US8477684B2 - Acknowledgement of control messages in a wireless communication system - Google Patents
Acknowledgement of control messages in a wireless communication system Download PDFInfo
- Publication number
- US8477684B2 US8477684B2 US11/943,551 US94355107A US8477684B2 US 8477684 B2 US8477684 B2 US 8477684B2 US 94355107 A US94355107 A US 94355107A US 8477684 B2 US8477684 B2 US 8477684B2
- Authority
- US
- United States
- Prior art keywords
- resources
- associated
- control block
- assignment message
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000004891 communication Methods 0 claims description title 22
- 238000000034 methods Methods 0 abstract description 23
- 230000015654 memory Effects 0 claims description 12
- 239000002609 media Substances 0 claims description 7
- 238000004590 computer program Methods 0 claims 4
- 230000011664 signaling Effects 0 description 14
- 238000003892 spreading Methods 0 description 13
- 230000000051 modifying Effects 0 description 9
- 239000000203 mixtures Substances 0 description 4
- 230000001419 dependent Effects 0 description 3
- 238000006011 modification Methods 0 description 3
- 230000004048 modification Effects 0 description 3
- 230000001702 transmitter Effects 0 description 3
- 239000003570 air Substances 0 description 2
- 239000000969 carrier Substances 0 description 2
- 238000005225 electronics Methods 0 description 2
- 238000005516 engineering processes Methods 0 description 2
- 239000010410 layers Substances 0 description 2
- 230000000153 supplemental Effects 0 description 2
- 230000001413 cellular Effects 0 description 1
- 230000000295 complement Effects 0 description 1
- 230000001143 conditioned Effects 0 description 1
- 230000000875 corresponding Effects 0 description 1
- 230000001965 increased Effects 0 description 1
- 239000011159 matrix materials Substances 0 description 1
- 230000003287 optical Effects 0 description 1
- 238000005192 partition Methods 0 description 1
- DMCJFWXGXUEHFD-UHFFFAOYSA-N pentatriacontan-18-one Chemical compound   CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCC DMCJFWXGXUEHFD-UHFFFAOYSA-N 0 description 1
- 230000002085 persistent Effects 0 description 1
- 238000004886 process control Methods 0 description 1
- 230000002829 reduced Effects 0 description 1
- 230000003362 replicative Effects 0 description 1
- 230000004044 response Effects 0 description 1
- 238000003860 storage Methods 0 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
- H04W72/0406—Wireless resource allocation involving control information exchange between nodes
- H04W72/0413—Wireless resource allocation involving control information exchange between nodes in uplink direction of a wireless link, i.e. towards network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
- H04W72/0406—Wireless resource allocation involving control information exchange between nodes
- H04W72/042—Wireless resource allocation involving control information exchange between nodes in downlink direction of a wireless link, i.e. towards terminal
Abstract
Description
The present application is a Continuation-In-Part of U.S. Ser. No. 11/260,931, filed Oct. 27, 2005, entitled: “PUNCTURING SIGNALING CHANNEL FOR A WIRELESS COMMUNICATION SYSTEM,” and claims priority to provisional U.S. Application Ser. No. 60/868,464, filed Dec. 4, 2006, entitled “ASSIGNMENT ACKNOWLEDGEMENT FOR A WIRELESS COMMUNICATION SYSTEM,” both assigned to the assignee hereof and incorporated herein by reference in their entirety.
I. Field
The present disclosure relates generally to communication, and more specifically to techniques for sending control messages.
II. Background
Wireless communication systems are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, etc. These wireless systems may be multiple-access systems capable of supporting communication for multiple users by sharing the available system resources. Examples of such multiple-access systems include Code Division Multiple Access (CDMA) systems, Time Division Multiple Access (TDMA) systems, Frequency Division Multiple Access (FDMA) systems, Orthogonal FDMA (OFDMA) systems, Single-Carrier FDMA (SC-FDMA) systems, etc.
A multiple-access system typically employs a method of assigning system resources to individual users of the system. It is desirable to send assignments of resources as efficiently as possible in order to reduce the amount of overhead for sending the assignments. Furthermore, it is desirable to send the assignments in a reliable manner so that the assigned resources are properly used for data transmission. Reliability may be particularly important for persistent assignments that extend over time rather than have a deterministic expiration time.
There is therefore a need in the art for techniques to efficiently and reliably send assignment of resources.
Techniques for efficiently and reliably sending control messages such as those for assignment of resources are described herein. In an aspect, assignment messages may be acknowledged based on either linked or dedicated acknowledgement (ACK) resources. In one design, a terminal may receive an assignment message from a base station and may determine whether to acknowledge the assignment message. For example, the assignment message may be acknowledged if it is received on a control block to be acknowledged. A control block may be logical resources that may be mapped to physical resources. If the assignment message is to be acknowledged, then the terminal may determine ACK resources to use to acknowledge the assignment message. The ACK resources may be linked to the control block on which the assignment message was received or linked to resources assigned by the assignment message. The ACK resources may also be dedicated ACK resources previously assigned to the terminal. The terminal may send the acknowledgement on the linked or dedicated ACK resources.
In another aspect, a control message may be acknowledged based on ACK resources determined based on the control message or a control block on which the control message is sent. In one design, a number of control blocks may be available for sending control messages. Certain control blocks may be linked to ACK resources, which may be used to send acknowledgements for control messages sent on these control blocks. The terminal may determine ACK resources based on the control message or the control block. The ACK resources may be linked to the control block or linked to resources assigned by the control message. The terminal may send an acknowledgement for the control message on the ACK resources.
Various aspects and features of the disclosure are described in further detail below.
Terminals 120 may be dispersed throughout the system, and each terminal may be stationary or mobile. A terminal may also be referred to as an access terminal, a mobile station, a user equipment, a subscriber unit, a station, etc. A terminal may be a cellular phone, a personal digital assistant (PDA), a wireless communication device, a wireless modem card, a handheld device, a laptop computer, a cordless phone, etc. A terminal may communicate with zero, one, or multiple base stations on the forward and reverse links at any given moment. The forward link (or downlink) refers to the communication link from the base stations to the terminals, and the reverse link (or uplink) refers to the communication link from the terminals to the base stations.
For a centralized architecture, a system controller 130 may couple to base stations 110 and provide coordination and control for these base stations. System controller 130 may be a single network entity or a collection of network entities. For a distributed architecture, the base stations may communicate with one another as needed.
The techniques described herein may be used for various wireless communication systems such as CDMA, TDMA, FDMA, OFDMA and SC-FDMA systems. The terms “system” and “network” are often used interchangeably. A CDMA system may implement a radio technology such as cdma2000, Universal Terrestrial Radio Access (UTRA), etc. An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB), Evolved UTRA (E-UTRA), IEEE 802.16, IEEE 802.20, Flash-OFDM®, etc. UTRA and E-UTRA are described in documents from an organization named “3rd Generation Partnership Project” (3GPP). cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2). These various radio technologies and standards are known in the art. For clarity, certain aspects of the techniques are described below for UMB, and UMB terminology is used in much of the description below. UMB is described in 3GPP2 C.S0084-001, entitled “Physical Layer for Ultra Mobile Broadband (UMB) Air Interface Specification,” and 3GPP2 C.S0084-002, entitled “Medium Access Control Layer For Ultra Mobile Broadband (UMB) Air Interface Specification,” both dated August 2007 and publicly available.
System 100 may use various channels for transmission of traffic data and control information on the forward and reverse links. Table 1 lists some channels in UMB and provides a short for each channel. UMB also support various other channels on the forward and reverse links, which are not given in Table 1 for simplicity.
A base station may send control messages to terminals for various purposes. For example, the base station may send control messages containing assignments of resources for the forward and/or reverse links, control information for data transmission on the forward and/or reverse links, etc. It is desirable to send the control messages as efficiently and reliably as possible.
In an aspect, control messages may be sent on control blocks that are linked to ACK resources that may be used to acknowledge these control messages. A control message may also be referred to as a message, a packet, signaling, etc. A control block may be logical resources used to send a control message and may also be referred to as a control channel block, an F-SCCH block, etc. Control messages may be processed (e.g., encoded, interleaved, and modulated) and sent on the control blocks. The control blocks may be mapped to physical resources, which may be given by time, frequency, code, etc. The ACK resources linked to the control blocks may correspond to certain physical resources reserved for sending acknowledgements for the control messages sent on the control blocks.
In one design, the T available control blocks may be partitioned into common control blocks and shared/multicast control blocks. The common control blocks may be monitored by all terminals. The shared control blocks may be further divided into groups, and multiple terminals may be assigned to each group. Each terminal may be assigned a specific group of control blocks and may then monitor the shared control blocks in that group as well as the common control blocks. This design may reduce the number of control blocks that each terminal monitors while improving utilization of the available control blocks via statistical multiplexing gains. In one design, the common control blocks may be linked to ACK resources whereas the shared control blocks are not linked to ACK resources. In another design, only a subset of the common control blocks may be linked to ACK resources. These designs allow the linked ACK resources to be shared by all terminals since the common control blocks are monitored by all terminals. In general, any number of control blocks and any of the available control blocks may be linked to ACK resources. The identities of the control blocks that are linked to ACK resources may be conveyed to the terminals via broadcast information and/or by other means.
In general, a control block may be used to send a unicast message to a specific terminal, a multicast message to a group of terminals, or a broadcast message to all terminals. The first L control blocks may be used to send messages deemed to be important and for which acknowledgements are desired. The remaining control blocks may be used to send messages for which acknowledgements may be forego. L may be selected based on various factors such as the expected number of messages for which acknowledgements are desired, the amount of ACK resources to reserve, etc. Various types of messages such as assignment messages, access grants, and messages related to resource management and/or other functions may be sent on the control blocks.
Table 2 lists some assignment messages that may be sent on the control blocks and provides a short description for each assignment message. In general, an assignment message may be for (i) assignment of forward link resources and/or reverse link resources, (ii) new assignment of resources, incremental/supplemental assignment of additional resources, or decremental assignment (de-assignment) of resources previously assigned, etc. In one design, an assignment message may include a supplemental bit that may be set to ‘0’ to indicate that the message is for a new assignment or to ‘1’ to indicate that the message is for an incremental or decremental assignment. A terminal can determine that an assignment message is for an incremental assignment if the resources assigned by the message are more than the resources currently assigned to the terminal. The terminal can determine that the assignment message is for a decremental assignment if the resources assigned by the message are less than the currently assigned resources.
The designs in
A terminal may use its dedicated ACK resources to send acknowledgements for forward link data (or data ACKs), acknowledgements for assignment messages (or assignment ACKs), and/or acknowledgements for other messages or transmissions sent to the terminal. The use of dedicated ACK resources for data ACKs and/or assignment ACKs may be controlled by various factors such as the amount of dedicated ACK resources for the terminal, the type of assignment message received, whether data is received on the forward link data, etc. For example, if both forward link data and an assignment message are received, then acknowledgement may be sent only for the forward link data, or only for the assignment message, or both the forward link data and the assignment message.
The system may utilize orthogonal frequency division multiplexing (OFDM), single-carrier frequency division multiplexing (SC-FDM), and/or some other multiplexing scheme for each of the forward and reverse links. OFDM and SC-FDM partition the overall system bandwidth into multiple (K) orthogonal subcarriers, which are also referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
In one design, the time frequency resources on each link may be partitioned into tiles. Each tile may be a time frequency block of a predetermined dimension. On the forward link, certain tiles may be used for control blocks, and control messages may be processed and sent on these tiles. On the reverse link, ACK resources may occupy all or a portion of certain tiles, and acknowledgements may be sent on the ACK portion of these tiles.
Control messages (e.g., assignment messages) may be sent in various manners. In one design, control messages may be processed as individual packets. A control message may be appended with a cyclic redundancy check (CRC), encoded, interleaved, repeated as necessary, and mapped to modulation symbols. The modulation symbols may be mapped to a control block, which may then be mapped to one or more tiles. The processing for control messages is described in detail in the aforementioned 3GPP2 C.S0084 documents. The control messages may also be processed and sent in other manners.
Acknowledgements for control messages (e.g., assignment messages) may also be sent in various manners. For the designs shown in
In one design, the R-ACKCH includes all ACK resources available on the reverse link. Some of the available ACK resources may be used as linked ACK resources for the L control blocks, and the remaining ACK resources may be assigned to terminals.
The ACK resources for the R-ACKCH may be taken from specific tiles on the reverse link. In general, all or a portion of a tile may be used for ACK resources. In the design shown in
The number of ACK tiles and the number of ACK frames for the R-ACKCH may be dependent on various factors such as the system bandwidth, the number of data channels, the amount of forward link data to acknowledge, the expected number of control messages to be acknowledged, etc. In one design, the number of ACK tiles is dependent on the system bandwidth. For example, each ACK frame may include four ACK tiles for a system bandwidth of 5 MHz or lower, eight ACK tiles for a system bandwidth of 10 MHz, 16 ACK tiles for a system bandwidth of 20 MHz, etc. Fewer or more ACK tiles may also be used for the R-ACKCH in each ACK frame.
In one design, multiple (Q) ACK indices are defined for the R-ACKCH. Each ACK index may be associated with certain ACK resources that may be used to send acknowledgement. Forward link resources assigned to the terminals may be associated with ACK indices, as described below. Acknowledgeable control blocks may also be associated with ACK indices. In general, the forward link resources assigned to the terminals and the acknowledgeable control blocks may be mapped to ACK resources based on any known mapping.
The ACK resources for the R-ACKCH may occupy certain tiles on the reverse link, and these ACK tiles may be determined based on a predetermined mapping. In general, the ACK tiles may vary across time in a pseudo-random manner or a deterministic manner. The R-ACKCH may be mapped to different subcarrier sets to achieve frequency and interference diversity. The R-ACKCH may also be pseudo-random with respect to data channels on the reverse link and may equally puncture these data channels. This may be achieved by hopping the R-ACKCH, hopping the data channels, or hopping both the R-ACKCH and the data channels. A frequency hopping pattern may indicate specific tile(s) to use for the R-ACKCH in each ACK frame. The frequency hopping pattern may be sent to the terminals or may be known a priori by the terminals. In any case, the terminals have knowledge of the reverse link resources used for the R-ACKCH.
Multiple terminals may send acknowledgements using code division multiplexing (CDM), time division multiplexing (TDM), frequency division multiplexing (FDM), some other multiplexing scheme, or a combination thereof. Multiple terminals may send their acknowledgements in the same subtile using any multiplexing scheme.
In one design, acknowledgements are sent using CDM. In this design, acknowledgements from different terminals may be spread with different spreading codes, and the spread acknowledgements from these terminals may be orthogonal to one another in the code domain. The spreading codes may be Walsh codes, orthogonal codes formed with columns of a Fourier matrix, etc. A 1-bit acknowledgement from a terminal may be spread with an N-chip spreading code by replicating the acknowledgement bit N times and multiplying the N replicated bits with the N chips of the spreading code to obtain N spread chips for the acknowledgement. In one design, a 1-bit acknowledgement may be spread with a 16-chip spreading code to obtain 16 spread chips. The 16 spread chips may be mapped to 16 transmission units in one subtile. In another design, the 16 spread chips may be transformed with a 16-point fast Fourier transform (FFT) to obtain 16 symbols, which may then be mapped to 16 transmission units in one subtile. In any case, up to 16 different terminals may send their acknowledgements in the same subtile using different spreading codes, and up to 64 different terminals may send their acknowledgements in the four subtiles of one half-tile.
In one design, a subset of the available spreading codes is used for sending acknowledgements, and the remaining spreading codes are used for interference estimation. For example, eight spreading codes may be used to send acknowledgements in each subtile, and the remaining eight spreading codes may be used for interference estimation.
In one design, an acknowledgement may be sent on different subtiles in different tiles to achieve time and frequency diversity. For example, the acknowledgement may be sent on subtile 1 in a first tile, on subtile 2 in a second tile, on subtile 3 in a third tile, and on subtile 4 in a fourth tile. The four tiles may be in the same frame covering 8 symbol periods. Sending the acknowledgement on four different tiles occupying different sets of subcarriers may improve frequency diversity. Sending the acknowledgement on four different subtiles may improve time diversity as well as link budget for a terminal located at the edge of coverage. The terminal may have an upper limit on transmit power and may be able to transmit the acknowledgement with more energy spread over a longer period of time, which may improve reception of the acknowledgement. In general, an acknowledgement may be sent on C subtiles in C different tiles to achieve C-th order diversity, where C≧1.
A base station may perform the complementary despreading to recover the acknowledgements sent by the terminals. To recover an acknowledgement sent by a terminal on C different subtiles, the base station may despread the received symbols for each of the C subtiles with the spreading code used by the terminal to obtain C despread symbols for the C subtiles. For each of the C subtiles, the base station may also despread the received symbols with each of the spreading codes not used for sending acknowledgements to obtain an interference estimate for that subtile. The base station may scale and combine the C despread symbols with the interference estimates for the C subtiles to obtain a detected acknowledgement for the terminal.
In the design described above, a half-tile is partitioned into four subtiles, and an acknowledgement is sent on a set of subtiles using CDM. A half-tile may also be partitioned in other manners. In another design, each subtile may cover two subcarriers and span all 8 symbol periods. In yet another design, each subtile may include different subcarriers in different symbol periods of the half-tile. In general, acknowledgements may be sent on subtiles using CDM, TDM, FDM, etc.
Multiple terminals may receive individual assignment messages from a base station and may send acknowledgements for these messages on ACK resources in a single half-tile. A group of terminals may also receive a group assignment message that may be applicable to all terminals in the group. These terminals may also send acknowledgements for this group assignment message on a single half-tile.
In one design, a channel tree may be used to assign resources to terminals. The channel tree may constrain assignments of resources to a subset of all possible permutations of the available resources. This may reduce the amount of overhead to send assignment messages.
The tree structure shown in
In one design, ACK resources may be assigned for each data channel that is assigned for use and may be conveyed to the terminal. The ACK resources may include pertinent resources (e.g., spreading code and subtiles) used to send an acknowledgement in each ACK frame. In this design, acknowledgements for each data channel may be sent on the ACK resources associated with that data channel.
In another design, ACK resources may be associated with each base channel/node in the channel tree. A larger data channel may use (i) the ACK resources for all base channels under the larger data channel, (ii) the ACK resources for one of the base channels, e.g., the base channel with the lowest channel ID, or (iii) the ACK resources for a subset of the base channels. For options (i) and (iii) above, an acknowledgement for the larger data channel may be sent using more ACK resources to improve reliability.
In yet another design, ACK resources may be assigned for each data packet to be acknowledged. If multiple data packets are sent in parallel, e.g., in a multiple-input multiple-output (MIMO) transmission, then a larger data channel with multiple base channels may be assigned for the transmission. The number of base channels may be equal to or greater than the number of data packets, and each data packet may be mapped to a different base channel. The acknowledgement for each data packet may then be sent using the ACK resources for the associated base channel.
In one design, an acknowledgement for an assignment message may be sent using ACK resources for a designed channel ID (e.g., the highest channel ID of an unused channel) if the acknowledgement is sent as part of a data transmission on the reverse link. For example, if the assignment message assigns channel ID 15 (which includes channel IDs 31 and 32) to a terminal, then an acknowledgement for the assignment message may be sent using the ACK resources for channel ID 32. This design may allow the base station to determine what is being acknowledged based on the channel ID on which the acknowledgement is received.
In one design, an acknowledgement for an assignment message may be sent if sufficient ACK resources associated with the assigned forward link resources are available to send the acknowledgement. For example, ACK resources may be associated with each base node in the channel tree. ACK resources may not be available to acknowledge control messages if a terminal is assigned only one base node and may be available if the terminal is assigned more than one base node.
A terminal may receive an assignment message and one or more data packets at or near the same time. The terminal may send acknowledgement only for the data packet(s) if no ACK resources are available to acknowledge the assignment message. This may be the case, e.g., if there is no unused channel, if the number of data packets to be acknowledged is equal to the number of available ACK resources for the terminal, etc. If the data packet(s) are sent on the forward link resources assigned by the assignment message and are decoded correctly, then the terminal may send acknowledgement only for the data packet(s). A base station may infer that the assignment message is received correctly by the terminal based on the acknowledgement received for the data packet(s). The terminal may also send acknowledgement for only the data packets if the terminal is link budget limited or power limited.
If the assignment message is to be acknowledged (‘Yes’ for block 614), then ACK resources to use to acknowledge the assignment message may be determined (block 616). In one design, the ACK resources are linked to the control block on which the assignment message was received, e.g., as shown in
Acknowledgements may be sent based on various criteria. In one design, acknowledgements may be sent for certain control blocks, e.g., control blocks linked to ACK resources. For example, the terminal may monitor at least one first (e.g., common) control block used by a base station to send control messages to be acknowledged. The terminal may send acknowledgements for control messages received on the at least one first control block. The terminal may monitor at least one second (e.g., shared) control block used by the base station to send control messages not to be acknowledged. The terminal may send no acknowledgements for control messages received on the at least one second control block. In another design, the terminal may send acknowledgements for (i) certain type of control messages, e.g., for assignment messages but not for access grant messages, or (ii) certain types of assignment messages. The terminal may also send acknowledgements based on other criteria.
The modules in
At base station 110, a transmit (TX) data and signaling processor 1410 may receive traffic data for one or more terminals, process (e.g., encode, interleave, and symbol map) the traffic data for each terminal based on one or more packet formats selected for that terminal, and provide data symbols. Processor 1410 may also process control messages (e.g., assignment messages) and provide signaling symbols. Processor 1410 may also generate pilot symbols. A modulator 1412 may perform modulation on the data symbols, signaling symbols, and pilot symbols (e.g., for OFDM, CDM, SC-FDM, etc.) and provide output chips. A transmitter (TMTR) 1414 may condition (e.g., convert to analog, filter, amplify, and upconvert) the output chips and generate a forward link signal, which may be transmitted via an antenna 1416.
At terminal 120, an antenna 1452 may receive the forward link signals from base station 110 and possibly other base stations and may provide a received signal to a receiver (RCVR) 1454. Receiver 1454 may condition and digitize the received signal and provide received samples. A demodulator (Demod) 1456 may perform demodulation on the received samples (e.g., for OFDM, CDM, SC-FDM, etc.) and provide received symbols. A receive (RX) data and signaling processor 1458 may process (e.g., symbol demap, deinterleave, and decode) the received symbols and provide decoded data and control messages for terminal 120.
A controller/processor 1470 may receive decoding results from processor 1458 and generate acknowledgements for data packets, control messages, etc. A TX data and signaling processor 1460 may process traffic data to send to base station 110 to obtain data symbols, process acknowledgements and/or other control information to obtain signaling symbols, and generate pilot symbols. A modulator 1462 may perform modulation on the data symbols, signaling symbols, and pilot symbols and provide output chips. A transmitter 1464 may condition the output chips and generate a reverse link signal, which may be transmitted via antenna 1452.
At base station 110, reverse link signals from terminal 120 and other terminals may be received by antenna 1416, conditioned and digitized by a receiver 1420, demodulated by a demodulator 1422, and processed by an RX data and signaling processor 1424 to recover the traffic data, acknowledgements, and/or other control information sent by terminal 120 and other terminals. A controller/processor 1430 may receive the acknowledgements and control the data transmission on the forward link to the terminals.
Controllers/processors 1430 and 1470 may direct the operation at base station 110 and terminal 120, respectively. Memories 1432 and 1472 may store program codes and data for base station 110 and terminal 120, respectively.
The concept of channels described herein may refer to information or transmission types that may be transmitted by a terminal or a base station. It does not require or utilize fixed or predetermined sets of subcarriers, time periods, or other resources dedicated to such transmissions. Furthermore, time frequency resources are exemplary resources that may be assigned and/or used for sending data and messages/signaling. The time frequency resources may also comprise frequency subcarriers, transmission symbols, and/or other resources in addition to time frequency resources.
The techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, firmware, software, or a combination thereof. For a hardware implementation, the processing units at an entity (e.g., a terminal or a base station) may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, a computer, or a combination thereof.
For a firmware and/or software implementation, the techniques may be implemented with code (e.g., procedures, functions, modules, instructions, etc.) that performs the functions described herein. In general, any computer/processor-readable medium tangibly embodying firmware and/or software code may be used in implementing the techniques described herein. For example, the firmware and/or software code may be stored in a memory (e.g., memory 1432 or 1472 in
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (44)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/260,931 US8565194B2 (en) | 2005-10-27 | 2005-10-27 | Puncturing signaling channel for a wireless communication system |
US86846406P true | 2006-12-04 | 2006-12-04 | |
US11/943,551 US8477684B2 (en) | 2005-10-27 | 2007-11-20 | Acknowledgement of control messages in a wireless communication system |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/943,551 US8477684B2 (en) | 2005-10-27 | 2007-11-20 | Acknowledgement of control messages in a wireless communication system |
BRPI0719753-5A2A BRPI0719753A2 (en) | 2006-12-04 | 2007-11-30 | Control message receipt notice in a wireless communication system |
CA2670803A CA2670803C (en) | 2006-12-04 | 2007-11-30 | Acknowledgement of control messages in a wireless communication system |
PCT/US2007/086197 WO2008070589A2 (en) | 2006-12-04 | 2007-11-30 | Acknowledgement of control messages in a wireless communication system |
JP2009540399A JP5059870B2 (en) | 2006-12-04 | 2007-11-30 | Acknowledgment of control messages in wireless communication systems |
KR1020097014073A KR101132929B1 (en) | 2006-12-04 | 2007-11-30 | Acknowledgement of control messages in a wireless communication system |
EP20070865065 EP2127455A2 (en) | 2006-12-04 | 2007-11-30 | Acknowledgement of control messages in a wireless communication system |
CN2007800443934A CN101548562B (en) | 2006-12-04 | 2007-11-30 | Method of acknowledgement of control messages in a wireless communication system |
RU2009125533/07A RU2437253C2 (en) | 2006-12-04 | 2007-11-30 | Confirmation of control messages in wireless communication system |
TW096146164A TWI374679B (en) | 2006-12-04 | 2007-12-04 | Acknowledgement of control messages in a wireless communication system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US11/260,931 Continuation-In-Part US8565194B2 (en) | 2005-10-27 | 2005-10-27 | Puncturing signaling channel for a wireless communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080151829A1 US20080151829A1 (en) | 2008-06-26 |
US8477684B2 true US8477684B2 (en) | 2013-07-02 |
Family
ID=39370994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/943,551 Active 2027-02-12 US8477684B2 (en) | 2005-10-27 | 2007-11-20 | Acknowledgement of control messages in a wireless communication system |
Country Status (10)
Country | Link |
---|---|
US (1) | US8477684B2 (en) |
EP (1) | EP2127455A2 (en) |
JP (1) | JP5059870B2 (en) |
KR (1) | KR101132929B1 (en) |
CN (1) | CN101548562B (en) |
BR (1) | BRPI0719753A2 (en) |
CA (1) | CA2670803C (en) |
RU (1) | RU2437253C2 (en) |
TW (1) | TWI374679B (en) |
WO (1) | WO2008070589A2 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070005749A1 (en) * | 2005-06-16 | 2007-01-04 | Qualcomm Incorporated | Robust rank perdiction for a MIMO system |
US20110064070A1 (en) * | 2005-11-18 | 2011-03-17 | Qualcomm Incorporated | Frequency division multiple access schemes for wireless communication |
US8565194B2 (en) | 2005-10-27 | 2013-10-22 | Qualcomm Incorporated | Puncturing signaling channel for a wireless communication system |
US20140045514A1 (en) * | 2012-08-13 | 2014-02-13 | Lg Electronics Inc. | Channelization method in whitespace band and apparatus for the same |
US8787347B2 (en) | 2005-08-24 | 2014-07-22 | Qualcomm Incorporated | Varied transmission time intervals for wireless communication system |
US8831607B2 (en) | 2006-01-05 | 2014-09-09 | Qualcomm Incorporated | Reverse link other sector communication |
US8842619B2 (en) | 2005-10-27 | 2014-09-23 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US8879511B2 (en) | 2005-10-27 | 2014-11-04 | Qualcomm Incorporated | Assignment acknowledgement for a wireless communication system |
US8885628B2 (en) | 2005-08-08 | 2014-11-11 | Qualcomm Incorporated | Code division multiplexing in a single-carrier frequency division multiple access system |
US8917654B2 (en) | 2005-04-19 | 2014-12-23 | Qualcomm Incorporated | Frequency hopping design for single carrier FDMA systems |
US9088384B2 (en) | 2005-10-27 | 2015-07-21 | Qualcomm Incorporated | Pilot symbol transmission in wireless communication systems |
US9136974B2 (en) | 2005-08-30 | 2015-09-15 | Qualcomm Incorporated | Precoding and SDMA support |
US9144060B2 (en) | 2005-10-27 | 2015-09-22 | Qualcomm Incorporated | Resource allocation for shared signaling channels |
US9148256B2 (en) | 2004-07-21 | 2015-09-29 | Qualcomm Incorporated | Performance based rank prediction for MIMO design |
US9154211B2 (en) | 2005-03-11 | 2015-10-06 | Qualcomm Incorporated | Systems and methods for beamforming feedback in multi antenna communication systems |
US9172453B2 (en) | 2005-10-27 | 2015-10-27 | Qualcomm Incorporated | Method and apparatus for pre-coding frequency division duplexing system |
US9179319B2 (en) | 2005-06-16 | 2015-11-03 | Qualcomm Incorporated | Adaptive sectorization in cellular systems |
US9184870B2 (en) | 2005-04-01 | 2015-11-10 | Qualcomm Incorporated | Systems and methods for control channel signaling |
US9209956B2 (en) | 2005-08-22 | 2015-12-08 | Qualcomm Incorporated | Segment sensitive scheduling |
US9210651B2 (en) | 2005-10-27 | 2015-12-08 | Qualcomm Incorporated | Method and apparatus for bootstraping information in a communication system |
US9225416B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Varied signaling channels for a reverse link in a wireless communication system |
US9246560B2 (en) | 2005-03-10 | 2016-01-26 | Qualcomm Incorporated | Systems and methods for beamforming and rate control in a multi-input multi-output communication systems |
US9307544B2 (en) | 2005-04-19 | 2016-04-05 | Qualcomm Incorporated | Channel quality reporting for adaptive sectorization |
US9426012B2 (en) | 2000-09-13 | 2016-08-23 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US9461859B2 (en) | 2005-03-17 | 2016-10-04 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9660776B2 (en) | 2005-08-22 | 2017-05-23 | Qualcomm Incorporated | Method and apparatus for providing antenna diversity in a wireless communication system |
US10194463B2 (en) | 2004-07-21 | 2019-01-29 | Qualcomm Incorporated | Efficient signaling over access channel |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9130810B2 (en) | 2000-09-13 | 2015-09-08 | Qualcomm Incorporated | OFDM communications methods and apparatus |
US8611284B2 (en) | 2005-05-31 | 2013-12-17 | Qualcomm Incorporated | Use of supplemental assignments to decrement resources |
US8446892B2 (en) | 2005-03-16 | 2013-05-21 | Qualcomm Incorporated | Channel structures for a quasi-orthogonal multiple-access communication system |
US9143305B2 (en) | 2005-03-17 | 2015-09-22 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9520972B2 (en) | 2005-03-17 | 2016-12-13 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US8462859B2 (en) | 2005-06-01 | 2013-06-11 | Qualcomm Incorporated | Sphere decoding apparatus |
US9225488B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Shared signaling channel |
US8582509B2 (en) | 2005-10-27 | 2013-11-12 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US8693405B2 (en) | 2005-10-27 | 2014-04-08 | Qualcomm Incorporated | SDMA resource management |
EP2080302A4 (en) | 2006-10-02 | 2014-04-02 | Lg Electronics Inc | Method for transmitting control signal using efficient multiplexing |
TWI420851B (en) * | 2006-10-27 | 2013-12-21 | Lg Electronics Inc | Auxiliary ack channel feedback for control channels and broadcast multicast signals |
KR101351020B1 (en) * | 2007-01-04 | 2014-01-16 | 엘지전자 주식회사 | Method for multiplexing control signal in the mobile communication system |
KR101049138B1 (en) | 2007-03-19 | 2011-07-15 | 엘지전자 주식회사 | In a mobile communication system, an acknowledgment signal receiving method |
ES2657117T3 (en) | 2007-03-19 | 2018-03-01 | Lg Electronics, Inc. | Method and apparatus for transmitting / receiving resource allocation information in a mobile communication system |
JP4563417B2 (en) | 2007-03-20 | 2010-10-13 | 株式会社エヌ・ティ・ティ・ドコモ | User apparatus, communication method and communication system in mobile communication system |
KR100908063B1 (en) | 2007-06-13 | 2009-07-15 | 엘지전자 주식회사 | A method for transmitting a spread signal in a mobile communication system. |
KR100900289B1 (en) | 2007-06-21 | 2009-05-29 | 엘지전자 주식회사 | A method for transmitting and receiving a control channel in the Orthogonal Frequency Division Multiplexing system |
WO2009008337A1 (en) | 2007-07-06 | 2009-01-15 | Sharp Kabushiki Kaisha | Mobile communication system, base station device, mobile station device |
US8238304B2 (en) * | 2008-03-31 | 2012-08-07 | Qualcomm Incorporated | Apparatus and method for channel resource description |
WO2009129613A1 (en) * | 2008-04-21 | 2009-10-29 | Nortel Networks Limited | Method and system for providing an uplink structure and minimizing pilot signal overhead in a wireless communication network |
CN101895901B (en) | 2009-05-19 | 2013-06-05 | 中兴通讯股份有限公司 | Scheduling method and device based on measurement gap |
JP5138730B2 (en) * | 2010-06-04 | 2013-02-06 | 株式会社エヌ・ティ・ティ・ドコモ | Base station apparatus and communication method in mobile communication system |
US8574396B2 (en) | 2010-08-30 | 2013-11-05 | United Technologies Corporation | Hydration inhibitor coating for adhesive bonds |
US8539297B1 (en) | 2011-02-01 | 2013-09-17 | Sprint Communications Company L.P. | Determining whether a wireless access node should retransmit data packets based on the condition of a reverse wireless link |
CA2925401C (en) * | 2013-09-27 | 2018-04-24 | Nokia Solutions And Networks Oy | Pucch resource allocation and use |
Citations (780)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4393276A (en) | 1981-03-19 | 1983-07-12 | Bell Telephone Laboratories, Incorporated | Fourier masking analog signal secure communication system |
US4554668A (en) | 1982-05-27 | 1985-11-19 | Thomson-Csf | Frequency-hopping radio communications system |
SU1320883A1 (en) | 1985-02-06 | 1987-06-30 | Предприятие П/Я Р-6707 | Device for recovering time intervals of digital signals received from channel with limited bandwidth |
FR2584884B1 (en) | 1985-07-09 | 1987-10-09 | Trt Telecom Radio Electr | Method and free channel search device for a mobile radio system |
US4747137A (en) | 1985-07-16 | 1988-05-24 | Kokusai Denshin Denwa Kabushiki Kaisha | Speech scrambler |
US4783779A (en) | 1985-10-16 | 1988-11-08 | Kokusai Denshin Denwa Co., Ltd. | Frequency assignment system in FDMA communication system |
US4975952A (en) | 1985-09-04 | 1990-12-04 | U. S. Philips Corporation | Method of data communication |
US5008900A (en) | 1989-08-14 | 1991-04-16 | International Mobile Machines Corporation | Subscriber unit for wireless digital subscriber communication system |
US5115248A (en) | 1989-09-26 | 1992-05-19 | Agence Spatiale Europeenne | Multibeam antenna feed device |
EP0568291A2 (en) | 1992-04-25 | 1993-11-03 | Mms Space Systems Limited | Digital signal processing apparatus with three modulation (TDM,FDM,CDM)sub-systems in parallel |
US5268694A (en) | 1992-07-06 | 1993-12-07 | Motorola, Inc. | Communication system employing spectrum reuse on a spherical surface |
US5282222A (en) | 1992-03-31 | 1994-01-25 | Michel Fattouche | Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum |
US5363408A (en) | 1992-03-24 | 1994-11-08 | General Instrument Corporation | Mode selective quadrature amplitude modulation communication system |
US5371761A (en) | 1992-07-16 | 1994-12-06 | U.S. Philips Corporation | Transmission system and receiver for this system |
US5384810A (en) | 1992-02-05 | 1995-01-24 | At&T Bell Laboratories | Modulo decoder |
US5406551A (en) | 1992-01-31 | 1995-04-11 | Nippon Hoso Kyokai | Method and apparatus for digital signal transmission using orthogonal frequency division multiplexing |
US5410538A (en) | 1993-11-09 | 1995-04-25 | At&T Corp. | Method and apparatus for transmitting signals in a multi-tone code division multiple access communication system |
US5455839A (en) | 1991-12-27 | 1995-10-03 | Motorola, Inc. | Device and method for precoding |
US5465253A (en) | 1994-01-04 | 1995-11-07 | Motorola, Inc. | Method and apparatus for demand-assigned reduced-rate out-of-band signaling channel |
US5491727A (en) | 1991-07-08 | 1996-02-13 | Hal Communications Corp. | Apparatus useful in radio communication of digital data using minimal bandwidth |
US5513379A (en) | 1994-05-04 | 1996-04-30 | At&T Corp. | Apparatus and method for dynamic resource allocation in wireless communication networks utilizing ordered borrowing |
WO1996013920A1 (en) | 1994-10-27 | 1996-05-09 | International Business Machines Corporation | Method and apparatus for secure identification of a mobile user in a communication network |
US5539748A (en) | 1993-11-01 | 1996-07-23 | Telefonaktiebolaget Lm Ericsson | Enhanced sleep mode in radiocommunication systems |
US5548582A (en) | 1993-12-22 | 1996-08-20 | U.S. Philips Corporation | Multicarrier frequency hopping communications system |
US5583869A (en) | 1994-09-30 | 1996-12-10 | Motorola, Inc. | Method for dynamically allocating wireless communication resources |
US5594738A (en) | 1993-10-18 | 1997-01-14 | Motorola, Inc. | Time slot allocation method |
JPH09501548A (en) | 1993-06-18 | 1997-02-10 | クァルコム・インコーポレーテッド | How to determine the data rate of the received signal and apparatus |
US5604744A (en) | 1992-10-05 | 1997-02-18 | Telefonaktiebolaget Lm Ericsson | Digital control channels having logical channels for multiple access radiocommunication |
US5612978A (en) | 1995-05-30 | 1997-03-18 | Motorola, Inc. | Method and apparatus for real-time adaptive interference cancellation in dynamic environments |
US5625876A (en) | 1993-10-28 | 1997-04-29 | Qualcomm Incorporated | Method and apparatus for performing handoff between sectors of a common base station |
GB2279540B (en) | 1993-06-10 | 1997-04-30 | Kokusai Denshin Denwa Co Ltd | Mutual authentication/cipher key delivery system |
EP0786889A1 (en) | 1996-02-02 | 1997-07-30 | Deutsche Thomson-Brandt Gmbh | Method for the reception of multicarrier signals and related apparatus |
EP0488976B1 (en) | 1990-11-28 | 1997-09-24 | Telefonaktiebolaget L M Ericsson | Multiple access handling in a cellular communication system |
WO1997037456A2 (en) | 1996-04-02 | 1997-10-09 | Qualcomm Incorporated | Using orthogonal waveforms to enable multiple transmitters to share a single cdm channel |
US5684491A (en) | 1995-01-27 | 1997-11-04 | Hazeltine Corporation | High gain antenna systems for cellular use |
EP0805576A2 (en) | 1996-05-01 | 1997-11-05 | Gpt Limited | Multi-party communications |
EP0807989A1 (en) | 1996-05-17 | 1997-11-19 | Motorola Ltd | Devices for transmitter path weights and methods therefor |
WO1997046033A2 (en) | 1996-05-29 | 1997-12-04 | Philips Electronics N.V. | Method and system for transmitting messages in an answer-back paging system |
RU95121152A (en) | 1994-12-21 | 1997-12-20 | АТ энд Т Ипм Корп. | The structure of a broadband wireless system and network, providing a broadband / narrowband service with optimal static and dynamic allocation of frequency bands / channels |
US5726978A (en) | 1995-06-22 | 1998-03-10 | Telefonaktiebolaget L M Ericsson Publ. | Adaptive channel allocation in a frequency division multiplexed system |
US5732113A (en) | 1996-06-20 | 1998-03-24 | Stanford University | Timing and frequency synchronization of OFDM signals |
WO1998014026A1 (en) | 1996-09-27 | 1998-04-02 | Qualcomm Incorporated | Method and apparatus for adjacent service area handoff in communication systems |
US5745487A (en) * | 1995-11-16 | 1998-04-28 | Matsushita Electric Industrial Co., Ltd. | Communication apparatus for transmitting/receiving different types of data in one TDM slot |
US5768276A (en) | 1992-10-05 | 1998-06-16 | Telefonaktiebolaget Lm Ericsson | Digital control channels having logical channels supporting broadcast SMS |
US5790537A (en) | 1996-05-15 | 1998-08-04 | Mcgill University | Interference suppression in DS-CDMA systems |
WO1998037706A2 (en) | 1997-02-21 | 1998-08-27 | Motorola Inc. | Method and apparatus for allocating spectral resources in a wireless communication system |
US5812938A (en) | 1994-07-11 | 1998-09-22 | Qualcomm Incorporated | Reverse link, closed loop power control in a code division multiple access system |
US5815488A (en) | 1995-09-28 | 1998-09-29 | Cable Television Laboratories, Inc. | Multiple user access method using OFDM |
US5822368A (en) | 1996-04-04 | 1998-10-13 | Lucent Technologies Inc. | Developing a channel impulse response by using distortion |
WO1998048581A1 (en) | 1997-04-21 | 1998-10-29 | Nokia Mobile Phones Limited | De-allocation at physical channels in general packet radio service |
KR0150275B1 (en) | 1995-12-22 | 1998-11-02 | 양승택 | Congestion control method for multicast communication |
US5838268A (en) | 1997-03-14 | 1998-11-17 | Orckit Communications Ltd. | Apparatus and methods for modulation and demodulation of data |
WO1998054919A2 (en) | 1997-05-30 | 1998-12-03 | Qualcomm Incorporated | Paging a wireless terminal in a wireless telecommunications system |
US5867478A (en) | 1997-06-20 | 1999-02-02 | Motorola, Inc. | Synchronous coherent orthogonal frequency division multiplexing system, method, software and device |
US5870393A (en) | 1995-01-20 | 1999-02-09 | Hitachi, Ltd. | Spread spectrum communication system and transmission power control method therefor |
US5887023A (en) | 1995-11-29 | 1999-03-23 | Nec Corporation | Method and apparatus for a frequency hopping-spread spectrum communication system |
US5907585A (en) | 1995-11-16 | 1999-05-25 | Ntt Mobile Communications Network Inc. | Digital signal detecting method and detector |
US5920571A (en) | 1997-02-07 | 1999-07-06 | Lucent Technologies Inc. | Frequency channel and time slot assignments in broadband access networks |
DE19800653A1 (en) | 1998-01-09 | 1999-07-15 | Albert M Huber | promotes apparatus for separating particles, or of particles and gases, or fluids different density from liquids, or suspensions or emulsions, having a fixed housing and separated by means of centrifugal force and these abovementioned media by this device and possibly downstream means |
US5926470A (en) | 1996-05-22 | 1999-07-20 | Qualcomm Incorporated | Method and apparatus for providing diversity in hard handoff for a CDMA system |
DE19800953C1 (en) | 1998-01-13 | 1999-07-29 | Siemens Ag | Resource allocation in radio interface of radio communications system |
US5933421A (en) | 1997-02-06 | 1999-08-03 | At&T Wireless Services Inc. | Method for frequency division duplex communications |
WO1999041871A1 (en) | 1998-02-12 | 1999-08-19 | Shattil Steven J | Multiple access method and system |
WO1999044383A1 (en) | 1998-02-27 | 1999-09-02 | Siemens Aktiengesellschaft | Telecommunications system with wireless code and time-division multiplex based telecommuncation between mobile and/or stationary transmitting/receiving devices |
US5949814A (en) | 1997-01-15 | 1999-09-07 | Qualcomm Incorporated | High-data-rate supplemental channel for CDMA telecommunications system |
US5953325A (en) | 1997-01-02 | 1999-09-14 | Telefonaktiebolaget L M Ericsson (Publ) | Forward link transmission mode for CDMA cellular communications system using steerable and distributed antennas |
US5956642A (en) | 1996-11-25 | 1999-09-21 | Telefonaktiebolaget L M Ericsson | Adaptive channel allocation method and apparatus for multi-slot, multi-carrier communication system |
WO1999052250A1 (en) | 1998-04-03 | 1999-10-14 | Tellabs Operations, Inc. | Filter for impulse response shortening, with addition spectral constraints, for multicarrier transmission |
RU2141706C1 (en) | 1998-07-06 | 1999-11-20 | Военная академия связи | Method and device for adaptive spatial filtering of signals |
WO1999060729A1 (en) | 1998-05-15 | 1999-11-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Random access in a mobile telecommunications system |
US5995992A (en) | 1997-11-17 | 1999-11-30 | Bull Hn Information Systems Inc. | Conditional truncation indicator control for a decimal numeric processor employing result truncation |
US6002942A (en) | 1996-06-28 | 1999-12-14 | Samsung Electronics Co., Ltd. | Method for controlling transmitting power of a mobile station |
US6016123A (en) | 1994-02-16 | 2000-01-18 | Northern Telecom Limited | Base station antenna arrangement |
EP0981222A2 (en) | 1998-08-19 | 2000-02-23 | International Business Machines Corporation | Destination dependent coding for discrete multi-tone modulation |
US6038263A (en) | 1997-07-31 | 2000-03-14 | Motorola, Inc. | Method and apparatus for transmitting signals in a communication system |
US6038450A (en) | 1997-09-12 | 2000-03-14 | Lucent Technologies, Inc. | Soft handover system for a multiple sub-carrier communication system and method thereof |
JP2000102065A (en) | 1998-09-24 | 2000-04-07 | Toshiba Corp | Radio communication base station unit |
US6052364A (en) | 1997-06-13 | 2000-04-18 | Comsat Corporation | CDMA system architecture for satcom terminals |
US6061337A (en) | 1996-12-02 | 2000-05-09 | Lucent Technologies Inc. | System and method for CDMA handoff using telemetry to determine the need for handoff and to select the destination cell site |
EP1001570A2 (en) | 1998-11-09 | 2000-05-17 | Lucent Technologies Inc. | Efficient authentication with key update |
US6067315A (en) | 1997-12-04 | 2000-05-23 | Telefonaktiebolaget Lm Ericsson | Method and apparatus for coherently-averaged power estimation |
US6076114A (en) | 1997-04-18 | 2000-06-13 | International Business Machines Corporation | Methods, systems and computer program products for reliable data transmission over communications networks |
US6075350A (en) | 1998-04-24 | 2000-06-13 | Lockheed Martin Energy Research Corporation | Power line conditioner using cascade multilevel inverters for voltage regulation, reactive power correction, and harmonic filtering |
US6075797A (en) | 1997-10-17 | 2000-06-13 | 3Com Corporation | Method and system for detecting mobility of a wireless-capable modem to minimize data transfer rate renegotiations |
JP2000184425A (en) | 1998-12-15 | 2000-06-30 | Toshiba Corp | Radio communication base station equipment |
US6088345A (en) | 1996-11-22 | 2000-07-11 | Sony Corporation | Communication method, base station and terminal apparatus |
US6108323A (en) | 1997-11-26 | 2000-08-22 | Nokia Mobile Phones Limited | Method and system for operating a CDMA cellular system having beamforming antennas |
US6108550A (en) | 1997-06-13 | 2000-08-22 | Telefonaktienbolaget Lm Ericsson | Reuse of a physical control channel in a distributed cellular radio communication system |
US6112094A (en) | 1998-04-06 | 2000-08-29 | Ericsson Inc. | Orthogonal frequency hopping pattern re-use scheme |
US6128776A (en) | 1997-05-07 | 2000-10-03 | Samsung Electronics Co., Ltd. | Method for managing software in code division multiple access (CDMA) base station system of personal communication system |
KR20000060428A (en) | 1999-03-16 | 2000-10-16 | 윤종용 | Method for enhancing soft/softer handoff using direct connection between BTSs in a CDMA system |
US6138037A (en) | 1997-04-23 | 2000-10-24 | Nokia Telecommunications Oy | Implementation of signalling in a telecommunications network |
EP1047209A1 (en) | 1999-04-19 | 2000-10-25 | Interuniversitair Micro-Elektronica Centrum Vzw | A method and apparatus for multiuser transmission |
US6141317A (en) | 1996-08-22 | 2000-10-31 | Tellabs Operations, Inc. | Apparatus and method for bandwidth management in a multi-point OFDM/DMT digital communications system |
US6154484A (en) | 1995-09-06 | 2000-11-28 | Solana Technology Development Corporation | Method and apparatus for embedding auxiliary data in a primary data signal using frequency and time domain processing |
JP2000332724A (en) | 1999-05-17 | 2000-11-30 | Mitsubishi Electric Corp | Multi-carrier transmission system and multi-carrier modulation method |
EP1061687A1 (en) | 1999-06-14 | 2000-12-20 | Canon Kabushiki Kaisha | Adaptation of guard interval lengths in an OFDM communication system |
US6169910B1 (en) | 1994-12-30 | 2001-01-02 | Focused Energy Holding Inc. | Focused narrow beam communication system |
US6175650B1 (en) | 1998-01-26 | 2001-01-16 | Xerox Corporation | Adaptive quantization compatible with the JPEG baseline sequential mode |
US6175550B1 (en) | 1997-04-01 | 2001-01-16 | Lucent Technologies, Inc. | Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof |
JP2001016644A (en) | 1999-06-30 | 2001-01-19 | Kdd Corp | Code assignment method in cdma mobile communication system |
US6176550B1 (en) | 1997-12-03 | 2001-01-23 | Steelcase Development Inc. | Adjustable armrest for chairs |
JP2001045573A (en) | 1999-06-11 | 2001-02-16 | Lucent Technol Inc | Wireless communication method |
JP2001057545A (en) | 1999-06-02 | 2001-02-27 | Texas Instr Inc <Ti> | Method and device for estimating spread spectrum channel |
US6198775B1 (en) | 1998-04-28 | 2001-03-06 | Ericsson Inc. | Transmit diversity method, systems, and terminals using scramble coding |
WO2001017125A1 (en) | 1999-08-31 | 2001-03-08 | Qualcomm Incorporated | Method and apparatus for reducing pilot search times utilizing mobile station location information |
KR100291476B1 (en) | 1998-05-25 | 2001-03-13 | 윤종용 | A method and a system for controlling a pilot measurement request order in cellular system |
US6215983B1 (en) | 1995-06-02 | 2001-04-10 | Trw Inc. | Method and apparatus for complex phase equalization for use in a communication system |
EP1091516A1 (en) | 1999-04-23 | 2001-04-11 | Matsushita Electric Industrial Co., Ltd. | Base station device and method of suppressing peak current |
EP1093241A1 (en) | 1998-06-30 | 2001-04-18 | NEC Corporation | Adaptive transmitter/receiver |
US6226280B1 (en) | 1996-12-11 | 2001-05-01 | Texas Instruments Incorporated | Allocating and de-allocating transmission resources in a local multipoint distribution services system |
DE19957288C1 (en) | 1999-11-29 | 2001-05-10 | Siemens Ag | Channel structure signalling in radio communications system |
US6232918B1 (en) | 1997-01-08 | 2001-05-15 | Us Wireless Corporation | Antenna array calibration in wireless communication systems |
US6240129B1 (en) | 1997-07-10 | 2001-05-29 | Alcatel | Method and windowing unit to reduce leakage, fourier transformer and DMT modem wherein the unit is used |
JP2001156732A (en) | 1999-11-24 | 2001-06-08 | Nec Corp | Time division multiplex access method, reference station device and terminal station device |
US6249683B1 (en) | 1999-04-08 | 2001-06-19 | Qualcomm Incorporated | Forward link power control of multiple data streams transmitted to a mobile station using a common power control channel |
US6256478B1 (en) | 1999-02-18 | 2001-07-03 | Eastman Kodak Company | Dynamic packet sizing in an RF communications system |
KR20010056333A (en) | 1999-12-15 | 2001-07-04 | 박종섭 | Method for transmitting parameter use handoff to synchronous cell site from asynchronous cell site in a mobile communication system |
US6272122B1 (en) | 1997-04-14 | 2001-08-07 | Samsung Electronics, Co., Ltd. | Pilot PN offset assigning method for digital mobile telecommunications system |
US6271946B1 (en) | 1999-01-25 | 2001-08-07 | Telcordia Technologies, Inc. | Optical layer survivability and security system using optical label switching and high-speed optical header generation and detection |
WO2001058054A1 (en) | 2000-02-01 | 2001-08-09 | Samsung Electronics Co., Ltd | Scheduling apparatus and method for packet data service in a wireless communication system |
JP2001238269A (en) | 2000-02-25 | 2001-08-31 | Kddi Corp | Sub carrier assignment method for wireless communication system |
JP2001245355A (en) | 2000-03-01 | 2001-09-07 | Mitsubishi Electric Corp | Packet transmission system in mobile communications |
JP2001249802A (en) | 2000-03-07 | 2001-09-14 | Sony Corp | Transmitting method, transmission system, transmission controller and input device |
WO2001069814A1 (en) | 2000-03-15 | 2001-09-20 | Nokia Corporation | Transmit diversity method and system |
KR20010087715A (en) | 2000-03-08 | 2001-09-21 | 윤종용 | Method and apparatus for semi-blind transmit antenna array using feedback information in mobile communication system |
US20010030948A1 (en) | 1997-09-08 | 2001-10-18 | Tiedemann Edward G. | Method and system for changing forward traffic channel power allocation during soft handoff |
EP1148673A2 (en) | 2000-04-18 | 2001-10-24 | Lucent Technologies Inc. | Idendification of a base station, using latin-square hopping sequences, in multicarrier spread-spectrum systems |
US6310704B1 (en) | 1995-06-02 | 2001-10-30 | Trw Inc. | Communication apparatus for transmitting and receiving signals over a fiber-optic waveguide using different frequency bands of light |
US6317435B1 (en) | 1999-03-08 | 2001-11-13 | Qualcomm Incorporated | Method and apparatus for maximizing the use of available capacity in a communication system |
WO2001089112A1 (en) | 2000-05-15 | 2001-11-22 | Nokia Corporation | Implementation method of pilot signal |
JP2001526012A (en) | 1997-05-16 | 2001-12-11 | ノキア ネットワークス オサケ ユキチュア | Method for determining the direction of transmission and radio system |
US20010055294A1 (en) | 2000-06-27 | 2001-12-27 | Nec Corporation | CDMA communication system capable of flexibly assigning spreading codes to a channel in accordance with traffic |
US6335922B1 (en) | 1997-02-11 | 2002-01-01 | Qualcomm Incorporated | Method and apparatus for forward link rate scheduling |
US6337983B1 (en) | 2000-06-21 | 2002-01-08 | Motorola, Inc. | Method for autonomous handoff in a wireless communication system |
US6337659B1 (en) | 1999-10-25 | 2002-01-08 | Gamma Nu, Inc. | Phased array base station antenna system having distributed low power amplifiers |
WO2002004936A1 (en) | 2000-07-11 | 2002-01-17 | Japan Science And Technology Corporation | Probe for mass spectrometry of liquid sample |
JP2002026790A (en) | 2000-07-03 | 2002-01-25 | Matsushita Electric Ind Co Ltd | Wireless communication unit and wireless communication method |
US20020015405A1 (en) | 2000-06-26 | 2002-02-07 | Risto Sepponen | Error correction of important fields in data packet communications in a digital mobile radio network |
US20020018157A1 (en) | 1996-04-12 | 2002-02-14 | Semiconductor Energy Laboratory Co., Ltd., A Japanese Corporation | Liquid crystal display device and method for fabricating thereof |
EP1180907A2 (en) | 2000-08-16 | 2002-02-20 | Lucent Technologies Inc. | Apparatus and method for acquiring an uplink traffic channel in a wireless communications system |
US6353637B1 (en) | 1999-03-29 | 2002-03-05 | Lucent Technologies Inc. | Multistream in-band on-channel systems |
EP1187506A1 (en) | 2000-09-12 | 2002-03-13 | Lucent Technologies Inc. | Communication system having a flexible transmit configuration |
US6363060B1 (en) | 1999-06-30 | 2002-03-26 | Qualcomm Incorporated | Method and apparatus for fast WCDMA acquisition |
CN1344451A (en) | 1999-03-19 | 2002-04-10 | 艾利森电话股份有限公司 | Code reservation for interference measurement in CDMA radiocommunication system |
US6374115B1 (en) | 1997-05-28 | 2002-04-16 | Transcrypt International/E.F. Johnson | Method and apparatus for trunked radio repeater communications with backwards compatibility |
WO2002031991A2 (en) | 2000-10-10 | 2002-04-18 | Broadstorm Telecommunications, Inc. | Channel assignment in an ofdma system |
US20020044524A1 (en) | 2000-09-13 | 2002-04-18 | Flarion Technologies, Inc. | OFDM communications methods and apparatus |
US6377809B1 (en) | 1997-09-16 | 2002-04-23 | Qualcomm Incorporated | Channel structure for communication systems |
US6377539B1 (en) | 1997-09-09 | 2002-04-23 | Samsung Electronics Co., Ltd. | Method for generating quasi-orthogonal code and spreader using the same in mobile communication system |
CN1346221A (en) | 2000-10-02 | 2002-04-24 | 株式会社Ntt都科摩 | The mobile communication base station apparatus |
WO2002033848A2 (en) | 2000-10-18 | 2002-04-25 | Broadstorm Telecommunications, Inc. | Channel allocation in broadband orthogonal frequency-division multiple-access/space-division multiple-access networks |
US6388998B1 (en) | 1999-02-04 | 2002-05-14 | Lucent Technologies Inc. | Reuse of codes and spectrum in a CDMA system with multiple-sector cells |
US6393008B1 (en) | 1997-12-23 | 2002-05-21 | Nokia Movile Phones Ltd. | Control structures for contention-based packet data services in wideband CDMA |
US6393012B1 (en) | 1999-01-13 | 2002-05-21 | Qualcomm Inc. | System for allocating resources in a communication system |
US20020061742A1 (en) | 2000-10-16 | 2002-05-23 | Alcatel | Method of managing radio resources in an interactive telecommunication network |
US6401062B1 (en) | 1998-02-27 | 2002-06-04 | Nec Corporation | Apparatus for encoding and apparatus for decoding speech and musical signals |
WO2002045456A1 (en) | 2000-11-28 | 2002-06-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Release of user equipment using a page procedure in a cellular communication system |
US20020077152A1 (en) | 2000-12-15 | 2002-06-20 | Johnson Thomas J. | Wireless communication methods and systems using multiple overlapping sectored cells |
WO2002049385A2 (en) | 2000-12-15 | 2002-06-20 | Broadstorm Telecommunications, Inc. | Multi-carrier communications with adaptive cluster configuration and switching |
US20020085521A1 (en) | 2000-12-29 | 2002-07-04 | Tripathi Nishith D. | Method and apparatus for managing a CDMA supplemental channel |
US20020090024A1 (en) | 2000-11-15 | 2002-07-11 | Tan Keng Tiong | Method and apparatus for non-linear code-division multiple access technology |
US20020090004A1 (en) | 2001-01-09 | 2002-07-11 | Motorola, Inc. | Method for scheduling and allocating data transmissions in a broad-band communications system |
US20020101839A1 (en) | 2001-02-01 | 2002-08-01 | Tantivy Communications, Inc. | Alternate channel for carrying selected message types |
US6438369B1 (en) | 1996-08-09 | 2002-08-20 | Nortel Networks Ltd. | Network directed system selection for cellular and PCS enhanced roaming |
US20020122400A1 (en) | 2001-01-17 | 2002-09-05 | Alkinoos Vayanos | Method and apparatus for allocating data streams given transmission time interval (TTI) constraints |
US6449246B1 (en) | 1999-09-15 | 2002-09-10 | Telcordia Technologies, Inc. | Multicarrier personal access communication system |
US20020128035A1 (en) | 2000-10-30 | 2002-09-12 | Nokia Corporation | Method and apparatus for transmitting and receiving dynamic configuration parameters in a third generation cellular telephone network |
US6466800B1 (en) | 1999-11-19 | 2002-10-15 | Siemens Information And Communication Mobile, Llc | Method and system for a wireless communication system incorporating channel selection algorithm for 2.4 GHz direct sequence spread spectrum cordless telephone system |
WO2002082689A2 (en) | 2001-04-07 | 2002-10-17 | Motorola, Inc. | Feedback method for controlling a multiple-input, multiple-output communications channel |
RU2192094C1 (en) | 2001-02-05 | 2002-10-27 | Гармонов Александр Васильевич | Method for coherent staggered signal transmission |
US6473467B1 (en) | 2000-03-22 | 2002-10-29 | Qualcomm Incorporated | Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system |
US20020159422A1 (en) | 2001-03-09 | 2002-10-31 | Xiaodong Li | Communication system using OFDM for one direction and DSSS for another direction |
US20020160781A1 (en) | 2001-02-23 | 2002-10-31 | Gunnar Bark | System, method and apparatus for facilitating resource allocation in a communication system |
TW508960B (en) | 2000-09-15 | 2002-11-01 | Flarion Technologies Inc | Methods and apparatus for transmitting information between a basestation and multiple mobile stations |
US6477317B1 (en) | 1994-11-14 | 2002-11-05 | Canon Kabushiki Kaisha | Video reproducing apparatus which demultiplexes a plurality of video programs and outputs a plurality of program numbers (attribute data) in parallel |
EP1255369A1 (en) | 2001-05-04 | 2002-11-06 | TELEFONAKTIEBOLAGET LM ERICSSON (publ) | Link adaptation for wireless MIMO transmission schemes |
WO2002089434A1 (en) | 2001-04-26 | 2002-11-07 | Qualcomm Incorporated | Control channel coding and decoding |
TW510132B (en) | 2000-02-04 | 2002-11-11 | Harris Corp | Linear signal separation using polarization diversity |
US6478422B1 (en) | 2001-03-19 | 2002-11-12 | Richard A. Hansen | Single bifocal custom shooters glasses |
US6483820B1 (en) | 1999-03-22 | 2002-11-19 | Ericsson Inc. | System and method for dynamic radio resource allocation for non-transparent high-speed circuit-switched data services |
WO2002093819A1 (en) | 2001-05-16 | 2002-11-21 | Qualcomm Incorporated | Method and apparatus for allocating resources in a multiple-input multiple-output (mimo) communication system |
WO2002093782A1 (en) | 2001-05-16 | 2002-11-21 | Qualcomm Incorporated | Allocation of uplink resourses in a multi-input multi-output (mimo) communication system |
US20020172293A1 (en) | 2001-03-28 | 2002-11-21 | Kiran Kuchi | Non-zero complex weighted space-time code for multiple antenna transmission |
US6487243B1 (en) | 1999-03-08 | 2002-11-26 | International Business Machines Corporation | Modems, methods, and computer program products for recovering from errors in a tone reversal sequence between two modems |
US20020176398A1 (en) | 2001-05-22 | 2002-11-28 | Alcatel | Method of allocating communication resources in an MF-TDMA telecommunication system |
WO2002100027A1 (en) | 2001-06-01 | 2002-12-12 | Motorola, Inc. | Method and apparatus for adaptive signaling and puncturing of a qam communications system |
US6496790B1 (en) | 2000-09-29 | 2002-12-17 | Intel Corporation | Management of sensors in computer systems |
CN1386344A (en) | 2000-07-26 | 2002-12-18 | 三菱电机株式会社 | Multi-carrier CDMA communication device, multi-carrier CDMA transmitting device, and multi-carrier CDMA receiving device |
US20020193146A1 (en) | 2001-06-06 | 2002-12-19 | Mark Wallace | Method and apparatus for antenna diversity in a wireless communication system |
US6501810B1 (en) | 1998-10-13 | 2002-12-31 | Agere Systems Inc. | Fast frame synchronization |
WO2003001761A1 (en) | 2001-06-22 | 2003-01-03 | Qualcomm Incorporated | Method and apparatus for transmitting data in a time division duplex system |
WO2003001981A2 (en) | 2001-06-29 | 2003-01-09 | The Government Of The United State Of America As Represent By The Secretary Of The Department Of Health And Human Services | Method of promoting engraftment of a donor transplant in a recipient host |
US6507601B2 (en) | 2000-02-09 | 2003-01-14 | Golden Bridge Technology | Collision avoidance |
KR20030007965A (en) | 2000-07-04 | 2003-01-23 | 지멘스 악티엔게젤샤프트 | Beam forming method |
RU2197778C2 (en) | 1998-05-12 | 2003-01-27 | Самсунг Электроникс Ко., Лтд. | Method and device for reducing mobile-station peak-to-mean transmission power ratio |
JP2003032218A (en) | 2001-07-13 | 2003-01-31 | Matsushita Electric Ind Co Ltd | Multi-carrier transmitter, multi-carrier receiver, and multi-carrier radio communication method |
US6519462B1 (en) | 2000-05-11 | 2003-02-11 | Lucent Technologies Inc. | Method and apparatus for multi-user resource management in wireless communication systems |
US20030040283A1 (en) | 2001-08-21 | 2003-02-27 | Ntt Docomo, Inc. | Radio communication system, communication terminal, and method for transmitting burst signals |
US6529525B1 (en) * | 2000-05-19 | 2003-03-04 | Motorola, Inc. | Method for supporting acknowledged transport layer protocols in GPRS/edge host application |
US20030043732A1 (en) | 2001-05-17 | 2003-03-06 | Walton Jay R. | Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission |
US20030043764A1 (en) | 2001-08-23 | 2003-03-06 | Samsung Electronics Co., Ltd. | Method for allocating HARQ channel number for indicating state information in an HSDPA communication system |
US6535666B1 (en) | 1995-06-02 | 2003-03-18 | Trw Inc. | Method and apparatus for separating signals transmitted over a waveguide |
US6539213B1 (en) | 1999-06-14 | 2003-03-25 | Time Domain Corporation | System and method for impulse radio power control |
US6539008B1 (en) | 1997-11-03 | 2003-03-25 | Samsung Electronics, Co., Ltd. | Method for inserting power control bits in the CDMA mobile system |
US6542485B1 (en) | 1998-11-25 | 2003-04-01 | Lucent Technologies Inc. | Methods and apparatus for wireless communication using time division duplex time-slotted CDMA |
US20030063579A1 (en) | 2001-09-29 | 2003-04-03 | Samsung Electronics Co., Ltd. | Quick paging method in a shadow area |
JP2003101515A (en) | 2001-09-25 | 2003-04-04 | Sony Corp | Radio communication system, base station, mobile station, transmission control method and program storage medium |
US20030068983A1 (en) | 2001-05-17 | 2003-04-10 | Kim Sung-Jin | Mobile communication apparatus with antenna array and mobile communication method therefor |
US20030072395A1 (en) | 2001-10-17 | 2003-04-17 | Ming Jia | Method and apparatus for channel quality measurements |
US20030072280A1 (en) | 2001-09-24 | 2003-04-17 | Mcfarland William J. | Method and system for variable rate acknowledgement for wireless communication protocols |
US20030073409A1 (en) | 2001-10-17 | 2003-04-17 | Nec Corporation | Mobile communication system, communication control method, base station and mobile station to be used in the same |
US20030076890A1 (en) | 2001-07-26 | 2003-04-24 | Lucent Technologies, Inc. | Method and apparatus for detection and decoding of signals received from a linear propagation channel |
WO2003034644A1 (en) | 2001-10-17 | 2003-04-24 | Nortel Networks Limited | Scattered pilot pattern and channel estimation method for mimo-ofdm systems |
US20030086393A1 (en) | 2001-11-02 | 2003-05-08 | Subramanian Vasudevan | Method for allocating wireless communication resources |
KR20030035969A (en) | 2001-10-26 | 2003-05-09 | 삼성전자주식회사 | Controlling apparatus and method of reverse rink in wireless communication |
US6563806B1 (en) | 1997-12-12 | 2003-05-13 | Hitachi, Ltd. | Base station for multi-carrier TDMA mobile communication system and method for assigning communication channels |
US6563881B1 (en) | 1998-07-13 | 2003-05-13 | Sony Corporation | Communication method and transmitter with transmission symbols arranged at intervals on a frequency axis |
US20030096579A1 (en) | 2001-11-22 | 2003-05-22 | Nec Corporation | Wireless communication system |
US20030103520A1 (en) | 2001-12-03 | 2003-06-05 | Ntt Docomo, Inc. | Communication control system, communication control method, base station device and mobile terminal device |
US6577739B1 (en) | 1997-09-19 | 2003-06-10 | University Of Iowa Research Foundation | Apparatus and methods for proportional audio compression and frequency shifting |
JP2003169367A (en) | 2001-11-29 | 2003-06-13 | Sharp Corp | Radio communication apparatus |
US20030112745A1 (en) | 2001-12-17 | 2003-06-19 | Xiangyang Zhuang | Method and system of operating a coded OFDM communication system |
JP2003174426A (en) | 2001-12-05 | 2003-06-20 | Japan Telecom Co Ltd | Orthogonal frequency division multiplex communication system |
US6584140B1 (en) | 1999-01-22 | 2003-06-24 | Systems Information And Electronic Systems Integration Inc. | Spectrum efficient fast frequency-hopped modem with coherent demodulation |
RU2207723C1 (en) | 2001-10-01 | 2003-06-27 | Военный университет связи | Method of distribution of resources in electric communication system with multiple access |
US20030125040A1 (en) | 2001-11-06 | 2003-07-03 | Walton Jay R. | Multiple-access multiple-input multiple-output (MIMO) communication system |
US6590881B1 (en) | 1998-12-04 | 2003-07-08 | Qualcomm, Incorporated | Method and apparatus for providing wireless communication system synchronization |
GB2348776B (en) | 1999-04-06 | 2003-07-09 | Motorola Ltd | A communications network and method of allocating resource thefor |
JP2003199173A (en) | 2001-10-17 | 2003-07-11 | Nec Corp | Mobile communication system, communication control method, base station and mobile station used in the same |
WO2003058871A1 (en) | 2002-01-08 | 2003-07-17 | Qualcomm Incorporated | Method and apparatus for a mimo-ofdm communication system |
US6597746B1 (en) | 1999-02-18 | 2003-07-22 | Globespanvirata, Inc. | System and method for peak to average power ratio reduction |
US6601206B1 (en) | 1998-12-04 | 2003-07-29 | Agere Systems Inc. | Error concealment or correction of speech, image and video signals |
US20030142648A1 (en) | 2002-01-31 | 2003-07-31 | Samsung Electronics Co., Ltd. | System and method for providing a continuous high speed packet data handoff |
US20030147371A1 (en) | 2002-02-07 | 2003-08-07 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving serving HS-SCCH set information in an HSDPA communication system |
EP1335504A2 (en) | 2002-02-08 | 2003-08-13 | Samsung Electronics Co., Ltd. | Pattern forming method and device for an adaptive antenna array of a base station |
DE10240138A1 (en) | 2002-01-18 | 2003-08-14 | Siemens Ag | Dynamic resource allocation in radio communications system, exchanges resources and makes changes to unoccupied sub-bands, selecting allocation of highest radio capacity |
RU2210866C2 (en) | 1999-05-12 | 2003-08-20 | Самсунг Электроникс Ко., Лтд. | Method for maintaining discontinuous transmission at base station of mobile communication system |
WO2003069832A1 (en) | 2002-02-13 | 2003-08-21 | Siemens Aktiengesellschaft | Method for beamforming a multi-use receiver with channel estimation |
US6614857B1 (en) | 1999-04-23 | 2003-09-02 | Lucent Technologies Inc. | Iterative channel estimation and compensation based thereon |
JP2003249907A (en) | 2002-02-22 | 2003-09-05 | Hitachi Kokusai Electric Inc | Transmitting device of ofdm system |
US6625172B2 (en) | 2001-04-26 | 2003-09-23 | Joseph P. Odenwalder | Rescheduling scheduled transmissions |
US20030181170A1 (en) | 2002-03-21 | 2003-09-25 | Lg Electronics Inc. | Apparatus and method for transmitting signal in mobile communication system |
US20030185310A1 (en) | 2002-03-27 | 2003-10-02 | Ketchum John W. | Precoding for a multipath channel in a MIMO system |
US20030190897A1 (en) | 2002-04-04 | 2003-10-09 | The National University Of Singapore | Method for selecting switched orthogonal beams for downlink diversity transmission |
JP2003292667A (en) | 2002-03-29 | 2003-10-15 | Jsr Corp | Thermoplastic elastomer composition for crosslinking foaming, method for manufacturing molded article, and molded article |
US20030193915A1 (en) | 1998-07-12 | 2003-10-16 | Hyun-Seok Lee | Device and method for gating transmission in a CDMA mobile communication system |
US6636568B2 (en) | 2002-03-01 | 2003-10-21 | Qualcomm | Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system |
WO2003088538A1 (en) | 2002-04-15 | 2003-10-23 | Matsushita Electric Industrial Co., Ltd. | Receiver and its receiving method |
US20030202491A1 (en) | 2002-04-29 | 2003-10-30 | Tiedemann Edward G. | Acknowledging broadcast transmissions |
RU2216101C2 (en) | 1998-02-14 | 2003-11-10 | Самсунг Электроникс Ко., Лтд. | Data transmission device and method for mobile communication system with allocated control channel |
US6654339B1 (en) | 1999-01-08 | 2003-11-25 | Sony International (Europe) Gmbh | Synchronization symbol structure using OFDM based transmission method |
US6658258B1 (en) | 2000-09-29 | 2003-12-02 | Lucent Technologies Inc. | Method and apparatus for estimating the location of a mobile terminal |
US6657949B1 (en) | 1999-07-06 | 2003-12-02 | Cisco Technology, Inc. | Efficient request access for OFDM systems |
JP2003347985A (en) | 2002-05-22 | 2003-12-05 | Fujitsu Ltd | Radio base station apparatus and power saving method thereof |
JP2003348047A (en) | 2002-05-24 | 2003-12-05 | Mitsubishi Electric Corp | Radio transmitter |
US20030228850A1 (en) | 2002-06-07 | 2003-12-11 | Lg Electronics Inc. | Transmit diversity apparatus for mobile communication system and method thereof |
US20030236080A1 (en) | 2002-06-20 | 2003-12-25 | Tamer Kadous | Rate control for multi-channel communication systems |
US20030235255A1 (en) | 2002-06-24 | 2003-12-25 | Ketchum John W. | Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems |
US20040002364A1 (en) | 2002-05-27 | 2004-01-01 | Olav Trikkonen | Transmitting and receiving methods |
US20040001429A1 (en) | 2002-06-27 | 2004-01-01 | Jianglei Ma | Dual-mode shared OFDM methods/transmitters, receivers and systems |
US6674810B1 (en) | 1999-05-27 | 2004-01-06 | 3Com Corporation | Method and apparatus for reducing peak-to-average power ratio in a discrete multi-tone signal |
US6675012B2 (en) | 2001-03-08 | 2004-01-06 | Nokia Mobile Phones, Ltd. | Apparatus, and associated method, for reporting a measurement summary in a radio communication system |
US6674787B1 (en) | 1999-05-19 | 2004-01-06 | Interdigital Technology Corporation | Raising random access channel packet payload |
WO2004004370A1 (en) | 2002-06-28 | 2004-01-08 | Interdigital Technology Corporation | System for efficiently providing coverage of a sectorized cell |
JP2004007643A (en) | 1998-05-14 | 2004-01-08 | Fujitsu Ltd | Cellular mobile communication network |
US6678318B1 (en) | 2000-01-11 | 2004-01-13 | Agere Systems Inc. | Method and apparatus for time-domain equalization in discrete multitone transceivers |
CN1467938A (en) | 2002-07-08 | 2004-01-14 | 华为技术有限公司 | Transmission method for implementing multimedia broadcast and multicast service |
TW200401572A (en) | 2002-04-25 | 2004-01-16 | Raytheon Co | Dynamic wireless resource utilization |
US20040015692A1 (en) | 2000-08-03 | 2004-01-22 | Green Mark Raymond | Authentication in a mobile communications network |
WO2004008671A1 (en) | 2002-07-16 | 2004-01-22 | Matsushita Electric Industrial Co., Ltd. | Communicating method, transmitting device using the same, and receiving device using the same |
JP2004023716A (en) | 2002-06-20 | 2004-01-22 | Matsushita Electric Ind Co Ltd | Radio communication system and method of scheduling |
WO2004008681A1 (en) | 2002-07-17 | 2004-01-22 | Koninklijke Philips Electronics N.V. | Time-frequency interleaved mc-cdma for quasi-synchronous systems |
US20040017785A1 (en) | 2002-07-16 | 2004-01-29 | Zelst Allert Van | System for transporting multiple radio frequency signals of a multiple input, multiple output wireless communication system to/from a central processing base station |
US6690951B1 (en) | 1999-12-20 | 2004-02-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic size allocation system and method |
JP2004048716A (en) | 2002-05-16 | 2004-02-12 | Ntt Docomo Inc | Multi-carrier transmitter, and multi-carrier transmission method |
US6693952B1 (en) | 1999-03-16 | 2004-02-17 | Lucent Technologies Inc. | Dynamic code allocation for downlink shared channels |
WO2004016007A1 (en) | 2002-08-08 | 2004-02-19 | Flarion Technologies, Inc. | Method and apparatus for operating mobile nodes in multiple states |
WO2004015912A1 (en) | 2002-08-09 | 2004-02-19 | Qualcomm Incorporated | Method and system for improving the reliability of quality feedback in a wireless communications system |
EP1392073A1 (en) | 2002-08-23 | 2004-02-25 | NTT DoCoMo, Inc. | Base station, mobile communication system, and communication method for omnidirectional and directional transmission |
RU2225080C2 (en) | 1998-04-23 | 2004-02-27 | Телефонактиеболагет Лм Эрикссон (Пабл) | Medium-independent signaling protocol |
US6701165B1 (en) | 2000-06-21 | 2004-03-02 | Agere Systems Inc. | Method and apparatus for reducing interference in non-stationary subscriber radio units using flexible beam selection |
JP2004072157A (en) | 2002-08-01 | 2004-03-04 | Nec Corp | Mobile communication system, method for modifying best cell, and radio network controller used for the same |
US6704571B1 (en) | 2000-10-17 | 2004-03-09 | Cisco Technology, Inc. | Reducing data loss during cell handoffs |
US20040048609A1 (en) | 2000-12-11 | 2004-03-11 | Minoru Kosaka | Radio communication system |
WO2004021605A1 (en) | 2002-08-27 | 2004-03-11 | Qualcomm Incorporated | Beam-steering and beam-forming for wideband mimo/miso systems |
JP2004507950A (en) | 2000-08-25 | 2004-03-11 | モトローラ・インコーポレイテッドMotorola Incorporatred | Method and apparatus for supporting wireless acknowledgment for unidirectional user data channel |
WO2004023834A1 (en) | 2002-09-04 | 2004-03-18 | Koninklijke Philips Electronics N.V. | Apparatus and method for providing qos service schedule and bandwidth allocation to a wireless station |
US6711400B1 (en) | 1997-04-16 | 2004-03-23 | Nokia Corporation | Authentication method |
US20040058687A1 (en) | 2002-09-06 | 2004-03-25 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting CQI information in a CDMA communication system employing an HSDPA scheme |
JP2004096142A (en) | 2002-08-29 | 2004-03-25 | Hitachi Kokusai Electric Inc | Area polling system |
US6717908B2 (en) | 1997-06-19 | 2004-04-06 | Qualcomm, Incorporated | Bit interleaving for orthogonal frequency division multiplexing in the transmission of digital signals |
CN1487755A (en) | 2002-08-23 | 2004-04-07 | 西门子公司 | Position directional method, mobile radio system and orienting equipment for mobile station corresponding base station |
US20040066761A1 (en) | 2002-04-22 | 2004-04-08 | Giannakis Georgios B. | Space-time coding using estimated channel information |
WO2004030238A1 (en) | 2002-09-28 | 2004-04-08 | Koninklijke Philips Electronics N.V. | Packet data transmission in a mimo system |
US6721568B1 (en) | 1999-11-10 | 2004-04-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Admission control in a mobile radio communications system |
WO2004032443A1 (en) | 2002-10-01 | 2004-04-15 | Nortel Networks Limited | Channel mapping for ofdm frequency-hopping |
US6724719B1 (en) | 1999-02-19 | 2004-04-20 | Nortel Networks Limited | Determining transmit signal powers of channels in a CDMA communications system |
US20040077379A1 (en) | 2002-06-27 | 2004-04-22 | Martin Smith | Wireless transmitter, transceiver and method |
US6731602B1 (en) | 1998-02-20 | 2004-05-04 | Hitachi, Ltd. | Packet communication system and packet communication apparatus |
WO2004038972A1 (en) | 2002-10-26 | 2004-05-06 | Electronics And Telecommunications Research Institute | Frequency hopping ofdma method using symbols of comb pattern |
US20040087325A1 (en) | 2002-11-04 | 2004-05-06 | Fang-Chen Cheng | Shared control and signaling channel for users subscribing to data services in a communication system |
US6735244B1 (en) | 1999-08-30 | 2004-05-11 | Fujitsu Limited | Data transmission system and receiver unit thereof |
WO2004040690A2 (en) | 2002-10-29 | 2004-05-13 | Nokia Corporation | Low complexity beamformers for multiple transmit and receive antennas |
US20040098505A1 (en) | 2002-11-20 | 2004-05-20 | Clemmensen Daniel G. | Forwarding system with multiple logical sub-system functionality |
US20040097215A1 (en) | 1998-06-16 | 2004-05-20 | Katsuaki Abe | Transmission and reception system, transmission and reception device, and method of transmission and reception |
JP2004153676A (en) | 2002-10-31 | 2004-05-27 | Mitsubishi Electric Corp | Communication equipment, transmitter, and receiver |
US6744743B2 (en) | 2000-03-30 | 2004-06-01 | Qualcomm Incorporated | Method and apparatus for controlling transmissions of a communications system |
JP2004158901A (en) | 2002-11-01 | 2004-06-03 | Kddi Corp | Transmission apparatus, system, and method using ofdm and mc-cdma |
WO2004047354A1 (en) | 2002-11-17 | 2004-06-03 | Siemens Aktiengesellschaft | Mimo signal processing method involving a rank-adaptive matching of the transmission rate |
US20040105489A1 (en) | 2002-10-22 | 2004-06-03 | Kim Seong Rag | Data transmission apparatus for DS/CDMA system equipping MIMO antenna system |
US6748220B1 (en) | 2000-05-05 | 2004-06-08 | Nortel Networks Limited | Resource allocation in wireless networks |
WO2004049618A1 (en) | 2002-11-26 | 2004-06-10 | Electronics And Telecommunications Research Institute | Method and apparatus for embodying and synchronizing downlink signal in mobile communication system and method for searching cell using the same |
JP2004162388A (en) | 2002-11-13 | 2004-06-10 | Hisayoshi Sato | Evaluation method for surface plan of road |
US6751444B1 (en) | 2001-07-02 | 2004-06-15 | Broadstorm Telecommunications, Inc. | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
US6751456B2 (en) | 1997-03-20 | 2004-06-15 | Intel Corporation | Communication control for a user of a central communication center |
US20040114618A1 (en) | 2002-12-16 | 2004-06-17 | Nortel Networks Limited | Virtual mimo communication system |
WO2004051872A2 (en) | 2002-12-04 | 2004-06-17 | Interdigital Technology Corporation | Detection of channel quality indicator |
US20040120411A1 (en) | 2002-10-25 | 2004-06-24 | Walton Jay Rodney | Closed-loop rate control for a multi-channel communication system |
EP1434365A2 (en) | 2002-12-26 | 2004-06-30 | Electronics and Telecommunications Research Institute | Apparatus and method for adaptively modulating a signal by using a layered time-space detector in MIMO systems |
US20040125792A1 (en) | 2002-08-12 | 2004-07-01 | Starent Networks Corporation | Redundancy in voice and data communications systems |
JP2004194262A (en) | 2002-10-18 | 2004-07-08 | Ntt Docomo Inc | Signal transmission system, signal transmission method and transmitter |
KR20040063057A (en) | 2003-01-04 | 2004-07-12 | 삼성전자주식회사 | Apparatus for transmitting/receiving uplink data retransmission request in code division multiple access communication system and method thereof |
US6763009B1 (en) | 1999-12-03 | 2004-07-13 | Lucent Technologies Inc. | Down-link transmission scheduling in CDMA data networks |
US20040136344A1 (en) | 1998-03-14 | 2004-07-15 | Samsung Electronics Co., Ltd. | Device and method for exchanging frame messages of different lengths in CDMA communication system |
US20040136349A1 (en) | 2002-10-25 | 2004-07-15 | Walton J. Rodney | MIMO system with multiple spatial multiplexing modes |
US6765969B1 (en) | 1999-09-01 | 2004-07-20 | Motorola, Inc. | Method and device for multi-user channel estimation |
WO2004062255A1 (en) | 2003-01-07 | 2004-07-22 | Huawei Technologies Co., Ltd. | Method of paying the multi-media message to the receiver by the third party |
EP1441469A2 (en) | 2003-01-23 | 2004-07-28 | Samsung Electronics Co., Ltd. | Handoff method in wireless lan, and access point and mobile station performing handoff method |
WO2004040827A3 (en) | 2002-10-29 | 2004-07-29 | Qualcomm Inc | Uplink pilot and signaling transmission in wireless communication systems |
WO2004066520A1 (en) | 2003-01-16 | 2004-08-05 | Qualcomm Incorporated | Power margin control in a data communication system |
JP2004221972A (en) | 2003-01-15 | 2004-08-05 | Matsushita Electric Ind Co Ltd | Transmitter and transmitting method |
CN1520220A (en) | 2003-01-20 | 2004-08-11 | 深圳市中兴通讯股份有限公司 | Method for switvhing wave packet of intelligent antenna |
EP1445873A2 (en) | 2003-02-06 | 2004-08-11 | NTT DoCoMo, Inc. | Mobile station, base station, program for and method of wireless transmission based on chip repetition and IFDMA. |
US20040156328A1 (en) | 2002-10-25 | 2004-08-12 | Walton J. Rodney | Random access for wireless multiple-access communication systems |
WO2004068721A2 (en) | 2003-01-28 | 2004-08-12 | Celletra Ltd. | System and method for load distribution between base station sectors |
US6776765B2 (en) | 2001-08-21 | 2004-08-17 | Synovis Life Technologies, Inc. | Steerable stylet |
US6778513B2 (en) | 2000-09-29 | 2004-08-17 | Arraycomm, Inc. | Method and apparatus for separting multiple users in a shared-channel communication system |
US6776165B2 (en) | 2002-09-12 | 2004-08-17 | The Regents Of The University Of California | Magnetic navigation system for diagnosis, biopsy and drug delivery vehicles |
US20040160914A1 (en) | 2003-02-18 | 2004-08-19 | Sandip Sarkar | Congestion control in a wireless data network |
US20040162083A1 (en) * | 2003-02-18 | 2004-08-19 | Tao Chen | Scheduled and autonomous transmission and acknowledgement |
US20040160933A1 (en) | 2003-02-18 | 2004-08-19 | Odenwalder Joseph P. | Code division multiplexing commands on a code division multiplexed channel |
US20040166887A1 (en) | 2003-02-24 | 2004-08-26 | Rajiv Laroia | Pilot signals for use in multi-sector cells |
WO2004073276A1 (en) | 2003-02-14 | 2004-08-26 | Docomo Communications Laboratories Europe Gmbh | Two-dimensional channel estimation for multicarrier multiple input outpout communication systems |
US20040166867A1 (en) | 2003-02-24 | 2004-08-26 | William Hawe | Program for ascertaining a dynamic attribute of a system |
RU2235432C2 (en) | 1998-11-30 | 2004-08-27 | Телефонактиеболагет Лм Эрикссон (Пабл) | Automatic retransmission request protocol |
RU2235429C1 (en) | 2003-08-15 | 2004-08-27 | Федеральное государственное унитарное предприятие "Воронежский научно-исследовательский институт связи" | Method and device for time-and-frequency synchronization of communication system |
US6785341B2 (en) | 2001-05-11 | 2004-08-31 | Qualcomm Incorporated | Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information |
US20040170152A1 (en) | 2003-02-27 | 2004-09-02 | Matsushita Electric Industrial Co., Ltd | Wireless LAN apparatus |
US20040171384A1 (en) | 2002-04-02 | 2004-09-02 | Harri Holma | Inter-frequency measurements with mimo terminals |
US20040170157A1 (en) | 2003-02-28 | 2004-09-02 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving preamble in ultra wideband communication system |
WO2004077850A2 (en) | 2003-02-27 | 2004-09-10 | Interdigital Technology Corporation | Method for implementing fast-dynamic channel allocation radio resource management procedures |
US20040179627A1 (en) | 2002-10-25 | 2004-09-16 | Ketchum John W. | Pilots for MIMO communication systems |
US20040185792A1 (en) | 2003-03-20 | 2004-09-23 | Angeliki Alexiou | Method of compensating for correlation between multiple antennas |
JP2004266818A (en) | 2003-02-12 | 2004-09-24 | Matsushita Electric Ind Co Ltd | Transmission apparatus and wireless communication method |
US6799043B2 (en) | 2001-12-04 | 2004-09-28 | Qualcomm, Incorporated | Method and apparatus for a reverse link supplemental channel scheduling |
US6798736B1 (en) | 1998-09-22 | 2004-09-28 | Qualcomm Incorporated | Method and apparatus for transmitting and receiving variable rate data |
US6802035B2 (en) | 2000-09-19 | 2004-10-05 | Intel Corporation | System and method of dynamically optimizing a transmission mode of wirelessly transmitted information |
EP1465449A1 (en) | 2003-04-02 | 2004-10-06 | Matsushita Electric Industrial Co., Ltd. | Dynamic resource allocation in packet data transfer |
WO2004086711A1 (en) | 2003-03-25 | 2004-10-07 | Telia Ab (Publ) | Position adjusted guard time interval for ofdm-communications system |
WO2004086706A1 (en) | 2003-03-27 | 2004-10-07 | Docomo Communications Laboratories Europe Gmbh | Apparatus and method for estimating a plurality of channels |
US20040202257A1 (en) | 2002-07-31 | 2004-10-14 | Mehta Neelesh B. | Multiple antennas at transmitters and receivers to achieving higher diversity and data rates in MIMO systems |
JP2004297276A (en) | 2003-03-26 | 2004-10-21 | Sanyo Electric Co Ltd | Radio base station equipment, transmission directivity control method, and transmission directivity control program |
WO2004095730A1 (en) | 2003-04-21 | 2004-11-04 | Mitsubishi Denki Kabushiki Kaisha | Radio communication apparatus, transmitter apparatus, receiver apparatus and radio communication system |
US20040219919A1 (en) | 2003-04-30 | 2004-11-04 | Nicholas Whinnett | Management of uplink scheduling modes in a wireless communication system |
US20040219819A1 (en) | 2003-04-30 | 2004-11-04 | Agilent Technologies, Inc. | Mounting arrangement for plug-in modules |
US20040224711A1 (en) | 2003-05-09 | 2004-11-11 | Panchal Rajendra A. | Method and apparatus for CDMA soft handoff for dispatch group members |
EP1478204A2 (en) | 2003-05-15 | 2004-11-17 | Lucent Technologies Inc. | Method and apparatus for performing authentication in a communications system |
US20040228313A1 (en) | 2003-05-16 | 2004-11-18 | Fang-Chen Cheng | Method of mapping data for uplink transmission in communication systems |
US6821535B2 (en) | 2000-02-03 | 2004-11-23 | Xyrofin Oy | Process for hard panning of chewable cores and cores produced by the process |
WO2004102816A2 (en) | 2003-05-12 | 2004-11-25 | Qualcomm Incorporated | Fast frequency hopping with a code division multiplexed pilot in an ofdma system |
WO2004105272A1 (en) | 2003-05-20 | 2004-12-02 | Fujitsu Limited | Application handover method in mobile communication system, mobile management node used in the mobile communication system, and mobile node |
US20040240419A1 (en) | 2003-05-31 | 2004-12-02 | Farrokh Abrishamkar | Signal-to-noise estimation in wireless communication devices with receive diversity |
US20040240572A1 (en) | 2001-09-12 | 2004-12-02 | Christophe Brutel | Multicarrier signal, method of tracking a transmission channel based on such a signal and device therefor |
US6829293B2 (en) | 2001-01-16 | 2004-12-07 | Mindspeed Technologies, Inc. | Method and apparatus for line probe signal processing |
US6828293B1 (en) | 1999-07-28 | 2004-12-07 | Ciba Specialty Chemicals Corporation | Water-soluble granules of salen-type manganese complexes |
KR20040103441A (en) | 2003-05-29 | 2004-12-08 | 마이크로소프트 코포레이션 | Controlled relay of media streams across network perimeters |
US20040248604A1 (en) | 2003-06-09 | 2004-12-09 | Chandra Vaidyanathan | Compensation techniques for group delay effects in transmit beamforming radio communication |
RU2242091C2 (en) | 1999-10-02 | 2004-12-10 | Самсунг Электроникс Ко., Лтд. | Device and method for gating data transferred over control channel in cdma communication system |
US6831943B1 (en) | 1999-08-13 | 2004-12-14 | Texas Instruments Incorporated | Code division multiple access wireless system with closed loop mode using ninety degree phase rotation and beamformer verification |
US20040252655A1 (en) * | 2001-10-20 | 2004-12-16 | Kwang-Jae Lim | Method and apparatus for common packet channel access in mobile satellite communication system |
US20040252662A1 (en) | 2003-06-13 | 2004-12-16 | Samsung Electronics Co., Ltd. | Method for controlling operational states of a MAC layer in an OFDM mobile communication system |
US20040252529A1 (en) | 2003-05-13 | 2004-12-16 | Laszlo Huber | AC/DC flyback converter |
US20040252629A1 (en) | 2002-01-10 | 2004-12-16 | Tsuyoshi Hasegawa | Pilot multiplexing method and OFDM receiving method in OFDM system |
US20040257979A1 (en) | 2003-06-18 | 2004-12-23 | Samsung Electronics Co., Ltd. | Apparatus and method for tranmitting and receiving a pilot pattern for identification of a base station in an OFDM communication system |
WO2004114549A1 (en) | 2003-06-13 | 2004-12-29 | Nokia Corporation | Enhanced data only code division multiple access (cdma) system |
US20040264507A1 (en) | 2003-06-24 | 2004-12-30 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving data in a communication system using a multiple access scheme |
US20050002440A1 (en) | 1997-02-24 | 2005-01-06 | Siavash Alamouti | Vertical adaptive antenna array for a discrete multitone spread spectrum communications system |
US20050002412A1 (en) | 2001-11-15 | 2005-01-06 | Mats Sagfors | Method and system of retransmission |
WO2004098072A3 (en) | 2003-04-25 | 2005-01-06 | Brian K Classon | Method and apparatus for channel quality feedback within a communication system |
US20050003782A1 (en) | 2003-06-06 | 2005-01-06 | Ola Wintzell | Methods and apparatus for channel quality indicator determination |
WO2005002253A1 (en) | 2003-06-30 | 2005-01-06 | Nec Corporation | Radio communication system and transmission mode selecting method |
US6842487B1 (en) | 2000-09-22 | 2005-01-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Cyclic delay diversity for mitigating intersymbol interference in OFDM systems |
US20050009486A1 (en) | 1999-10-08 | 2005-01-13 | Naofal Al-Dhahir | Finite-length equalization overmulti-input multi-output channels |
US20050008091A1 (en) | 2003-06-26 | 2005-01-13 | Mitsubishi Denki Kabushiki Kaisha | Sphere decoding of symbols transmitted in a telecommunication system |
JP2005020530A (en) | 2003-06-27 | 2005-01-20 | Toshiba Corp | Communication method, communication system and communication equipment |
US6850481B2 (en) | 2000-09-01 | 2005-02-01 | Nortel Networks Limited | Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system |
WO2005011163A1 (en) | 2003-07-14 | 2005-02-03 | Telefonaktiebolaget L M Ericsson (Publ) | Noise measurement at base stations during silence periods in wireless communication systems |
US20050034079A1 (en) | 2003-08-05 | 2005-02-10 | Duraisamy Gunasekar | Method and system for providing conferencing services |
US20050030886A1 (en) | 2003-08-07 | 2005-02-10 | Shiquan Wu | OFDM system and method employing OFDM symbols with known or information-containing prefixes |
US20050030964A1 (en) * | 2003-08-05 | 2005-02-10 | Tiedemann Edward G. | Grant, acknowledgement, and rate control active sets |
WO2005015795A1 (en) | 2003-08-05 | 2005-02-17 | Telecom Italia S.P.A. | Method for providing extra-traffic paths with connection protection in a communication network, related network and computer program product therefor |
WO2005015810A1 (en) | 2003-08-08 | 2005-02-17 | Intel Corporation | Adaptive signaling in multiple antenna systems |
WO2005015797A1 (en) | 2003-08-12 | 2005-02-17 | Matsushita Electric Industrial Co., Ltd. | Radio communication apparatus and pilot symbol transmission method |
US20050041775A1 (en) | 2003-08-22 | 2005-02-24 | Batzinger Thomas J. | High speed digital radiographic inspection of piping |
WO2004095851A3 (en) | 2003-04-23 | 2005-02-24 | Flarion Technologies Inc | Methods and apparatus of enhancing performance in wireless communication systems |
US20050044206A1 (en) | 2001-09-07 | 2005-02-24 | Staffan Johansson | Method and arrangements to achieve a dynamic resource distribution policy in packet based communication networks |
US20050041618A1 (en) | 2003-08-05 | 2005-02-24 | Yongbin Wei | Extended acknowledgement and rate control channel |
US6862271B2 (en) | 2002-02-26 | 2005-03-01 | Qualcomm Incorporated | Multiple-input, multiple-output (MIMO) systems with multiple transmission modes |
US20050047517A1 (en) | 2003-09-03 | 2005-03-03 | Georgios Giannakis B. | Adaptive modulation for multi-antenna transmissions with partial channel knowledge |
WO2005020490A1 (en) | 2003-08-13 | 2005-03-03 | Flarion Technologies, Inc. | Methods and apparatus of power control in wireless communication systems |
JP2005506757A (en) | 2001-10-17 | 2005-03-03 | ノーテル・ネットワークス・リミテッド | Synchronization in Multi-carrier cdma system |
WO2005020488A1 (en) | 2003-08-20 | 2005-03-03 | Matsushita Electric Industrial Co., Ltd. | Radio communication apparatus and subcarrier assignment method |
EP1513356A2 (en) | 2003-09-02 | 2005-03-09 | Sony Ericsson Mobile Communications Japan, Inc. | Radio communication system and radio communication device |
US20050053081A1 (en) | 1999-11-17 | 2005-03-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Acceleration dependent channel switching in mobile telecommunications |
WO2005022811A2 (en) | 2003-09-02 | 2005-03-10 | Qualcomm Incorporated | Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system |
US20050052991A1 (en) | 2003-09-09 | 2005-03-10 | Tamer Kadous | Incremental redundancy transmission in a MIMO communication system |
WO2005025110A2 (en) | 2003-09-03 | 2005-03-17 | Motorola, Inc. | Method and apparatus for relay facilitated communications |
US20050063298A1 (en) | 2003-09-02 | 2005-03-24 | Qualcomm Incorporated | Synchronization in a broadcast OFDM system using time division multiplexed pilots |
US20050073976A1 (en) | 2003-10-01 | 2005-04-07 | Samsung Electronics Co., Ltd. | System and method for transmitting common data in a mobile communication system |
WO2005032004A1 (en) | 2003-09-30 | 2005-04-07 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving an uplink pilot signal in a communication system using an orthogonal frequency division multiple access scheme |
US20050085236A1 (en) | 2003-10-21 | 2005-04-21 | Alcatel | Method for subcarrier allocation and modulation scheme selection in wireless multicarrier transmission system |
TWI232040B (en) | 2003-12-03 | 2005-05-01 | Chung Shan Inst Of Science | CDMA transmitting and receiving apparatus with multiply applied interface functions and a method thereof |
WO2005043855A1 (en) | 2003-10-24 | 2005-05-12 | Qualcomm Incorporated | Rate selection for a multi-carrier mimo system |
EP1531575A2 (en) | 2001-08-08 | 2005-05-18 | Fujitsu Limited | Apparatus and method for correcting errors in transport format indicators (TFI) of W-CDMA communication system |
WO2005046080A1 (en) | 2003-11-10 | 2005-05-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for multi-beam antenna system |
EP1533950A1 (en) | 2003-11-21 | 2005-05-25 | Sony International (Europe) GmbH | Method for connecting a mobile terminal to a wireless communication system, wireless communication system and mobile terminal for a wireless communication system |
US20050111397A1 (en) | 2002-12-06 | 2005-05-26 | Attar Rashid A. | Hybrid TDM/OFDM/CDM reverse link transmission |
US6904283B2 (en) | 2000-12-15 | 2005-06-07 | Adaptix, Inc. | Multi-carrier communications with group-based subcarrier allocation |
US6904550B2 (en) | 2002-12-30 | 2005-06-07 | Motorola, Inc. | Velocity enhancement for OFDM systems |
US20050122898A1 (en) * | 2003-11-05 | 2005-06-09 | Samsung Electronics Co., Ltd. | HARQ method for guaranteeing QoS in a wireless communication system |
US6907020B2 (en) | 2000-01-20 | 2005-06-14 | Nortel Networks Limited | Frame structures supporting voice or streaming communications with high speed data communications in wireless access networks |
EP1542488A1 (en) | 2003-12-12 | 2005-06-15 | Telefonaktiebolaget LM Ericsson (publ) | Method and apparatus for allocating a pilot signal adapted to the channel characteristics |
WO2005055527A1 (en) | 2003-12-01 | 2005-06-16 | Qualcomm Incorporated | Method and apparatus for providing an efficient control channel structure in a wireless communication system |
WO2005055484A1 (en) | 2003-12-05 | 2005-06-16 | Nippon Telegraph And Telephone Corporation | Radio communication device, radio communication method, and radio communication system |
US6909707B2 (en) | 2001-11-06 | 2005-06-21 | Motorola, Inc. | Method and apparatus for pseudo-random noise offset reuse in a multi-sector CDMA system |
US20050135498A1 (en) | 2003-12-17 | 2005-06-23 | Kabushiki Kaisha Toshiba | Signal decoding methods and apparatus |
US20050135324A1 (en) | 2003-12-17 | 2005-06-23 | Yun-Hee Kim | Apparatus for OFDMA transmission and reception for coherent detection in uplink of wireless communication system and method thereof |
KR20050063826A (en) | 2003-12-19 | 2005-06-28 | 엘지전자 주식회사 | Method for allocating radio resource in radio communication system |
WO2005060192A1 (en) | 2003-12-17 | 2005-06-30 | Qualcomm Incorporated | Broadcast transmission with spatial spreading in a multi-antenna communication system |
US20050141624A1 (en) | 2003-12-24 | 2005-06-30 | Intel Corporation | Multiantenna communications apparatus, methods, and system |
US20050147024A1 (en) | 2003-10-29 | 2005-07-07 | Samsung Electronics Co., Ltd | Communication method in an FH-OFDM cellular system |
US6917602B2 (en) | 2002-05-29 | 2005-07-12 | Nokia Corporation | System and method for random access channel capture with automatic retransmission request |
US6917821B2 (en) | 2003-09-23 | 2005-07-12 | Qualcomm, Incorporated | Successive interference cancellation receiver processing with selection diversity |
CN1642051A (en) | 2004-01-08 | 2005-07-20 | 电子科技大学 | Method for obtaining optimum guide symbolic power |
US20050159162A1 (en) | 2004-01-20 | 2005-07-21 | Samsung Electronics Co., Ltd. | Method for transmitting data in mobile communication network |
WO2005065062A2 (en) | 2004-01-09 | 2005-07-21 | Lg Electronics Inc. | Packet transmission method |
US20050157807A1 (en) | 2004-01-20 | 2005-07-21 | Lg Electronics Inc. | Method for transmitting/receiving signal in MIMO system |
JP2005197772A (en) | 2003-12-26 | 2005-07-21 | Toshiba Corp | Adaptive array antenna device |
US20050165949A1 (en) | 2004-01-28 | 2005-07-28 | Teague Edward H. | Method and apparatus of using a single channel to provide acknowledgement and assignment messages |
JP2005203961A (en) | 2004-01-14 | 2005-07-28 | Advanced Telecommunication Research Institute International | Device for controlling array antenna |
US20050164709A1 (en) | 2003-09-30 | 2005-07-28 | Srinivasan Balasubramanian | Method and apparatus for congestion control in high speed wireless packet data networks |
WO2005069538A1 (en) | 2004-01-07 | 2005-07-28 | Deltel, Inc./Pbnext | Method and apparatus for telecommunication system |
US6927728B2 (en) | 2003-03-13 | 2005-08-09 | Motorola, Inc. | Method and apparatus for multi-antenna transmission |
US6928047B1 (en) | 1999-09-11 | 2005-08-09 | The University Of Delaware | Precoded OFDM systems robust to spectral null channels and vector OFDM systems with reduced cyclic prefix length |
US20050175070A1 (en) | 2004-01-20 | 2005-08-11 | Grob Matthew S. | Synchronized broadcast/multicast communication |
US20050174981A1 (en) | 2000-09-01 | 2005-08-11 | Heath Robert W.Jr. | Wireless communications system that supports multiple modes of operation |
US20050180311A1 (en) | 2004-02-17 | 2005-08-18 | Nokia Corporation | OFDM transceiver structure with time-domain scrambling |
US20050180313A1 (en) | 2003-12-03 | 2005-08-18 | Samsung Electronics Co., Ltd. | Apparatus and method for controlling adaptive modulation and coding in an orthogonal frequency division multiplexing communication system |
US6934275B1 (en) | 2000-04-17 | 2005-08-23 | Motorola, Inc. | Apparatus and method for providing separate forward dedicated and shared control channels in a communications system |
US6934266B2 (en) | 2000-11-07 | 2005-08-23 | Intel Corporation | System and method for data transmission from multiple wireless base transceiver stations to a subscriber unit |
US6934340B1 (en) | 2001-03-19 | 2005-08-23 | Cisco Technology, Inc. | Adaptive control system for interference rejections in a wireless communications system |
US20050192011A1 (en) | 2004-02-13 | 2005-09-01 | Samsung Electronics Co., Ltd. | Method and apparatus for performing fast handover through fast ranging in a broadband wireless communication system |
US6940842B2 (en) | 1997-12-17 | 2005-09-06 | Tantivy Communications, Inc. | System and method for maintaining wireless channels over a reverse link of a CDMA wireless communication system |
US6940845B2 (en) | 2000-03-23 | 2005-09-06 | At & T, Corp. | Asymmetric measurement-based dynamic packet assignment system and method for wireless data services |
US20050195852A1 (en) | 2004-02-10 | 2005-09-08 | Vayanos Alkinoos H. | Transmission of signaling information for broadcast and multicast services |
US20050195733A1 (en) | 2004-02-18 | 2005-09-08 | Walton J. R. | Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system |
US20050195886A1 (en) | 2004-03-02 | 2005-09-08 | Nokia Corporation | CPICH processing for SINR estimation in W-CDMA system |
US20050201296A1 (en) | 2004-03-15 | 2005-09-15 | Telefonaktiebolaget Lm Ericsson (Pu | Reduced channel quality feedback |
US20050207367A1 (en) | 2004-03-22 | 2005-09-22 | Onggosanusi Eko N | Method for channel quality indicator computation and feedback in a multi-carrier communications system |
US6954481B1 (en) | 2000-04-18 | 2005-10-11 | Flarion Technologies, Inc. | Pilot use in orthogonal frequency division multiplexing based spread spectrum multiple access systems |
US6954622B2 (en) | 2002-01-29 | 2005-10-11 | L-3 Communications Corporation | Cooperative transmission power control method and system for CDMA communication systems |
WO2005096538A1 (en) | 2004-03-19 | 2005-10-13 | Qualcomm Incorporated | Methods and apparatus for flexible spectrum allocation in communication systems |
EP1376920B1 (en) | 2002-06-27 | 2005-10-26 | Siemens Aktiengesellschaft | Apparatus and method for data transmission in a multi-input multi-output radio communication system |
US20050239465A1 (en) | 2004-03-05 | 2005-10-27 | Lg Electronics Inc. | Mobile broadband wireless access system for transferring service information during handover |
US20050246548A1 (en) | 2004-04-30 | 2005-11-03 | Pekka Laitinen | Method for verifying a first identity and a second identity of an entity |
US20050243791A1 (en) | 2004-04-30 | 2005-11-03 | Samsung Electronics Co., Ltd. | Channel estimation apparatus and method for OFDM/OFDMA receiver |
US6963543B2 (en) | 2001-06-29 | 2005-11-08 | Qualcomm Incorporated | Method and system for group call service |
US20050249266A1 (en) | 2004-05-04 | 2005-11-10 | Colin Brown | Multi-subband frequency hopping communication system and method |
US20050254556A1 (en) | 2004-05-13 | 2005-11-17 | Ntt Docomo, Inc. | Wireless communication system, wireless communication device, wireless reception device, wireless communication method, and channel estimation method |
US20050254416A1 (en) | 2000-09-13 | 2005-11-17 | Rajiv Laroia | Signaling method in an OFDM multiple access system |
US20050254477A1 (en) | 2004-05-17 | 2005-11-17 | Samsung Electronics Co., Ltd. | Beamforming method for an SDM/MIMO system |
US20050259757A1 (en) | 2002-07-17 | 2005-11-24 | Soma Networks, Inc. | Frequency domain equalization in communications systems with scrambling |
US20050259723A1 (en) | 2004-05-24 | 2005-11-24 | Blanchard Scott D | System and method for variable rate multiple access short message communications |
US20050259005A1 (en) | 2004-05-20 | 2005-11-24 | Interdigital Technology Corporation | Beam forming matrix-fed circular array system |
US6970682B2 (en) | 2001-04-27 | 2005-11-29 | Vivato, Inc. | Wireless packet switched communication systems and networks using adaptively steered antenna arrays |
EP1601149A2 (en) | 2004-05-25 | 2005-11-30 | NTT DoCoMo, Inc. | Transmitter and transmission control method |
US20050264467A1 (en) | 2004-04-28 | 2005-12-01 | Hung-Yuan Lin | Orientation adjusting apparatus for a satellite antenna set with fine tuning units |
US20050265293A1 (en) | 2004-05-29 | 2005-12-01 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving a cell identification code in a mobile communication system |
US6975868B2 (en) | 2001-02-21 | 2005-12-13 | Qualcomm Incorporated | Method and apparatus for IS-95B reverse link supplemental code channel frame validation and fundamental code channel rate decision improvement |
US20050276348A1 (en) | 1999-04-19 | 2005-12-15 | Patrick Vandenameele | Method and apparatus for multi-user transmission |
US20050276347A1 (en) | 2004-06-10 | 2005-12-15 | Mujtaba Syed A | Method and apparatus for preamble training in a multiple antenna communication system |
US20050277423A1 (en) | 2004-06-10 | 2005-12-15 | Intel Corporation | Semi-blind analog beamforming for multiple-antenna systems |
US20050282500A1 (en) | 2004-06-16 | 2005-12-22 | Wang Yi-Pin E | Benign interference suppression for received signal quality estimation |
US20050281290A1 (en) | 2004-06-18 | 2005-12-22 | Qualcomm Incorporated | Signal acquisition in a wireless communication system |
WO2005122628A1 (en) | 2004-06-08 | 2005-12-22 | Qualcomm Incorporated | Soft handoff for reverse link in a wireless communication system with frequency reuse |
US20050286408A1 (en) | 2004-06-25 | 2005-12-29 | Lg Electronics Inc. | Allocation of radio resource in orthogonal frequency division multiplexing system |
US20060002451A1 (en) | 2004-06-30 | 2006-01-05 | Masaya Fukuta | Frequency-hopped IFDMA communication system |
US6985466B1 (en) | 1999-11-09 | 2006-01-10 | Arraycomm, Inc. | Downlink signal processing in CDMA systems utilizing arrays of antennae |
US6985498B2 (en) | 2002-08-26 | 2006-01-10 | Flarion Technologies, Inc. | Beacon signaling in a wireless system |
US6985453B2 (en) | 2001-02-15 | 2006-01-10 | Qualcomm Incorporated | Method and apparatus for link quality feedback in a wireless communication system |
US6985434B2 (en) | 2000-09-01 | 2006-01-10 | Nortel Networks Limited | Adaptive time diversity and spatial diversity for OFDM |
US6987746B1 (en) | 1999-03-15 | 2006-01-17 | Lg Information & Communications, Ltd. | Pilot signals for synchronization and/or channel estimation |
US20060013285A1 (en) | 2004-07-16 | 2006-01-19 | Takahiro Kobayashi | Radio communication apparatus, base station and system |
US20060018347A1 (en) | 2004-07-21 | 2006-01-26 | Avneesh Agrawal | Shared signaling channel for a communication system |
US20060018397A1 (en) | 2004-07-21 | 2006-01-26 | Qualcomm Incorporated | Capacity based rank prediction for MIMO design |
US20060018336A1 (en) | 2004-07-21 | 2006-01-26 | Arak Sutivong | Efficient signaling over access channel |
US6993342B2 (en) | 2003-05-07 | 2006-01-31 | Motorola, Inc. | Buffer occupancy used in uplink scheduling for a communication device |
US20060026344A1 (en) | 2002-10-31 | 2006-02-02 | Sun Hsu Windsor W | Storage system and method for reorganizing data to improve prefetch effectiveness and reduce seek distance |
JP2006505172A (en) | 2002-10-30 | 2006-02-09 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィKoninklijke Philips Electronics N.V. | Trellis based receiver |
US20060029289A1 (en) | 2004-08-05 | 2006-02-09 | Kabushiki Kaisha Toshiba | Information processing apparatus and method for detecting scene change |
RU2005129079A (en) | 2003-02-18 | 2006-02-10 | Квэлкомм Инкорпорейтед (US) | Planned and offline transmission and acknowledgments |
US20060034173A1 (en) | 2004-07-21 | 2006-02-16 | Qualcomm Incorporated | Method of providing a gap indication during a sticky assignment |
US7002900B2 (en) | 2002-10-25 | 2006-02-21 | Qualcomm Incorporated | Transmit diversity processing for a multi-antenna communication system |
US20060040655A1 (en) * | 2004-08-12 | 2006-02-23 | Lg Electronics Inc. | Timing of point-to-multipoint control channel information |
US20060039332A1 (en) | 2004-08-17 | 2006-02-23 | Kotzin Michael D | Mechanism for hand off using subscriber detection of synchronized access point beacon transmissions |
US20060039344A1 (en) | 2004-08-20 | 2006-02-23 | Lucent Technologies, Inc. | Multiplexing scheme for unicast and broadcast/multicast traffic |
US7006848B2 (en) | 2001-03-23 | 2006-02-28 | Qualcomm Incorporated | Method and apparatus for utilizing channel state information in a wireless communication system |
US7006529B2 (en) | 2000-05-12 | 2006-02-28 | Nokia Mobile Phones, Ltd. | Method for arranging communication between terminals and an access point in a communication system |
US7006557B2 (en) | 2002-01-31 | 2006-02-28 | Qualcomm Incorporated | Time tracking loop for diversity pilots |
US20060045003A1 (en) | 2004-08-26 | 2006-03-02 | Samsung Electronics Co., Ltd. | Method for detecting initial operation mode in wireless communication system employing OFDMA scheme |
US7009500B2 (en) | 2002-02-13 | 2006-03-07 | Ford Global Technologies, Llc | Method for operating a pre-crash sensing system in a vehicle having a countermeasure system using stereo cameras |
WO2006026344A1 (en) | 2004-08-25 | 2006-03-09 | Qualcomm Incorporated | Ofdm system with code spreading of signalling data |
US20060050770A1 (en) | 2004-09-03 | 2006-03-09 | Qualcomm Incorporated | Receiver structures for spatial spreading with space-time or space-frequency transmit diversity |
US7013143B2 (en) | 2003-04-30 | 2006-03-14 | Motorola, Inc. | HARQ ACK/NAK coding for a communication device during soft handoff |
US20060056340A1 (en) | 2004-09-10 | 2006-03-16 | Nokia Corporation | Scheduler |
US20060057958A1 (en) | 2004-09-10 | 2006-03-16 | Samsung Electronics Co., Ltd. | Method of creating active multipaths for mimo wireless systems |
US7016319B2 (en) | 2003-03-24 | 2006-03-21 | Motorola, Inc. | Method and apparatus for reducing co-channel interference in a communication system |
US7016318B2 (en) | 1999-01-13 | 2006-03-21 | Qualcomm, Incorporated | System for allocating resources in a communication system |
US7016425B1 (en) | 1999-01-15 | 2006-03-21 | Sony International (Europe) Gmbh | Quasi-differential modulation/demodulation method for multi-amplitude digital modulated signals and OFDM system |
US20060067421A1 (en) | 2004-09-03 | 2006-03-30 | Qualcomm Incorporated | Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system |
US7023880B2 (en) | 2002-10-28 | 2006-04-04 | Qualcomm Incorporated | Re-formatting variable-rate vocoder frames for inter-system transmissions |
US20060078075A1 (en) | 2004-10-12 | 2006-04-13 | Qualcomm Incorporated | Data detection and decoding with considerations for channel estimation errors due to guard subbands |
CN1252919C (en) | 1999-12-21 | 2006-04-19 | Eta草图制造公司 | Ultra thin piezoelectric resonator |
US20060083183A1 (en) | 2004-10-20 | 2006-04-20 | Teague Edward H | Efficient transmission of signaling using channel constraints |
US20060083159A1 (en) | 2004-10-14 | 2006-04-20 | Rajiv Laroia | Wireless terminal methods and apparatus for use in wireless communications systems supporting different size frequency bands |
US7039356B2 (en) | 2002-03-12 | 2006-05-02 | Blue7 Communications | Selecting a set of antennas for use in a wireless communication system |
US7039370B2 (en) | 2003-10-16 | 2006-05-02 | Flarion Technologies, Inc. | Methods and apparatus of providing transmit and/or receive diversity with multiple antennas in wireless communication systems |
US20060092054A1 (en) | 2004-09-08 | 2006-05-04 | Qinghua Li | Recursive reduction of channel state feedback |
US7042857B2 (en) | 2002-10-29 | 2006-05-09 | Qualcom, Incorporated | Uplink pilot and signaling transmission in wireless communication systems |
US7047006B2 (en) | 2004-04-28 | 2006-05-16 | Motorola, Inc. | Method and apparatus for transmission and reception of narrowband signals within a wideband communication system |
US20060104333A1 (en) | 2004-11-18 | 2006-05-18 | Motorola, Inc. | Acknowledgment for a time division channel |
US7050402B2 (en) | 2000-06-09 | 2006-05-23 | Texas Instruments Incorporated | Wireless communications with frequency band selection |
US7050759B2 (en) | 2002-02-19 | 2006-05-23 | Qualcomm Incorporated | Channel quality feedback mechanism and method |
US7050405B2 (en) | 2002-08-23 | 2006-05-23 | Qualcomm Incorporated | Method and system for a data transmission in a communication system |
US20060111054A1 (en) | 2004-11-22 | 2006-05-25 | Interdigital Technology Corporation | Method and system for selecting transmit antennas to reduce antenna correlation |
US7054301B1 (en) | 2001-12-31 | 2006-05-30 | Arraycomm, Llc. | Coordinated hopping in wireless networks using adaptive antenna arrays |
US20060114858A1 (en) | 2004-11-16 | 2006-06-01 | Qualcomm Incorporated | Closed-loop rate control for a MIMO communication system |
US20060120469A1 (en) | 2004-12-03 | 2006-06-08 | Maltsev Alexander A | Multiple antenna multicarrier transmitter and method for adaptive beamforming with transmit-power normalization |
US20060120471A1 (en) | 2004-12-01 | 2006-06-08 | Bae Systems Information And Electronic Systems Integration Inc. | Tree structured multicarrier multiple access systems |
US7061898B2 (en) | 2001-03-01 | 2006-06-13 | Nortel Networks Limited | System and method for time slotted code division multiple access communication in a wireless communication environment |
US20060126491A1 (en) | 2004-09-20 | 2006-06-15 | Samsung Electronics Co., Ltd. | Cell search apparatus and method in a mobile communication system using multiple access scheme |
EP1538863B1 (en) | 1997-03-27 | 2006-06-21 | Nokia Corporation | Allocation of control channel in packet radio network |
US20060133455A1 (en) | 2004-12-22 | 2006-06-22 | Avneesh Agrawal | Multiple modulation technique for use in a communication system |
US20060133269A1 (en) | 2004-12-22 | 2006-06-22 | Qualcomm Incorporated | Methods and apparatus for efficient paging in a wireless communication system |
US20060133521A1 (en) | 2004-07-21 | 2006-06-22 | Qualcomm Incorporated | Performance based rank prediction for MIMO design |
US7069009B2 (en) | 2002-09-30 | 2006-06-27 | Samsung Electronics Co., Ltd | Apparatus and method for allocating resources of a virtual cell in an OFDM mobile communication system |
EP1507421B1 (en) | 2003-08-14 | 2006-06-28 | Matsushita Electric Industrial Co., Ltd. | Base station synchronization during soft handover |
US20060140289A1 (en) | 2004-12-27 | 2006-06-29 | Mandyam Giridhar D | Method and apparatus for providing an efficient pilot scheme for channel estimation |
WO2006069301A2 (en) | 2004-12-22 | 2006-06-29 | Qualcomm Incorporated | Methods and apparatus for flexible hopping in a multiple-access communication network |
US20060155534A1 (en) | 2005-01-13 | 2006-07-13 | Lin Xintian E | Codebook generation system and associated methods |
US20060156199A1 (en) | 2004-12-22 | 2006-07-13 | Qualcomm Incorporated | Pruned bit-reversal interleaver |
US20060153239A1 (en) | 2004-12-22 | 2006-07-13 | Qualcomm Incorporated | Method of using a share resources in a communication system |
KR100606099B1 (en) | 2005-06-22 | 2006-07-20 | 삼성전자주식회사 | Method and apparatus for configuration of ack/nack channel in a frequency division multiplexing system |
EP1267513A3 (en) | 2001-06-11 | 2006-07-26 | Unique Broadband Systems, Inc. | Multiplexing of multicarrier signals |
WO2006077696A1 (en) | 2005-01-18 | 2006-07-27 | Sharp Kabushiki Kaisha | Wireless communication apparatus, mobile terminal and wireless communication method |
US7085574B2 (en) | 2003-04-15 | 2006-08-01 | Qualcomm, Incorporated | Grant channel assignment |
CN1267437C (en) | 2000-10-20 | 2006-08-02 | 桑多斯股份公司 | Pharmaceutical compositions |
JP2006211537A (en) | 2005-01-31 | 2006-08-10 | Nec Commun Syst Ltd | Code state change apparatus, code state change method, and code state change program |
GB2412541B (en) | 2004-02-11 | 2006-08-16 | Samsung Electronics Co Ltd | Method of operating TDD/virtual FDD hierarchical cellular telecommunication system |
US7095708B1 (en) | 1999-06-23 | 2006-08-22 | Cingular Wireless Ii, Llc | Methods and apparatus for use in communicating voice and high speed data in a wireless communication system |
US20060189321A1 (en) | 2005-02-24 | 2006-08-24 | Samsung Electronics Co., Ltd. | System and method for allocating frequency resource in a multicell communication system |
US7099299B2 (en) | 2002-03-04 | 2006-08-29 | Agency For Science, Technology And Research | CDMA system with frequency domain equalization |
US7103384B2 (en) | 2002-05-17 | 2006-09-05 | Samsung Electronics, Co., Ltd. | Apparatus and method for forming a forward link transmission beam of a smart antenna in a mobile communication system |
CA2348137C (en) | 2000-05-17 | 2006-09-05 | Eiko Seidel | Hybrid arq method for packet data transmission |
US7106319B2 (en) | 2001-09-14 | 2006-09-12 | Seiko Epson Corporation | Power supply circuit, voltage conversion circuit, semiconductor device, display device, display panel, and electronic equipment |
US20060203794A1 (en) | 2005-03-10 | 2006-09-14 | Qualcomm Incorporated | Systems and methods for beamforming in multi-input multi-output communication systems |
US20060203932A1 (en) | 2005-03-07 | 2006-09-14 | Ravi Palanki | Pilot transmission and channel estimation for a communication system utilizing frequency division multiplexing |
US20060203891A1 (en) | 2005-03-10 | 2006-09-14 | Hemanth Sampath | Systems and methods for beamforming and rate control in a multi-input multi-output communication systems |
US20060203708A1 (en) | 2005-03-11 | 2006-09-14 | Hemanth Sampath | Systems and methods for beamforming feedback in multi antenna communication systems |
US20060209732A1 (en) | 2005-03-17 | 2006-09-21 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US20060209670A1 (en) | 2005-03-17 | 2006-09-21 | Alexei Gorokhov | Pilot signal transmission for an orthogonal frequency division wireless communication system |
WO2006099577A1 (en) | 2005-03-16 | 2006-09-21 | Qualcomm Incorporated | Channel structures for a quasi-orthogonal multiple-access communication system |
US20060209764A1 (en) | 2005-03-04 | 2006-09-21 | Samsung Electronics Co., Ltd. | User scheduling method for multiuser MIMO communication system |
WO2006099545A1 (en) | 2005-03-15 | 2006-09-21 | Qualcomm Incorporated | Power control based on an overlapping factor in a quasi-orthogonal ofdm system |
US20060209973A1 (en) | 2005-03-17 | 2006-09-21 | Alexei Gorokhov | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US7113808B2 (en) | 2002-08-30 | 2006-09-26 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving signals using multi-antennas |
US20060218459A1 (en) | 2004-08-13 | 2006-09-28 | David Hedberg | Coding systems and methods |
US20060215777A1 (en) | 2005-03-10 | 2006-09-28 | Raghuraman Krishnamoorthi | Partial FFT processing and demodulation for a system with multiple subcarriers |
US20060223449A1 (en) | 2005-04-01 | 2006-10-05 | Qualcomm Incorporated | Systems and methods for control channel signaling |
US7120134B2 (en) | 2001-02-15 | 2006-10-10 | Qualcomm, Incorporated | Reverse link channel architecture for a wireless communication system |
US7120395B2 (en) | 2003-10-20 | 2006-10-10 | Nortel Networks Limited | MIMO communications |
RU2285351C2 (en) | 2000-11-07 | 2006-10-10 | Нокиа Корпорейшн | System for planning transfer of traffic of data on basis of packets along ascending communication line in radio communication system |
US20060233131A1 (en) | 2005-04-19 | 2006-10-19 | Qualcomm Incorporated | Channel quality reporting for adaptive sectorization |
US20060233124A1 (en) | 2005-04-19 | 2006-10-19 | Qualcomm Incorporated | Frequency hopping design for single carrier FDMA systems |
RU2285388C2 (en) | 2004-09-27 | 2006-10-20 | Оао "Онежский Тракторный Завод" | Chokerless tree skidding machine |
US7131086B2 (en) | 2004-03-30 | 2006-10-31 | Fujitsu Limited | Logic verification device, logic verification method and logic verification computer program |
US7133460B2 (en) | 2000-10-20 | 2006-11-07 | Samsung Electronics Co., Ltd. | Apparatus and method for determining a data rate of packet data in a mobile communication system |
CN1284795C (en) | 2003-08-15 | 2006-11-15 | 上海师范大学 | Magnetic nano particle nucleic acid separator, and its preparing method and use |
US7139328B2 (en) | 2004-11-04 | 2006-11-21 | Motorola, Inc. | Method and apparatus for closed loop data transmission |
US20060270427A1 (en) | 2005-05-30 | 2006-11-30 | Masaaki Shida | Wireless transceiver |
WO2006127544A2 (en) | 2005-05-20 | 2006-11-30 | Qualcomm Incorporated | Enhanced frequency division multiple access for wireless communication |
US7145959B2 (en) | 2001-04-25 | 2006-12-05 | Magnolia Broadband Inc. | Smart antenna based spectrum multiplexing using existing pilot signals for orthogonal frequency division multiplexing (OFDM) modulations |
US7145940B2 (en) | 2003-12-05 | 2006-12-05 | Qualcomm Incorporated | Pilot transmission schemes for a multi-antenna system |
US20060274836A1 (en) | 2005-06-01 | 2006-12-07 | Hemanth Sampath | Sphere decoding apparatus |
US7149199B2 (en) | 2000-05-30 | 2006-12-12 | Korea Advanced Institute Of Science And Technology | Multi-dimensional orthogonal resource hopping multiplexing communications method and apparatus |
US7149238B2 (en) | 1997-02-24 | 2006-12-12 | Cingular Wireless Ii, Llc | Highly bandwidth-efficient communications |
US7151936B2 (en) | 2001-01-25 | 2006-12-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Downlink scheduling using parallel code trees |
US20060285515A1 (en) | 2005-06-16 | 2006-12-21 | Qualcomm Incorporated | Methods and apparatus for efficient providing of scheduling information |
WO2006134032A1 (en) | 2005-06-17 | 2006-12-21 | Nokia Siemens Networks Gmbh & Co. Kg | Method for establishing a connection by means of mobile terminals in communication networks with variable bandwidths |
US20060286982A1 (en) | 2005-06-16 | 2006-12-21 | Rajat Prakash | Method and apparatus for adaptive registration and paging area determination |
US20060286974A1 (en) | 2005-06-16 | 2006-12-21 | Qualcomm Incorporated | Adaptive sectorization in cellular systems |
US20060285485A1 (en) | 2005-06-16 | 2006-12-21 | Avneesh Agrawal | Quick paging channel with reduced probability of missed page |
US20060286995A1 (en) | 2005-06-20 | 2006-12-21 | Texas Instruments Incorporated | Slow Uplink Power Control |
US7154936B2 (en) | 2001-12-03 | 2006-12-26 | Qualcomm, Incorporated | Iterative detection and decoding for a MIMO-OFDM system |
US20060292989A1 (en) | 2005-06-14 | 2006-12-28 | Alcatel | Method for uplink interference coordination in single frequency networks, a base station, a mobile terminal and a mobile network therefor |
US20060291371A1 (en) | 2005-05-18 | 2006-12-28 | Qualcomm Incorporated | Softer and soft handoff in an orthogonal frequency division wireless communication system |
WO2006138196A1 (en) | 2005-06-13 | 2006-12-28 | Qualcomm Flarion Technologies, Inc. | Hybrid satellite and terrestrial ofdm communication method and apparatus |
US7157351B2 (en) | 2004-05-20 | 2007-01-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Ozone vapor clean method |
US20070005749A1 (en) | 2005-06-16 | 2007-01-04 | Qualcomm Incorporated | Robust rank perdiction for a MIMO system |
US20070004430A1 (en) | 2005-07-04 | 2007-01-04 | Samsung Electronics Co., Ltd. | Position measuring system and method using wireless broadband (WIBRO) signal |
US7161971B2 (en) | 2002-04-29 | 2007-01-09 | Qualcomm, Incorporated | Sending transmission format information on dedicated channels |
US20070009011A1 (en) | 2003-06-25 | 2007-01-11 | Coulson Alan J | Narrowband interference suppression for ofdm system |
US7164649B2 (en) | 2001-11-02 | 2007-01-16 | Qualcomm, Incorporated | Adaptive rate control for OFDM communication system |
US7167916B2 (en) | 2002-08-30 | 2007-01-23 | Unisys Corporation | Computer OS dispatcher operation with virtual switching queue and IP queues |
CN1296682C (en) | 2004-08-17 | 2007-01-24 | 广东省基础工程公司 | Device and its method for monitoring river bed sedimentation in tunnel-pass-through river construction |
US20070019596A1 (en) | 2005-06-16 | 2007-01-25 | Barriac Gwendolyn D | Link assignment messages in lieu of assignment acknowledgement messages |
RU2292655C2 (en) | 2000-10-23 | 2007-01-27 | Квэлкомм Инкорпорейтед | Method and device for decreasing rank estimate of channel in communication system |
US7170937B2 (en) | 2002-05-01 | 2007-01-30 | Texas Instruments Incorporated | Complexity-scalable intra-frame prediction technique |
US20070025345A1 (en) | 2005-07-27 | 2007-02-01 | Bachl Rainer W | Method of increasing the capacity of enhanced data channel on uplink in a wireless communications systems |
US7180627B2 (en) | 2002-08-16 | 2007-02-20 | Paxar Corporation | Hand-held portable printer with RFID read/write capability |
US7181170B2 (en) | 2003-12-22 | 2007-02-20 | Motorola Inc. | Apparatus and method for adaptive broadcast transmission |
JP2007503790A (en) | 2003-05-12 | 2007-02-22 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Soft handoff using interference cancellation in radio frequency hopping communication systems |
US20070041404A1 (en) | 2005-08-08 | 2007-02-22 | Ravi Palanki | Code division multiplexing in a single-carrier frequency division multiple access system |
US20070041457A1 (en) | 2005-08-22 | 2007-02-22 | Tamer Kadous | Method and apparatus for providing antenna diversity in a wireless communication system |
US7184426B2 (en) | 2002-12-12 | 2007-02-27 | Qualcomm, Incorporated | Method and apparatus for burst pilot for a time division multiplex system |
US20070049218A1 (en) | 2005-08-30 | 2007-03-01 | Qualcomm Incorporated | Precoding and SDMA support |
US20070047495A1 (en) | 2005-08-29 | 2007-03-01 | Qualcomm Incorporated | Reverse link soft handoff in a wireless multiple-access communication system |
US20070047485A1 (en) | 2005-08-24 | 2007-03-01 | Qualcomm Incorporated | Varied transmission time intervals for wireless communication system |
US7188300B2 (en) | 2001-05-01 | 2007-03-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Flexible layer one for radio interface to PLMN |
US20070053383A1 (en) | 2005-08-31 | 2007-03-08 | Infineon Technologies Ag | Apparatus and method for forming and ascertaining system information from system information medium access control protocol messages |
US20070060178A1 (en) | 2005-08-22 | 2007-03-15 | Alexei Gorokhov | Segment sensitive scheduling |
US20070064669A1 (en) | 2005-03-30 | 2007-03-22 | Motorola, Inc. | Method and apparatus for reducing round trip latency and overhead within a communication system |
US7197282B2 (en) | 2001-07-26 | 2007-03-27 | Ericsson Inc. | Mobile station loop-back signal processing |
US20070071147A1 (en) | 2005-06-16 | 2007-03-29 | Hemanth Sampath | Pseudo eigen-beamforming with dynamic beam selection |
US7209712B2 (en) | 2002-09-23 | 2007-04-24 | Qualcomm, Incorporated | Mean square estimation of channel quality measure |
TW200718128A (en) | 2005-07-18 | 2007-05-01 | Nokia Corp | Techniques to transmit data rate control signals for multi-carrier wireless systems |
US20070097927A1 (en) | 2005-10-27 | 2007-05-03 | Alexei Gorokhov | Puncturing signaling channel for a wireless communication system |
US20070097910A1 (en) | 2005-10-27 | 2007-05-03 | Ji Tingfang | SDMA resource management |
US20070097922A1 (en) | 2005-10-27 | 2007-05-03 | Qualcomm Incorporated | Tune-away protocols for wireless systems |
US20070097981A1 (en) * | 2005-11-02 | 2007-05-03 | Aris Papasakellariou | Methods for Determining the Location of Control Channels in the Uplink of Communication Systems |
US20070097853A1 (en) | 2005-10-27 | 2007-05-03 | Qualcomm Incorporated | Shared signaling channel |
US20070098120A1 (en) | 2005-10-27 | 2007-05-03 | Wang Michael M | Apparatus and methods for reducing channel estimation noise in a wireless transceiver |
US20070097909A1 (en) | 2005-10-27 | 2007-05-03 | Aamod Khandekar | Scalable frequency band operation in wireless communication systems |
US20070097897A1 (en) | 2005-10-27 | 2007-05-03 | Qualcomm Incorporated | Method and apparatus for bootstraping information in a communication system |
US20070097889A1 (en) | 2005-10-27 | 2007-05-03 | Qualcomm Incorporated | Method and apparatus for pre-coding frequency division duplexing system |
US20070098050A1 (en) | 2005-10-27 | 2007-05-03 | Aamod Khandekar | Pilot symbol transmission in wireless communication systems |
US20070097942A1 (en) | 2005-10-27 | 2007-05-03 | Qualcomm Incorporated | Varied signaling channels for a reverse link in a wireless communication system |
US20070097908A1 (en) | 2005-10-27 | 2007-05-03 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US20070110172A1 (en) | 2003-12-03 | 2007-05-17 | Australian Telecommunications Cooperative Research | Channel estimation for ofdm systems |
US20070115795A1 (en) | 2005-11-18 | 2007-05-24 | Gore Dhananjay A | Frequency division multiple access schemes for wireless communication |
US7230942B2 (en) | 2003-10-03 | 2007-06-12 | Qualcomm, Incorporated | Method of downlink resource allocation in a sectorized environment |
US7233634B1 (en) | 2003-03-27 | 2007-06-19 | Nortel Networks Limited | Maximum likelihood decoding |
US7236747B1 (en) | 2003-06-18 | 2007-06-26 | Samsung Electronics Co., Ltd. (SAIT) | Increasing OFDM transmit power via reduction in pilot tone |
US20070149194A1 (en) | 2005-12-22 | 2007-06-28 | Arnab Das | Communications device control information reporting related methods and apparatus |
US20070149228A1 (en) | 2005-12-22 | 2007-06-28 | Arnab Das | Methods and apparatus for flexible reporting of control information |
US7242722B2 (en) | 2003-10-17 | 2007-07-10 | Motorola, Inc. | Method and apparatus for transmission and reception within an OFDM communication system |
US7243150B2 (en) | 2002-07-10 | 2007-07-10 | Radwin Ltd. | Reducing the access delay for transmitting processed data over transmission data |
JP2007519281A (en) | 2003-10-03 | 2007-07-12 | 株式会社東芝 | Signal decoding method and apparatus |
US20070159969A1 (en) | 2005-12-22 | 2007-07-12 | Arnab Das | Methods and apparatus for communicating transmission backlog information |
US20070165738A1 (en) | 2005-10-27 | 2007-07-19 | Barriac Gwendolyn D | Method and apparatus for pre-coding for a mimo system |
US7248841B2 (en) | 2000-06-13 | 2007-07-24 | Agee Brian G | Method and apparatus for optimization of wireless multipoint electromagnetic communication networks |
JP2007520309A (en) | 2004-02-05 | 2007-07-26 | モトリカ インク | Music rehabilitation |
US20070177681A1 (en) | 2003-12-27 | 2007-08-02 | In-Kyeong Choi | Mimo-ofdm system using eigenbeamforming method |
US20070177631A1 (en) | 2004-02-17 | 2007-08-02 | Huawei Technologies Co., Ltd. | Multiplexing scheme in a communication system |
US20070183386A1 (en) | 2005-08-03 | 2007-08-09 | Texas Instruments Incorporated | Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation |
US20070183303A1 (en) | 2005-05-26 | 2007-08-09 | Zhouyue Pi | Method and apparatus for specifying channel state information for multiple carriers |
US7257423B2 (en) | 2002-11-20 | 2007-08-14 | Matsushita Electric Industrial Co., Ltd. | Base station apparatus and transmission assignment control method |
US7257406B2 (en) | 2004-07-23 | 2007-08-14 | Qualcomm, Incorporated | Restrictive reuse set management |
US7257167B2 (en) | 2003-08-19 | 2007-08-14 | The University Of Hong Kong | System and method for multi-access MIMO channels with feedback capacity constraint |
US7260153B2 (en) | 2002-09-09 | 2007-08-21 | Mimopro Ltd. | Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels |
US20070207812A1 (en) | 2006-01-05 | 2007-09-06 | Qualcomm Incorporated | Reverse link other sector communication |
US20070211616A1 (en) | 2005-10-27 | 2007-09-13 | Aamod Khandekar | Resource allocation for shared signaling channels |
US20070211667A1 (en) | 2005-10-27 | 2007-09-13 | Avneesh Agrawal | Assignment acknowledgement for a wireless communication system |
US20070230324A1 (en) | 2004-02-13 | 2007-10-04 | Neocific, Inc. | Methods and Apparatus for Multi-Carrier Communication Systems with Adaptive Transmission and Feedback |
US7280467B2 (en) | 2003-01-07 | 2007-10-09 | Qualcomm Incorporated | Pilot transmission schemes for wireless multi-carrier communication systems |
US20070242653A1 (en) | 2006-04-13 | 2007-10-18 | Futurewei Technologies, Inc. | Method and apparatus for sharing radio resources in an ofdma-based communication system |
US7289570B2 (en) | 2000-04-10 | 2007-10-30 | Texas Instruments Incorporated | Wireless communications |
US7290195B2 (en) | 2004-03-05 | 2007-10-30 | Microsoft Corporation | Adaptive acknowledgment delay |
US7289585B2 (en) | 2004-01-12 | 2007-10-30 | Intel Corporation | Multicarrier receivers and methods for separating transmitted signals in a multiple antenna system |
US7292863B2 (en) | 2002-11-19 | 2007-11-06 | Ntt Docomo, Inc. | Admission control method and device in mobile communication system |
US7292651B2 (en) | 1998-12-31 | 2007-11-06 | At&T Corp. | Pilot-aided channel estimation for OFDM in wireless systems |
US20070263743A1 (en) | 2003-12-19 | 2007-11-15 | Yu-Ro Lee | Method for Allocating Data and Pilots, and Transmitting Method and Device and Receiving Method and Device Using the Same in Orthogonal Frequency Division Multiple Access System |
US20070280336A1 (en) | 2004-02-27 | 2007-12-06 | Nokia Corporation | Constrained Optimization Based Mimo Lmmse-Sic Receiver for Cdma Downlink |
US20070281702A1 (en) | 2004-06-25 | 2007-12-06 | Samsung Electronics Co., Ltd. | System and method for performing soft handover in broadband wireless access communication system |
US7313407B2 (en) | 2002-09-05 | 2007-12-25 | Aharon Shapira | Allocation of radio resources in a CDMA2000 cellular system |
US7313126B2 (en) | 2003-07-31 | 2007-12-25 | Samsung Electronics Co., Ltd. | Control system and multiple access method in wireless communication system |
US7313086B2 (en) | 2003-02-13 | 2007-12-25 | Kabushiki Kaisha Toshiba | OFDM receiver, semiconductor integrated circuit and OFDM method for receiving a signal |
US7313174B2 (en) | 2001-02-08 | 2007-12-25 | Wavecom | Method for extracting a variable reference pattern |
US20080039129A1 (en) | 2004-06-30 | 2008-02-14 | Xiaodong Li | Methods and Apparatus for Power Control in Multi-carier Wireless Systems |
US7336727B2 (en) | 2004-08-19 | 2008-02-26 | Nokia Corporation | Generalized m-rank beamformers for MIMO systems using successive quantization |
EP1898542A1 (en) | 2005-06-14 | 2008-03-12 | NTT DoCoMo INC. | Transmitting apparatus, transmitting method, receiving apparatus and receiving method |
US7349667B2 (en) | 2001-10-19 | 2008-03-25 | Texas Instruments Incorporated | Simplified noise estimation and/or beamforming for wireless communications |
US7349371B2 (en) | 2000-09-29 | 2008-03-25 | Arraycomm, Llc | Selecting random access channels |
US7356000B2 (en) | 2003-11-21 | 2008-04-08 | Motorola, Inc. | Method and apparatus for reducing call setup delay |
US7356005B2 (en) | 2002-06-07 | 2008-04-08 | Nokia Corporation | Apparatus and associated method, by which to facilitate scheduling of data communications in a radio communications system |
US7356073B2 (en) | 2003-09-10 | 2008-04-08 | Nokia Corporation | Method and apparatus providing an advanced MIMO receiver that includes a signal-plus-residual-interference (SPRI) detector |
US7359327B2 (en) | 2003-03-26 | 2008-04-15 | Nec Corporation | Radio communication system, base station, method of correcting radio link quality information employed therefor, and its program |
US7363055B2 (en) | 2002-05-09 | 2008-04-22 | Casabyte, Inc. | Method, apparatus and article to remotely associate wireless communications devices with subscriber identities and/or proxy wireless communications devices |
US20080095262A1 (en) | 2004-08-03 | 2008-04-24 | Agency For Science, Technology And Research | Method for Transmitting a Digital Data Stream, Transmitter, Method for Receiving a Digital Data Stream and Receiver |
US20080095223A1 (en) | 2004-09-30 | 2008-04-24 | Wen Tong | Channel Sounding in Ofdma System |
US7366253B2 (en) | 2003-05-15 | 2008-04-29 | Samsung Electronics Co., Ltd. | Device and method for transmitting and receiving data by a transmit diversity scheme using multiple antennas in a mobile communication system |
US7366223B1 (en) | 2002-06-06 | 2008-04-29 | Arraycomm, Llc | Modifying hopping sequences in wireless networks |
US7366520B2 (en) | 2001-07-03 | 2008-04-29 | Siemens Aktiengesellschaft | Adaptive signal processing method in a MIMO-system |
US7369531B2 (en) | 2003-10-31 | 2008-05-06 | Samsung Eectronics Co., Ltd | Apparatus and method for transmitting/receiving a pilot signal for distinguishing a base station in a communication system using an OFDM scheme |
US7372912B2 (en) | 2003-05-15 | 2008-05-13 | Lg Electronics Inc. | Method and apparatus for allocating channelization codes for wireless communications |
US7372911B1 (en) | 2002-06-28 | 2008-05-13 | Arraycomm, Llc | Beam forming and transmit diversity in a multiple array radio communications system |
US7379489B2 (en) | 2002-07-18 | 2008-05-27 | Interdigital Technology Corporation | Orthogonal variable spreading factor (OVSF) code assignment |
US7382764B2 (en) | 2004-04-09 | 2008-06-03 | Oki Electric Industry Co., Ltd. | Method of controlling a receiving operation |
US7392014B2 (en) | 2002-06-27 | 2008-06-24 | Koninklijke Philips Electronics N.V. | Measurement of channel characteristics in a communication system |
US7394865B2 (en) | 2003-06-25 | 2008-07-01 | Nokia Corporation | Signal constellations for multi-carrier systems |
US7403745B2 (en) | 2005-08-02 | 2008-07-22 | Lucent Technologies Inc. | Channel quality predictor and method of estimating a channel condition in a wireless communications network |
US7403748B1 (en) | 2000-04-07 | 2008-07-22 | Nokia Coporation | Multi-antenna transmission method and system |
US7406336B2 (en) | 2003-12-22 | 2008-07-29 | Telefonaktiebolaget L M Ericsson (Publ) | Method for determining transmit weights |
US7406119B2 (en) | 1997-05-09 | 2008-07-29 | Broadcom Corporation | Method and apparatus for reducing signal processing requirements for transmitting packet-based data |
US20080181139A1 (en) | 2002-05-31 | 2008-07-31 | Cisco Technology, Inc., A Corporation Of California | Method And Apparatus For Storing Tree Data Structures Among And Within Multiple Memory Channels |
US7412212B2 (en) | 2002-10-07 | 2008-08-12 | Nokia Corporation | Communication system |
US7411898B2 (en) | 2004-05-10 | 2008-08-12 | Infineon Technologies Ag | Preamble generator for a multiband OFDM transceiver |
US7418043B2 (en) | 2000-07-19 | 2008-08-26 | Lot 41 Acquisition Foundation, Llc | Software adaptable high performance multicarrier transmission protocol |
US7418246B2 (en) | 2003-02-26 | 2008-08-26 | Samsung Electronics Co., Ltd. | Physical layer unit for transmitting or receiving various signals, wireless LAN system including the same, and wireless LAN method using the wireless LAN system |
JP2008535398A (en) | 2005-04-01 | 2008-08-28 | インターデイジタル テクノロジー コーポレーション | Method and apparatus for selecting a multiband access point for association with a multiband mobile terminal |
US7423991B2 (en) | 2003-12-23 | 2008-09-09 | Samsung Electronics Co., Ltd | Apparatus and method for allocating subchannels adaptively according to frequency reuse rates in an orthogonal frequency division multiple access system |
US7426426B2 (en) | 2004-07-02 | 2008-09-16 | Vibration Research Corporation | System and method for simultaneously controlling spectrum and kurtosis of a random vibration |
US7428426B2 (en) | 2004-08-06 | 2008-09-23 | Qualcomm, Inc. | Method and apparatus for controlling transmit power in a wireless communications device |
US7433661B2 (en) | 2003-06-25 | 2008-10-07 | Lucent Technologies Inc. | Method for improved performance and reduced bandwidth channel state information feedback in communication systems |
US20080253279A1 (en) | 2004-03-15 | 2008-10-16 | Jianglei Ma | Pilot Design for Ofdm Systems with Four Transmit Antennas |
US7443835B2 (en) | 2001-12-03 | 2008-10-28 | Nokia Corporation | Policy based mechanisms for selecting access routers and mobile context |
US20080267157A1 (en) | 2007-04-30 | 2008-10-30 | Jung Ah Lee | Method and apparatus for packet wireless telecommunications |
US7447270B1 (en) | 2000-11-17 | 2008-11-04 | Nokia Corporation | Method for controlling the data signal weighting in multi-element transceivers and corresponding devices and telecommunications network |
US7460466B2 (en) | 2002-12-13 | 2008-12-02 | Electronics And Telecommunications Research Institute | Apparatus and method for signal constitution for downlink of OFDMA-based cellular system |
US20080299983A1 (en) | 2005-12-31 | 2008-12-04 | Posdata Co., Ltd. | Apparatus and Method For Measuring Carrier-To-Interference-and-Noise Ratio Using Downlink Preamble |
JP2008546314A (en) | 2005-05-31 | 2008-12-18 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Rank degradation for MIMOSCW (single codeword) design using HARQ |
US7468943B2 (en) | 2003-12-15 | 2008-12-23 | Samsung Electronics, Co., Ltd. | Transmission/Reception apparatus and method in a mobile communication system |
US7469011B2 (en) | 2003-09-07 | 2008-12-23 | Microsoft Corporation | Escape mode code resizing for fields and slices |
US7471963B2 (en) | 2002-04-09 | 2008-12-30 | Samsung Electronics Co., Ltd. | Mobile communication apparatus with multiple transmission and reception antennas and mobile communication method therefor |
US20090003466A1 (en) | 2004-07-07 | 2009-01-01 | Mahmoud Taherzadehboroujeni | System and Method for Mapping Symbols for Mimo Transmission |
US20090022098A1 (en) | 2005-10-21 | 2009-01-22 | Robert Novak | Multiplexing schemes for ofdma |
US7483408B2 (en) | 2002-06-26 | 2009-01-27 | Nortel Networks Limited | Soft handoff method for uplink wireless communications |
US7483719B2 (en) | 2003-11-13 | 2009-01-27 | Samsung Electronics Co., Ltd. | Method for grouping transmission antennas in mobile communication system including multiple transmission/reception antennas |
US7486735B2 (en) | 2003-02-28 | 2009-02-03 | Nortel Networks Limited | Sub-carrier allocation for OFDM |
US20090041150A1 (en) | 2007-08-09 | 2009-02-12 | Jiann-An Tsai | Method and apparatus of codebook-based single-user closed-loop transmit beamforming (SU-CLTB) for OFDM wireless systems |
US7492788B2 (en) * | 2001-06-27 | 2009-02-17 | Nortel Networks Limited | Communication of control information in wireless communication systems |
US7499393B2 (en) | 2004-08-11 | 2009-03-03 | Interdigital Technology Corporation | Per stream rate control (PSRC) for improving system efficiency in OFDM-MIMO communication systems |
US7508842B2 (en) | 2005-08-18 | 2009-03-24 | Motorola, Inc. | Method and apparatus for pilot signal transmission |
US7512096B2 (en) | 2004-11-24 | 2009-03-31 | Alcatel-Lucent Usa Inc. | Communicating data between an access point and multiple wireless devices over a link |
US20090110103A1 (en) | 2003-12-30 | 2009-04-30 | Maltsev Alexander A | Adaptive puncturing technique for multicarrier systems |
US7551564B2 (en) | 2004-05-28 | 2009-06-23 | Intel Corporation | Flow control method and apparatus for single packet arrival on a bidirectional ring interconnect |
US20090180459A1 (en) | 2008-01-16 | 2009-07-16 | Orlik Philip V | OFDMA Frame Structures for Uplinks in MIMO Networks |
JP4301931B2 (en) | 2003-12-22 | 2009-07-22 | 株式会社三共 | Game machine |
US20090197646A1 (en) | 1997-04-24 | 2009-08-06 | Ntt Mobile Communications Network, Inc. | Method and system for mobile communications |
US7573900B2 (en) | 2002-06-29 | 2009-08-11 | Samsung Electronics Co., Ltd | Apparatus and method for transmitting data using transmit antenna diversity in a packet service communication system |
US20090213950A1 (en) | 2005-03-17 | 2009-08-27 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US7599327B2 (en) | 2004-06-24 | 2009-10-06 | Motorola, Inc. | Method and apparatus for accessing a wireless communication system |
US20090262699A1 (en) | 2006-05-12 | 2009-10-22 | Panasonic Corporation | Resource reservation for users in a mobile communication system |
US7616955B2 (en) | 2004-11-12 | 2009-11-10 | Broadcom Corporation | Method and system for bits and coding assignment utilizing Eigen beamforming with fixed rates for closed loop WLAN |
US20090285163A1 (en) | 2005-12-08 | 2009-11-19 | Hang Zhang | Resource Assignment Systems and Methods |
US20090287977A1 (en) | 2002-12-09 | 2009-11-19 | Broadcom Corporation | EDGE incremental redundancy memory structure and memory management |
US7627051B2 (en) | 2004-11-08 | 2009-12-01 | Samsung Electronics Co., Ltd. | Method of maximizing MIMO system performance by joint optimization of diversity and spatial multiplexing |
US7664061B2 (en) | 2001-09-05 | 2010-02-16 | Nokia Corporation | Closed-loop signaling method for controlling multiple transmit beams and correspondingly adapted transceiver device |
US7676007B1 (en) | 2004-07-21 | 2010-03-09 | Jihoon Choi | System and method for interpolation based transmit beamforming for MIMO-OFDM with partial feedback |
US7684507B2 (en) | 2004-04-13 | 2010-03-23 | Intel Corporation | Method and apparatus to select coding mode |
EP1204217B1 (en) | 2000-11-03 | 2010-05-19 | Sony Deutschland GmbH | Transmission power control scheme for OFDM communication links |
US7724777B2 (en) | 2004-06-18 | 2010-05-25 | Qualcomm Incorporated | Quasi-orthogonal multiplexing for a multi-carrier communication system |
US20100135242A1 (en) | 2008-12-03 | 2010-06-03 | Samsung Electronics Co., Ltd. | Method and system for reference signal pattern design |
US20100220800A1 (en) | 2009-02-27 | 2010-09-02 | Adoram Erell | Signaling of dedicated reference signal (drs) precoding granularity |
US20100232384A1 (en) | 2009-03-13 | 2010-09-16 | Qualcomm Incorporated | Channel estimation based upon user specific and common reference signals |
US20110255518A9 (en) | 2005-05-31 | 2011-10-20 | Avneesh Agrawal | Use of supplemental assignments to decrement resources |
US20110306291A1 (en) | 2008-08-12 | 2011-12-15 | Nortel Networks Limited | Enabling downlink transparent relay in a wireless communications network |
US8095141B2 (en) | 2005-03-09 | 2012-01-10 | Qualcomm Incorporated | Use of supplemental assignments |
KR200471652Y1 (en) | 2013-08-07 | 2014-03-12 | 남경탁 | Furniture having chair |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6016910A (en) * | 1998-02-25 | 2000-01-25 | Rodearmel; John | Sports memorabilia display stand |
US7813322B2 (en) * | 2003-02-19 | 2010-10-12 | Qualcomm Incorporated | Efficient automatic repeat request methods and apparatus |
KR20050012570A (en) | 2003-07-25 | 2005-02-02 | 에스케이 텔레콤주식회사 | Method for Transmitting ESCAM for Raising Data Transmission Rate for Use in 1x System |
CN1275439C (en) | 2003-09-05 | 2006-09-13 | 中兴通讯股份有限公司 | A downlink data transmission assignment method in GPRS system |
CN100421366C (en) | 2004-08-30 | 2008-09-24 | 华为技术有限公司 | Voice speed control method in CDMA communication system |
CN1863112A (en) | 2005-08-12 | 2006-11-15 | 华为技术有限公司 | Method for access terminal transmitting message to access network in multi-carrier DO system |
US7992844B2 (en) * | 2007-12-21 | 2011-08-09 | Frank Chiorazzi | Venturi apparatus |
-
2007
- 2007-11-20 US US11/943,551 patent/US8477684B2/en active Active
- 2007-11-30 EP EP20070865065 patent/EP2127455A2/en active Pending
- 2007-11-30 CA CA2670803A patent/CA2670803C/en active Active
- 2007-11-30 BR BRPI0719753-5A2A patent/BRPI0719753A2/en active Search and Examination
- 2007-11-30 WO PCT/US2007/086197 patent/WO2008070589A2/en active Application Filing
- 2007-11-30 CN CN2007800443934A patent/CN101548562B/en active IP Right Grant
- 2007-11-30 JP JP2009540399A patent/JP5059870B2/en active Active
- 2007-11-30 KR KR1020097014073A patent/KR101132929B1/en active IP Right Grant
- 2007-11-30 RU RU2009125533/07A patent/RU2437253C2/en active
- 2007-12-04 TW TW096146164A patent/TWI374679B/en active
Patent Citations (923)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003500909T5 (en) | 2007-06-28 | |||
JP2002534941T5 (en) | 2008-12-04 | |||
US4393276A (en) | 1981-03-19 | 1983-07-12 | Bell Telephone Laboratories, Incorporated | Fourier masking analog signal secure communication system |
US4554668A (en) | 1982-05-27 | 1985-11-19 | Thomson-Csf | Frequency-hopping radio communications system |
SU1320883A1 (en) | 1985-02-06 | 1987-06-30 | Предприятие П/Я Р-6707 | Device for recovering time intervals of digital signals received from channel with limited bandwidth |
US4783780A (en) | 1985-07-09 | 1988-11-08 | U.S. Philips Corp. | Method and apparatus for selecting a free channel in a mobile radio system |
FR2584884B1 (en) | 1985-07-09 | 1987-10-09 | Trt Telecom Radio Electr | Method and free channel search device for a mobile radio system |
US4747137A (en) | 1985-07-16 | 1988-05-24 | Kokusai Denshin Denwa Kabushiki Kaisha | Speech scrambler |
US4975952A (en) | 1985-09-04 | 1990-12-04 | U. S. Philips Corporation | Method of data communication |
US4783779A (en) | 1985-10-16 | 1988-11-08 | Kokusai Denshin Denwa Co., Ltd. | Frequency assignment system in FDMA communication system |
US5008900A (en) | 1989-08-14 | 1991-04-16 | International Mobile Machines Corporation | Subscriber unit for wireless digital subscriber communication system |
RU2159007C2 (en) | 1989-08-14 | 2000-11-10 | ИнтерДигитал Технолоджи Корпорейшн | Method for processing of communication signals at user station of wireless telecommunication network |
US5115248A (en) | 1989-09-26 | 1992-05-19 | Agence Spatiale Europeenne | Multibeam antenna feed device |
EP0488976B1 (en) | 1990-11-28 | 1997-09-24 | Telefonaktiebolaget L M Ericsson | Multiple access handling in a cellular communication system |
US5491727A (en) | 1991-07-08 | 1996-02-13 | Hal Communications Corp. | Apparatus useful in radio communication of digital data using minimal bandwidth |
US5455839A (en) | 1991-12-27 | 1995-10-03 | Motorola, Inc. | Device and method for precoding |
US5406551A (en) | 1992-01-31 | 1995-04-11 | Nippon Hoso Kyokai | Method and apparatus for digital signal transmission using orthogonal frequency division multiplexing |
US5384810A (en) | 1992-02-05 | 1995-01-24 | At&T Bell Laboratories | Modulo decoder |
US5363408A (en) | 1992-03-24 | 1994-11-08 | General Instrument Corporation | Mode selective quadrature amplitude modulation communication system |
US5282222A (en) | 1992-03-31 | 1994-01-25 | Michel Fattouche | Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum |
EP0568291A2 (en) | 1992-04-25 | 1993-11-03 | Mms Space Systems Limited | Digital signal processing apparatus with three modulation (TDM,FDM,CDM)sub-systems in parallel |
US5268694A (en) | 1992-07-06 | 1993-12-07 | Motorola, Inc. | Communication system employing spectrum reuse on a spherical surface |
US5371761A (en) | 1992-07-16 | 1994-12-06 | U.S. Philips Corporation | Transmission system and receiver for this system |
US5768276A (en) | 1992-10-05 | 1998-06-16 | Telefonaktiebolaget Lm Ericsson | Digital control channels having logical channels supporting broadcast SMS |
US5604744A (en) | 1992-10-05 | 1997-02-18 | Telefonaktiebolaget Lm Ericsson | Digital control channels having logical channels for multiple access radiocommunication |
GB2279540B (en) | 1993-06-10 | 1997-04-30 | Kokusai Denshin Denwa Co Ltd | Mutual authentication/cipher key delivery system |
JPH09501548A (en) | 1993-06-18 | 1997-02-10 | クァルコム・インコーポレーテッド | How to determine the data rate of the received signal and apparatus |
US5594738A (en) | 1993-10-18 | 1997-01-14 | Motorola, Inc. | Time slot allocation method |
US5625876A (en) | 1993-10-28 | 1997-04-29 | Qualcomm Incorporated | Method and apparatus for performing handoff between sectors of a common base station |
US5539748A (en) | 1993-11-01 | 1996-07-23 | Telefonaktiebolaget Lm Ericsson | Enhanced sleep mode in radiocommunication systems |
US5410538A (en) | 1993-11-09 | 1995-04-25 | At&T Corp. | Method and apparatus for transmitting signals in a multi-tone code division multiple access communication system |
US5548582A (en) | 1993-12-22 | 1996-08-20 | U.S. Philips Corporation | Multicarrier frequency hopping communications system |
US5465253A (en) | 1994-01-04 | 1995-11-07 | Motorola, Inc. | Method and apparatus for demand-assigned reduced-rate out-of-band signaling channel |
US6016123A (en) | 1994-02-16 | 2000-01-18 | Northern Telecom Limited | Base station antenna arrangement |
US5513379A (en) | 1994-05-04 | 1996-04-30 | At&T Corp. | Apparatus and method for dynamic resource allocation in wireless communication networks utilizing ordered borrowing |
US5812938A (en) | 1994-07-11 | 1998-09-22 | Qualcomm Incorporated | Reverse link, closed loop power control in a code division multiple access system |
US5583869A (en) | 1994-09-30 | 1996-12-10 | Motorola, Inc. | Method for dynamically allocating wireless communication resources |
WO1996013920A1 (en) | 1994-10-27 | 1996-05-09 | International Business Machines Corporation | Method and apparatus for secure identification of a mobile user in a communication network |
US6477317B1 (en) | 1994-11-14 | 2002-11-05 | Canon Kabushiki Kaisha | Video reproducing apparatus which demultiplexes a plurality of video programs and outputs a plurality of program numbers (attribute data) in parallel |
RU95121152A (en) | 1994-12-21 | 1997-12-20 | АТ энд Т Ипм Корп. | The structure of a broadband wireless system and network, providing a broadband / narrowband service with optimal static and dynamic allocation of frequency bands / channels |
US6169910B1 (en) | 1994-12-30 | 2001-01-02 | Focused Energy Holding Inc. | Focused narrow beam communication system |
US5870393A (en) | 1995-01-20 | 1999-02-09 | Hitachi, Ltd. | Spread spectrum communication system and transmission power control method therefor |
US5684491A (en) | 1995-01-27 | 1997-11-04 | Hazeltine Corporation | High gain antenna systems for cellular use |
US5612978A (en) | 1995-05-30 | 1997-03-18 | Motorola, Inc. | Method and apparatus for real-time adaptive interference cancellation in dynamic environments |
US6535666B1 (en) | 1995-06-02 | 2003-03-18 | Trw Inc. | Method and apparatus for separating signals transmitted over a waveguide |
US6310704B1 (en) | 1995-06-02 | 2001-10-30 | Trw Inc. | Communication apparatus for transmitting and receiving signals over a fiber-optic waveguide using different frequency bands of light |
US6215983B1 (en) | 1995-06-02 | 2001-04-10 | Trw Inc. | Method and apparatus for complex phase equalization for use in a communication system |
US5726978A (en) | 1995-06-22 | 1998-03-10 | Telefonaktiebolaget L M Ericsson Publ. | Adaptive channel allocation in a frequency division multiplexed system |
US6154484A (en) | 1995-09-06 | 2000-11-28 | Solana Technology Development Corporation | Method and apparatus for embedding auxiliary data in a primary data signal using frequency and time domain processing |
US5815488A (en) | 1995-09-28 | 1998-09-29 | Cable Television Laboratories, Inc. | Multiple user access method using OFDM |
US5745487A (en) * | 1995-11-16 | 1998-04-28 | Matsushita Electric Industrial Co., Ltd. | Communication apparatus for transmitting/receiving different types of data in one TDM slot |
US5907585A (en) | 1995-11-16 | 1999-05-25 | Ntt Mobile Communications Network Inc. | Digital signal detecting method and detector |
US5887023A (en) | 1995-11-29 | 1999-03-23 | Nec Corporation | Method and apparatus for a frequency hopping-spread spectrum communication system |
KR0150275B1 (en) | 1995-12-22 | 1998-11-02 | 양승택 | Congestion control method for multicast communication |
EP0786889A1 (en) | 1996-02-02 | 1997-07-30 | Deutsche Thomson-Brandt Gmbh | Method for the reception of multicarrier signals and related apparatus |
WO1997037456A2 (en) | 1996-04-02 | 1997-10-09 | Qualcomm Incorporated | Using orthogonal waveforms to enable multiple transmitters to share a single cdm channel |
US5822368A (en) | 1996-04-04 | 1998-10-13 | Lucent Technologies Inc. | Developing a channel impulse response by using distortion |
US20020018157A1 (en) | 1996-04-12 | 2002-02-14 | Semiconductor Energy Laboratory Co., Ltd., A Japanese Corporation | Liquid crystal display device and method for fabricating thereof |
EP0805576A2 (en) | 1996-05-01 | 1997-11-05 | Gpt Limited | Multi-party communications |
US5790537A (en) | 1996-05-15 | 1998-08-04 | Mcgill University | Interference suppression in DS-CDMA systems |
RU2141168C1 (en) | 1996-05-17 | 1999-11-10 | Моторола Лимитед | Device and method for weighting signals in radio transmission path |
EP0807989A1 (en) | 1996-05-17 | 1997-11-19 | Motorola Ltd | Devices for transmitter path weights and methods therefor |
US5999826A (en) | 1996-05-17 | 1999-12-07 | Motorola, Inc. | Devices for transmitter path weights and methods therefor |
US5926470A (en) | 1996-05-22 | 1999-07-20 | Qualcomm Incorporated | Method and apparatus for providing diversity in hard handoff for a CDMA system |
WO1997046033A2 (en) | 1996-05-29 | 1997-12-04 | Philips Electronics N.V. | Method and system for transmitting messages in an answer-back paging system |
US5732113A (en) | 1996-06-20 | 1998-03-24 | Stanford University | Timing and frequency synchronization of OFDM signals |
US6002942A (en) | 1996-06-28 | 1999-12-14 | Samsung Electronics Co., Ltd. | Method for controlling transmitting power of a mobile station |
RU2162275C2 (en) | 1996-06-28 | 2001-01-20 | Самсунг Электроникс Ко., Лтд. | Method for controlling power transmitted by mobile station |
US6438369B1 (en) | 1996-08-09 | 2002-08-20 | Nortel Networks Ltd. | Network directed system selection for cellular and PCS enhanced roaming |
US6141317A (en) | 1996-08-22 | 2000-10-31 | Tellabs Operations, Inc. | Apparatus and method for bandwidth management in a multi-point OFDM/DMT digital communications system |
WO1998014026A1 (en) | 1996-09-27 | 1998-04-02 | Qualcomm Incorporated | Method and apparatus for adjacent service area handoff in communication systems |
US6088345A (en) | 1996-11-22 | 2000-07-11 | Sony Corporation | Communication method, base station and terminal apparatus |
EP0844796A3 (en) | 1996-11-22 | 2000-08-02 | Sony Corporation | Communication method |
US5956642A (en) | 1996-11-25 | 1999-09-21 | Telefonaktiebolaget L M Ericsson | Adaptive channel allocation method and apparatus for multi-slot, multi-carrier communication system |
US6061337A (en) | 1996-12-02 | 2000-05-09 | Lucent Technologies Inc. | System and method for CDMA handoff using telemetry to determine the need for handoff and to select the destination cell site |
US6226280B1 (en) | 1996-12-11 | 2001-05-01 | Texas Instruments Incorporated | Allocating and de-allocating transmission resources in a local multipoint distribution services system |
US5953325A (en) | 1997-01-02 | 1999-09-14 | Telefonaktiebolaget L M Ericsson (Publ) | Forward link transmission mode for CDMA cellular communications system using steerable and distributed antennas |
US6232918B1 (en) | 1997-01-08 | 2001-05-15 | Us Wireless Corporation | Antenna array calibration in wireless communication systems |
US5949814A (en) | 1997-01-15 | 1999-09-07 | Qualcomm Incorporated | High-data-rate supplemental channel for CDMA telecommunications system |
US5933421A (en) | 1997-02-06 | 1999-08-03 | At&T Wireless Services Inc. | Method for frequency division duplex communications |
US5920571A (en) | 1997-02-07 | 1999-07-06 | Lucent Technologies Inc. | Frequency channel and time slot assignments in broadband access networks |
US6335922B1 (en) | 1997-02-11 | 2002-01-01 | Qualcomm Incorporated | Method and apparatus for forward link rate scheduling |
WO1998037706A2 (en) | 1997-02-21 | 1998-08-27 | Motorola Inc. | Method and apparatus for allocating spectral resources in a wireless communication system |
JP2000511750A (en) | 1997-02-21 | 2000-09-05 | モトローラ・インコーポレイテッド | Method and apparatus for allocating spectral resources in a wireless communication system |
US7149238B2 (en) | 1997-02-24 | 2006-12-12 | Cingular Wireless Ii, Llc | Highly bandwidth-efficient communications |
US20050002440A1 (en) | 1997-02-24 | 2005-01-06 | Siavash Alamouti | Vertical adaptive antenna array for a discrete multitone spread spectrum communications system |
US5838268A (en) | 1997-03-14 | 1998-11-17 | Orckit Communications Ltd. | Apparatus and methods for modulation and demodulation of data |
US6751456B2 (en) | 1997-03-20 | 2004-06-15 | Intel Corporation | Communication control for a user of a central communication center |
EP1538863B1 (en) | 1997-03-27 | 2006-06-21 | Nokia Corporation | Allocation of control channel in packet radio network |
US6175550B1 (en) | 1997-04-01 | 2001-01-16 | Lucent Technologies, Inc. | Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof |
US6272122B1 (en) | 1997-04-14 | 2001-08-07 | Samsung Electronics, Co., Ltd. | Pilot PN offset assigning method for digital mobile telecommunications system |
US6711400B1 (en) | 1997-04-16 | 2004-03-23 | Nokia Corporation | Authentication method |
US6076114A (en) | 1997-04-18 | 2000-06-13 | International Business Machines Corporation | Methods, systems and computer program products for reliable data transmission over communications networks |
JP2001521698A (en) | 1997-04-21 | 2001-11-06 | ノキア モービル フォーンズ リミティド | Deallocated at the physical channel in the general packet radio service |
WO1998048581A1 (en) | 1997-04-21 | 1998-10-29 | Nokia Mobile Phones Limited | De-allocation at physical channels in general packet radio service |
US6138037A (en) | 1997-04-23 | 2000-10-24 | Nokia Telecommunications Oy | Implementation of signalling in a telecommunications network |
US20090197646A1 (en) | 1997-04-24 | 2009-08-06 | Ntt Mobile Communications Network, Inc. | Method and system for mobile communications |
US6128776A (en) | 1997-05-07 | 2000-10-03 | Samsung Electronics Co., Ltd. | Method for managing software in code division multiple access (CDMA) base station system of personal communication system |
US7406119B2 (en) | 1997-05-09 | 2008-07-29 | Broadcom Corporation | Method and apparatus for reducing signal processing requirements for transmitting packet-based data |
JP2001526012A (en) | 1997-05-16 | 2001-12-11 | ノキア ネットワークス オサケ ユキチュア | Method for determining the direction of transmission and radio system |
US6374115B1 (en) | 1997-05-28 | 2002-04-16 | Transcrypt International/E.F. Johnson | Method and apparatus for trunked radio repeater communications with backwards compatibility |
WO1998054919A2 (en) | 1997-05-30 | 1998-12-03 | Qualcomm Incorporated | Paging a wireless terminal in a wireless telecommunications system |
US6052364A (en) | 1997-06-13 | 2000-04-18 | Comsat Corporation | CDMA system architecture for satcom terminals |
US6108550A (en) | 1997-06-13 | 2000-08-22 | Telefonaktienbolaget Lm Ericsson | Reuse of a physical control channel in a distributed cellular radio communication system |
CN1132474C (en) | 1997-06-13 | 2003-12-24 | 艾利森电话股份有限公司 | Distributed cellular radio communication system, a physical control channel multiplexing |
US6717908B2 (en) | 1997-06-19 | 2004-04-06 | Qualcomm, Incorporated | Bit interleaving for orthogonal frequency division multiplexing in the transmission of digital signals |
US5867478A (en) | 1997-06-20 | 1999-02-02 | Motorola, Inc. | Synchronous coherent orthogonal frequency division multiplexing system, method, software and device |
US6240129B1 (en) | 1997-07-10 | 2001-05-29 | Alcatel | Method and windowing unit to reduce leakage, fourier transformer and DMT modem wherein the unit is used |
US6038263A (en) | 1997-07-31 | 2000-03-14 | Motorola, Inc. | Method and apparatus for transmitting signals in a communication system |
US20010030948A1 (en) | 1997-09-08 | 2001-10-18 | Tiedemann Edward G. | Method and system for changing forward traffic channel power allocation during soft handoff |
US6377539B1 (en) | 1997-09-09 | 2002-04-23 | Samsung Electronics Co., Ltd. | Method for generating quasi-orthogonal code and spreader using the same in mobile communication system |
US6038450A (en) | 1997-09-12 | 2000-03-14 | Lucent Technologies, Inc. | Soft handover system for a multiple sub-carrier communication system and method thereof |
US6377809B1 (en) | 1997-09-16 | 2002-04-23 | Qualcomm Incorporated | Channel structure for communication systems |
US20030002464A1 (en) | 1997-09-16 | 2003-01-02 | Ramin Rezaiifar | Channel structure for communication systems |
US6577739B1 (en) | 1997-09-19 | 2003-06-10 | University Of Iowa Research Foundation | Apparatus and methods for proportional audio compression and frequency shifting |
US6075797A (en) | 1997-10-17 | 2000-06-13 | 3Com Corporation | Method and system for detecting mobility of a wireless-capable modem to minimize data transfer rate renegotiations |
US6539008B1 (en) | 1997-11-03 | 2003-03-25 | Samsung Electronics, Co., Ltd. | Method for inserting power control bits in the CDMA mobile system |
US5995992A (en) | 1997-11-17 | 1999-11-30 | Bull Hn Information Systems Inc. | Conditional truncation indicator control for a decimal numeric processor employing result truncation |
US6108323A (en) | 1997-11-26 | 2000-08-22 | Nokia Mobile Phones Limited | Method and system for operating a CDMA cellular system having beamforming antennas |
US6176550B1 (en) | 1997-12-03 | 2001-01-23 | Steelcase Development Inc. | Adjustable armrest for chairs |
US6067315A (en) | 1997-12-04 | 2000-05-23 | Telefonaktiebolaget Lm Ericsson | Method and apparatus for coherently-averaged power estimation |
US6563806B1 (en) | 1997-12-12 | 2003-05-13 | Hitachi, Ltd. | Base station for multi-carrier TDMA mobile communication system and method for assigning communication channels |
US6940842B2 (en) | 1997-12-17 | 2005-09-06 | Tantivy Communications, Inc. | System and method for maintaining wireless channels over a reverse link of a CDMA wireless communication system |
US6393008B1 (en) | 1997-12-23 | 2002-05-21 | Nokia Movile Phones Ltd. | Control structures for contention-based packet data services in wideband CDMA |
DE19800653A1 (en) | 1998-01-09 | 1999-07-15 | Albert M Huber | promotes apparatus for separating particles, or of particles and gases, or fluids different density from liquids, or suspensions or emulsions, having a fixed housing and separated by means of centrifugal force and these abovementioned media by this device and possibly downstream means |
DE19800953C1 (en) | 1998-01-13 | 1999-07-29 | Siemens Ag | Resource allocation in radio interface of radio communications system |
US6175650B1 (en) | 1998-01-26 | 2001-01-16 | Xerox Corporation | Adaptive quantization compatible with the JPEG baseline sequential mode |
US7010048B1 (en) | 1998-02-12 | 2006-03-07 | Aqvity, Llc | Multiple access method and system |
WO1999041871A1 (en) | 1998-02-12 | 1999-08-19 | Shattil Steven J | Multiple access method and system |
US5955992A (en) | 1998-02-12 | 1999-09-21 | Shattil; Steve J. | Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter |
RU2216101C2 (en) | 1998-02-14 | 2003-11-10 | Самсунг Электроникс Ко., Лтд. | Data transmission device and method for mobile communication system with allocated control channel |
US6731602B1 (en) | 1998-02-20 | 2004-05-04 | Hitachi, Ltd. | Packet communication system and packet communication apparatus |
WO1999044383A1 (en) | 1998-02-27 | 1999-09-02 | Siemens Aktiengesellschaft | Telecommunications system with wireless code and time-division multiplex based telecommuncation between mobile and/or stationary transmitting/receiving devices |
US6401062B1 (en) | 1998-02-27 | 2002-06-04 | Nec Corporation | Apparatus for encoding and apparatus for decoding speech and musical signals |
US20040136344A1 (en) | 1998-03-14 | 2004-07-15 | Samsung Electronics Co., Ltd. | Device and method for exchanging frame messages of different lengths in CDMA communication system |
WO1999052250A1 (en) | 1998-04-03 | 1999-10-14 | Tellabs Operations, Inc. | Filter for impulse response shortening, with addition spectral constraints, for multicarrier transmission |
US6112094A (en) | 1998-04-06 | 2000-08-29 | Ericsson Inc. | Orthogonal frequency hopping pattern re-use scheme |
RU2225080C2 (en) | 1998-04-23 | 2004-02-27 | Телефонактиеболагет Лм Эрикссон (Пабл) | Medium-independent signaling protocol |
US6075350A (en) | 1998-04-24 | 2000-06-13 | Lockheed Martin Energy Research Corporation | Power line conditioner using cascade multilevel inverters for voltage regulation, reactive power correction, and harmonic filtering |
US6198775B1 (en) | 1998-04-28 | 2001-03-06 | Ericsson Inc. | Transmit diversity method, systems, and terminals using scramble coding |
RU2197778C2 (en) | 1998-05-12 | 2003-01-27 | Самсунг Электроникс Ко., Лтд. | Method and device for reducing mobile-station peak-to-mean transmission power ratio |
JP2004007643A (en) | 1998-05-14 | 2004-01-08 | Fujitsu Ltd | Cellular mobile communication network |
WO1999060729A1 (en) | 1998-05-15 | 1999-11-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Random access in a mobile telecommunications system |
KR100291476B1 (en) | 1998-05-25 | 2001-03-13 | 윤종용 | A method and a system for controlling a pilot measurement request order in cellular system |
US20040097215A1 (en) | 1998-06-16 | 2004-05-20 | Katsuaki Abe | Transmission and reception system, transmission and reception device, and method of transmission and reception |
EP1093241A1 (en) | 1998-06-30 | 2001-04-18 | NEC Corporation | Adaptive transmitter/receiver |
RU2141706C1 (en) | 1998-07-06 | 1999-11-20 | Военная академия связи | Method and device for adaptive spatial filtering of signals |
US20030193915A1 (en) | 1998-07-12 | 2003-10-16 | Hyun-Seok Lee | Device and method for gating transmission in a CDMA mobile communication system |
US6563881B1 (en) | 1998-07-13 | 2003-05-13 | Sony Corporation | Communication method and transmitter with transmission symbols arranged at intervals on a frequency axis |
EP0981222A2 (en) | 1998-08-19 | 2000-02-23 | International Business Machines Corporation | Destination dependent coding for discrete multi-tone modulation |
US6798736B1 (en) | 1998-09-22 | 2004-09-28 | Qualcomm Incorporated | Method and apparatus for transmitting and receiving variable rate data |
JP2000102065A (en) | 1998-09-24 | 2000-04-07 | Toshiba Corp | Radio communication base station unit |
US6501810B1 (en) | 1998-10-13 | 2002-12-31 | Agere Systems Inc. | Fast frame synchronization |
EP1001570A2 (en) | 1998-11-09 | 2000-05-17 | Lucent Technologies Inc. | Efficient authentication with key update |
US6542485B1 (en) | 1998-11-25 | 2003-04-01 | Lucent Technologies Inc. | Methods and apparatus for wireless communication using time division duplex time-slotted CDMA |
RU2235432C2 (en) | 1998-11-30 | 2004-08-27 | Телефонактиеболагет Лм Эрикссон (Пабл) | Automatic retransmission request protocol |
US6601206B1 (en) | 1998-12-04 | 2003-07-29 | Agere Systems Inc. | Error concealment or correction of speech, image and video signals |
US6590881B1 (en) | 1998-12-04 | 2003-07-08 | Qualcomm, Incorporated | Method and apparatus for providing wireless communication system synchronization |
JP2000184425A (en) | 1998-12-15 | 2000-06-30 | Toshiba Corp | Radio communication base station equipment |
US7292651B2 (en) | 1998-12-31 | 2007-11-06 | At&T Corp. | Pilot-aided channel estimation for OFDM in wireless systems |
US6654339B1 (en) | 1999-01-08 | 2003-11-25 | Sony International (Europe) Gmbh | Synchronization symbol structure using OFDM based transmission method |
US7016318B2 (en) | 1999-01-13 | 2006-03-21 | Qualcomm, Incorporated | System for allocating resources in a communication system |
US6393012B1 (en) | 1999-01-13 | 2002-05-21 | Qualcomm Inc. | System for allocating resources in a communication system |
US7016425B1 (en) | 1999-01-15 | 2006-03-21 | Sony International (Europe) Gmbh | Quasi-differential modulation/demodulation method for multi-amplitude digital modulated signals and OFDM system |
US6584140B1 (en) | 1999-01-22 | 2003-06-24 | Systems Information And Electronic Systems Integration Inc. | Spectrum efficient fast frequency-hopped modem with coherent demodulation |
US6271946B1 (en) | 1999-01-25 | 2001-08-07 | Telcordia Technologies, Inc. | Optical layer survivability and security system using optical label switching and high-speed optical header generation and detection |
US6388998B1 (en) | 1999-02-04 | 2002-05-14 | Lucent Technologies Inc. | Reuse of codes and spectrum in a CDMA system with multiple-sector cells |
US6256478B1 (en) | 1999-02-18 | 2001-07-03 | Eastman Kodak Company | Dynamic packet sizing in an RF communications system |
US6597746B1 (en) | 1999-02-18 | 2003-07-22 | Globespanvirata, Inc. | System and method for peak to average power ratio reduction |
US6724719B1 (en) | 1999-02-19 | 2004-04-20 | Nortel Networks Limited | Determining transmit signal powers of channels in a CDMA communications system |
US6317435B1 (en) | 1999-03-08 | 2001-11-13 | Qualcomm Incorporated | Method and apparatus for maximizing the use of available capacity in a communication system |
US6487243B1 (en) | 1999-03-08 | 2002-11-26 | International Business Machines Corporation | Modems, methods, and computer program products for recovering from errors in a tone reversal sequence between two modems |
US6987746B1 (en) | 1999-03-15 | 2006-01-17 | Lg Information & Communications, Ltd. | Pilot signals for synchronization and/or channel estimation |
KR20000060428A (en) | 1999-03-16 | 2000-10-16 | 윤종용 | Method for enhancing soft/softer handoff using direct connection between BTSs in a CDMA system |
US6693952B1 (en) | 1999-03-16 | 2004-02-17 | Lucent Technologies Inc. | Dynamic code allocation for downlink shared channels |
US7151761B1 (en) | 1999-03-19 | 2006-12-19 | Telefonaktiebolaget L M Ericsson (Publ) | Code reservation for interference measurement in a CDMA radiocommunication system |
CN1344451A (en) | 1999-03-19 | 2002-04-10 | 艾利森电话股份有限公司 | Code reservation for interference measurement in CDMA radiocommunication system |
US6483820B1 (en) | 1999-03-22 | 2002-11-19 | Ericsson Inc. | System and method for dynamic radio resource allocation for non-transparent high-speed circuit-switched data services |
US6353637B1 (en) | 1999-03-29 | 2002-03-05 | Lucent Technologies Inc. | Multistream in-band on-channel systems |
GB2348776B (en) | 1999-04-06 | 2003-07-09 | Motorola Ltd | A communications network and method of allocating resource thefor |
US6249683B1 (en) | 1999-04-08 | 2001-06-19 | Qualcomm Incorporated | Forward link power control of multiple data streams transmitted to a mobile station using a common power control channel |
US20050276348A1 (en) | 1999-04-19 | 2005-12-15 | Patrick Vandenameele | Method and apparatus for multi-user transmission |
EP1047209A1 (en) | 1999-04-19 | 2000-10-25 | Interuniversitair Micro-Elektronica Centrum Vzw | A method and apparatus for multiuser transmission |
EP1091516A1 (en) | 1999-04-23 | 2001-04-11 | Matsushita Electric Industrial Co., Ltd. | Base station device and method of suppressing peak current |
US6614857B1 (en) | 1999-04-23 | 2003-09-02 | Lucent Technologies Inc. | Iterative channel estimation and compensation based thereon |
RU2216105C2 (en) | 1999-05-12 | 2003-11-10 | Самсунг Электроникс Ко., Лтд. | Channel allocation method for base station in mobile communication system |
RU2210866C2 (en) | 1999-05-12 | 2003-08-20 | Самсунг Электроникс Ко., Лтд. | Method for maintaining discontinuous transmission at base station of mobile communication system |
JP2000332724A (en) | 1999-05-17 | 2000-11-30 | Mitsubishi Electric Corp | Multi-carrier transmission system and multi-carrier modulation method |
US6870826B1 (en) | 1999-05-17 | 2005-03-22 | Mitsubishi Denki Kabushiki Kaisha | Multicarrier transfer system and multicarrier modulation method |
US6674787B1 (en) | 1999-05-19 | 2004-01-06 | Interdigital Technology Corporation | Raising random access channel packet payload |
US6674810B1 (en) | 1999-05-27 | 2004-01-06 | 3Com Corporation | Method and apparatus for reducing peak-to-average power ratio in a discrete multi-tone signal |
JP2001057545A (en) | 1999-06-02 | 2001-02-27 | Texas Instr Inc <Ti> | Method and device for estimating spread spectrum channel |
JP2001045573A (en) | 1999-06-11 | 2001-02-16 | Lucent Technol Inc | Wireless communication method |
EP1061687A1 (en) | 1999-06-14 | 2000-12-20 | Canon Kabushiki Kaisha | Adaptation of guard interval lengths in an OFDM communication system |
US6539213B1 (en) | 1999-06-14 | 2003-03-25 | Time Domain Corporation | System and method for impulse radio power control |
US7095708B1 (en) | 1999-06-23 | 2006-08-22 | Cingular Wireless Ii, Llc | Methods and apparatus for use in communicating voice and high speed data in a wireless communication system |
JP2001016644A (en) | 1999-06-30 | 2001-01-19 | Kdd Corp | Code assignment method in cdma mobile communication system |
US6363060B1 (en) | 1999-06-30 | 2002-03-26 | Qualcomm Incorporated | Method and apparatus for fast WCDMA acquisition |
RU2250564C2 (en) | 1999-06-30 | 2005-04-20 | Квэлкомм Инкорпорейтед | Method and device for fast synchronization in wide-band code-division multiple access system |
US6657949B1 (en) | 1999-07-06 | 2003-12-02 | Cisco Technology, Inc. | Efficient request access for OFDM systems |
US6828293B1 (en) | 1999-07-28 | 2004-12-07 | Ciba Specialty Chemicals Corporation | Water-soluble granules of salen-type manganese complexes |
US6831943B1 (en) | 1999-08-13 | 2004-12-14 | Texas Instruments Incorporated | Code division multiple access wireless system with closed loop mode using ninety degree phase rotation and beamformer verification |
US6735244B1 (en) | 1999-08-30 | 2004-05-11 | Fujitsu Limited | Data transmission system and receiver unit thereof |
US6542743B1 (en) | 1999-08-31 | 2003-04-01 | Qualcomm, Incorporated | Method and apparatus for reducing pilot search times utilizing mobile station location information |
WO2001017125A1 (en) | 1999-08-31 | 2001-03-08 | Qualcomm Incorporated | Method and apparatus for reducing pilot search times utilizing mobile station location information |
RU2257008C2 (en) | 1999-08-31 | 2005-07-20 | Квэлкомм Инкорпорейтед | Method for decreasing search time of pilot signal with use of information about position of mobile station and device for realization of said method |
US6765969B1 (en) | 1999-09-01 | 2004-07-20 | Motorola, Inc. | Method and device for multi-user channel estimation |
US6928047B1 (en) | 1999-09-11 | 2005-08-09 | The University Of Delaware | Precoded OFDM systems robust to spectral null channels and vector OFDM systems with reduced cyclic prefix length |
US6654431B1 (en) | 1999-09-15 | 2003-11-25 | Telcordia Technologies, Inc. | Multicarrier personal access communication system |
US6449246B1 (en) | 1999-09-15 | 2002-09-10 | Telcordia Technologies, Inc. | Multicarrier personal access communication system |
RU2242091C2 (en) | 1999-10-02 | 2004-12-10 | Самсунг Электроникс Ко., Лтд. | Device and method for gating data transferred over control channel in cdma communication system |
US20050009486A1 (en) | 1999-10-08 | 2005-01-13 | Naofal Al-Dhahir | Finite-length equalization overmulti-input multi-output channels |
US6337659B1 (en) | 1999-10-25 | 2002-01-08 | Gamma Nu, Inc. | Phased array base station antenna system having distributed low power amplifiers |
US6985466B1 (en) | 1999-11-09 | 2006-01-10 | Arraycomm, Inc. | Downlink signal processing in CDMA systems utilizing arrays of antennae |
US6721568B1 (en) | 1999-11-10 | 2004-04-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Admission control in a mobile radio communications system |
US20050053081A1 (en) | 1999-11-17 | 2005-03-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Acceleration dependent channel switching in mobile telecommunications |
US6466800B1 (en) | 1999-11-19 | 2002-10-15 | Siemens Information And Communication Mobile, Llc | Method and system for a wireless communication system incorporating channel selection algorithm for 2.4 GHz direct sequence spread spectrum cordless telephone system |
JP2001156732A (en) | 1999-11-24 | 2001-06-08 | Nec Corp | Time division multiplex access method, reference station device and terminal station device |
WO2001039523A2 (en) | 1999-11-29 | 2001-05-31 | Siemens Aktiengesellschaft | Method for signaling a radio channel structure in a radio communication system |
DE19957288C1 (en) | 1999-11-29 | 2001-05-10 | Siemens Ag | Channel structure signalling in radio communications system |
CN1402916A (en) | 1999-11-29 | 2003-03-12 | 西门子公司 | Method for signaling radio channel structure in radio communication system |
US6763009B1 (en) | 1999-12-03 | 2004-07-13 | Lucent Technologies Inc. | Down-link transmission scheduling in CDMA data networks |
KR20010056333A (en) | 1999-12-15 | 2001-07-04 | 박종섭 | Method for transmitting parameter use handoff to synchronous cell site from asynchronous cell site in a mobile communication system |
US6690951B1 (en) | 1999-12-20 | 2004-02-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic size allocation system and method |
CN1252919C (en) | 1999-12-21 | 2006-04-19 | Eta草图制造公司 | Ultra thin piezoelectric resonator |
JP2003520523A (en) | 2000-01-07 | 2003-07-02 | クゥアルコム・インコーポレイテッド | System for allocating resources in a communication system |
US6678318B1 (en) | 2000-01-11 | 2004-01-13 | Agere Systems Inc. | Method and apparatus for time-domain equalization in discrete multitone transceivers |
US6907020B2 (en) | 2000-01-20 | 2005-06-14 | Nortel Networks Limited | Frame structures supporting voice or streaming communications with high speed data communications in wireless access networks |
US6850509B2 (en) | 2000-02-01 | 2005-02-01 | Samsung Electronics Co., Ltd. | Scheduling apparatus and method for packet data service in a wireless communication system |
RU2208913C2 (en) | 2000-02-01 | 2003-07-20 | Самсунг Электроникс Ко., Лтд. | Facility for dispatching and process of execution of services of transmission of package data in wireless communication system |
US20010021180A1 (en) | 2000-02-01 | 2001-09-13 | Samsung Electronics Co. | Scheduling apparatus and method for packet data service in a wireless communication system |
WO2001058054A1 (en) | 2000-02-01 | 2001-08-09 | Samsung Electronics Co., Ltd | Scheduling apparatus and method for packet data service in a wireless communication system |
US6821535B2 (en) | 2000-02-03 | 2004-11-23 | Xyrofin Oy | Process for hard panning of chewable cores and cores produced by the process |
US6754511B1 (en) | 2000-02-04 | 2004-06-22 | Harris Corporation | Linear signal separation using polarization diversity |
TW510132B (en) | 2000-02-04 | 2002-11-11 | Harris Corp | Linear signal separation using polarization diversity |
US6507601B2 (en) | 2000-02-09 | 2003-01-14 | Golden Bridge Technology | Collision avoidance |
JP2001238269A (en) | 2000-02-25 | 2001-08-31 | Kddi Corp | Sub carrier assignment method for wireless communication system |
US20010024427A1 (en) | 2000-02-25 | 2001-09-27 | Ddi Corporation | Wireless packet communication method and system for transmitting packets between base station and radio terminal station |
JP2001245355A (en) | 2000-03-01 | 2001-09-07 | Mitsubishi Electric Corp | Packet transmission system in mobile communications |
JP2001249802A (en) | 2000-03-07 | 2001-09-14 | Sony Corp | Transmitting method, transmission system, transmission controller and input device |
US7079867B2 (en) | 2000-03-08 | 2006-07-18 | Samsung Electronics Co., Ltd. | Semi-blind transmit antenna array device using feedback information and method thereof in a mobile communication system |
KR20010087715A (en) | 2000-03-08 | 2001-09-21 | 윤종용 | Method and apparatus for semi-blind transmit antenna array using feedback information in mobile communication system |
WO2001069814A1 (en) | 2000-03-15 | 2001-09-20 | Nokia Corporation | Transmit diversity method and system |
US6473467B1 (en) | 2000-03-22 | 2002-10-29 | Qualcomm Incorporated | Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system |
US6940845B2 (en) | 2000-03-23 | 2005-09-06 | At & T, Corp. | Asymmetric measurement-based dynamic packet assignment system and method for wireless data services |
US6744743B2 (en) | 2000-03-30 | 2004-06-01 | Qualcomm Incorporated | Method and apparatus for controlling transmissions of a communications system |
US7403748B1 (en) | 2000-04-07 | 2008-07-22 | Nokia Coporation | Multi-antenna transmission method and system |
US7289570B2 (en) | 2000-04-10 | 2007-10-30 | Texas Instruments Incorporated | Wireless communications |
US6934275B1 (en) | 2000-04-17 | 2005-08-23 | Motorola, Inc. | Apparatus and method for providing separate forward dedicated and shared control channels in a communications system |
US6961364B1 (en) | 2000-04-18 | 2005-11-01 | Flarion Technologies, Inc. | Base station identification in orthogonal frequency division multiplexing based spread spectrum multiple access systems |
US6954481B1 (en) | 2000-04-18 | 2005-10-11 | Flarion Technologies, Inc. | Pilot use in orthogonal frequency division multiplexing based spread spectrum multiple access systems |
EP1148673A2 (en) | 2000-04-18 | 2001-10-24 | Lucent Technologies Inc. | Idendification of a base station, using latin-square hopping sequences, in multicarrier spread-spectrum systems |
US6748220B1 (en) | 2000-05-05 | 2004-06-08 | Nortel Networks Limited | Resource allocation in wireless networks |
US6519462B1 (en) | 2000-05-11 | 2003-02-11 | Lucent Technologies Inc. | Method and apparatus for multi-user resource management in wireless communication systems |
US7006529B2 (en) | 2000-05-12 | 2006-02-28 | Nokia Mobile Phones, Ltd. | Method for arranging communication between terminals and an access point in a communication system |
WO2001089112A1 (en) | 2000-05-15 | 2001-11-22 | Nokia Corporation | Implementation method of pilot signal |
CA2348137C (en) | 2000-05-17 | 2006-09-05 | Eiko Seidel | Hybrid arq method for packet data transmission |
US6529525B1 (en) * | 2000-05-19 | 2003-03-04 | Motorola, Inc. | Method for supporting acknowledged transport layer protocols in GPRS/edge host application |
US7149199B2 (en) | 2000-05-30 | 2006-12-12 | Korea Advanced Institute Of Science And Technology | Multi-dimensional orthogonal resource hopping multiplexing communications method and apparatus |
US7050402B2 (en) | 2000-06-09 | 2006-05-23 | Texas Instruments Incorporated | Wireless communications with frequency band selection |
US7248841B2 (en) | 2000-06-13 | 2007-07-24 | Agee Brian G | Method and apparatus for optimization of wireless multipoint electromagnetic communication networks |
US6337983B1 (en) | 2000-06-21 | 2002-01-08 | Motorola, Inc. | Method for autonomous handoff in a wireless communication system |
US6701165B1 (en) | 2000-06-21 | 2004-03-02 | Agere Systems Inc. | Method and apparatus for reducing interference in non-stationary subscriber radio units using flexible beam selection |
US20020015405A1 (en) | 2000-06-26 | 2002-02-07 | Risto Sepponen | Error correction of important fields in data packet communications in a digital mobile radio network |
US20010055294A1 (en) | 2000-06-27 | 2001-12-27 | Nec Corporation | CDMA communication system capable of flexibly assigning spreading codes to a channel in accordance with traffic |
JP2002026790A (en) | 2000-07-03 | 2002-01-25 | Matsushita Electric Ind Co Ltd | Wireless communication unit and wireless communication method |
CN1383631A (en) | 2000-07-03 | 2002-12-04 | 松下电器产业株式会社 | Wireless communication device, and wireless communication method |
US20020168946A1 (en) | 2000-07-03 | 2002-11-14 | Junichi Aizawa | Radio communication apparatus and communication method |
US7099630B2 (en) | 2000-07-04 | 2006-08-29 | Siemens Aktiengesellschaft | Beam forming method |
KR20030007965A (en) | 2000-07-04 | 2003-01-23 | 지멘스 악티엔게젤샤프트 | Beam forming method |
WO2002004936A1 (en) | 2000-07-11 | 2002-01-17 | Japan Science And Technology Corporation | Probe for mass spectrometry of liquid sample |
US7418043B2 (en) | 2000-07-19 | 2008-08-26 | Lot 41 Acquisition Foundation, Llc | Software adaptable high performance multicarrier transmission protocol |
US7164696B2 (en) | 2000-07-26 | 2007-01-16 | Mitsubishi Denki Kabushiki Kaisha | Multi-carrier CDMA communication device, multi-carrier CDMA transmitting device, and multi-carrier CDMA receiving device |
CN1386344A (en) | 2000-07-26 | 2002-12-18 | 三菱电机株式会社 | Multi-carrier CDMA communication device, multi-carrier CDMA transmitting device, and multi-carrier CDMA receiving device |
US20040015692A1 (en) | 2000-08-03 | 2004-01-22 | Green Mark Raymond | Authentication in a mobile communications network |
US6980540B1 (en) | 2000-08-16 | 2005-12-27 | Lucent Technologies Inc. | Apparatus and method for acquiring an uplink traffic channel, in wireless communications systems |
EP1180907A2 (en) | 2000-08-16 | 2002-02-20 | Lucent Technologies Inc. | Apparatus and method for acquiring an uplink traffic channel in a wireless communications system |
JP2004507950A (en) | 2000-08-25 | 2004-03-11 | モトローラ・インコーポレイテッドMotorola Incorporatred | Method and apparatus for supporting wireless acknowledgment for unidirectional user data channel |
US6850481B2 (en) | 2000-09-01 | 2005-02-01 | Nortel Networks Limited | Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system |
US20050174981A1 (en) | 2000-09-01 | 2005-08-11 | Heath Robert W.Jr. | Wireless communications system that supports multiple modes of operation |
US6985434B2 (en) | 2000-09-01 | 2006-01-10 | Nortel Networks Limited | Adaptive time diversity and spatial diversity for OFDM |
EP1187506A1 (en) | 2000-09-12 | 2002-03-13 | Lucent Technologies Inc. | Communication system having a flexible transmit configuration |
US7990844B2 (en) | 2000-09-13 | 2011-08-02 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US20110235745A1 (en) | 2000-09-13 | 2011-09-29 | Qualcomm Incorporated | Signaling method in an ofdm multiple access system |
US7990843B2 (en) | 2000-09-13 | 2011-08-02 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US8218425B2 (en) | 2000-09-13 | 2012-07-10 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US20130016678A1 (en) | 2000-09-13 | 2013-01-17 | Rajiv Laroia | Signaling method in an ofdm multiple access system |
US20020044524A1 (en) | 2000-09-13 | 2002-04-18 | Flarion Technologies, Inc. | OFDM communications methods and apparatus |
US7924699B2 (en) | 2000-09-13 | 2011-04-12 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US8098568B2 (en) | 2000-09-13 | 2012-01-17 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US8295154B2 (en) | 2000-09-13 | 2012-10-23 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US7916624B2 (en) | 2000-09-13 | 2011-03-29 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US20110235733A1 (en) | 2000-09-13 | 2011-09-29 | Qualcomm Incorporated | Signaling method in an ofdm multiple access system |
US20050254416A1 (en) | 2000-09-13 | 2005-11-17 | Rajiv Laroia | Signaling method in an OFDM multiple access system |
US20110235747A1 (en) | 2000-09-13 | 2011-09-29 | Qualcomm Incorporated | Signaling method in an ofdm multiple access system |
US20090010351A1 (en) | 2000-09-13 | 2009-01-08 | Qualcomm Incorporated | Signaling method in an ofdm multiple access system |
US8098569B2 (en) | 2000-09-13 | 2012-01-17 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US8199634B2 (en) | 2000-09-13 | 2012-06-12 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US8223627B2 (en) | 2000-09-13 | 2012-07-17 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US20090262641A1 (en) | 2000-09-13 | 2009-10-22 | Qualcomm Incorporated | Signaling method in an ofdm multiple access system |
US7295509B2 (en) | 2000-09-13 | 2007-11-13 | Qualcomm, Incorporated | Signaling method in an OFDM multiple access system |
US20110235746A1 (en) | 2000-09-13 | 2011-09-29 | Qualcomm Incorporated | Signaling method in an ofdm multiple access system |
US20080063099A1 (en) | 2000-09-13 | 2008-03-13 | Qualcomm Incorporated | Signaling method in an ofdm multiple access system |
TW508960B (en) | 2000-09-15 | 2002-11-01 | Flarion Technologies Inc | Methods and apparatus for transmitting information between a basestation and multiple mobile stations |
US6802035B2 (en) | 2000-09-19 | 2004-10-05 | Intel Corporation | System and method of dynamically optimizing a transmission mode of wirelessly transmitted information |
US6842487B1 (en) | 2000-09-22 | 2005-01-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Cyclic delay diversity for mitigating intersymbol interference in OFDM systems |
US6778513B2 (en) | 2000-09-29 | 2004-08-17 | Arraycomm, Inc. | Method and apparatus for separting multiple users in a shared-channel communication system |
US6658258B1 (en) | 2000-09-29 | 2003-12-02 | Lucent Technologies Inc. | Method and apparatus for estimating the location of a mobile terminal |
US6496790B1 (en) | 2000-09-29 | 2002-12-17 | Intel Corporation | Management of sensors in computer systems |
US7349371B2 (en) | 2000-09-29 | 2008-03-25 | Arraycomm, Llc | Selecting random access channels |
CN1346221A (en) | 2000-10-02 | 2002-04-24 | 株式会社Ntt都科摩 | The mobile communication base station apparatus |
US6907269B2 (en) | 2000-10-02 | 2005-06-14 | Ntt Docomo, Inc. | Mobile communication base station equipment |
WO2002031991A2 (en) | 2000-10-10 | 2002-04-18 | Broadstorm Telecommunications, Inc. | Channel assignment in an ofdma system |
US7072315B1 (en) | 2000-10-10 | 2006-07-04 | Adaptix, Inc. | Medium access control for orthogonal frequency-division multiple-access (OFDMA) cellular networks |
US20020061742A1 (en) | 2000-10-16 | 2002-05-23 | Alcatel | Method of managing radio resources in an interactive telecommunication network |
US6704571B1 (en) | 2000-10-17 | 2004-03-09 | Cisco Technology, Inc. | Reducing data loss during cell handoffs |
US6870808B1 (en) | 2000-10-18 | 2005-03-22 | Adaptix, Inc. | Channel allocation in broadband orthogonal frequency-division multiple-access/space-division multiple-access networks |
WO2002033848A2 |