JP2003249907A - Transmitting device of ofdm system - Google Patents

Transmitting device of ofdm system

Info

Publication number
JP2003249907A
JP2003249907A JP2002046336A JP2002046336A JP2003249907A JP 2003249907 A JP2003249907 A JP 2003249907A JP 2002046336 A JP2002046336 A JP 2002046336A JP 2002046336 A JP2002046336 A JP 2002046336A JP 2003249907 A JP2003249907 A JP 2003249907A
Authority
JP
Japan
Prior art keywords
signal
pilot
carrier
circuit
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002046336A
Other languages
Japanese (ja)
Inventor
Toshiyuki Akiyama
俊之 秋山
Nobuo Tsukamoto
信夫 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2002046336A priority Critical patent/JP2003249907A/en
Publication of JP2003249907A publication Critical patent/JP2003249907A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To reduce increase in a symbol error rate due to the distortion of a reproduction reference signal in mobile communication by reducing distortion that occurs in the vicinity of both ends of the band of a reference signal reproduced to be used in demodulation in a transmitting device of an OFDM (orthogonal frequency division multiplexing) system for modulating a plurality of carriers of an OFDM system with a modulation method using synchronous detection. <P>SOLUTION: A receiver calculates a reference signal of a carrier at the central part of a band by interpolating the reference signal with an LPF of three taps or more, calculates a reference signal of a carrier in the vicinity of both ends of the band with linear approximation between two pilot signals, or further forms a carrier structure, wherein a carrier interval of a pilot signal inserted in the vicinity of the both ends of the band is narrower than the a carrier interval of a pilot signal at the central part. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、互いに直交する複
数本の搬送波(キャリア)を情報符号で変調する直交周
波数分割多重変調方式(Orthogonal Frequency Divisio
n Multiplexing:以下、OFDM方式と記す)を用いた
伝送装置のキャリア構造と、その復調装置で実施する基
準信号の再生に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an orthogonal frequency division multiplex modulation system (Orthogonal Frequency Divisio) for modulating a plurality of carriers orthogonal to each other with information codes.
n Multiplexing: Hereinafter, it relates to a carrier structure of a transmission device using an OFDM method and reproduction of a reference signal performed by the demodulation device.

【0002】[0002]

【従来の技術】近年、無線装置の分野では、マルチパス
フェージングに強い変調方式として、OFDM方式が脚
光を集めている。 特に、複数本のキャリアを同期変調
方式で変調するOFDM方式は、欧州や日本を初めとす
る各国の次世代のテレビ放送、FPU、無線LAN等の
分野で多くの応用研究が進められている。OFDM方式
は、図2の様に、一定の伝送帯幅内に互いに直交するN
本、例えば約1400本の搬送波(キャリア)を設け、
情報符号によって、指定キャリアを64QAM等の変調
方式で変調して伝送する方式である。
2. Description of the Related Art In recent years, in the field of wireless devices, the OFDM system has been attracting attention as a modulation system that is resistant to multipath fading. In particular, the OFDM method in which a plurality of carriers are modulated by the synchronous modulation method is under extensive application research in the fields of next-generation television broadcasting, FPU, wireless LAN, etc. in countries such as Europe and Japan. The OFDM system, as shown in FIG. 2, has N orthogonal to each other within a certain transmission bandwidth.
Provide a carrier, for example, about 1400 carriers,
In this method, a designated carrier is modulated by an information code by a modulation method such as 64QAM and transmitted.

【0003】図3は、そのキャリア構造の一例を更に詳
しく説明する図であり、その一部を拡大して示したもの
である。同様の構造が全伝送帯に渡って繰り返されると
考えて良い。図3において、横方向に並ぶ「□」はそれ
ぞれ1本のキャリアを表す。横一列の「□」はOFDM
信号の1つのシンボルを表し、縦方向は時間の経過を表
している。SPと書かれた「□」は、復調の際に必要に
なる基準信号を再生するのに用いるパイロット信号の位
置を示している。また何も書かれていない「□」は、6
4QAMで変調された信号位置を表している。 この配
置ではパイロット信号が周波数方向と時間方向にばらま
かれた位置に配置されているため、SP(ScatteredPilo
t)と銘々されている。なお、パイロット信号Pは、図4
のCPと書かれた「□」の様に、時間方向に連続的に挿
入しても良い。この場合、連続性を強調したCP(Conti
nual Pilot)に変えて示した。
FIG. 3 is a view for explaining an example of the carrier structure in more detail, and is an enlarged view of a part thereof. It can be considered that a similar structure is repeated over the entire transmission band. In FIG. 3, “□” arranged in the horizontal direction each represents one carrier. The horizontal line "□" is OFDM
It represents one symbol of the signal, the vertical direction representing the passage of time. The “□” written as SP indicates the position of the pilot signal used to reproduce the reference signal required for demodulation. In addition, "□" with nothing written is 6
The signal position modulated by 4QAM is shown. In this arrangement, the pilot signals are arranged at positions scattered in the frequency direction and the time direction, so that SP (Scattered Pilo
t). The pilot signal P is shown in FIG.
It may be inserted continuously in the time direction such as “□” written as CP. In this case, CP (Conti
(nual Pilot).

【0004】図5と図6は、OFDM方式の送信装置と
受信装置を構成する回路の中から、本発明に関係する部
分を取り出して示した回路図である。送信前処理回路1
に入力された情報符号は、誤り訂正符号への変換、64
QAMへのマッピング、及び図3に従ったSPキャリア
の挿入等の前処理により、図3の横一列に並ぶ各キャリ
アの信号を表す、2048サンプルクロックの周波数分
布イメージの信号列に変換される。変換された信号列は
IFFT回路2に入力され、2048ポイントの逆フー
リエ変換(IFFT)により時間波形を表す信号列に変換
される。図7は、送信装置から送信されるOFDM信号
を模式的に示したものであり、IFFT回路2からは、
OFDM信号のTs期間の時間波形が出力される。ガー
ドインターバル挿入回路3は、この期間Tsの時間波形
の内のbの部分をb’の部分にコピーして挿入する回路
である。この様にガードインターバルを挿入された信号
は、送信後処理回路4において更に直交変調、D/A変
換、アップコンバート等の後処理を施された後、アンテ
ナ5から送信される。
FIG. 5 and FIG. 6 are circuit diagrams showing parts related to the present invention extracted from the circuits constituting the transmitter and the receiver of the OFDM system. Pre-transmission processing circuit 1
The information code input to is converted into an error correction code, 64
Pre-processing such as mapping to QAM and insertion of SP carriers according to FIG. 3 is converted into a signal sequence of a frequency distribution image of 2048 sample clocks, which represents the signals of the carriers arranged in one horizontal line in FIG. The converted signal train is input to the IFFT circuit 2 and converted into a signal train representing a time waveform by 2048-point inverse Fourier transform (IFFT). FIG. 7 schematically shows an OFDM signal transmitted from the transmission device. From the IFFT circuit 2,
The time waveform of the Ts period of the OFDM signal is output. The guard interval insertion circuit 3 is a circuit for copying and inserting the portion b of the time waveform of the period Ts into the portion b '. The signal with the guard interval inserted in this way is further subjected to post-processing such as quadrature modulation, D / A conversion, and up-conversion in the post-transmission processing circuit 4, and then transmitted from the antenna 5.

【0005】図6の受信装置のアンテナ6で受信された
信号は、受信前処理回路7においてダウンコンバート、
A/D変換、直交復調等の前処理を実施された後、信号
切り出し回路8に入力され、図7のTs期間に対応する
2048サンプルの信号列が切り出される。切り出され
た信号列は2048ポイントのフーリエ変換(FFT)を
実施するFFT回路9に入力され、周波数分布イメージ
の信号列である図3の横一列の信号列に戻される。とこ
ろで、64QAMでマッピングされた信号を復調するに
は、一般の教科書にも記されている様に、信号空間上の
物差しに相当する基準信号が必要である。図3のパイロ
ット信号SPは、この基準信号の再生を可能にするため
に挿入された信号である。図6のFFT回路9から出力
された周波数分布イメージの信号列は、基準信号再生回
路10に入力され、その中に挿入されているパイロット
信号SPから基準信号が再生される。 図6の受信後処
理回路12は、この再生された基準信号を用いて64Q
AMを復調し、復調符号の符号誤り訂正等の後処理を実
施する回路である。受信後処理回路12から出力された
符号は、復号された情報符号として受信装置から出力さ
れる。なお遅延回路11は、基準信号を再生するための
演算時間だけ周波数分布イメージの信号列を遅延して、
基準信号と周波数分布イメージの信号列を受信後処理回
路12に同時に入力するための、時間調整用の回路であ
る。
The signal received by the antenna 6 of the receiver shown in FIG. 6 is down-converted in the reception preprocessing circuit 7.
After pre-processing such as A / D conversion and quadrature demodulation, it is input to the signal cutout circuit 8 and a 2048-sample signal sequence corresponding to the Ts period in FIG. 7 is cut out. The cut-out signal train is input to the FFT circuit 9 that performs 2048-point Fourier transform (FFT), and is returned to the signal train of the horizontal single row of FIG. 3 which is the signal train of the frequency distribution image. By the way, in order to demodulate a signal mapped by 64QAM, a reference signal corresponding to a rule on the signal space is required as described in general textbooks. The pilot signal SP of FIG. 3 is a signal inserted to enable reproduction of this reference signal. The signal sequence of the frequency distribution image output from the FFT circuit 9 of FIG. 6 is input to the reference signal reproduction circuit 10, and the reference signal is reproduced from the pilot signal SP inserted therein. The post-reception processing circuit 12 of FIG. 6 uses the regenerated reference signal for 64Q.
This is a circuit that demodulates AM and performs post-processing such as code error correction of demodulated code. The code output from the post-reception processing circuit 12 is output from the receiving device as a decoded information code. The delay circuit 11 delays the signal sequence of the frequency distribution image by the operation time for reproducing the reference signal,
It is a circuit for time adjustment for simultaneously inputting the reference signal and the signal sequence of the frequency distribution image to the post-reception processing circuit 12.

【0006】次に、基準信号再生回路10内で実施する
従来の基準信号の再生方法について説明する。図8は、
OFDM方式の受信装置の基準信号ベクトルを再生する
回路部分を抜き出したものである。基準信号再生回路1
0に入力された周波数分布イメージの信号列は、初めに
時間方向内挿回路13に入力される。時間方向内挿回路
13では、時間方向にSPを含む図9の斜線のキャリア
毎に、所定のタップ数のLPFに通し、時間方向に内挿
された基準信号ベクトルとして出力する。このSPが配
置されているキャリアを、以後、パイロットキャリアと
記す。図10は、図3の一点鎖線14のキャリアを取り
上げ、上記の時間方向の内挿方法を模式的に示した物で
ある。横軸は時間軸でありシンボル毎にメモリを付して
ある。○印を付した棒は受信されたSPの信号ベクトル
を表している。SP1とSP2の間のシンボルの基準信
号ベクトルは、その前後の複数のSPの信号ベクトルを
用いた一定タップ数のLPFで内挿して求める。この時
間方向の内挿演算により、図9の斜線を付した6本間隔
のキャリアの基準信号ベクトルが算出される。なお、時
間方向に内挿して求めた中間的な基準信号ベクトルを、
最終的に得られる基準信号ベクトルと区別するため、以
後、シンボルパイロット信号と記す。一方、SPが配置
されていないキャリアにある図9の変調信号Aの基準信
号ベクトルは、パイロットキャリアのシンボルパイロッ
ト信号をキャリア方向に内挿して求める。
Next, a conventional reference signal reproducing method implemented in the reference signal reproducing circuit 10 will be described. Figure 8
The circuit portion for reproducing the reference signal vector of the OFDM receiver is extracted. Reference signal reproduction circuit 1
The signal sequence of the frequency distribution image input to 0 is first input to the time direction interpolation circuit 13. The time-direction interpolation circuit 13 passes the LPF having a predetermined number of taps for each carrier indicated by the diagonal lines in FIG. 9 that includes SP in the time direction and outputs the reference signal vector interpolated in the time direction. The carrier in which this SP is arranged is hereinafter referred to as a pilot carrier. FIG. 10 is a diagram schematically showing the above-mentioned interpolation method in the time direction by taking the carrier indicated by the alternate long and short dash line 14 in FIG. The horizontal axis is the time axis, and a memory is attached to each symbol. The circled circles represent the received SP signal vector. The reference signal vector of the symbol between SP1 and SP2 is interpolated by an LPF with a fixed number of taps using the signal vectors of a plurality of SPs before and after the symbol. By this interpolating operation in the time direction, the reference signal vector of the carrier at the six intervals indicated by the diagonal lines in FIG. 9 is calculated. In addition, the intermediate reference signal vector obtained by interpolating in the time direction,
Hereinafter, in order to distinguish from the finally obtained reference signal vector, it is referred to as a symbol pilot signal. On the other hand, the reference signal vector of the modulated signal A in FIG. 9 in the carrier in which the SP is not arranged is obtained by interpolating the symbol pilot signal of the pilot carrier in the carrier direction.

【0007】図8のキャリア方向内挿回路15は、この
内挿演算を実施する回路である。図11の(a)は、図
9の一点鎖線16のシンボルを取り上げ、上記キャリア
方向の内挿方法を模式的に示した物である。横軸は周波
数軸であり、キャリア位置毎にメモリを付してある。太
い矢印は、図9の斜線を付したキャリアに対して求めた
シンボルパイロット信号W(1)、W(6+1)、W(2×
6+1)、・・・を表している。ここで括弧内の数字は
キャリア番号である。太い矢印の無いキャリア位置Aの
基準信号ベクトルは次の様にして算出する。まず、図1
1の(a)の太い矢印が無いキャリアのベクトルの大き
さを0として得られる図11の(b)の信号W(1)、
0、・・・、0、W(6+1)、0、・・・、0、W(2
×6+1)、・・・を、例えばタップ数23タップの通
常のディジタルLPFに通すことによって、破線で表す
滑らかな内挿信号を算出する。この様にして算出した内
挿信号を変調信号Aの基準信号ベクトルとして出力す
る。図8のキャリア方向内挿回路15で再生された基準
信号ベクトルは、そのまま基準信号再生回路10から出
力される。図6の基準信号再生回路10で再生され出力
された基準信号ベクトルと、基準信号を再生するための
演算時間だけ遅延回路11で遅延された周波数分布イメ
ージの信号列は、受信後処理回路12に入力され、64
QAM復調、復調符号の符号誤り訂正等の後処理を実施
し、復調された情報符号として受信装置から出力され
る。
The carrier direction interpolation circuit 15 of FIG. 8 is a circuit for performing this interpolation calculation. FIG. 11A is a diagram schematically showing the above-described interpolating method in the carrier direction by taking the symbol of the alternate long and short dash line 16 of FIG. The horizontal axis is the frequency axis, and a memory is attached to each carrier position. The thick arrows indicate the symbol pilot signals W (1), W (6 + 1), W (2 ×) obtained for the shaded carriers in FIG.
6 + 1), ... Here, the numbers in parentheses are carrier numbers. The reference signal vector at the carrier position A without the thick arrow is calculated as follows. First, Fig. 1
The signal W (1) of FIG. 11 (b) obtained by setting the magnitude of the vector of the carrier without the thick arrow of 1 (a) to 0,
0, ..., 0, W (6 + 1), 0, ..., 0, W (2
.. are passed through a normal digital LPF having 23 taps, for example, to calculate a smooth interpolation signal represented by a broken line. The interpolated signal calculated in this way is output as the reference signal vector of the modulated signal A. The reference signal vector reproduced by the carrier direction interpolation circuit 15 of FIG. 8 is directly output from the reference signal reproduction circuit 10. The reference signal vector reproduced and output by the reference signal reproduction circuit 10 of FIG. 6 and the signal sequence of the frequency distribution image delayed by the delay circuit 11 by the calculation time for reproducing the reference signal are sent to the post-reception processing circuit 12. Entered, 64
Post-processing such as QAM demodulation and code error correction of the demodulated code is performed, and the demodulated information code is output from the receiving device.

【0008】[0008]

【発明が解決しようとする課題】ところで、このように
キャリア方向の相関を利用する基準信号ベクトルの再生
方法では、次の様な問題が生じる。すなわち、キャリア
方向の内挿に用いるディジタルLPFは、例えばタップ
数23タップを持つフィルタであり、任意のキャリア番
号の内挿値を求めるには、図11の(b)に示すよう
に、そのキャリアの前後11キャリア分の信号が必要に
なる。帯域の内部のキャリアに対する内挿値を算出する
際は、その前後に必ず必要な本数のパイロットキャリア
があるので、問題は生じない。しかし帯域の境界近傍で
は、図12に示す様に、その一方のキャリアが存在しな
くなる。正しい内挿演算を実施するのに必要な太い破線
の矢印で示すシンボルパイロット信号が存在しないた
め、正しい内挿値が得られなくなる。本来あるべき基準
信号ベクトルと内挿値との差である歪みベクトルの大き
さを図示すると、図13の様になる。図13には、周波
数軸上のキャリア位置にメモリを付してある。また、周
波数軸上の「○」印を付いたキャリアは、パイロットキ
ャリアである事を示す。縦軸は再生された基準信号の大
きさと歪みベクトルの大きさの比であり、dB値で表示
している。 すなわち、再生された基準信号のS/Nに
対応する値である。
By the way, in the method of reproducing the reference signal vector using the correlation in the carrier direction as described above, the following problems occur. That is, the digital LPF used for interpolation in the carrier direction is, for example, a filter having 23 taps, and in order to obtain the interpolated value of an arbitrary carrier number, as shown in (b) of FIG. Signals for 11 carriers before and after are required. When calculating the interpolated value for the carrier inside the band, there is always the required number of pilot carriers before and after that, so there is no problem. However, in the vicinity of the boundary of the band, as shown in FIG. 12, one of the carriers does not exist. Since there is no symbol pilot signal indicated by the thick dashed arrow for performing the correct interpolation calculation, the correct interpolation value cannot be obtained. The magnitude of the distortion vector, which is the difference between the original reference signal vector and the interpolated value, is illustrated in FIG. In FIG. 13, a memory is attached to the carrier position on the frequency axis. In addition, carriers marked with "○" on the frequency axis indicate that they are pilot carriers. The vertical axis represents the ratio of the size of the reproduced reference signal and the size of the distortion vector, and is expressed in dB. That is, it is a value corresponding to the S / N of the reproduced reference signal.

【0009】キャリア方向の内挿値の正しい基準信号ベ
クトルからの歪みは、キャリア方向の内挿に用いるディ
ジタルLPFのタップ数のほぼ1/2のキャリア本数の
範囲で、一番端のキャリアに近づくに従って急激に増加
する。一番端のパイロットキャリア17と2番目のパイ
ロットキャリア18の間のキャリアにおいては、パイロ
ットキャリアのキャリア間隔Mpの値によっては、正し
い基準信号ベクトルの大きさの1/7を越える歪みが生
じる。受信された信号の符号は、再生された基準信号を
用いて判別するため、基準信号に歪みがあると復調され
る符号の誤り率が増加し、伝送装置の性能が下がる。そ
のため、符号誤り率が低く高性能な伝送装置を実現する
には、如何に歪みの少ない基準信号を再生できるかが決
め手になる。
The distortion of the interpolated value in the carrier direction from the correct reference signal vector approaches the end carrier within the range of the number of carriers which is approximately 1/2 of the number of taps of the digital LPF used for interpolation in the carrier direction. Increase rapidly according to. In the carrier between the end pilot carrier 17 and the second pilot carrier 18, distortion exceeding 1/7 of the correct magnitude of the reference signal vector occurs depending on the value of the carrier spacing Mp of the pilot carriers. Since the code of the received signal is discriminated using the reproduced reference signal, if the reference signal is distorted, the error rate of the code demodulated increases and the performance of the transmission device deteriorates. Therefore, how to reproduce a reference signal with less distortion is a decisive factor in realizing a high-performance transmission apparatus with a low code error rate.

【0010】この歪みの少ない基準信号の再生方法に関
しては、特開2002−9726号公報に記載されてい
る。この基準信号の再生方法は、パイロット信号が伝送
されない帯域外のキャリア部分に対しても、想定される
シンボルパイロット信号の複素ベクトル値を外挿して求
めて補間する。すなわち、例えば図12の一番端のキャ
リア位置のシンボルパイロット信号の値を、帯域外の太
い破線の矢印位置のシンボルパイロット信号としてコピ
ーして外挿し補間する。そして、補間した複素ベクトル
も含めた全シンボルパイロット信号からなる外挿後のシ
ンボルパイロット信号を用いて内挿演算を実施し、基準
信号ベクトルを再生するものである。そのため、帯域の
境界近傍のキャリアに対する基準信号ベクトルの算出に
おいても、必要な本数のシンボルパイロット信号が存在
し、得られる基準信号ベクトルの歪みの量を低減できる
効果が得られる。
A method of reproducing the reference signal with less distortion is described in Japanese Patent Laid-Open No. 2002-9726. This reference signal reproducing method extrapolates and interpolates an assumed complex vector value of the symbol pilot signal even for a carrier portion outside the band where the pilot signal is not transmitted. That is, for example, the value of the symbol pilot signal at the carrier position at the end of FIG. 12 is copied as a symbol pilot signal at the position of the thick broken arrow outside the band and extrapolated and interpolated. Then, an interpolation operation is performed using the extrapolated symbol pilot signal including all symbol pilot signals including the interpolated complex vector to reproduce the reference signal vector. Therefore, also in the calculation of the reference signal vector for the carrier near the band boundary, the necessary number of symbol pilot signals exists, and the effect of reducing the amount of distortion of the obtained reference signal vector can be obtained.

【0011】この方法では、外挿が正しく実施されれば
図13の大きな歪みが生じる領域が帯域外に移動するた
め、大きな効果が得られる。しかし、実際のシンボルパ
イロット信号波形は、マルチパス等の影響を受けて複雑
に変化する。そのため、固定無線の様な好条件下でない
と正しい外挿が実施できず、復調符号の誤り率が下げら
れない欠点がある。また、例え好条件下であってもある
程度の振動成分は発生するため、この振動波形を補正す
るための、大きな回路規模の変調回路が必要になる欠点
がある。本発明の目的は、従来の回路に比較的小さな回
路を追加するだけで、シンボルパイロット信号波形が複
雑に変化する場合においても、比較的歪みが少ない基準
信号を再生でき、復調符号の符号誤り率を低減できる良
好なOFDM方式の伝送装置を提供することにある。
In this method, if the extrapolation is performed correctly, the region in which large distortion occurs in FIG. 13 moves out of the band, so that a large effect can be obtained. However, the actual symbol pilot signal waveform changes in a complicated manner under the influence of multipath and the like. For this reason, there is a drawback that correct extrapolation cannot be performed unless the favorable conditions such as fixed radio, and the error rate of the demodulation code cannot be reduced. In addition, since a certain amount of vibration component is generated even under favorable conditions, there is a drawback that a modulation circuit having a large circuit scale is necessary to correct this vibration waveform. An object of the present invention is to add a comparatively small circuit to the conventional circuit, to reproduce a reference signal with comparatively little distortion even when the symbol pilot signal waveform changes in a complicated manner, and to obtain a code error rate of a demodulation code. It is an object of the present invention to provide a good OFDM-type transmission device capable of reducing noise.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
本発明は、互いに直交する複数本の搬送波(キャリア)で
情報符号を伝送する直交周波数分割多重変調方式(OF
DM方式)の受信装置であって、該OFDM方式の信号
は、時間方向にパイロット信号を有するキャリア(パイ
ロットキャリア)を一定帯域内のキャリアの間に挿入さ
れた構造を有し、上記受信装置が、受信した該複数本の
キャリア信号を入力し、該キャリア信号の間に挿入され
ている該パイロット信号を選択してシンボルパイロット
信号とする、あるいは該パイロット信号を時間方向に内
挿した信号を算出してシンボルパイロット信号とし、該
算出したシンボルパイロット信号から基準信号を再生し
て出力する基準信号再生回路であって、該算出したシン
ボルパイロット信号の中からキャリア間隔Mpcのシン
ボルパイロット信号を選択し、該選択したシンボルパイ
ロット信号に3タップ以上のタップ数のフィルタ処理を
実施して得られる信号を第1の内挿信号として出力する
フィルタ回路と、該算出したシンボルパイロット信号の
間を直線近似して得られる信号を第2の内挿信号として
出力する直線近似回路と、上記第1の内挿信号と上記第
2の内挿信号を入力し、一定帯域内の両端から一定の範
囲の内挿信号として上記第2の内挿信号を選択し、それ
以外の範囲の内挿信号として上記第1の内挿信号を選択
し、選択した内挿信号を再生基準信号として出力する選
択回路を有する基準信号再生回路を有する受信装置であ
る。また、上記パイロットキャリアを挿入する間隔は、
当該帯域内の中央近傍のキャリアの間に挿入するパイロ
ットキャリアの間隔Mpcより、該帯域内の両端近傍の
キャリアの間に挿入するパイロットキャリアの間隔を狭
くしたものである。また、少なくともキャリア間隔Mp
c毎に上記パイロットキャリアを挿入され、当該帯域内
の両端近傍においては、上記キャリア間隔Mpcで挿入
したパイロットキャリアの間に、更に1本以上のパイロ
ットキャリアを有するようにしたものである。
In order to achieve the above object, the present invention provides an orthogonal frequency division multiplex modulation (OF) method for transmitting an information code by a plurality of carriers which are orthogonal to each other.
(DM system), the OFDM system signal has a structure in which a carrier having a pilot signal in the time direction (pilot carrier) is inserted between carriers in a certain band, , Input the received plurality of carrier signals and select the pilot signal inserted between the carrier signals to be a symbol pilot signal, or calculate a signal by interpolating the pilot signals in the time direction A symbol pilot signal, and a reference signal reproducing circuit for reproducing and outputting a reference signal from the calculated symbol pilot signal, selecting a symbol pilot signal with a carrier interval Mpc from the calculated symbol pilot signal, A signal obtained by filtering the selected symbol pilot signal with three or more taps A filter circuit that outputs a first interpolated signal; a linear approximation circuit that outputs a signal obtained by performing a linear approximation between the calculated symbol pilot signals as a second interpolated signal; A signal and the second interpolated signal are input, the second interpolated signal is selected as an interpolated signal in a certain range from both ends within a certain band, and the first interpolated signal is used as an interpolated signal in the other range. Is a receiving device having a reference signal reproduction circuit having a selection circuit that selects the interpolated signal of and outputs the selected interpolated signal as a reproduction reference signal. The interval for inserting the pilot carrier is
The interval of pilot carriers inserted between carriers near both ends in the band is narrower than the interval Mpc of pilot carriers inserted between carriers near the center in the band. At least the carrier spacing Mp
The pilot carrier is inserted for each c, and in the vicinity of both ends in the band, one or more pilot carriers are further provided between the pilot carriers inserted at the carrier interval Mpc.

【0013】本発明によれば、帯域の内部領域の基準信
号は、従来同様に、フィルタ回路によるキャリア方向の
内挿演算で算出する。一方、フィルタ回路を用いると大
きな歪みが生じる帯域両端近傍の領域の基準信号は、パ
イロットキャリアのシンボルパイロット信号を直線で結
んで近似する直線近似で算出する。 64QAM等の復
調においては、これら2種類の演算で得られる基準信号
を、帯域の内部領域と両端近傍の領域で切り換えて使用
して復調する。内挿演算としては、直線近似はフィルタ
回路に比べ性能が劣る。すなわち帯域の内部では、直線
近似で算出される基準信号より、フィルタ回路を用いて
算出した基準信号の方が歪みが小さくなる。しかし、フ
ィルタ回路を用いて算出した基準信号の歪みは帯域の境
界近傍で急激に増大し、その大きさが、直線近似で算出
される基準信号の歪みの大きさと逆転する。例えばパイ
ロットキャリアの間隔を6キャリア間隔とし、シンボル
パイロット信号が128キャリア本で一回転する変調を
受けている信号の場合、直線近似で算出される基準信号
の歪み量は図14の実線の様になり、フィルタ回路で算
出される破線の基準信号より歪み量が小さくなる。従っ
て、これら2種類の演算で得られる基準信号を帯域の内
部領域と両端近傍の領域で切り換えて使用して復調する
本発明の伝送装置では、基準信号の歪みによる復調符号
の符号誤り率の増加の少ない、良好なOFDM方式の伝
送装置を得ることができる。またこの効果は、従来の回
路に簡単な直線近似回路とスイッチ回路を追加するだけ
で実現できるため、回路規模の増加を小さく抑えること
ができる効果が得られる。また、帯域の両端の近傍の領
域には、帯域の内部領域よりパイロットキャリアを密に
配置すると、直線近似の精度をより高くすることがで
き、歪み量を更に低減できる効果を得ることができる。
According to the present invention, the reference signal in the inner region of the band is calculated by the interpolation operation in the carrier direction by the filter circuit as in the conventional case. On the other hand, the reference signal in the region near both ends of the band where large distortion occurs when using the filter circuit is calculated by linear approximation in which symbol pilot signals of pilot carriers are connected by a straight line. In the demodulation of 64QAM or the like, the reference signal obtained by these two types of calculations is switched between the internal region of the band and the region near both ends to be used for demodulation. As for the interpolation operation, the linear approximation is inferior in performance to the filter circuit. That is, inside the band, the distortion of the reference signal calculated using the filter circuit is smaller than that of the reference signal calculated by linear approximation. However, the distortion of the reference signal calculated using the filter circuit rapidly increases near the boundary of the band, and its magnitude is opposite to the magnitude of the distortion of the reference signal calculated by the linear approximation. For example, in the case of a signal in which the pilot carrier interval is 6 carrier intervals and the symbol pilot signal is modulated by one rotation of 128 carriers, the distortion amount of the reference signal calculated by linear approximation is as shown by the solid line in FIG. Therefore, the distortion amount is smaller than that of the reference signal indicated by the broken line calculated by the filter circuit. Therefore, in the transmission apparatus of the present invention which demodulates by switching the reference signal obtained by these two types of operations in the internal region of the band and the region near both ends, the code error rate of the demodulated code increases due to the distortion of the reference signal. It is possible to obtain a good transmission apparatus of the OFDM system with less number of channels. Further, this effect can be realized only by adding a simple linear approximation circuit and a switch circuit to the conventional circuit, so that an effect of suppressing an increase in circuit scale can be obtained. Further, if the pilot carriers are arranged more densely in the regions near both ends of the band than in the inner region of the band, the accuracy of the linear approximation can be further increased, and the effect of further reducing the distortion amount can be obtained.

【0014】[0014]

【発明の実施の形態】本発明による第1の実施の形態を
説明する。送信装置の構成は、図5の従来の回路と同一
で良い。図6の受信装置の回路構成も、基準信号再生回
路10の内部回路構成を除けば、従来の回路と同一であ
り、情報符号の復調手順も従来と同一である。そこで、
従来と異なる基準信号再生回路10の内部の回路構成と
その効果のみ説明する。この基準信号再生回路10の内
部回路の構成例を図1に示す。図8の従来の回路構成に
対し、キャリア方向内挿回路20の内部の回路構成が大
きく異なる。従来と同様に時間方向内挿回路13で算出
されたシンボルパイロット信号は、キャリア方向内挿回
路20に入力される。入力されたシンボルパイロット信
号は2つに分岐され、その一方は図8の従来の回路のフ
ィルタ回路と同じ構成のフィルタ回路19に入力され、
第1の内挿信号が算出される。また、分岐された他方は
新たに設けた直線近似回路21に入力され、直線近似で
算出された第2の内挿信号を算出する。フィルタ回路1
9と直線近似回路21で算出された第1の内挿信号と第
2の内挿信号は、スイッチ回路22に入力される。そし
て、制御信号による制御の下、図14の帯域の境界近傍
の領域aのキャリアの基準信号として第2の内挿信号を
選択し、帯域の内部の領域bに対しては第1の内挿信号
を選択してキャリア方向内挿回路20から出力する。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment according to the present invention will be described. The configuration of the transmitter may be the same as that of the conventional circuit shown in FIG. The circuit configuration of the receiver shown in FIG. 6 is also the same as the conventional circuit except the internal circuit configuration of the reference signal reproducing circuit 10, and the information code demodulation procedure is also the same as the conventional one. Therefore,
Only the internal circuit configuration of the reference signal reproducing circuit 10 different from the conventional one and its effect will be described. FIG. 1 shows a configuration example of the internal circuit of the reference signal reproducing circuit 10. The internal circuit configuration of the carrier direction interpolation circuit 20 is significantly different from the conventional circuit configuration of FIG. The symbol pilot signal calculated by the time direction interpolation circuit 13 is input to the carrier direction interpolation circuit 20 as in the conventional case. The input symbol pilot signal is branched into two, one of which is input to a filter circuit 19 having the same configuration as the filter circuit of the conventional circuit of FIG.
A first interpolated signal is calculated. The other branched one is input to the newly provided linear approximation circuit 21 to calculate the second interpolation signal calculated by the linear approximation. Filter circuit 1
9 and the first interpolation signal and the second interpolation signal calculated by the linear approximation circuit 21 are input to the switch circuit 22. Then, under the control of the control signal, the second interpolation signal is selected as the reference signal of the carrier in the region a near the boundary of the band in FIG. 14, and the first interpolation signal is selected for the region b inside the band. A signal is selected and output from the carrier direction interpolation circuit 20.

【0015】本実施の形態では、図15に実線で示す様
に、図14の歪み量が小さい内挿信号を選択して基準信
号としているため、図6の基準信号再生回路10から出
力される再生基準信号の歪みは低減され、従来の受信装
置より符号誤り率の低い良好な情報符号を復調できる効
果が得られる。また、本実施の形態を実現するには簡単
な直線近似回路とスイッチ回路を追加するだけで良く、
回路規模の増加を小さく抑えることができる効果が得ら
れる。この様に、本実施の形態による基準信号再生回路
を用いると、帯域の境界近傍に生じていた基準信号ベク
トルの歪みが低減されるので、符号誤り率の少ない良好
なOFDM方式の伝送装置を得ることができる。
In the present embodiment, as shown by the solid line in FIG. 15, the interpolated signal with a small distortion amount in FIG. 14 is selected and used as the reference signal, so that it is output from the reference signal reproduction circuit 10 in FIG. The distortion of the reproduction reference signal is reduced, and the effect that a good information code having a lower code error rate than that of the conventional receiving apparatus can be demodulated is obtained. Further, in order to realize the present embodiment, it suffices to add a simple linear approximation circuit and a switch circuit,
The effect that the increase in the circuit scale can be suppressed small is obtained. As described above, when the reference signal regenerating circuit according to the present embodiment is used, the distortion of the reference signal vector generated near the boundary of the band is reduced, so that a good OFDM transmission apparatus with a small code error rate is obtained. be able to.

【0016】本発明による第2の実施の形態を説明す
る。本実施の形態で用いる回路構成は、基本的には第1
の実施の形態と同一であり、伝送するOFDM信号のキ
ャリアの構造のみが異なる。本実施の形態で用いるキャ
リア構造の例を図16に示す。 この図は、帯域の左端
の領域のキャリア構造を拡大して示したものである。
帯域の内部におけるパイロットキャリアの間隔は従来と
同様に6本間隔にする。 しかし、帯域の端では、6本
間隔のパイロットキャリアの間に更に1本パイロットキ
ャリアを追加する。すなわち、帯域内の中央近傍のキャ
リアの間に挿入するパイロットキャリアの間隔Mpcよ
り、帯域の両端近傍のキャリアの間に挿入するパイロッ
トキャリアの間隔を狭くする。そして、図1のフィルタ
回路19で第1の内挿信号を算出する際は、帯域の内部
と同じ6本間隔で挿入されているパイロットキャリアで
算出されたシンボルパイロット信号を用いて内挿演算を
実施する。一方、直線近似回路21で第2の内挿信号を
算出する際は、最隣接のパイロットキャリアで算出され
たシンボルパイロット信号間で直線近似する。従って帯
域の両端近傍では、3本間隔のパイロットキャリアで算
出されるシンボルパイロット信号間で直線近似値が算出
されることになり、第1の実施の形態より更に歪みの少
ない基準信号を再生することができる。
A second embodiment according to the present invention will be described. The circuit configuration used in this embodiment is basically the first
The embodiment is the same as that of Embodiment 1 except for the structure of the carrier of the OFDM signal to be transmitted. FIG. 16 shows an example of a carrier structure used in this embodiment. This figure is an enlarged view of the carrier structure in the leftmost region of the band.
The spacing between pilot carriers within the band is 6 as in the conventional case. However, at the edge of the band, one pilot carrier is added between the pilot carriers at 6 intervals. That is, the interval of pilot carriers inserted between carriers near both ends of the band is narrower than the interval Mpc of pilot carriers inserted between carriers near the center of the band. Then, when the first interpolation signal is calculated by the filter circuit 19 of FIG. 1, the interpolation calculation is performed using the symbol pilot signals calculated by the pilot carriers inserted at the same six intervals as in the band. carry out. On the other hand, when the second interpolation signal is calculated by the linear approximation circuit 21, linear approximation is performed between the symbol pilot signals calculated by the most adjacent pilot carriers. Therefore, in the vicinity of both ends of the band, a linear approximation value is calculated between the symbol pilot signals calculated by the pilot carriers at three intervals, and the reference signal with less distortion than in the first embodiment is reproduced. You can

【0017】この様に、本実施の形態を用いると、第1
の実施の形態で得られる効果の他に、再生される基準信
号の歪みを、更に小さくできる効果を得ることができ
る。なお、図4の様にパイロットキャリアCPが時間方
向に連続的に挿入されている場合にも、CPがあるキャ
リアをパイロットキャリアとし、CPキャリアの信号自
身をシンボルパイロット信号とすれば、同様に成り立つ
のは明らかである。この場合、図1の時間方向内挿回路
13が不要になるのも明らかである。また、以上の説明
では、パイロットキャリアの間隔を6本間隔とした場合
を用いて説明したが、任意のキャリア間隔でも同様に成
り立つのは言うまでもない。この場合、キャリア間隔M
pcを8本間隔等、2のべき乗のキャリア間隔に設定する
と、直線近似の演算をビットシフトと簡単な加減算回路
で実現でき、回路規模を縮小できる効果を得ることがで
きる。
As described above, according to the present embodiment, the first
In addition to the effect obtained in the embodiment, it is possible to obtain the effect of further reducing the distortion of the reproduced reference signal. Even when pilot carriers CP are continuously inserted in the time direction as shown in FIG. 4, the same holds if the carrier with CP is used as the pilot carrier and the CP carrier signal itself is used as the symbol pilot signal. Is clear. In this case, it is obvious that the time direction interpolation circuit 13 of FIG. 1 is unnecessary. Further, in the above description, the case where the spacing between the pilot carriers is set to 6 is used, but it goes without saying that the same holds for any carrier spacing. In this case, the carrier interval M
If pc is set to a carrier interval of a power of 2, such as an interval of eight lines, a linear approximation operation can be realized by a bit shift and a simple addition / subtraction circuit, and the effect of reducing the circuit scale can be obtained.

【0018】[0018]

【発明の効果】以上、本発明による手段を用いると、従
来の回路に比較的小さな回路を追加するだけで、シンボ
ルパイロット信号波形が複雑に変化する場合において
も、比較的歪みが少ない基準信号を再生でき、復調符号
の符号誤り率を低減できる良好なOFDM方式の伝送装
置を得ることができる。
As described above, when the means according to the present invention is used, a reference signal having relatively little distortion can be provided even if the symbol pilot signal waveform changes in a complicated manner by simply adding a relatively small circuit to the conventional circuit. It is possible to obtain a good OFDM transmission device that can be reproduced and can reduce the code error rate of the demodulation code.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態の基準信号再生回路
構成を示すブロック図
FIG. 1 is a block diagram showing a reference signal reproducing circuit configuration according to a first embodiment of the present invention.

【図2】OFDM方式のキャリア構造の説明図FIG. 2 is an explanatory diagram of a carrier structure of the OFDM system.

【図3】OFDM方式のキャリア構造の詳細な説明図FIG. 3 is a detailed explanatory diagram of a carrier structure of an OFDM system.

【図4】OFDM方式の第2のキャリア構造の詳細な説
明図
FIG. 4 is a detailed explanatory diagram of a second carrier structure of the OFDM system.

【図5】従来の送信装置の回路構成を示すブロック図FIG. 5 is a block diagram showing a circuit configuration of a conventional transmitter.

【図6】従来の受信装置の回路構成を示すブロック図FIG. 6 is a block diagram showing a circuit configuration of a conventional receiving device.

【図7】OFDM信号の構造の説明図FIG. 7 is an explanatory diagram of the structure of an OFDM signal.

【図8】従来の基準信号再生回路の構成を示すブロック
FIG. 8 is a block diagram showing a configuration of a conventional reference signal reproducing circuit.

【図9】本発明による時間方向の内挿方法の第1の説明
FIG. 9 is a first explanatory diagram of an interpolation method in the time direction according to the present invention.

【図10】本発明による時間方向の内挿方法の第2の説
明図
FIG. 10 is a second explanatory diagram of an interpolation method in the time direction according to the present invention.

【図11】キャリア方向の内挿方法の説明図FIG. 11 is an explanatory diagram of an interpolation method in the carrier direction.

【図12】キャリア方向の内挿方法の問題点の説明図FIG. 12 is an explanatory diagram of problems in the interpolation method in the carrier direction.

【図13】キャリア方向の内挿による歪み量の1例の説
明図
FIG. 13 is an explanatory diagram of an example of a distortion amount due to interpolation in the carrier direction.

【図14】本発明によるキャリア方向内挿の直線近似に
よる歪み量の1例を示す模式図
FIG. 14 is a schematic diagram showing an example of a distortion amount by linear approximation of carrier direction interpolation according to the present invention.

【図15】本発明の第1の実施例によるキャリア方向の
内挿歪み量を示す模式図
FIG. 15 is a schematic diagram showing the amount of interpolation distortion in the carrier direction according to the first embodiment of the present invention.

【図16】本発明の第2の実施例によるキャリア構造を
示す模式図
FIG. 16 is a schematic diagram showing a carrier structure according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:送信前処理回路、2:IFFT回路、3:ガードイ
ンターバル挿入回路、4:送信後処理回路、5,6:ア
ンテナ、7:受信前処理回路、8:信号切り出し回路、
9:FFT回路、10:基準信号再生回路、11:遅延
回路、12:受信後処理回路、13:時間方向内挿回
路、15,20:キャリア方向内挿回路、19:フィル
タ回路、21:直線近似回路、22:スイッチ回路。
1: pre-transmission processing circuit, 2: IFFT circuit, 3: guard interval insertion circuit, 4: post-transmission processing circuit, 5, 6: antenna, 7: reception pre-processing circuit, 8: signal clipping circuit,
9: FFT circuit, 10: reference signal reproduction circuit, 11: delay circuit, 12: post-reception processing circuit, 13: time direction interpolation circuit, 15, 20: carrier direction interpolation circuit, 19: filter circuit, 21: straight line Approximation circuit, 22: switch circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 互いに直交する複数本の搬送波(キャリ
ア)で情報符号を伝送する直交周波数分割多重変調方式
(OFDM方式)の受信装置であって、該OFDM方式の
信号は、時間方向にパイロット信号を有するキャリア
(パイロットキャリア)を一定帯域内のキャリアの間に
挿入された構造を有し、上記受信装置が、受信した該複
数本のキャリア信号を入力し、該キャリア信号の間に挿
入されている該パイロット信号を選択してシンボルパイ
ロット信号とする、あるいは該パイロット信号を時間方
向に内挿した信号を算出してシンボルパイロット信号と
し、該算出したシンボルパイロット信号から基準信号を
再生して出力する基準信号再生回路であって、該算出し
たシンボルパイロット信号の中からキャリア間隔Mpc
のシンボルパイロット信号を選択し、該選択したシンボ
ルパイロット信号に3タップ以上のタップ数のフィルタ
処理を実施して得られる信号を第1の内挿信号として出
力するフィルタ回路と、該算出したシンボルパイロット
信号の間を直線近似して得られる信号を第2の内挿信号
として出力する直線近似回路と、上記第1の内挿信号と
上記第2の内挿信号を入力し、一定帯域内の両端から一
定の範囲の内挿信号として上記第2の内挿信号を選択
し、それ以外の範囲の内挿信号として上記第1の内挿信
号を選択し、選択した内挿信号を再生基準信号として出
力する選択回路を有する基準信号再生回路を有すること
を特徴とする受信装置。
1. An orthogonal frequency division multiplexing modulation method for transmitting an information code by a plurality of carriers which are orthogonal to each other.
(OFDM system) receiving apparatus, wherein the OFDM system signal has a structure in which a carrier having a pilot signal in the time direction (pilot carrier) is inserted between carriers in a certain band. Input the received plurality of carrier signals and select the pilot signal inserted between the carrier signals as a symbol pilot signal, or a signal obtained by interpolating the pilot signals in the time direction. A reference signal reproducing circuit for reproducing a reference signal from the calculated symbol pilot signal and outputting the symbol pilot signal, the carrier interval Mpc from the calculated symbol pilot signal.
Of the symbol pilot signal, and a filter circuit for outputting a signal obtained by performing a filtering process on the selected symbol pilot signal with a number of taps of 3 taps or more, and the calculated symbol pilot signal. A linear approximation circuit that outputs a signal obtained by linearly approximating between signals as a second interpolation signal, the first interpolation signal and the second interpolation signal are input, and both ends within a fixed band are input. To the second interpolated signal as an interpolated signal in a certain range, the first interpolated signal as an interpolated signal in the other range, and the selected interpolated signal as a reproduction reference signal. A receiving apparatus having a reference signal reproducing circuit having a selecting circuit for outputting.
【請求項2】 請求項1において、上記パイロットキャ
リアを挿入する間隔は、当該帯域内の中央近傍のキャリ
アの間に挿入するパイロットキャリアの間隔Mpcよ
り、該帯域内の両端近傍のキャリアの間に挿入するパイ
ロットキャリアの間隔を狭くしたことを特徴とする伝送
装置。
2. The space for inserting the pilot carriers according to claim 1, wherein the space between the carriers near both ends of the band is more than the space Mpc of the pilot carriers inserted between the carriers near the center of the band. A transmission device characterized in that a space between pilot carriers to be inserted is narrowed.
【請求項3】 請求項1乃至2において、少なくともキ
ャリア間隔Mpc毎に上記パイロットキャリアを挿入さ
れ、当該帯域内の両端近傍においては、上記キャリア間
隔Mpcで挿入したパイロットキャリアの間に、更に1
本以上のパイロットキャリアを有することを特徴とする
伝送装置。
3. The pilot carrier according to claim 1, wherein the pilot carrier is inserted at least every carrier interval Mpc, and in the vicinity of both ends in the band, the pilot carrier is further inserted between the pilot carriers inserted at the carrier interval Mpc.
A transmission device having at least two pilot carriers.
JP2002046336A 2002-02-22 2002-02-22 Transmitting device of ofdm system Pending JP2003249907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002046336A JP2003249907A (en) 2002-02-22 2002-02-22 Transmitting device of ofdm system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002046336A JP2003249907A (en) 2002-02-22 2002-02-22 Transmitting device of ofdm system

Publications (1)

Publication Number Publication Date
JP2003249907A true JP2003249907A (en) 2003-09-05

Family

ID=28659783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002046336A Pending JP2003249907A (en) 2002-02-22 2002-02-22 Transmitting device of ofdm system

Country Status (1)

Country Link
JP (1) JP2003249907A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006070754A1 (en) * 2004-12-28 2008-06-12 松下電器産業株式会社 Wireless communication apparatus and wireless communication method
JP2008532337A (en) * 2005-03-01 2008-08-14 松下電器産業株式会社 Receiving device, integrated circuit, and receiving method
JP2008533927A (en) * 2005-03-17 2008-08-21 クゥアルコム・インコーポレイテッド Pilot signal transmission for orthogonal frequency division wireless communication systems
WO2009016687A1 (en) * 2007-08-02 2009-02-05 Fujitsu Limited Pilot arrangement method in mobile radio communication system and transmitter/receiver adopting same
JP2010021699A (en) * 2008-07-09 2010-01-28 Toshiba Corp Communication device and communication method
JP2010206824A (en) * 2010-04-26 2010-09-16 Fujitsu Ltd Method of pilot deployment in mobile radio communication system and transmitting and receiving device employing the same
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8098568B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
JP2012249319A (en) * 2012-08-02 2012-12-13 Fujitsu Ltd Pilot arrangement method for mobile radio communication system, and transceiver device applying the same
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9426012B2 (en) 2000-09-13 2016-08-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8098568B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8098569B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US11032035B2 (en) 2000-09-13 2021-06-08 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US10517114B2 (en) 2004-07-21 2019-12-24 Qualcomm Incorporated Efficient signaling over access channel
US11039468B2 (en) 2004-07-21 2021-06-15 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US10237892B2 (en) 2004-07-21 2019-03-19 Qualcomm Incorporated Efficient signaling over access channel
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
US10849156B2 (en) 2004-07-21 2020-11-24 Qualcomm Incorporated Efficient signaling over access channel
JP4671971B2 (en) * 2004-12-28 2011-04-20 パナソニック株式会社 Wireless communication apparatus and wireless communication method
JPWO2006070754A1 (en) * 2004-12-28 2008-06-12 松下電器産業株式会社 Wireless communication apparatus and wireless communication method
JP2008532337A (en) * 2005-03-01 2008-08-14 松下電器産業株式会社 Receiving device, integrated circuit, and receiving method
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8547951B2 (en) 2005-03-16 2013-10-01 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
JP2008533927A (en) * 2005-03-17 2008-08-21 クゥアルコム・インコーポレイテッド Pilot signal transmission for orthogonal frequency division wireless communication systems
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
JP2012016033A (en) * 2005-03-17 2012-01-19 Qualcomm Inc Pilot signal transmission for orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US9693339B2 (en) 2005-08-08 2017-06-27 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9240877B2 (en) 2005-08-22 2016-01-19 Qualcomm Incorporated Segment sensitive scheduling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9860033B2 (en) 2005-08-22 2018-01-02 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US9246659B2 (en) 2005-08-22 2016-01-26 Qualcomm Incorporated Segment sensitive scheduling
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US8787347B2 (en) 2005-08-24 2014-07-22 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US10805038B2 (en) 2005-10-27 2020-10-13 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8681764B2 (en) 2005-11-18 2014-03-25 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
RU2510136C2 (en) * 2007-08-02 2014-03-20 Фудзицу Лимитед Method of arranging pilots in mobile radio communication system and transceiver applying said method
US8503284B2 (en) 2007-08-02 2013-08-06 Fujitsu Limited Pilot arrangement method in mobile radio communication system and transmitter/receiver adopting same
JP4957803B2 (en) * 2007-08-02 2012-06-20 富士通株式会社 Pilot arrangement method in mobile radio communication system and transmission / reception apparatus to which this method is applied
US9485067B2 (en) 2007-08-02 2016-11-01 Fujitsu Limited Pilot arrangement method in mobile radio communication system and transmitter/receiver adopting same
AU2007357234B2 (en) * 2007-08-02 2011-09-15 Fujitsu Limited Pilot arrangement method in mobile radio communication system and transmitter/receiver adopting same
US8619541B2 (en) 2007-08-02 2013-12-31 Fujitsu Limited Pilot arrangement method in mobile radio communication system and transmitter/receiver adopting same
WO2009016687A1 (en) * 2007-08-02 2009-02-05 Fujitsu Limited Pilot arrangement method in mobile radio communication system and transmitter/receiver adopting same
JP2010021699A (en) * 2008-07-09 2010-01-28 Toshiba Corp Communication device and communication method
JP2010206824A (en) * 2010-04-26 2010-09-16 Fujitsu Ltd Method of pilot deployment in mobile radio communication system and transmitting and receiving device employing the same
JP2012249319A (en) * 2012-08-02 2012-12-13 Fujitsu Ltd Pilot arrangement method for mobile radio communication system, and transceiver device applying the same

Similar Documents

Publication Publication Date Title
JP2003249907A (en) Transmitting device of ofdm system
US6449245B1 (en) Signal receiving apparatus and method and providing medium
JP4746809B2 (en) Estimation of two propagation channels in OFDM
US6907026B2 (en) Receiving apparatus for signal transmission system of orthogonal frequency division multiplexing type
US7929627B2 (en) OFDM receiver, integrated circuit and receiving method
US7016298B2 (en) Signal transmission/reception system of orthogonal frequency division multiplexing
EP1551120A1 (en) Receiving device, receiving method, and device for measuring transmission channel characteristic
JP4470377B2 (en) Propagation path estimation method in mobile communication system
EP2131512A1 (en) Ofdm reception device, ofdm reception method, ofdm reception circuit, integrated circuit, and program
US20110142176A1 (en) Recieving apparatus and method, program, and recieving system
JP4286476B2 (en) Orthogonal frequency division multiplexing modulation receiver
CN101677310A (en) Receiving device, method and program
US7684311B2 (en) Equalizer and equalization method
US20100046652A1 (en) Receiving device, signal processing method, and program
JP3691357B2 (en) Carrier arrangement method, transmission apparatus, and reception apparatus in orthogonal frequency division multiplexing transmission system
JP2008118194A (en) Equalizer
EP1349335B1 (en) Selection of interpolation method for multicarrier reception
JP2002009726A (en) Method for reproducing reference signal for ofdm system transmission apparatus and its transmission apparatus
JP2007158424A (en) Diversity reception method and receiver utilizing same
JP2005260331A (en) Ofdm receiver
EP1528741A1 (en) Method and apparatus for OFDM diversity reception
JP3992908B2 (en) Transmission apparatus using orthogonal frequency division multiplexing modulation system
JP2008042575A (en) Reception device
JP2005191662A (en) Method of demodulating ofdm signal
JP2002344410A (en) Ofdm modulator