JP3724940B2 - Ofdmダイバーシチ受信装置 - Google Patents

Ofdmダイバーシチ受信装置 Download PDF

Info

Publication number
JP3724940B2
JP3724940B2 JP00250998A JP250998A JP3724940B2 JP 3724940 B2 JP3724940 B2 JP 3724940B2 JP 00250998 A JP00250998 A JP 00250998A JP 250998 A JP250998 A JP 250998A JP 3724940 B2 JP3724940 B2 JP 3724940B2
Authority
JP
Japan
Prior art keywords
frequency spectrum
ofdm
transmission line
input signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00250998A
Other languages
English (en)
Other versions
JPH11205273A (ja
Inventor
一美 佐藤
稔 行方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00250998A priority Critical patent/JP3724940B2/ja
Priority to US09/226,721 priority patent/US6628638B1/en
Publication of JPH11205273A publication Critical patent/JPH11205273A/ja
Priority to US10/271,546 priority patent/US7266108B2/en
Application granted granted Critical
Publication of JP3724940B2 publication Critical patent/JP3724940B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • H04B7/082Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection selecting best antenna path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S370/00Multiplex communications
    • Y10S370/912Packet communications
    • Y10S370/913Wireless or radio

Description

【0001】
【発明の属する技術分野】
本発明は、直交周波数分割多重(OFDM)方式により無線伝送を行う無線通信システムの基地局や端末局、またはOFDM方式による放送システムの受信局におけるOFDM受信装置に係り、特に、劣悪な無線伝搬環境下においても高品質な情報の伝送を実現するOFDMダイバーシチ受信装置に関する。
【0002】
【従来の技術】
現在、地上波テレビ放送はアナログ方式が採用されているが、西暦2000年を目処にディジタル化への移行が開始される予定である。地上波テレビ放送は、一つの送信局でカバーするエリアが極めて広いため、無線電波伝搬特有の多重反射電波伝搬(マルチパス)の影響により受信画像が劣化する、ゴースト障害という深刻な問題がある。この地上波テレビ放送におけるマルチパスの規模は、携帯・自動車電話などの無線通信システムで対象としているマルチパスの規模よりも遥かに大きく、マルチパス対策に有効である適応自動等化器でも、もはや対応しきれない。
【0003】
そこで、劣悪なマルチパス伝搬環境においても原理的に耐性を持ち、高品質な情報伝送が可能である直交周波数分割多重(OFDM)伝送方式が地上波テレビ放送のディジタル伝送方式として採用される予定となっている。OFDM伝送信号には送信波形(シンボル)の一部をコピーしたガード期間が設けられており、このガード期間がガード期間長以下のマルチパス伝搬を吸収し、受像品質の致命的な劣化を防いでいる。
【0004】
また、このようなOFDM伝送方式の耐マルチパス伝送特性は地上波テレビ放送だけでなく、公衆網や構内網で今後展開されるであろうマルチメディア通信等の広帯域無線通信システムでも注目されており、実用化への具体的な技術検討が積極的に進められている。
【0005】
さらに、OFDM伝送方式は、耐マルチパス伝送特性を生かして、同一の内容を同一の周波数で同時に送信する単一周波数ネットワーク(SFN)が構築できるため、従来のような地域毎に送信周波数を変更しなければならないという無駄な周波数利用を改善でき、利用周波数帯の圧縮という点でも非常に有効な伝送方式である。
【0006】
しかしながら、OFDM伝送方式がいかに耐マルチパス伝送特性に優れていると言えども、マルチパス伝搬により生じる厳しい周波数選択性フェージングの影響や、移動受信の際に生じるドップラシフトや時間フェージングの影響による受信特性の劣化から完全に守られているわけではない。特に、ディジタル地上波テレビ放送や次世代マルチメディア通信で期待される高精細画像の伝送には、音声通信がメインである現存の携帯・自動車電話よりも遥かに高安定かつ高品質の無線伝送技術が要求され、より良好な受信特性を実現する受信方式・装置の実現が早急に求められている。
【0007】
さらに、高精細画像の伝送には、周波数有効利用の面から大量の情報を有する高精細画像の伝送を狭い無線帯域で伝送する技術が必要となり、移動を考慮した無線伝搬環境下での高効率な多値QAM変調方式等の変調方式の採用を検討しなければならない。ところが、QAM変調に代表される高効率な変調方式は、耐雑音特性や耐干渉特性の面で劣り、歪みに弱いという欠点がある。
【0008】
従って、送信局や基地局から離れた遠方の場所で受信する受信装置や移動しながら受信を行う受信装置では、低信号対雑音比状態での受信や電波伝搬歪みを受けた状態で受信するため、いとも簡単に受信特性が劣化し、満足な品質での情報伝送を実現できなくなるという問題が生じる。特に、地上波テレビ放送ではカバーエリアが極めて広いため、深刻な問題となり、有効な品質改善手段の適用が望まれる。
【0009】
一般に、劣悪な多重電波伝搬環境や移動受信環境下での受信特性の改善手段として、ダイバーシチ受信がある。ダイバーシチ受信方式としては従来、複数の受信アンテナで受信するRF(無線周波数)信号の中から電力が最大となる受信アンテナを選択してディジタル信号系列を復調するアンテナ切替えダイバーシチ受信が主流である。
【0010】
しかし、OFDM伝送方式では受信信号をベースバンド信号に周波数変換し、シンボル単位で周波数スペクトルに変換した後に、周波数スペクトルを構成する各線スペクトル毎にディジタル信号系列を復調するため、OFDM伝送信号に対しては、RF信号で切替えるアンテナ切替えダイバーシチ受信では大きな効果が得られないという問題がある。特に、厳しい周波数選択性フェージングが生じると、周波数スペクトルを構成する各線スペクトルによって受信特性が全く異なるため、線スペクトル単位で最適な受信特性が得られる切り替えダイバーシチが望まれていた。
【0011】
【発明が解決しようとする課題】
上述したように、直交周波数分割多重方式(OFDM)によりディジタル信号系列の無線伝送を行う無線通信/放送システムでは、OFDM伝送方式の耐マルチパス伝送特性を有効に利用しつつも、広大なカバーエリア内のすべての場所で高品質かつ高精細な情報の伝送を実現するには、厳しい多重反射電波伝搬環境での受信特性の劣化改善策や、移動受信時の受信特性の劣化改善策の適用が必要となる。
【0012】
特に、画像情報の伝送が主となる今後のマルチメディア通信やディジタル地上波放送では、多値QAM変調等のような高効率な変調方式の適用が必須となり、OFDM伝送方式における受信特性の改善策、とりわけOFDM伝送方式採用時に周波数選択性フェージングに対しても良好な受信特性が得られるダイバーシチ受信装置の開発が望まれている。
【0013】
従って、本発明はOFDM伝送方式の無線通信/放送システムにおける多重反射電波伝搬環境や移動受信環境で生じる受信特性の劣化を改善するOFDMダイバーシチ受信装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記した課題を解決するため、本発明はアンテナを介してOFDM(直交周波数分割多重)信号を受信しOFDM受信信号をそれぞれ出力する受信手段と、OFDM受信信号を周波数スペクトルに変換してOFDM受信信号周波数スペクトルを出力する第1の変換手段と、このOFDM受信信号周波数スペクトルと参照周波数スペクトルとから伝送路周波数応答を算出する伝送路周波数応答算出手段とをそれぞれ含む複数のダイバーシチブランチを構成し、OFDM受信信号周波数スペクトルまたは伝送路周波数応答の振幅もしくは電力が最大となるダイバーシチブランチを選択してダイバーシチ受信を行うことを特徴とする。
【0015】
より具体的には、本発明に係る第1のOFDMダイバーシチ受信装置は、個別のアンテナを介してOFDM信号を受信しOFDM受信信号をそれぞれ出力する複数の受信手段と、OFDM受信信号をそれぞれ周波数スペクトルに変換する複数の第1の変換手段と、OFDM受信信号に対する参照周波数スペクトルを生成する少なくとも一つの参照周波数スペクトル生成手段と、第1の変換手段からそれぞれ出力される周波数スペクトルと参照周波数スペクトルとから複数の伝送路周波数応答を算出する複数の伝送路周波数応答算出手段と、第1の変換手段からそれぞれ出力される周波数スペクトルの歪みを対応する伝送路周波数応答を用いて補償する歪み補償手段と、第1の変換手段からそれぞれ出力される周波数スペクトルを第1の入力信号とし、歪み補償手段からそれぞれ出力される歪み補償後の周波数スペクトルを第2の入力信号として、振幅もしくは電力が最大となる第1の入力信号に対応する第2の入力信号を選択して出力する選択手段と、この選択手段の出力信号からディジタル信号系列を復調する復調手段とを具備することを特徴とする。
【0016】
本発明に係る第2のOFDMダイバーシチ受信装置は、個別のアンテナを介してOFDM信号を受信しOFDM受信信号をそれぞれ出力する複数の受信手段と、OFDM受信信号をそれぞれ周波数スペクトルに変換する複数の第1の変換手段と、OFDM受信信号に対する参照周波数スペクトルを生成する少なくとも一つの参照周波数スペクトル生成手段と、第1の変換手段からそれぞれ出力される周波数スペクトルと参照周波数スペクトルとから複数の伝送路周波数応答を算出する複数の伝送路周波数応答算出手段と、第1の変換手段からそれぞれ出力される周波数スペクトルの歪みを対応する伝送路周波数応答を用いて補償する歪み補償手段と、伝送路周波数応答算出手段によりそれぞれ算出される伝送路周波数応答を第1の入力信号とし、歪み補償手段からそれぞれ出力される歪み補償後の周波数スペクトルを第2の入力信号として、振幅もしくは電力が最大となる第1の入力信号に対応する第2の入力信号を選択して出力する選択手段と、この選択手段の出力信号からディジタル信号系列を復調する復調手段とを具備することを特徴とする。
【0017】
本発明に係る第3のOFDMダイバーシチ受信装置は、個別のアンテナを介してOFDM信号を受信しOFDM受信信号をそれぞれ出力する複数の受信手段と、OFDM受信信号をそれぞれ周波数スペクトルに変換する複数の第1の変換手段と、OFDM受信信号に対する参照周波数スペクトルを生成する少なくとも一つの参照周波数スペクトル生成手段と、第1の変換手段からそれぞれ出力される周波数スペクトルと参照周波数スペクトルとから複数の伝送路周波数応答を算出する複数の伝送路周波数応答算出手段と、第1の変換手段からそれぞれ出力される周波数スペクトルの歪みを対応する伝送路周波数応答を用いて補償する歪み補償手段と、歪み補償手段からそれぞれ出力される歪み補償後の周波数スペクトルを第1の入力信号とし、振幅もしくは電力が最大となる第1の入力信号を選択して出力する選択手段と、この選択手段の出力信号からディジタル信号系列を復調する復調手段とを具備することを特徴とする。
【0018】
このように本発明に係る第1、第2および第3のOFDMダイバーシチ受信装置では、OFDM信号を複数のアンテナを含む受信手段で受信して、それぞれのOFDM受信信号を周波数スペクトルに変換し、これらのOFDM受信信号周波数スペクトルと参照周波数スペクトルから伝送路周波数応答を求め、さらにOFDM受信信号周波数スペクトルの歪みを対応する伝送路周波数応答を用いて補償する。
【0019】
そして、(a) 振幅もしくは電力が最大となるOFDM受信信号周波数スペクトルに対応する歪み補償後のOFDM受信信号周波数スペクトルを選択してディジタル信号系列を復調するか、または(b) 振幅もしくは電力が最大となる伝送路周波数応答に対応する歪み補償後のOFDM受信信号周波数スペクトルを選択してディジタル信号系列を復調するか、または(c) 振幅もしくは電力が最大となる歪み補償後のOFDM受信信号周波数スペクトルを選択してディジタル信号系列を復調する。
【0020】
従って、周波数選択性フェージングにより周波数スペクトルを構成する各線スペクトルによって受信特性が全く異なるような状況でも、線スペクトル単位で最適な受信特性を得るダイバーシチ受信が可能となるため、多重反射伝搬環境や移動受信環境で生じる受信特性の劣化が効果的に改善される。
【0021】
本発明に係る第4のOFDMダイバーシチ受信装置は、個別のアンテナを介してOFDM信号を受信しOFDM受信信号をそれぞれ出力する複数の受信手段と、OFDM受信信号をそれぞれ周波数スペクトルに変換する複数の第1の変換手段と、OFDM受信信号に対する参照周波数スペクトルを生成する少なくとも一つの参照周波数スペクトル生成手段と、第1の変換手段からそれぞれ出力される周波数スペクトルと参照周波数スペクトルとから複数の伝送路周波数応答を算出する複数の伝送路周波数応答算出手段と、第1の変換手段からそれぞれ出力される周波数スペクトルを第1の入力信号とし、伝送路周波数応答算出手段によりそれぞれ算出される伝送路周波数応答を第2の入力信号として、振幅もしくは電力が最大となる第1の入力信号およびそれに対応する第2の入力信号を選択して、それぞれ第1の出力信号および第2の出力信号として出力する選択手段と、この選択手段の第2の出力信号を用いて選択手段の第1の出力信号の歪みを補償する歪み補償手段と、この歪み補償手段の出力信号からディジタル信号系列を復調する復調手段とを具備することを特徴とする。
【0022】
本発明に係る第5のOFDMダイバーシチ受信装置は、個別のアンテナを介してOFDM信号を受信しOFDM受信信号をそれぞれ出力する複数の受信手段と、OFDM受信信号をそれぞれ周波数スペクトルに変換する複数の第1の変換手段と、OFDM受信信号に対する参照周波数スペクトルを生成する少なくとも一つの参照周波数スペクトル生成手段と、第1の変換手段からそれぞれ出力される周波数スペクトルと参照周波数スペクトルとから複数の伝送路周波数応答を算出する複数の伝送路周波数応答算出手段と、これら伝送路周波数応答算出手段によりそれぞれ算出される伝送路周波数応答を第1の入力信号とし、第1の変換手段からそれぞれ出力される周波数スペクトルを第2の入力信号として、振幅もしくは電力が最大となる第1の入力信号およびそれに対応する第2の入力信号を選択して、それぞれ第1の出力信号および第2の出力信号として出力する選択手段と、この選択手段の第1の出力信号を用いて選択手段の第2の出力信号の歪みを補償する歪み補償手段と、この歪み補償手段の出力信号からディジタル信号系列を復調する復調手段とを具備することを特徴とする。
【0023】
このように本発明に係る第4、第5のOFDMダイバーシチ受信装置では、OFDM信号を複数のアンテナを含む受信手段で受信して、それぞれのOFDM受信信号を周波数スペクトルに変換し、これらのOFDM受信信号周波数スペクトルと参照周波数スペクトルから伝送路周波数応答を求めた後、(d) 振幅もしくは電力が最大となるOFDM受信信号周波数スペクトルおよびこれに対応する伝送路周波数応答を選択するか、あるいは(e) 振幅もしくは電力が最大となる伝送路周波数応答およびこれに対応するOFDM受信信号周波数スペクトルを選択した後、選択した伝送路周波数応答を用いて、選択したOFDM受信信号周波数スペクトルの歪みを補償し、この歪み補償後のOFDM受信信号周波数スペクトル
からディジタル信号系列を復調する。
【0024】
従って、周波数選択性フェージングにより周波数スペクトルを構成する各線スペクトルによって受信特性が全く異なるような状況でも、線スペクトル単位で最適な受信特性を得るダイバーシチ受信が可能となるため、多重反射伝搬環境や移動受信環境で生じる受信特性の劣化が効果的に改善されると共に、歪み補償手段が一つで済むという利点がある。
【0025】
本発明においては、第1、第2または第3のOFDMダイバーシチ受信装置における伝送路周波数応答算出手段と歪み補償手段との間に、伝送路周波数応答算出手段によりそれぞれ算出された伝送路周波数応答をフィルタリングするフィルタリング手段を挿入したり、あるいは第4または第5のOFDMダイバーシチ受信装置における伝送路周波数応答算出手段と選択手段との間に、伝送路周波数応答算出手段によりそれぞれ算出された伝送路周波数応答をフィルタリングするフィルタリング手段を挿入してもよい。このようなフィルタリング手段の挿入により、伝送路周波数応答中に含まれる雑音成分が除去されるため、受信特性のさらなる改善が可能となる。
【0026】
このフィルタリング手段は、具体的には伝送路周波数応答算出手段により算出された伝送路周波数応答を入力とするフィルタリング帯域幅可変のフィルタ手段と、伝送路周波数応答算出手段により算出された伝送路周波数応答を伝送路時間応答に変換する第2の変換手段と、この第2の変換手段により変換された伝送路時間応答を用いて多重反射電波伝搬環境の伝搬遅延時間を測定する伝搬遅延時間測定手段と、この伝搬遅延時間測定手段の測定結果に基づいてフィルタ手段のフィルタリング帯域幅を設定するフィルタリング帯域幅設定手段とにより構成される。このように多重反射伝搬環境の伝搬遅延時間を測定することにより、伝送路周波数応答をフィルタリングするフィルタ手段の帯域幅を伝搬遅延時間に適した大きさに設定でき、伝搬遅延時間伝送路周波数応答中に含まれる雑音成分を効率良く除去することが可能となる。
【0027】
本発明においては、復調手段により復調されたディジタル信号系列を再変調して再変調周波数スペクトルを生成する再変調手段と、再変調周波数スペクトルと参照周波数スペクトルとを選択的に伝送路周波数応答算出手段へ出力する周波数スペクトル選択手段とをさらに具備してもよい。
【0028】
周波数スペクトル選択手段は、例えばスロット構成を用いたOFDM伝送方式でディジタル信号系列を伝送する通信/放送システムにおいて、スロットの先頭に含まれる既知データ系列のOFDM信号を受信する場合には参照周波数スペクトルを選択し、それ以降のデータ系列のOFDM信号を受信する場合には再変調周波数スペクトルを選択する。再変調周波数スペクトルを用いて伝送路周波数応答を算出すると、直前の伝送路周波数応答を用いて周波数スペクトルの歪みを補償できるため、伝搬環境が時間的に変動する場合でも受信特性の劣化を改善することが可能となる。
【0029】
本発明において、第1の入力信号または第1の入力信号と第2の入力信号の選択を行う選択手段は、第1の構成例によると第1の入力信号を構成するそれぞれの線スペクトルの振幅もしくは電力を合成する複数の合成手段と、これら複数の合成手段の出力を比較する比較手段とを有し、この比較手段の比較結果に基づいて選択動作を行うように構成される。このようにすることにより、受信特性の優れたダイバーシチブランチを容易に選択でき、受信特性の劣化が効果的に改善される。
【0030】
また、第2の構成例による選択手段は、第1の入力信号を構成する線スペクトルの中から同一周波数の線スペクトルどうしの振幅もしくは電力を比較する比較手段を有し、この比較手段の比較結果に基づいて選択動作を行うように構成される。このようにすることにより、線スペクトル毎に受信特性の優れたダイバーシチブランチを容易に選択でき、受信特性の劣化がさらに効果的に改善される。
【0031】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
(第1の実施形態)
図1は、本発明に係るOFDMダイバーシチ受信装置の第1の実施形態を示す図である。同図に示すように、n個のダイバーシチブランチ(以下、単にブランチという)#1〜#nが配置される。各ブランチ#1〜#nにおいては、受信アンテナ1〜3でOFDM信号が受信され、受信部4〜6に入力される。受信部4〜6は、RF帯のOFDM信号をベースバンド信号に周波数変換するために必要な増幅、周波数混合、帯域制限等の基本機能と同期、周波数補正、およびOFDM伝送方式に特有のガード期間の除去等の機能を含み、ガード期間が除去されたベースバンド信号をOFDM受信信号として出力する。
【0032】
受信部4〜6からのOFDM受信信号は第1の変換部7〜9に入力され、高速フーリエ変換(FFT)に代表されるような変換処理によって周波数スペクトル(以下、OFDM受信信号周波数スペクトルという)に変換される。
【0033】
参照周波数スペクトル生成部10〜12では、第1の変換部7〜9からのOFDM受信信号周波数スペクトルに対する参照周波数スペクトルが生成される。伝送路周波数応答算出部13〜15では、これらOFDM受信信号周波数スペクトルと参照周波数スペクトルとを用いて各ブランチ#1〜#nに固有の伝送路周波数応答が算出される。
【0034】
第1の変換部7〜9で生成されたOFDM受信信号周波数スペクトルは歪み補償部16〜18に入力され、OFDM受信信号周波数スペクトルに含まれる多重反射伝搬環境により生じた歪みが伝送路周波数応答算出部13〜15で算出された各ブランチ#1〜#nの伝送路周波数応答によって補償される。第1の変換部7〜9で生成されたOFDM受信信号周波数スペクトルおよび歪み補償部16〜18で生成された歪み補償後の周波数スペクトルは、それぞれ選択部19に第1の入力信号Aおよび第2の入力信号Bとして入力される。
【0035】
選択部19は、第1の入力信号Aであるブランチ#1〜#nの第1の変換部7〜9で生成されたOFDM受信信号周波数スペクトルを比較し、振幅もしくは電力が最大となるOFDM受信信号周波数スペクトルが生成されたブランチから第2の入力信号Bとして入力される歪み補償後のOFDM受信信号周波数スペクトルを選択する。選択部19で選択された歪み補償後のOFDM受信信号周波数スペクトルは復調部20に入力され、この復調部20でディジタル信号系列が復調される。選択部19については、後ほど詳細に説明する。
【0036】
本実施形態では、OFDM受信信号の1シンボル毎に、選択部19が第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルを比較し、ブランチを選択してもよいが、伝搬環境が時間と共に急激に変化しないならば、一定時間前に算出したOFDM受信信号周波数スペクトルを用いてブランチを選択してもよい。この場合、選択するブランチを予め設定したり、数シンボル毎に選択するブランチを設定することが可能となる。
【0037】
このように本実施形態によれば、複数のブランチ#1〜#nの中から受信電力あるいは振幅が最大のOFDM信号周波数スペクトルを生成するブランチを選択し、選択したブランチで得られる歪み補償後のOFDM受信信号周波数スペクトルからディジタル信号系列を復調することによって、受信特性を改善することができる。
【0038】
<選択部19について>
次に、図2を用いて選択部19の第1の構成例を説明する。
図1の複数のブランチ#1〜#nから選択部19に入力される第1の入力信号Aは、合成部41〜43にそれぞれ入力される。第1の実施形態の場合、第1の入力信号Aは第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルであるが、後述する実施形態においては第1の入力信号Aが伝送路周波数応答算出部13〜15からの出力の場合もある。通常、第1の変換部7〜9が高速フーリエ変換を行うことから、第1の変換部7〜9で算出されるOFDM受信信号周波数スペクトルは複数の離散的な線スペクトルで構成され、このOFDM受信信号周波数スペクトルを用いて算出される伝送路周波数応答もまた離散的な線スペクトルで構成される。
【0039】
合成部41〜43は、第1の入力信号Aの複数本の線スペクトルの振幅もしくは電力を合成して出力する。この場合、合成部41〜43は通常、OFDM受信信号の1シンボル分の周波数スペクトルの線スペクトルの振幅もしくは電力を合成するが、合成範囲は数本程度の線スペクトルでも良いし、数シンボル分の線スペクトルであっても良い。合成部41〜43の出力は、比較部44およびセレクタ部45に入力される。
【0040】
比較部44では、各ブランチ#1〜#nに対応する合成部41〜43の出力を比較して最も出力が大きいブランチを認識し、その認識したブランチの番号をセレクタ部45に通知する。セレクタ部45は、比較部44から通知された番号のブランチに対応する合成部の出力信号を第1の出力信号として出力する。
【0041】
このように図2に示す選択部19によれば、図1の各ブランチ#1〜#nから入力される第1の入力信号Aの複数の線スペクトルの振幅もしくは電力の合成結果が最大となるブランチを認識して、そのブランチからの第1の入力信号Aを選択して出力するため、各ブランチ#1〜#nにおける複数の線スペクトルの平均的な受信特性から各線スペクトル毎に受信特性が最適なブランチを認識して、そのブランチからの第1の入力信号Aを選択することが可能となり、受信特性がより効果的に改善される。
【0042】
次に、図3を用いて選択部19の第2の構成例を説明する。
図3は、ブランチ数を2とする場合の第2の構成例に基づく選択部19の動作を示す図である。第1の入力信号Aは、周波数f1〜fmの離散的なm本の線スペクトルで構成される。選択部19は、各ブランチから入力される第1の入力信号Aの中から、同一の周波数の線スペクトルどうしの振幅もしくは電力を比較する。そして、線スペクトルが存在するf1〜fmの周波数毎に、振幅もしくは電力が最大となる線スペクトルが入力されたブランチを選択する。
【0043】
このように選択部19の第2の構成例によると、線スペクトルが存在する各周波数毎に、第1の入力信号として入力された線スペクトルの振幅もしくは電力が最大となるブランチを選択することが可能であるため、受信特性を大きく改善することができる。
【0044】
(第2の実施形態)
図4は、本発明のOFDMダイバーシチ受信装置の第2の実施形態を示す図である。本実施形態は、図1に示した第1の実施形態における参照周波数スペクトル生成部10〜12で生成される参照周波数スペクトルが全て同じであることに着目して、一つの参照周波数スペクトル生成部21を各ブランチ#1〜#nで共有する形態を示したものである。従って、第1の実施形態と基本的に同様に受信特性の改善が実現できる。
【0045】
本実施形態においても、第1の実施形態と同様に、OFDM受信信号の1シンボル毎に、選択部19が第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルを比較し、ブランチを選択してもよいが、伝搬環境が時間と共に急激に変化しないならば、一定時間前に算出したOFDM受信信号周波数スペクトルを用いてブランチを選択してもよい。
【0046】
(第3の実施形態)
図5は、本発明のOFDMダイバーシチ受信装置の第3の実施形態を示す図である。ブランチ#1〜#nでは図1の実施形態と同様に、伝送路周波数応答と歪み補償後のOFDM受信信号周波数スペクトルが生成される。伝送路周波数応答算出部13〜15で生成された伝送路周波数応答と、歪み補償部16〜18で生成された歪み補償後のOFDM受信信号周波数スペクトルは、それぞれ選択部19に第1の入力信号Aおよび第2の入力信号Bとして入力される。
【0047】
選択部19は、第1の入力信号Aであるブランチ#1〜#nで生成された伝送路周波数応答を比較し、振幅もしくは電力が最大となる伝送路周波数応答が生成されたブランチを選択する。そして、選択されたブランチからの第2の入力信号Bである歪み補償後のOFDM受信信号周波数スペクトルが選択部19で選択され、復調部20によってディジタル信号系列に復調される。
【0048】
このように本実施形態によれば、複数のブランチ#1〜#nの中から伝送路周波数応答の電力あるいは振幅が最大のOFDM信号周波数スペクトルを生成するブランチを選択することが可能となり、選択したブランチで得られる歪み補償後周波数スペクトルによってディジタル信号系列を復調するため、受信特性が改善される。
【0049】
なお、本実施形態では図4に示した第2の実施形態と同様に各ブランチ#1〜#nで共有の参照周波数スペクトル生成部21が用いられているが、図1に示した第1の実施形態のように各ブランチ#1〜#n毎に参照周波数スペクトル生成部が含まれる構成としても構わない。
【0050】
また、本実施形態においても、図1の実施形態と同様に、伝搬環境が時間と共に急激に変化しないならば、一定時間前に算出した伝送路周波数応答を用いてブランチを選択することが可能となる。従って、OFDM受信信号の1シンボル毎にブランチを選択せずに、予め選択するブランチを設定したり、数シンボル毎に選択するブランチを設定することができる。
【0051】
(第4の実施形態)
図6は、本発明に係るOFDMダイバーシチ受信装置の第4の実施形態を示す図である。本実施形態は、図4に示した第2の実施形態における第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルに代えて、歪み補償部16〜18から出力される歪み補償後のOFDM受信信号周波数スペクトルを選択部19への第1の入力信号Aとし、各ブランチ#1〜#nから第1の入力信号Aのみが選択部19に入力される構成としたものである。
【0052】
各ブランチ#1〜#nにおいて、受信アンテナ1〜3で受信されたOFDM信号は、受信部4〜6によってガード期間が除去されたベースバンド信号に変換された後、第1の変換部7〜9に入力され、高速フーリエ変換等の変換処理によってOFDM受信信号周波数スペクトルとなる。
【0053】
第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルは、伝送路周波数応答算出部13〜15と歪み補償部16〜18に入力される。伝送路周波数応答算出部13〜15は、OFDM受信信号周波数スペクトルと参照周波数スペクトル生成部21によって生成された参照周波数スペクトルとを用いて伝送路周波数応答を算出する。歪み補償部16〜18では、この伝送路周波数応答によってOFDM受信信号周波数スペクトルの歪みが補償される。
【0054】
QAM等の振幅が変調される信号では通常、歪み補償部16〜18は第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルを伝送路周波数応答で除算することによって、多重伝搬環境により生じる周波数選択性フェージングを補償する。しかし、QPSK等の位相変調信号では通常、回路規模が増大する除算器を使わずに、乗算器を用いて位相歪みを補償する。具体的には、歪み補償部16〜18では第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルに、伝送路周波数応答の共役複素数信号を乗算することによって位相歪みを補償する。この場合、歪み補償部16〜18による歪み補償後のOFDM受信信号周波数スペクトルの振幅は第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルの振幅成分に比例するため、選択部19では第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルの代わりに、歪み補償後のOFDM受信信号周波数スペクトルの振幅もしくは電力を比較してブランチを選択することもできる。
【0055】
そこで、本実施形態では選択部19により第1の入力信号Aとして入力された歪み補償後のOFDM受信信号周波数スペクトルを比較し、振幅もしくは電力が最大となる歪み補償後のOFDM受信信号周波数スペクトルが生成されたブランチを選択する。選択されたブランチから第1の入力信号Aとして入力された歪み補償後のOFDM受信信号周波数スペクトル、すなわち振幅もしくは電力が最大となる歪み補償後のOFDM受信信号周波数スペクトルが選択部19から出力され、復調部20によってディジタル信号系列に復調される。
【0056】
なお、本実施形態において選択部19はOFDM受信信号の1シンボル毎にそれぞれのブランチから入力される歪み補償後のOFDM受信信号周波数スペクトルを比較し、ブランチを選択してもよいが、伝搬環境が時間と共に急激に変化しないならば、一定時間前に算出した歪み補償後のOFDM受信信号周波数スペクトルを用いてブランチを選択してもよい。また、図1に示した第1の実施形態のように各ブランチ#1〜#nに参照周波数スペクトル生成部が含まれる構成にも本実施形態を適用することが可能である。
【0057】
(第5の実施形態)
図7は、本発明に係るOFDMダイバーシチ受信装置の第5の実施形態を示す図である。本実施形態は、選択部19によってブランチを選択した後に、選択部19で選択されたブランチの伝送路周波数応答を用いて、選択されたブランチのOFDM受信信号周波数スペクトルの歪みを補償する構成となっている。
【0058】
すなわち、ブランチ#1〜#nにおいて受信アンテナ1〜3で受信されたOFDM信号は受信部4〜6によってベースバンド信号に変換され、さらに第1の変換部7〜9によってOFDM受信信号周波数スペクトルとなる。伝送路周波数応答算出部13〜15は、OFDM受信信号周波数スペクトルと参照周波数スペクトル生成部21により生成された参照周波数スペクトルとから伝送路周波数応答を算出する。そして、OFDM受信信号周波数スペクトルは第1の入力信号Aとして、また伝送路周波数応答は第2の入力信号Bとしてそれぞれ選択部19に入力される。
【0059】
選択部19は、第1の入力信号Aであるブランチ#1〜#nで生成されたOFDM受信信号周波数スペクトルを比較し、振幅もしくは電力が最大となるOFDM受信信号周波数スペクトルが生成されたブランチを選択して、そのブランチからのOFDM受信信号周波数スペクトルおよび伝送路周波数応答が歪み補償部22に入力される。選択部19は、図2または図3で説明したと同様に構成することができる。
【0060】
歪み補償部22は、選択部19から出力されたOFDM受信信号周波数スペクトルの歪みを選択部19から出力された伝送路周波数応答を用いて補償する。そして、この歪み補償部22による歪み補償後のOFDM受信信号周波数スペクトルから、復調部20でディジタル信号系列が復調される。
【0061】
このように本実施形態では、複数のブランチ#1〜#nの中から電力あるいは振幅が最大となるOFDM受信信号周波数スペクトルを生成するブランチを選択し、この選択したブランチで得られる伝送路周波数応答を用いてOFDM受信信号のスペクトルの歪みを補償し、歪み補償後のOFDM受信信号周波数スペクトルによってディジタル信号系列を復調するため、受信特性が改善される。また、本実施形態によれば、歪み補償部が一つで済むため、これまでの実施形態に比べて受信装置が小型化されるという利点を有する。
【0062】
なお、本実施形態では各#1〜#nで一つの参照周波数スペクトル生成部21を共有しているが、図1に示した第1の実施形態のように各ブランチ#1〜#n毎に参照周波数スペクトル生成部が含まれる構成としても構わない。
【0063】
また、本実施形態においても第1〜第4の実施形態と同様に、選択部19がOFDM受信信号の1シンボル毎にOFDM受信信号周波数スペクトルもしくは伝送路周波数応答を比較して、ブランチを選択するようにしてもよいし、一定時間前に算出したOFDM受信信号周波数スペクトルもしくは伝送路周波数応答を用いてブランチを選択してもよい。
【0064】
(第6の実施形態)
図8は、本発明に係るOFDMダイバーシチ受信装置の第6の実施形態を示す図である。本実施形態は、図7に示した第5の実施形態と同様に、選択部19によってブランチを選択した後、選択したブランチの伝送路周波数応答を用いて、選択したブランチのOFDM受信信号周波数スペクトルの歪みを補償することにより、歪み補償部が一つで済むようにしたものである。
【0065】
すなわち、ブランチ#1〜#nでは第5の実施形態と同様に、第1の変換部7〜9でOFDM受信信号周波数スペクトルが生成され、伝送路周波数応答算出部13〜15で伝送路周波数応答が生成される。そして、本実施形態では伝送路周波数応答が第1の入力信号Aとして、OFDM受信信号周波数スペクトルが第2の入力信号Bとしてそれぞれ選択部19に入力される。
【0066】
選択部19は、第1の入力信号Aとして入力されたブランチ#1〜#nで生成された伝送路周波数応答を比較し、振幅もしくは電力が最大となる伝送路周波数応答が生成されたブランチを選択する。選択部19は、図2または図3で説明したと同様に構成することができる。この選択部19で選択されたブランチのOFDM受信信号周波数スペクトルおよび伝送路周波数応答は、歪み補償部22に入力される。
【0067】
歪み補償部22は、選択部19から出力されたOFDM受信信号周波数スペクトルの歪みを選択部19から出力された伝送路周波数応答を用いて補償する。そして、この歪み補償部22による歪み補償後のOFDM受信信号周波数スペクトルから、復調部20でディジタル信号系列が復調される。
【0068】
このように本実施形態では、複数のブランチ#1〜#nの中から電力あるいは振幅が最大となる伝送路周波数応答を生成するブランチを選択し、この選択したブランチで得られる伝送路周波数応答を用いてOFDM受信信号周波数スペクトルの歪みを補償し、歪み補償後のOFDM受信信号周波数スペクトルによってディジタル信号系列を復調するため、受信特性が改善される。また、本実施形態によれば第5の実施形態と同様に、歪み補償部が一つで済むため、受信装置が小型化されるという利点がある。
【0069】
(第7の実施形態)
図9は、本発明に係るOFDMダイバーシチ受信装置の第7の実施形態を示す図である。本実施形態は、伝送路応答中に含まれる雑音等の歪みを除去するために、図4に示した第2の実施形態における伝送路周波数応答算出部13〜15と歪み補償部16〜18との間にそれぞれフィルタリング部23〜25を挿入した構成となっている。
【0070】
本実施形態では、図1と同様の手順でブランチ#1〜#nにおいて第1の変換部7〜9によりOFDM受信信号周波数スペクトル信号を算出する。伝送路周波数応答算出部13〜15は、このOFDM受信信号周波数スペクトルと、参照周波数スペクトル生成部21で生成された、OFDM受信信号周波数スペクトルに対応する参照周波数スペクトルを用いて、各ブランチ#1〜#nに固有の伝送路周波数応答を算出する。伝送路周波数応答算出部13〜15で算出された各ブランチ#1〜#nの伝送路周波数応答はフィルタリング部23〜25に入力され、それぞれの受信部4〜6で付加された雑音等の歪みが除去される。フィルタリング部23〜25によって雑音等の歪みが除去された伝送路周波数応答は、それぞれ歪み補償部16〜18に入力される。歪み補償部16〜18は、フィルタリング後の伝送路周波数応答を用いて第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルに含まれる歪みを補償する。
【0071】
第1の変換部7〜9で生成されたOFDM受信信号周波数スペクトルと、歪み補償部16〜18で生成された歪み補償後のOFDM受信信号周波数スペクトルは、それぞれ第1の入力信号Aおよび第2の入力信号Bとして選択部19に入力される。選択部19は図1に示した第1の実施形態と同様の手順でブランチを選択し、選択されたブランチから第2の入力信号として入力される歪み補償後のOFDM受信信号周波数スペクトルを出力する。復調部20は、選択部19から出力された歪み補償後のOFDM受信信号周波数スペクトルをディジタル信号系列に復調する。
【0072】
このように本実施形態によると、伝送路周波数応答算出部13〜15と歪み補償部16〜18の間にフィルタリング部23〜25を挿入することによって、各ブランチ#1〜#nで算出される伝送路周波数応答がより正確となる結果、受信特性の劣化をより的確に改善することが可能となる。
【0073】
なお、本実施形態は図4に示した第2の実施形態に対してフィルタリング部23〜25を追加した構成となっているが、図5および図6に示した第3および第4の実施形態に対して同様にフィルタリング部を追加することも有効である。さらに、図9では各ブランチ#1〜#nで一つの参照周波数スペクトル生成部21を共用しているが、図1に示した第1の実施形態のように各ブランチ#1〜#n毎に参照周波数スペクトル生成部が含まれる構成としても構わない。
【0074】
(第8の実施形態)
図10は、本発明に係るOFDMダイバーシチ受信装置の第8の実施形態を示す図である。本実施形態は、図9に示した第7の実施形態と同様に、伝送路周波数応答に含まれる雑音などの歪みを除去するために、図7に示した第5の実施形態における伝送路周波数応答算出部13〜15と選択部19との間にそれぞれフィルタリング部23〜25を挿入した構成となっている。
【0075】
本実施形態では、図1と同様の手順で#1〜#nにおいて第1の変換部7〜9によりOFDM受信信号周波数スペクトル信号を算出する。伝送路周波数応答算出部13〜15は、このOFDM受信信号周波数スペクトルと、参照周波数スペクトル生成部21で生成されたOFDM受信信号周波数スペクトルに対応する参照周波数スペクトルを用いて、各ブランチ#1〜#nに固有の伝送路周波数応答を算出する。
【0076】
各ブランチ#1〜#nの伝送路周波数応答算出部13〜15で算出された伝送路周波数応答はフィルタリング部23〜25に入力され、それぞれの受信部4〜6で付加された雑音等の歪みが除去される。OFDM受信信号周波数スペクトルと、フィルタリング部23〜25によって雑音などの歪みが除去された歪み除去後の伝送路周波数応答は、それぞれ第1の入力信号および第2の入力信号として選択部19に入力される。選択部19は、図7に示した第5の実施形態と同様の手順でブランチを選択し、選択されたブランチから入力されたOFDM受信信号周波数スペクトルおよび歪み除去後の伝送路周波数応答を出力する。
【0077】
歪み補償部22は、選択部19から出力されたOFDM受信信号周波数スペクトルの歪みを選択部19から出力された伝送路周波数応答を用いて補償する。復調部20は、歪み補償部22から出力される歪み補償後のOFDM受信信号周波数スペクトルからディジタル信号系列を復調する。
【0078】
このように本実施形態によると、伝送路周波数応答算出部13〜15と選択部19との間にフィルタリング部23〜25を挿入することで、各ブランチ#1〜#nで算出される伝送路周波数応答がより正確になる結果、受信特性の劣化をより的確に改善することが可能となる。
【0079】
なお、本実施形態は図7に示した第5の実施形態に対してフィルタリング部23〜25を追加した構成となっているが、図8に示した第6の実施形態に対して同様にフィルタリング部を追加することも有効である。さらに、図10では各ブランチ#1〜#nで一つの参照周波数スペクトル生成部21を共用しているが、図1に示した第1の実施形態のように各ブランチ#1〜#n毎に参照周波数スペクトル生成部が含まれる構成としても構わない。
【0080】
<フィルタリング部について>
図11に、第7または第8の実施形態で用いるフィルタリング部の一構成例を示す。図11のフィルタリング部50は、図9または図10において各ブランチ#1〜#nにおける伝送路周波数応答算出部13〜15の後段に接続されるフィルタリング部23〜25であり、第2の変換部51と伝搬遅延時間測定部52とフィルタリング帯域幅設定部53および帯域幅が可変のフィルタ部54から構成される。
【0081】
各ブランチ#1〜#nで算出された伝送路周波数応答は、第2の変換部51とフィルタ部54に入力される。第2の変換部51では、入力された伝送路周波数応答が逆フーリエ変換等の変換処理により時間領域の情報、すなわち伝送路時間応答(伝送路インパルス応答)に変換される。この伝送路時間応答は、一般的に遅延プロファイルと呼ばれ、多重電波伝搬環境でのパス数を表す。第2の変換部51の出力である遅延プロファイルは伝搬遅延時間測定部52に入力され、ここで遅延プロファイルから最大遅延時間が測定される。この最大遅延時間の測定結果を基にフィルタリング帯域幅設定部53で帯域幅が決定され、フィルタ部54の帯域幅が設定される。このフィルタ部54によって、伝送路周波数応答がフィルタリングされる。
【0082】
このようなフィルタリング部50を持つことで、遅延時間が変化するような伝搬環境においても、伝送路周波数応答に付加されている雑音等の歪みを効率良く除去することが可能となり、もって伝送路周波数応答をより正確に求めることによって受信特性の改善を図ることができる。
【0083】
図12を用いて、図11に示したフィルタリング部50における第2の変換部51の動作を説明する。図12(a)に、所望波と一つの遅延波が存在する2波モデル環境下において、各ブランチの伝送路周波数応答算出部13〜15で算出される伝送路周波数応答の一例を示す。マルチパス伝搬環境では、周波数選択性フェージング現象を起こし、その間隔は決まった周期で変動するため、これを第2の変換部51で時間領域の情報に変換すると、図12(b)に示すような遅延プロファイルに変換される。これにより電波伝搬環境が把握でき、所望波と遅延波が信号通過帯域内に含まれ、それ以外の成分が除去されるようなフィルタリング帯域幅の設定を行うことができる。
【0084】
フィルタリング帯域幅設定部53は、フィルタ部54に対してこのようなフィルタリング帯域幅の設定を行い、このフィルタ部54で伝送路周波数応答がフィルタリングされる。このように必要な成分のみを通し、不必要な成分を抑圧することで、より正確な伝送路周波数応答を算出することができる。
【0085】
(第9の実施形態)
図13は、本発明に係るOFDMダイバーシチ受信装置の第9の実施形態を示す図である。本実施形態は、図10に示した第8の実施形態に復調部20から出力されるディジタル信号系列を再変調して再変調周波数スペクトルを生成する再変調部31と、この再変調部31から出力される再変調周波数スペクトルと参照周波数スペクトル生成部21から出力される参照周波数スペクトルのいずれかを選択する周波数スペクトル選択部32と、遅延部33〜35を追加した構成となっている。
【0086】
すなわち、本実施形態のOFDMダイバーシチ受信装置では、各ブランチ#1〜#nにおいて受信アンテナ1〜3で受信されたOFDM信号は受信部4〜6に入力され、受信部4〜6からガード期間が除去されたベースバンド信号が出力される。受信部4〜6の出力は第1の変換部7〜9に入力され、高速フーリエ変換等の変換処理によってOFDM受信信号周波数スペクトルに変換される。
【0087】
スロット構成を採用したOFDM伝送方式でディジタル信号系列を伝送する通信システムや放送システムにおいて、例えばスロットの先頭に既知データ系列を含むような構成を仮定すると、その既知データ系列のOFDM信号を受信するときには、既知データ系列に相当する参照周波数スペクトルが参照周波数スペクトル生成部21で生成され、生成された参照周波数スペクトル周波数がスペクトル選択部32を介して各ブランチ#1〜#nの伝送路周波数応答算出部13〜15に入力される。
【0088】
各ブランチ#1〜#nの第1の変換部7〜9の出力は遅延部33〜35に入力され、一単位時間(シンボル時間)だけ遅延される。遅延部33〜35は、復調部20で復調されたディジタル信号系列を再変調部31で再変調することによって生じる一単位時間の遅延に同期させるために設けられており、参照周波数スペクトルを用いて伝送路周波数応答を算出する場合には、遅延部33〜35の有無は問題とならない。
【0089】
第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルと、周波数スペクトル選択部32から出力される参照周波数スペクトルもしくは復調部20により復調されたディジタル信号系列を再変調した再変調周波数スペクトルによって、伝送路周波数応答算出部13〜15において伝送路周波数応答が算出される。各ブランチ#1〜#nにおいて、伝送路周波数応答算出部13〜15で算出された伝送路周波数応答は、受信部4〜6で付加された雑音等の歪みを除去するためのフィルタリング部23〜25に入力される。フィルタリング部23〜25は、伝送路周波数応答に含まれる歪みを除去し、歪み除去後の伝送路周波数応答を出力する。
【0090】
フィルタリング部23〜25の処理は、図11や図12で説明した内容と同一である。第1の変換部7〜9から出力されるOFDM受信信号周波数スペクトルは第1の入力信号Aとして、またフィルタリング部23〜25から出力される歪み除去後の伝送路周波数応答は第2の入力信号Bとしてそれぞれ選択部19に入力される。
【0091】
選択部19は、第1の入力信号Aとして入力されたブランチ#1〜#nで生成されたOFDM受信信号周波数スペクトルを比較し、振幅もしくは電力が最大となるOFDM受信信号周波数スペクトルが生成されたブランチを選択する。選択されたブランチから入力されたOFDM受信信号周波数スペクトルおよび伝送路周波数応答は選択部19から出力され、歪み補償部22に入力される。歪み補償部22は、選択部19から出力されたOFDM受信信号周波数スペクトルの歪みを選択部19から出力された伝送路周波数応答を用いて補償し、歪み補償後のOFDM受信信号周波数スペクトルを出力する。復調部20は、この歪み補償後のOFDM受信信号周波数スペクトルからディジタル信号系列を復調する。
【0092】
前述したように、先頭に既知データ系列を含むようなスロット構成で伝送するシステムでは、既知データ系列以降のデータ系列に関して、再度変調処理を再変調部31で行い、周波数スペクトル選択部32を介して各ブランチ#1〜#nの伝送路周波数応答算出部13〜15に入力する。この処理は一般に判定帰還処理(デシジョンディレクテッド処理)と呼ばれ、繰り返し行われる。すなわち、時刻kに復調したディジタル信号系列の周波数スペクトルと時刻kに受信したOFDM信号周波数スペクトルから伝送路周波数応答を算出し、この伝送路周波数応答に基づいて、時刻k+1の第1の変換部の出力に含まれる歪みを補償する。
【0093】
このように本実施形態によると、動的な伝搬環境においても各ブランチ#1〜#nでアップデートな伝送路周波数応答を算出することができ、受信特性の改善が可能となる。
【0094】
図14に、図13に示した第9の実施形態に係るOFDMダイバーシチ受信装置の受信特性であるビット誤り率特性を示す。このビット誤り率特性は、変調方式をQPSKとし、横軸にEb/No(dB)、縦軸にビット誤り率BERを定義し、独立2波のマルチパス伝搬環境下(固定2波モデル)で評価した結果である。図中のτは2波(所望波と遅延到来波)の到来時間差を示し、D/Uは所望波と不要波(遅延到来波)との電力比を示す。同図では、D/Uが0(dB)の場合と5(dB)の場合をそれぞれ示している。いずれのD/Uでも、本発明のダイバーシチ方式を採用すると、極めて大きな受信特性の改善効果が得られることが判る。
【0095】
なお、本実施形態では特に移動受信環境での受信を想定して、図10に示した第8の実施形態に再変調部31と周波数スペクトル選択部32および遅延部33〜35を追加した構成となっているが、第1〜第6の実施形態に対して再変調部31と周波数スペクトル選択部32および遅延部33〜35を追加する構成としてもよい。
【0096】
【発明の効果】
以上詳細に説明したように、本発明によればOFDM受信信号周波数スペクトルまたは伝送路周波数応答の電力もしくは振幅が最大となるダイバーシチブランチを選択してダイバーシチ受信を行うことによって、多重反射伝搬環境で生じる受信特性の劣化を改善することができる。
【図面の簡単な説明】
【図1】 本発明に係るOFDMダイバーシチ受信装置の第1の実施形態を示すブロック図
【図2】 本発明に係るOFDMダイバーシチ受信装置における選択部の第1の構成例を示すブロック図
【図3】 本発明に係るOFDMダイバーシチ受信装置における選択部の第2の構成例を説明するための図
【図4】 本発明に係るOFDMダイバーシチ受信装置の第2の実施形態を示すブロック図
【図5】 本発明に係るOFDMダイバーシチ受信装置の第3の実施形態を示すブロック図
【図6】 本発明に係るOFDMダイバーシチ受信装置の第4の実施形態を示すブロック図
【図7】 本発明に係るOFDMダイバーシチ受信装置の第5の実施形態を示すブロック図
【図8】 本発明に係るOFDMダイバーシチ受信装置の第6の実施形態を示すブロック図
【図9】 本発明に係るOFDMダイバーシチ受信装置の第7の実施形態を示すブロック図
【図10】 本発明に係るOFDMダイバーシチ受信装置の第8の実施形態を示すブロック図
【図11】 本発明に係るOFDMダイバーシチ受信装置におけるフィルタリング部の一構成例を示すブロック図
【図12】 図11のフィルタリング部の動作説明図
【図13】 本発明に係るOFDMダイバーシチ受信装置の第9の実施形態を示すブロック図
【図14】 本発明に係るOFDMダイバーシチ受信装置の効果を説明するための受信特性図
【符号の説明】
1〜3…受信アンテナ
4〜6…受信部
7〜9…第1の変換部
10〜12,21…参照周波数スペクトル生成部
13〜15…伝送路周波数応答算出部
16〜18,22…歪み補償部
19…選択部
20…復調部
23〜25…フィルタリング部
31…再変調部
32…周波数スペクトル選択部
33〜35…遅延部
41〜43…合成部
44…比較部
45…セレクタ部
50…フィルタリング部
51…第2の変換部
52…伝搬遅延時間測定部
53…フィルタリング帯域幅設定部
54…フィルタ部

Claims (11)

  1. 個別のアンテナを介してOFDM(直交周波数分割多重)信号を受信しOFDM受信信号をそれぞれ出力する複数の受信手段と、
    前記OFDM受信信号をそれぞれ周波数スペクトルに変換する複数の第1の変換手段と、
    前記OFDM受信信号に対する参照周波数スペクトルを生成する少なくとも一つの参照周波数スペクトル生成手段と、
    前記第1の変換手段からそれぞれ出力される周波数スペクトルと前記参照周波数スペクトルとから複数の伝送路周波数応答を算出する複数の伝送路周波数応答算出手段と、
    前記第1の変換手段からそれぞれ出力される周波数スペクトルの歪みを対応する前記伝送路周波数応答を用いて補償する歪み補償手段と、
    前記第1の変換手段からそれぞれ出力される周波数スペクトルを第1の入力信号とし、前記歪み補償手段からそれぞれ出力される歪み補償後の周波数スペクトルを第2の入力信号として、振幅もしくは電力が最大となる第1の入力信号に対応する第2の入力信号を選択して出力する選択手段と、
    前記選択手段の出力信号からディジタル信号系列を復調する復調手段
    とを具備することを特徴とするOFDMダイバーシチ受信装置。
  2. 個別のアンテナを介してOFDM(直交周波数分割多重)信号を受信しOFDM受信信号をそれぞれ出力する複数の受信手段と、
    前記OFDM受信信号をそれぞれ周波数スペクトルに変換する複数の第1の変換手段と、
    前記OFDM受信信号に対する参照周波数スペクトルを生成する少なくとも一つの参照周波数スペクトル生成手段と、
    前記第1の変換手段からそれぞれ出力される周波数スペクトルと前記参照周波数スペクトルとから複数の伝送路周波数応答を算出する複数の伝送路周波数応答算出手段と、
    前記第1の変換手段からそれぞれ出力される周波数スペクトルの歪みを対応する前記伝送路周波数応答を用いて補償する歪み補償手段と、
    前記伝送路周波数応答算出手段によりそれぞれ算出される伝送路周波数応答を第1の入力信号とし、前記歪み補償手段からそれぞれ出力される歪み補償後の周波数スペクトルを第2の入力信号として、振幅もしくは電力が最大となる第1の入力信号に対応する第2の入力信号を選択して出力する選択手段と、
    前記選択手段の出力信号からディジタル信号系列を復調する復調手段
    とを具備することを特徴とするOFDMダイバーシチ受信装置。
  3. 個別のアンテナを介してOFDM(直交周波数分割多重)信号を受信しOFDM受信信号をそれぞれ出力する複数の受信手段と、
    前記OFDM受信信号をそれぞれ周波数スペクトルに変換する複数の第1の変換手段と、
    前記OFDM受信信号に対する参照周波数スペクトルを生成する少なくとも一つの参照周波数スペクトル生成手段と、
    前記第1の変換手段からそれぞれ出力される周波数スペクトルと前記参照周波数スペクトルとから複数の伝送路周波数応答を算出する複数の伝送路周波数応答算出手段と、
    前記第1の変換手段からそれぞれ出力される周波数スペクトルの歪みを対応する前記伝送路周波数応答を用いて補償する歪み補償手段と、
    前記歪み補償手段からそれぞれ出力される歪み補償後の周波数スペクトルを第1の入力信号とし、振幅もしくは電力が最大となる第1の入力信号を選択して出力する選択手段と、
    前記選択手段の出力信号からディジタル信号系列を復調する復調手段
    とを具備することを特徴とするOFDMダイバーシチ受信装置。
  4. 個別のアンテナを介してOFDM(直交周波数分割多重)信号を受信しOFDM受信信号をそれぞれ出力する複数の受信手段と、
    前記OFDM受信信号をそれぞれ周波数スペクトルに変換する複数の第1の変換手段と、
    前記OFDM受信信号に対する参照周波数スペクトルを生成する少なくとも一つの参照周波数スペクトル生成手段と、
    前記第1の変換手段からそれぞれ出力される周波数スペクトルと前記参照周波数スペクトルとから複数の伝送路周波数応答を算出する複数の伝送路周波数応答算出手段と、
    前記第1の変換手段からそれぞれ出力される周波数スペクトルを第1の入力信号とし、前記伝送路周波数応答算出手段によりそれぞれ算出される伝送路周波数応答を第2の入力信号として、振幅もしくは電力が最大となる第1の入力信号およびそれに対応する第2の入力信号を選択して、それぞれ第1の出力信号および第2の出力信号として出力する選択手段と、
    前記選択手段の前記第2の出力信号を用いて前記選択手段の前記第1の出力信号の歪みを補償する歪み補償手段と、
    前記歪み補償手段の出力信号からディジタル信号系列を復調する復調手段
    とを具備することを特徴とするOFDMダイバーシチ受信装置。
  5. 個別のアンテナを介してOFDM(直交周波数分割多重)信号を受信しOFDM受信信号をそれぞれ出力する複数の受信手段と、
    前記OFDM受信信号をそれぞれ周波数スペクトルに変換する複数の第1の変換手段と、
    前記OFDM受信信号に対する参照周波数スペクトルを生成する少なくとも一つの参照周波数スペクトル生成手段と、
    前記第1の変換手段からそれぞれ出力される周波数スペクトルと前記参照周波数スペクトルとから複数の伝送路周波数応答を算出する複数の伝送路周波数応答算出手段と、
    前記伝送路周波数応答算出手段によりそれぞれ算出される伝送路周波数応答を第1の入力信号とし、前記第1の変換手段からそれぞれ出力される周波数スペクトルを第2の入力信号として、振幅もしくは電力が最大となる第1の入力信号およびそれに対応する第2の入力信号を選択して、それぞれ第1の出力信号および第2の出力信号として出力する選択手段と、
    前記選択手段の前記第1の出力信号を用いて前記選択手段の前記第2の出力信号の歪みを補償する歪み補償手段と、
    前記歪み補償手段の出力信号からディジタル信号系列を復調する復調手段
    とを具備することを特徴とするOFDMダイバーシチ受信装置。
  6. 前記伝送路周波数応答算出手段と前記歪み補償手段との間に、前記伝送路周波数応答算出手段によりそれぞれ算出された伝送路周波数応答をフィルタリングするフィルタリング手段を挿入したことを特徴とする請求項乃至のいずれか1項記載のOFDMダイバーシチ受信装置。
  7. 前記伝送路周波数応答算出手段と前記選択手段との間に、前記伝送路周波数応答算出手段によりそれぞれ算出された伝送路周波数応答をフィルタリングするフィルタリング手段を挿入したことを特徴とする請求項または記載のOFDMダイバーシチ受信装置。
  8. 前記フィルタリング手段は、
    前記伝送路周波数応答算出手段により算出された伝送路周波数応答を入力とするフィルタリング帯域幅が可変のフィルタ手段と、
    前記伝送路周波数応答算出手段により算出された伝送路周波数応答を伝送路時間応答に変換する第2の変換手段と、
    前記第2の変換手段により変換された伝送路時間応答を用いて多重反射伝搬環境の伝搬遅延時間を測定する伝搬遅延時間測定手段と、
    前記伝搬遅延時間測定手段の測定結果に基づいて前記フィルタ手段のフィルタリング帯域幅を設定するフィルタリング帯域幅設定手段とを有することを特徴とする請求項または記載のOFDMダイバーシチ受信装置。
  9. 前記復調手段により復調されたディジタル信号系列を再変調して再変調周波数スペクトルを生成する再変調手段と、
    前記再変調周波数スペクトルと前記参照周波数スペクトルとを選択的に前記伝送路周波数応答算出手段へ出力する周波数スペクトル選択手段とをさらに具備することを特徴とする請求項乃至のいずれか1項記載のOFDMダイバーシチ受信装置。
  10. 前記選択手段は、前記第1の入力信号を構成するそれぞれの線スペクトルの振幅もしくは電力を合成する複数の合成手段と、これら複数の合成手段の出力を比較する比較手段とを有し、この比較手段の比較結果に基づいて選択動作を行うことを特徴とする請求項乃至のいずれか1項記載のOFDMダイバーシチ受信装置。
  11. 前記選択手段は、前記第1の入力信号を構成する線スペクトルの中から同一周波数の線スペクトルどうしの振幅もしくは電力を比較する比較手段を有し、この比較手段の比較結果に基づいて選択動作を行うことを特徴とする請求項乃至のいずれか1項記載のOFDMダイバーシチ受信装置。
JP00250998A 1998-01-08 1998-01-08 Ofdmダイバーシチ受信装置 Expired - Fee Related JP3724940B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP00250998A JP3724940B2 (ja) 1998-01-08 1998-01-08 Ofdmダイバーシチ受信装置
US09/226,721 US6628638B1 (en) 1998-01-08 1999-01-07 Method and apparatus for receiving diversity signals for use in OFDM radio communication system
US10/271,546 US7266108B2 (en) 1998-01-08 2002-10-17 Method and apparatus for receiving diversity signals for use in OFDM radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00250998A JP3724940B2 (ja) 1998-01-08 1998-01-08 Ofdmダイバーシチ受信装置

Publications (2)

Publication Number Publication Date
JPH11205273A JPH11205273A (ja) 1999-07-30
JP3724940B2 true JP3724940B2 (ja) 2005-12-07

Family

ID=11531353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00250998A Expired - Fee Related JP3724940B2 (ja) 1998-01-08 1998-01-08 Ofdmダイバーシチ受信装置

Country Status (2)

Country Link
US (2) US6628638B1 (ja)
JP (1) JP3724940B2 (ja)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724940B2 (ja) * 1998-01-08 2005-12-07 株式会社東芝 Ofdmダイバーシチ受信装置
FR2791841B1 (fr) * 1999-04-02 2001-05-11 Commissariat Energie Atomique Module recepteur et recepteur compose de plusieurs modules montes en cascade
US7952511B1 (en) 1999-04-07 2011-05-31 Geer James L Method and apparatus for the detection of objects using electromagnetic wave attenuation patterns
JP2003508939A (ja) * 1999-05-28 2003-03-04 ベーシック・リソーシィズ・インコーポレイテッド ノード間データメッセージを使用する無線トランシーバネットワーク
US7027464B1 (en) * 1999-07-30 2006-04-11 Matsushita Electric Industrial Co., Ltd. OFDM signal transmission scheme, and OFDM signal transmitter/receiver
JP3796076B2 (ja) * 1999-09-07 2006-07-12 松下電器産業株式会社 Ofdm通信装置
FR2798542B1 (fr) * 1999-09-13 2002-01-18 France Telecom Recepteur a multiplexage par repartition en frequences orthogonales avec estimation iterative de canal et procede correspondant
US6795392B1 (en) * 2000-03-27 2004-09-21 At&T Corp. Clustered OFDM with channel estimation
US7020072B1 (en) * 2000-05-09 2006-03-28 Lucent Technologies, Inc. Orthogonal frequency division multiplexing transmit diversity system for frequency-selective fading channels
JP3678119B2 (ja) 2000-06-01 2005-08-03 株式会社デンソー Ofdm用通信システムおよびその通信システムに用いられる基地局並びに端末
DE60037583T2 (de) 2000-08-24 2009-01-08 Sony Deutschland Gmbh Kommunikationseinrichtung zum Senden und Empfangen von OFDM Signalen in einem Funkkommunikationssystem
JP5021114B2 (ja) * 2000-09-07 2012-09-05 ソニー株式会社 無線中継システム及び方法
FI115813B (fi) * 2001-04-27 2005-07-15 Nokia Corp Järjestelmä ryhmäviestin lähettämiseksi
US20100077022A1 (en) * 2001-06-27 2010-03-25 John Mikkelsen Media delivery platform
JP3838924B2 (ja) * 2002-03-05 2006-10-25 株式会社東芝 無線通信装置
EP1502364A4 (en) * 2002-04-22 2010-03-31 Ipr Licensing Inc TRANSMITTER-RECEIVER RADIO WITH MULTIPLE INPUTS AND OUTPUTS
US6728517B2 (en) * 2002-04-22 2004-04-27 Cognio, Inc. Multiple-input multiple-output radio transceiver
US7385915B2 (en) * 2002-07-31 2008-06-10 Nokia Corporation Apparatus, and associated method, for facilitating communication allocation in a radio communication system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
TWI341102B (en) * 2002-10-25 2011-04-21 Qualcomm Inc Data detection and demodulation for wireless communication systems
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8326257B2 (en) * 2002-10-28 2012-12-04 Qualcomm Incorporated Utilizing speed and position information to select an operational mode in a wireless communication system
JP4157506B2 (ja) * 2003-07-29 2008-10-01 株式会社東芝 無線受信装置及び無線受信方法
US8761419B2 (en) * 2003-08-04 2014-06-24 Harman International Industries, Incorporated System for selecting speaker locations in an audio system
US8705755B2 (en) * 2003-08-04 2014-04-22 Harman International Industries, Inc. Statistical analysis of potential audio system configurations
US8280076B2 (en) * 2003-08-04 2012-10-02 Harman International Industries, Incorporated System and method for audio system configuration
US8755542B2 (en) * 2003-08-04 2014-06-17 Harman International Industries, Incorporated System for selecting correction factors for an audio system
US6867625B1 (en) * 2003-09-24 2005-03-15 Itt Manufacturing Enterprises, Inc. Method and apparatus for high frequency digital carrier synthesis from plural intermediate carrier waveforms
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7466645B2 (en) * 2004-12-21 2008-12-16 Panasonic Corporation OFDM signal receiving apparatus
JP4985942B2 (ja) * 2005-01-11 2012-07-25 日本電気株式会社 基地局装置、無線伝送システム、無線基地局用プログラム、及びタイミング推定方法
US8325826B2 (en) * 2005-03-09 2012-12-04 Qualcomm Incorporated Methods and apparatus for transmitting signals facilitating antenna control
KR20060104561A (ko) * 2005-03-30 2006-10-09 삼성전자주식회사 광대역 무선 통신 시스템에서 안테나 선택 다이버시티 장치및 방법
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US20060276149A1 (en) * 2005-06-03 2006-12-07 Microtune (Texas), L.P. Multi-band broadcast tuner
US7894818B2 (en) * 2005-06-15 2011-02-22 Samsung Electronics Co., Ltd. Apparatus and method for multiplexing broadcast and unicast traffic in a multi-carrier wireless network
US20070002724A1 (en) * 2005-06-15 2007-01-04 Samsung Electronics Co., Ltd. Apparatus and method for broadcast superposition and cancellation in a multi-carrier wireless network
US7933344B2 (en) * 2006-04-25 2011-04-26 Mircosoft Corporation OFDMA based on cognitive radio
US7634016B2 (en) * 2006-04-25 2009-12-15 Microsoft Corporation Variable OFDM subchannel coding and modulation
US8189621B2 (en) 2006-05-12 2012-05-29 Microsoft Corporation Stack signaling to application with lack of requested bandwidth
US8225186B2 (en) 2006-07-14 2012-07-17 Qualcomm Incorporated Ecoding and decoding methods and apparatus for use in a wireless communication system
US8144793B2 (en) 2006-12-12 2012-03-27 Microsoft Corporation Cognitive multi-user OFDMA
US20090252070A1 (en) * 2007-01-12 2009-10-08 Connors Dennis P Airlink management in a wireless broadcast system
US7912057B2 (en) 2007-01-12 2011-03-22 Wi-Lan Inc. Convergence sublayer for use in a wireless broadcasting system
US8774229B2 (en) * 2007-01-12 2014-07-08 Wi-Lan, Inc. Multidiversity handoff in a wireless broadcast system
US7944919B2 (en) * 2007-01-12 2011-05-17 Wi-Lan, Inc. Connection identifier for wireless broadcast system
US8064444B2 (en) * 2007-01-12 2011-11-22 Wi-Lan Inc. Wireless broadcasting system
US8548520B2 (en) 2007-01-26 2013-10-01 Wi-Lan Inc. Multiple network access system and method
US8095099B2 (en) * 2007-03-09 2012-01-10 Bhaskar Patel Multiple radio receive chain wireless communication devices
US7929623B2 (en) * 2007-03-30 2011-04-19 Microsoft Corporation FEC in cognitive multi-user OFDMA
US7903604B2 (en) 2007-04-18 2011-03-08 Wi-Lan Inc. Method and apparatus for a scheduler for a macro-diversity portion of a transmission
WO2008131030A1 (en) * 2007-04-18 2008-10-30 Nextwave Broadband Inc. Macro-diversity region rate modification
US7970085B2 (en) 2007-05-08 2011-06-28 Microsoft Corporation OFDM transmission and reception for non-OFDMA signals
US8036658B2 (en) * 2007-05-17 2011-10-11 Arumugam Govindswamy Method and apparatus to improve network acquisition
US8374130B2 (en) 2008-01-25 2013-02-12 Microsoft Corporation Orthogonal frequency division multiple access with carrier sense
US8855087B2 (en) * 2008-12-18 2014-10-07 Microsoft Corporation Wireless access point supporting control by multiple applications
US8416697B2 (en) 2010-02-05 2013-04-09 Comcast Cable Communications, Llc Identification of a fault
US8971394B2 (en) 2010-02-05 2015-03-03 Comcast Cable Communications, Llc Inducing response signatures in a communication network
US8477642B2 (en) 2010-04-21 2013-07-02 Qualcomm Incorporated Ranging and distance based spectrum selection in cognitive radio
US8792326B2 (en) * 2010-04-26 2014-07-29 Qualcomm Incorporated Ranging and distance based wireless link spectrum selection
GB2484287A (en) * 2010-10-04 2012-04-11 Vodafone Ip Licensing Ltd Selecting base station radio systems for receiving and combining OFDM signals from a mobile station
US8897274B2 (en) * 2012-08-08 2014-11-25 St-Ericsson Sa Successive interference cancellation stacked branch VAMOS receivers
US9380475B2 (en) 2013-03-05 2016-06-28 Comcast Cable Communications, Llc Network implementation of spectrum analysis
US9444719B2 (en) 2013-03-05 2016-09-13 Comcast Cable Communications, Llc Remote detection and measurement of data signal leakage
CN114710383A (zh) * 2022-03-31 2022-07-05 瑞玛思特(深圳)科技有限公司 一种利用ofdm信号对仪表射频通道频响进行校准的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969207A (en) * 1987-03-20 1990-11-06 Nippon Telegraph And Telephone Corporation Radio receiver with reception deterioration compensation
JPH03155228A (ja) * 1989-11-14 1991-07-03 Toshiba Corp ダイバーシティ受信装置
JP2643614B2 (ja) * 1991-02-22 1997-08-20 日本電気株式会社 ディジタル移動通信端末装置
US5282222A (en) * 1992-03-31 1994-01-25 Michel Fattouche Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum
JP3438918B2 (ja) * 1992-11-27 2003-08-18 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション ワイヤレスlan
JP3662321B2 (ja) 1995-12-19 2005-06-22 松下電器産業株式会社 移動通信装置
US5914933A (en) * 1996-03-08 1999-06-22 Lucent Technologies Inc. Clustered OFDM communication system
JP3377361B2 (ja) 1996-04-12 2003-02-17 日本放送協会 ダイバーシチ受信装置
US5949796A (en) * 1996-06-19 1999-09-07 Kumar; Derek D. In-band on-channel digital broadcasting method and system
JPH10257013A (ja) * 1997-03-14 1998-09-25 Toshiba Corp 受信装置
US6188669B1 (en) * 1997-06-17 2001-02-13 3Com Corporation Apparatus for statistical multiplexing and flow control of digital subscriber loop modems
US5867478A (en) * 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
JP3724940B2 (ja) * 1998-01-08 2005-12-07 株式会社東芝 Ofdmダイバーシチ受信装置
JP3718337B2 (ja) * 1998-01-08 2005-11-24 株式会社東芝 適応可変指向性アンテナ
US6327314B1 (en) * 1998-04-01 2001-12-04 At&T Corp. Method and apparatus for channel estimation for multicarrier systems
US6298035B1 (en) * 1999-12-21 2001-10-02 Nokia Networks Oy Estimation of two propagation channels in OFDM

Also Published As

Publication number Publication date
US20030058786A1 (en) 2003-03-27
US7266108B2 (en) 2007-09-04
JPH11205273A (ja) 1999-07-30
US6628638B1 (en) 2003-09-30

Similar Documents

Publication Publication Date Title
JP3724940B2 (ja) Ofdmダイバーシチ受信装置
JP3737264B2 (ja) ダイバーシチ受信装置
KR100581780B1 (ko) 송신 방법, 수신 방법, 송신 장치 및 수신 장치
Kaiser Spatial transmit diversity techniques for broadband OFDM systems
KR100922980B1 (ko) 다중 안테나를 사용하는 직교주파수분할다중 시스템에서 채널 추정 장치 및 방법
US20130308720A1 (en) Multicarrier-signal receiving apparatus and multicarrier-signal transmitting apparatus
BG109346A (bg) Синхронизирана ретранслация/multicast комуникация
WO2002082752A2 (en) Method and system for clustered wireless networks
KR100406935B1 (ko) 오에프디엠 다이버시티 수신기 및 방법
US20080192843A1 (en) Video channel estimation
CN101496324B (zh) 接收装置、集成电路及接收方法
JPH09284191A (ja) ダイバーシチ受信装置
US20060274854A1 (en) Radio receiving apparatus, mobile station appartus, base station apparatus, and radio receiving method
US20060023798A1 (en) System, modem, receiver, transmitter and method for improving transmission performance
CA2244395A1 (en) A digital transmission system with high immunity to dynamic linear distortion
de Bot et al. An example of a multi-resolution digital terrestrial TV modem
JP3747415B1 (ja) 多重伝送装置及び多重伝送方法
JPH1075229A (ja) 直交周波数分割多重方式の復調器
JP2006217399A (ja) 受信装置
JP3442986B2 (ja) Ofdm選択ダイバーシチ受信装置
EP2289183A2 (en) Channel estimation and equalization method and system
Lesch Impulse response shortening for OFDM in a single frequency network
JP3514965B2 (ja) 受信装置
JPH11289211A (ja) アダプティブ受信装置
CN111886811A (zh) 发送装置、无线通信系统和发送方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees