651B1 (ko) 2002-06-27 2010-10-13 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 통신 시스템, 제 1 및 제 2 스테이션, 통신 시스템 작동방법
US7551546B2 (en) 2002-06-27 2009-06-23 Nortel Networks Limited Dual-mode shared OFDM methods/transmitters, receivers and systems
US7342912B1 (en) * 2002-06-28 2008-03-11 Arraycomm, Llc. Selection of user-specific transmission parameters for optimization of transmit performance in wireless communications using a common pilot channel
EP1379020A1 (fr) 2002-07-03 2004-01-07 National University Of Singapore Appareil et méthode de communication sans fils
US7702035B2 (en) * 2002-07-03 2010-04-20 Freescale Semiconductor, Inc. Searching method and apparatus for processing digital communication signals
US20040017785A1 (en) 2002-07-16 2004-01-29 Zelst Allert Van System for transporting multiple radio frequency signals of a multiple input, multiple output wireless communication system to/from a central processing base station
US6683916B1 (en) * 2002-07-17 2004-01-27 Philippe Jean-Marc Sartori Adaptive modulation/coding and power allocation system
US6885708B2 (en) * 2002-07-18 2005-04-26 Motorola, Inc. Training prefix modulation method and receiver
KR20040011653A (ko) 2002-07-29 2004-02-11 삼성전자주식회사 채널 특성에 적응적인 직교 주파수 분할 다중 통신 방법및 장치
AU2003263818B2 (en) * 2002-07-30 2007-05-24 Ipr Licensing Inc. System and method for multiple-input multiple-output (MIMO) radio communication
US6961595B2 (en) 2002-08-08 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple states
US7653415B2 (en) 2002-08-21 2010-01-26 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
EP1392004B1 (fr) 2002-08-22 2009-01-21 Interuniversitair Microelektronica Centrum Vzw Procédé de transmission MIMO à plusieurs utilisateurs et dispositifs appropriés
US6970722B1 (en) 2002-08-22 2005-11-29 Cisco Technology, Inc. Array beamforming with wide nulls
US20040037257A1 (en) * 2002-08-23 2004-02-26 Koninklijke Philips Electronics N.V. Method and apparatus for assuring quality of service in wireless local area networks
US6940917B2 (en) 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems
US8194770B2 (en) * 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
EP1535410A1 (fr) * 2002-09-06 2005-06-01 Nokia Corporation Procede de selection d'antenne
US7260153B2 (en) 2002-09-09 2007-08-21 Mimopro Ltd. Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels
US20040052228A1 (en) 2002-09-16 2004-03-18 Jose Tellado Method and system of frequency and time synchronization of a transceiver to signals received by the transceiver
US20040066782A1 (en) 2002-09-23 2004-04-08 Nassar Ayman Esam System, method and apparatus for sharing and optimizing packet services nodes
US7426176B2 (en) 2002-09-30 2008-09-16 Lucent Technologies Inc. Method of power allocation and rate control in OFDMA systems
FR2845626B1 (fr) 2002-10-14 2005-12-16 Rotelec Sa Procede pour la maitrise des mouvements du metal, dans une lingotiere de coulee continue de brames
US7961774B2 (en) 2002-10-15 2011-06-14 Texas Instruments Incorporated Multipath interference-resistant receivers for closed-loop transmit diversity (CLTD) in code-division multiple access (CDMA) systems
US6850511B2 (en) 2002-10-15 2005-02-01 Intech 21, Inc. Timely organized ad hoc network and protocol for timely organized ad hoc network
US20040121730A1 (en) 2002-10-16 2004-06-24 Tamer Kadous Transmission scheme for multi-carrier MIMO systems
US7200404B2 (en) * 2002-10-22 2007-04-03 Texas Instruments Incorporated Information storage to support wireless communication in non-exclusive spectrum
US7453844B1 (en) 2002-10-22 2008-11-18 Hong Kong Applied Science and Technology Research Institute, Co., Ltd. Dynamic allocation of channels in a wireless network
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7151809B2 (en) * 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US7986742B2 (en) * 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
EP2262149B1 (fr) 2002-10-25 2018-08-29 QUALCOMM Incorporated Détection de données et démodulation pour systèmes de communications sans fil
JP2006504324A (ja) 2002-10-26 2006-02-02 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート combパターンシンボルの周波数跳躍直交周波数分割多重接続方法
EP1416688A1 (fr) 2002-10-31 2004-05-06 Motorola Inc. Estimation itérative de canal dans des récepteurs multiporteurs
US7317750B2 (en) * 2002-10-31 2008-01-08 Lot 41 Acquisition Foundation, Llc Orthogonal superposition coding for direct-sequence communications
US7280625B2 (en) 2002-12-11 2007-10-09 Qualcomm Incorporated Derivation of eigenvectors for spatial processing in MIMO communication systems
US7280467B2 (en) 2003-01-07 2007-10-09 Qualcomm Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
US7058367B1 (en) 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US7583637B2 (en) 2003-01-31 2009-09-01 Alcatel-Lucent Usa Inc. Methods of controlling data rate in wireless communications systems
US20040176097A1 (en) 2003-02-06 2004-09-09 Fiona Wilson Allocation of sub channels of MIMO channels of a wireless network
EP1447934A1 (fr) 2003-02-12 2004-08-18 Institut Eurecom G.I.E. Procédé de réception et d'émission à diversité pour des communications sans fil
JP2004266586A (ja) 2003-03-03 2004-09-24 Hitachi Ltd 移動通信システムのデータ送受信方法
JP4250002B2 (ja) 2003-03-05 2009-04-08 富士通株式会社 適応型変調伝送システム及び適応型変調制御方法
US6927728B2 (en) 2003-03-13 2005-08-09 Motorola, Inc. Method and apparatus for multi-antenna transmission
US7822140B2 (en) 2003-03-17 2010-10-26 Broadcom Corporation Multi-antenna communication systems utilizing RF-based and baseband signal weighting and combining
US7885228B2 (en) 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
JP4259897B2 (ja) 2003-03-25 2009-04-30 シャープ株式会社 無線データ伝送システム及び無線データ送受信装置
US7242727B2 (en) 2003-03-31 2007-07-10 Lucent Technologies Inc. Method of determining transmit power for transmit eigenbeams in a multiple-input multiple-output communications system
US7403503B2 (en) 2003-07-09 2008-07-22 Interdigital Technology Corporation Resource allocation in wireless communication systems
AU2004301428A1 (en) 2003-07-11 2005-01-27 Qualcomm, Incorporated Dynamic shared forward link channel for a wireless communication system
WO2005014820A1 (fr) 2003-08-08 2005-02-17 Si Chuan Heben Biotic Engineering Co. Ltd. 5-enolpyruvyl-3-phosphoshikimate synthase a bioresistance eleve au glyphosate et sequence de codage
ATE487291T1 (de) * 2003-08-27 2010-11-15 Wavion Ltd Wlan-kapazitäts-erweiterung durch verwendung von sdm
US7065144B2 (en) 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
US7356089B2 (en) 2003-09-05 2008-04-08 Nortel Networks Limited Phase offset spatial multiplexing
KR100995031B1 (ko) 2003-10-01 2010-11-19 엘지전자 주식회사 다중입력 다중출력 시스템에 적용되는 신호 전송 제어 방법
US8842657B2 (en) 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US8483105B2 (en) 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
US8233462B2 (en) 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
KR100944821B1 (ko) 2003-10-24 2010-03-03 콸콤 인코포레이티드 무선 멀티-캐리어 통신 시스템에서 다수의 데이터 스트림들의 주파수 분할 멀티플렉싱
US8526412B2 (en) 2003-10-24 2013-09-03 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
US7508748B2 (en) 2003-10-24 2009-03-24 Qualcomm Incorporated Rate selection for a multi-carrier MIMO system
US7616698B2 (en) 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
US7298805B2 (en) * 2003-11-21 2007-11-20 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7231184B2 (en) 2003-12-05 2007-06-12 Texas Instruments Incorporated Low overhead transmit channel estimation
JP4425925B2 (ja) 2003-12-27 2010-03-03 韓國電子通信研究院 固有ビーム形成技術を使用するmimo−ofdmシステム
US7333556B2 (en) 2004-01-12 2008-02-19 Intel Corporation System and method for selecting data rates to provide uniform bit loading of subcarriers of a multicarrier communication channel
JP2005223829A (ja) 2004-02-09 2005-08-18 Nec Electronics Corp 分数分周回路及びこれを用いたデータ伝送装置
US7746886B2 (en) 2004-02-19 2010-06-29 Broadcom Corporation Asymmetrical MIMO wireless communications
US7206354B2 (en) * 2004-02-19 2007-04-17 Qualcomm Incorporated Calibration of downlink and uplink channel responses in a wireless MIMO communication system
US7274734B2 (en) 2004-02-20 2007-09-25 Aktino, Inc. Iterative waterfiling with explicit bandwidth constraints
US7848442B2 (en) 2004-04-02 2010-12-07 Lg Electronics Inc. Signal processing apparatus and method in multi-input/multi-output communications systems
US7486740B2 (en) 2004-04-02 2009-02-03 Qualcomm Incorporated Calibration of transmit and receive chains in a MIMO communication system
US7110463B2 (en) 2004-06-30 2006-09-19 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US7606319B2 (en) 2004-07-15 2009-10-20 Nokia Corporation Method and detector for a novel channel quality indicator for space-time encoded MIMO spread spectrum systems in frequency selective channels
US20060018247A1 (en) 2004-07-22 2006-01-26 Bas Driesen Method and apparatus for space interleaved communication in a multiple antenna communication system
US7599443B2 (en) 2004-09-13 2009-10-06 Nokia Corporation Method and apparatus to balance maximum information rate with quality of service in a MIMO system
KR100905605B1 (ko) 2004-09-24 2009-07-02 삼성전자주식회사 직교주파수분할다중화 다중입출력 통신 시스템의 전송 방법
TWI296753B (en) 2004-10-26 2008-05-11 Via Tech Inc Usb control circuit for saving power and the method thereof
US8498215B2 (en) 2004-11-16 2013-07-30 Qualcomm Incorporated Open-loop rate control for a TDD communication system
EP1829262B1 (fr) 2004-11-16 2018-03-14 QUALCOMM Incorporated Regulation en boucle du debit d'un systeme de communication mimo
US7525988B2 (en) 2005-01-17 2009-04-28 Broadcom Corporation Method and system for rate selection algorithm to maximize throughput in closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7603141B2 (en) 2005-06-02 2009-10-13 Qualcomm, Inc. Multi-antenna station with distributed antennas
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US20090161613A1 (en) 2007-11-30 2009-06-25 Mark Kent Method and system for constructing channel quality indicator tables for feedback in a communication system
US20090291642A1 (en) 2008-05-23 2009-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Systems and Methods for SIR Estimation for Power Control
US8619620B2 (en) 2008-09-16 2013-12-31 Qualcomm Incorporated Methods and systems for transmission mode selection in a multi channel communication system
ES2355347B1 (es) 2009-01-30 2012-02-10 Vodafone España, S.A.U. Método para detectar interferencias en un sistema de comunicación inal�?mbrico.
US20100260060A1 (en) 2009-04-08 2010-10-14 Qualcomm Incorporated Integrated calibration protocol for wireless lans
KR20130018079A (ko) * 2011-08-10 2013-02-20 삼성전자주식회사 무선 통신 시스템에서 빔 고정 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004038988A2 *

Also Published As

Publication number Publication date
CA2501634C (fr) 2014-08-12
US20150365147A1 (en) 2015-12-17
TWI337478B (en) 2011-02-11
ES2438718T3 (es) 2014-01-20
BRPI0315536B1 (pt) 2017-05-23
KR20050061559A (ko) 2005-06-22
BR122016029898B1 (pt) 2017-06-27
EP1556985B1 (fr) 2011-09-21
CA2751604C (fr) 2016-08-09
DK1556985T3 (da) 2012-01-16
CA2501634A1 (fr) 2004-05-06
AU2009213065A1 (en) 2009-10-08
HK1084266A1 (en) 2006-07-21
AU2003287297A1 (en) 2004-05-13
ES2371460T3 (es) 2012-01-03
US9967005B2 (en) 2018-05-08
TW200420016A (en) 2004-10-01
DK2363970T3 (en) 2014-02-17
US7986742B2 (en) 2011-07-26
JP5221579B2 (ja) 2013-06-26
US20040179627A1 (en) 2004-09-16
ATE525823T1 (de) 2011-10-15
EP2363970A3 (fr) 2011-12-21
US10382106B2 (en) 2019-08-13
MXPA05004393A (es) 2005-07-26
PT2363970E (pt) 2013-12-05
RU2005115874A (ru) 2006-01-20
US20180227021A1 (en) 2018-08-09
US20110235744A1 (en) 2011-09-29
EP2363970A2 (fr) 2011-09-07
JP2006504370A (ja) 2006-02-02
US9312935B2 (en) 2016-04-12
CA2751604A1 (fr) 2004-05-06
WO2004038988A3 (fr) 2004-07-15
RU2349042C2 (ru) 2009-03-10
AU2003287297B2 (en) 2009-05-07
AU2003287297C1 (en) 2009-10-01
WO2004038988A2 (fr) 2004-05-06
UA83472C2 (uk) 2008-07-25
BR0315536A (pt) 2005-08-30
KR101046824B1 (ko) 2011-07-06
EP2363970B1 (fr) 2013-11-20
PT1556985E (pt) 2011-11-17
JP2010193468A (ja) 2010-09-02
JP4657918B2 (ja) 2011-03-23

Similar Documents

Publication Publication Date Title
US10382106B2 (en) Pilots for MIMO communication systems
US8208364B2 (en) MIMO system with multiple spatial multiplexing modes
JP4943654B2 (ja) Mimowlanシステム
JP2006504370A6 (ja) 多重入出力通信システムのためのパイロット
US20050265275A1 (en) Continuous beamforming for a MIMO-OFDM system
WO2004054191A1 (fr) Derivation de vecteurs propres pour traitement spatial dans des systemes de communications mimo
JP2008507900A (ja) Mimo−ofdmシステムのための適応パイロット挿入

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050520

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: KETCHUM, JOHN W.

Inventor name: WALTON, RODNEY, J.

Inventor name: HOWARD, STEVEN J.

Inventor name: WALLACE, MARK

17Q First examination report despatched

Effective date: 20090126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE S.A.

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20111031

Ref country code: DE

Ref legal event code: R096

Ref document number: 60338472

Country of ref document: DE

Effective date: 20111117

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2371460

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120103

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110402887

Country of ref document: GR

Effective date: 20120206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120622

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E013881

Country of ref document: HU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60338472

Country of ref document: DE

Effective date: 20120622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110921

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20220930

Year of fee payment: 20

Ref country code: PT

Payment date: 20220926

Year of fee payment: 20

Ref country code: NL

Payment date: 20220916

Year of fee payment: 20

Ref country code: IE

Payment date: 20220926

Year of fee payment: 20

Ref country code: GB

Payment date: 20220914

Year of fee payment: 20

Ref country code: FI

Payment date: 20220926

Year of fee payment: 20

Ref country code: DK

Payment date: 20220927

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20220926

Year of fee payment: 20

Ref country code: FR

Payment date: 20220916

Year of fee payment: 20

Ref country code: BE

Payment date: 20220915

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20221011

Year of fee payment: 20

Ref country code: IT

Payment date: 20221014

Year of fee payment: 20

Ref country code: ES

Payment date: 20221101

Year of fee payment: 20

Ref country code: DE

Payment date: 20220615

Year of fee payment: 20

Ref country code: AT

Payment date: 20220926

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20220924

Year of fee payment: 20

Ref country code: CH

Payment date: 20221101

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60338472

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20231023

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Expiry date: 20231024

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231031

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20231023

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20231024

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 525823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231103

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231024

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231023

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231025