EP1459026B1 - Echangeur thermique notamment destine a un vehicule - Google Patents

Echangeur thermique notamment destine a un vehicule Download PDF

Info

Publication number
EP1459026B1
EP1459026B1 EP02795237A EP02795237A EP1459026B1 EP 1459026 B1 EP1459026 B1 EP 1459026B1 EP 02795237 A EP02795237 A EP 02795237A EP 02795237 A EP02795237 A EP 02795237A EP 1459026 B1 EP1459026 B1 EP 1459026B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
tube
flow
medium
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02795237A
Other languages
German (de)
English (en)
Other versions
EP1459026A1 (fr
Inventor
Walter Demuth
Martin Kotsch
Michael Kranich
Hans Joachim Krauss
Hagen Mittelstrass
Karl-Heinz Staffa
Christoph Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1459026A1 publication Critical patent/EP1459026A1/fr
Application granted granted Critical
Publication of EP1459026B1 publication Critical patent/EP1459026B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts

Definitions

  • the invention relates to a heat exchanger with tubes which can be flowed through by a first medium and by a second medium along a plurality of hydraulically parallel flow paths.
  • Such a heat exchanger is for example in the EP 0 563 471 A1 described.
  • the local heat exchanger is designed as a double-row flat tube evaporator, which is flowed through in two bends. Between the flat tubes are corrugated fins, which are covered by ambient air.
  • the refrigerant flows through the seen in the main flow direction of the air rear row of flat tubes first from top to bottom and is then collected and deflected by a deflecting counter to the flow direction of the air, enters the first, ie front row of flat tubes and flows through them from bottom to top. In this design, the refrigerant is thus deflected "in the depth", ie counter to the flow direction of the air.
  • the flow paths for the refrigerant each comprise two sections, each section corresponding to a tube length.
  • the distribution and collection of the refrigerant is carried out by a collection and Distributor, which is formed by a plurality of stacked, soldered together plates. These are essentially a base plate, an overlying distributor plate with a longitudinally extending partition and a cover plate with inlet and outlet opening for the refrigerant.
  • the deflector arranged on the opposite side is composed of individual plates. This results in a low overall height for this evaporator.
  • a so-called stop plate is provided, which is placed in each case on the bottom plate and forms a stop for the pipe ends.
  • a disadvantage of this evaporator design is that the refrigerant is distributed unevenly on the individual tubes due to the over the entire width of the evaporator extending distribution or collection chamber.
  • the double-row design requires increased installation costs.
  • An evaporator for a fuel cell system which includes a header having a bottom plate and a cover plate attached thereto. Fuel passes through a connecting part in a fuel distribution chamber, from there into guide channels and through openings in the bottom plate in heat receiving ducts of the evaporator.
  • the plates of the head are small in number, but very expensive in their production.
  • the heat receiving channels are acted upon very unevenly with fuel depending on the pressure distribution in the fuel distribution chamber and in the guide channels.
  • the WO 01/06193 A1 shows a serpentine heat exchanger with an inlet header, a serpentine tube and an outlet header. Due to the long distance a medium flowing through the tube must travel within the heat exchanger, such a heat exchanger has an undesirably large pressure drop for this medium.
  • the pipe bends whose overall length is at least as large as a width of the heat exchanger due to the fact that the inlet and outlet headers are arranged on different sides of the heat exchanger, do not abut the ribs and thus bear little to a heat transfer. As a result, the pressure drop is unnecessarily increased additionally.
  • the object of the invention is to provide a heat exchanger and / or an air-conditioning device in which a plurality of hydraulically parallel flow paths can be realized with a simple design and / or with a uniform distribution of a medium on the flow paths.
  • a heat exchanger tubes which are flowed through along a plurality of hydraulically parallel flow path of a first medium and a second medium flow around.
  • the object of the invention is advantageously achieved in that two sections of a flow path through which flow can be made in opposite directions are arranged side by side in the main flow direction of the second medium.
  • the basic idea of the invention is to build a plurality of hydraulically parallel flow paths in each case in serpentine fashion from a plurality of sections.
  • the number of flow paths parallel to one another is reduced for a given area of the heat exchanger that can be flowed through the second medium.
  • this facilitates a more uniform admission of the flow paths of the heat exchanger, on the other hand, if each flow path consists of an even number of serpentine sections, a so-called Single-tank design allows in which all possibly existing distribution and / or collection devices are arranged on the same side of the heat exchanger and in particular form a structural unit.
  • the parallel flow paths in the main flow direction of the second medium are also arranged side by side.
  • the flow paths do not overlap when viewed in the main flow direction of the second medium. This ensures a uniform loading of the paths through the second medium, whereby the heat transfer from the first to the second medium or vice versa even more uniform and thus more effective, i. the performance of the heat exchanger is increased.
  • the heat exchanger has an end face which can be embossed for the second medium and which can be subdivided into several contiguous sub-areas, wherein the parallel flow paths are each assigned to one of these contiguous sub-areas.
  • a rectangular end face of the heat exchanger can be subdivided into adjacent, likewise rectangular strips, the flow paths then being arranged quasi stacked on one another.
  • a heat exchanger tubes which are flowed through by a first medium and a second medium can be flowed around, so that by walls of the tubes heat from the first to the second medium or vice versa transferable.
  • there are heat transfer channels in the tubes, through which the first medium can be conducted wherein a single tube has either a heat transfer channel or as a so-called multi-chamber tube a plurality of adjacent heat transfer channels.
  • the tubes may have a circular, an oval, a substantially rectangular or any other cross section.
  • the tubes are designed as flat tubes.
  • optionally ribs, in particular corrugated fins are arranged between the tubes, wherein the tubes and the ribs are in particular solderable to one another.
  • the heat exchanger various uses are conceivable, for example as an evaporator of a refrigerant circuit, in particular an automotive air conditioning system.
  • the first medium is a refrigerant, for example, R134a or R744
  • the second medium is air, whereby heat is transferred from the air to the refrigerant.
  • the heat exchanger is also suitable for other media, wherein if appropriate, the heat can also be transferred from the first to the second medium.
  • a flow path section in the sense of the invention is to be understood as meaning one or more heat transfer channels which run from one side of the heat exchanger to an opposite side and are connected hydraulically in parallel to one another.
  • the heat transfer channels of a flow path section are arranged, for example, in a single tube, but an arrangement of the heat transfer channels of a flow path section distributed over several tubes is likewise conceivable.
  • a collection box optionally integrated into the distribution and / or collection device is soldered or welded to the cover plate in a fluid-tight manner.
  • the collecting box is integrally formed with the cover plate, whereby the production is simplified.
  • a particularly lightweight design is achieved by a tubular design of the collecting tank according to a further embodiment of the invention.
  • the cover plate on edges of openings on extensions which engage in openings of a housing of the collecting tank.
  • it is possible according to a further embodiment to provide openings of the collection box housing with extensions which engage in openings of the cover plate. In both cases, the manufacturing safety is increased by an alignment of the mutually aligned openings in the cover plate and in the collection box housing.
  • the passage openings which are formed by the mutually aligned openings in the cover plate and in the collection box housing, have different flow cross-sections.
  • an adaptation of the distribution of the first medium to the flow conditions in the associated collection chamber is made possible in a simple manner.
  • a uniform distribution over a plurality of flow paths is desirable, but also a deliberately uneven distribution is conceivable, for example, at uneven mass flow of the second medium over an end face of the heat exchanger.
  • the flow cross-sections of the passage openings are adaptable according to an embodiment of a pressure distribution of the first medium within the respective collection chamber.
  • the flow cross sections can be adapted to a density distribution of the first medium within the respective collection chamber.
  • the density of a medium is to be understood as the physical density in the case of single-phase media, while in the case of multiphase media, for example in the case of media which are partly liquid and partly gaseous, a density averaged over the volume in question is to be understood.
  • the cross sectional areas of the first and second plenums are different from one another in a preferred embodiment.
  • the cross-sectional areas of the collecting chambers can be adapted to the density ratios of the first medium in the chambers.
  • the refrigerant inlets or refrigerant outlets of a plurality of interconnected assemblies are made in one piece.
  • the separating element which divides the head pipe into an inlet or outlet section is connected to the head pipe in such a way that the exchange of gaseous or liquid media between the sections is prevented.
  • the head tube has a substantially cylindrical basic shape, in the periphery of which a predetermined number of feedthroughs are arranged, through which the refrigerant inlets or outlets and at least one tube, in particular a flat tube, extend into the interior of the head tube ,
  • the passages for the flat tubes in the interior of the head tube are designed such that the flat tubes are not only connected by means of a material connection with the head tube, but that by an additional compression of the head tube an imported flat tube or flat tubes with the walls the head tube are positively connected.
  • a head tube for this connection method has a basically ⁇ -shaped cross section, in the narrowest region of which the passages for the flow devices, in particular for a flat tube, are provided. Also, a plurality of flat tubes can be received in one or more bushings according to another embodiment.
  • the head tube has at an edge of at least one passage on an extension which engages in a passage of the refrigerant inlet and outlet.
  • a tube in the region of the passages, which project into the head tube at least one recess, into which, for example, the separating element, which divides the head tube into an inlet portion and an outlet portion, engages.
  • the heat exchanger has a separating element with a recess into which a tube, in particular a flat tube, engages in the head tube in the region of the passage.
  • the head pipes and / or the refrigerant inlet and outlet are designed so that the pressure of the first medium over the inlet and outlet sections is substantially equal or assumes a predetermined value.
  • This may preferably be achieved for the refrigerant inlet by virtue of the fact that the flow cross-section of the refrigerant inlet tapers over the number of head pipes which are fluid-connected to it and thus the pressure drop at each "extraction point" is largely compensated.
  • the refrigerant outlet in this case particularly preferably has the largest possible flow cross-section.
  • the various extraction points from the refrigerant inlet and outlet can also be subdivided into flow regions by using an inserted profile which is connected in a materially cohesive manner to the cladding tube.
  • the tube is divided into 2, 3 or 4 or other flow areas.
  • the flow areas of the refrigerant inlet or refrigerant outlet are connected to the corresponding removal areas, for example the bore, which opens into the head pipe.
  • the density ratio for CO 2 between the refrigerant inlet and refrigerant outlet is between 1: 2 and 1:10, preferably between 1: 3 and 1: 7 and particularly preferably at about 1: 5.
  • the openings of the tubes open into an interior of a head tube or a transverse distributor.
  • the components are also so material, force and / or positively connected with each other, that the interior of the components, in particular at high pressures to about 300 bar gas and / or liquid-tight against an environment of the heat exchanger.
  • the heat exchanger as another component on cooling fins, which are in particular connected to a portion of the outer surface of the tubes so that the transport of thermal energy is favored.
  • the cooling fins are connected in a materially bonded manner in the surface of the tubes, in particular soldering methods, welding methods and adhesive methods for producing the fabric bond.
  • the cooling fins are connected to the surfaces of the tubes in such a way that the material connection takes place in particular at the turning points of the cooling fins.
  • the cooling fins have a serpentine basic structure in the flow direction, the depth of which substantially corresponds to the overall depth of the assembly or the width of the tubes.
  • the cooling fins are characterized by a wall thickness which is between 0.01 and 0.5 mm, preferably between 0.02 and 0.07 mm and particularly preferably between 0.07 and 0.15 mm.
  • the fin density of the cooling fins is 10 to 150 fins per dm, preferably 25 to 100 fins per dm and more preferably 50 to 80 fins per dm.
  • the rib height is in a particularly preferred embodiment 1 to 20 mm, preferably 2 to 15 mm and more preferably 3 to 12 mm.
  • a refrigerant is used in the heat exchanger, which comprises at least one component from a group comprising gases, in particular carbon dioxide, nitrogen, oxygen, air, ammonia, hydrocarbons, in particular methane, propane, n-butane and liquids, in particular water, Floeice, brine, etc. comprises.
  • gases in particular carbon dioxide, nitrogen, oxygen, air, ammonia, hydrocarbons, in particular methane, propane, n-butane and liquids, in particular water, Floeice, brine, etc.
  • carbon dioxide is used as the refrigerant whose physical properties can be used as a colorless, non-combustible gas to increase the cooling capacity, to reduce the size of the unit or to reduce power losses.
  • transition regions of the components of the heat exchanger through which fluids flow are connected to one another in a gas-tight and liquid-tight manner, so that replacement of the first medium with the second medium is prevented.
  • refrigerant such as carbon dioxide
  • the heat exchanger has on two opposite sides frame elements which extend over at least part of the side surface of the heat exchanger.
  • These frame elements are preferably profile elements which may, inter alia, have a U-shaped, V-shaped, L-shaped or other typical profile structures.
  • these frame members are non-positively and / or positively connected to at least one component of the heat exchanger.
  • the cohesive connection such as by soldering, welding and gluing is within the meaning of the present invention.
  • substantially cylindrical head tubes, refrigerant inlets and refrigerant outlets and the transverse distributor in addition to an exact cylindrical or tubular shape may also have different shapes, which are for example deformed cylindrical or elliptical, polygonal or rectangular cross-sections.
  • the refrigerant inlets or outlets, the head pipe and the transverse distributor are arranged on one side of the heat exchanger.
  • the heat exchanger in particular has an approximately cuboidal basic shape, which preferably has a front and a rear surface, which represents in a particular embodiment, the sides of the heat exchanger through which substantially the gaseous medium, such as air, flows to energy, in particular Heat energy to give or take up.
  • the front or rear surface of the assembly is limited by four side surfaces, which are defined substantially by a width or a diameter of the heat transfer tubes used and the subsequent cooling fins and their shape.
  • side surfaces which are defined substantially by a width or a diameter of the heat transfer tubes used and the subsequent cooling fins and their shape.
  • alternative designs from this preferred rectangular basic form, which in particular correspond to the requirements for arrangement in an air conditioning system or a ventilation device.
  • flow path sections which are arranged side by side in the main flow direction of the second medium are connected to one another by a deflection channel are.
  • One speaks then of a deflection in the width This makes it possible to connect a plurality of flow path sections within a row or within a row of tubes together to form a flow path.
  • the interconnected flow path sections are arranged one behind the other in the main flow direction of the second medium.
  • One speaks then of a deflection in the depth This makes it possible to connect flow paths for the first medium parallel or antiparallel to the main flow direction of the second medium. This leads to a local countercurrent construction of the heat exchanger.
  • two flow path sections are interconnected within a tube by a deflection channel. This means that the first medium flows in one direction through the tube and flows back in the opposite direction through the same tube but in other heat transfer channels.
  • the first and last flow path sections within one or more rows of tubes are not acted upon as hydraulically first sections of flow paths, since the flow and / or pressure conditions of the first medium are unfavorable for application in the edge region of collection chambers, which are usually arranged along rows of tubes of flow paths are.
  • two adjacent flow paths are mirror-symmetrical to each other.
  • deflection channels communicate at least two flow paths.
  • an additional compensation of the flow is effected within the flow paths.
  • it is particularly easy to communicate the optionally adjacent deflection channels for example by omitting a web which may otherwise be present between two deflection channels.
  • a flow cross section of a flow path changes during its course. This is very easy to realize, for example, by flow path sections with few heat transfer channels over correspondingly configured deflection channels with flow path sections are connected to many heat transfer channels. An adaptation of the flow cross section of a flow path to a density of the first medium changing along the flow path is particularly preferred.
  • U-shaped tubes according to an advantageous embodiment of the invention, wherein the tubes are simply or repeatedly formed into a possibly even simpler construction.
  • the tubes are simply or repeatedly formed into a possibly even simpler construction.
  • the ends of each tube may be connected to the same bottom plate or the same tube sheet.
  • a curvature of a tube bend is particularly preferably in the direction of a shorter side of the flat tube, since thus fewer stresses occur in the tube material during the forming process.
  • the tubes each have between 1 and 10 pipe bends, wherein the deflection channels are optionally arranged on the same or on opposite sides of the heat exchanger as a distribution and / or collecting device according to the even or odd number of pipe bends. So for example, in the case of 2, 4, 6, 8 and 10 pipe bends, the deflection channels are arranged on the opposite side to the distribution and / or collecting device. In contrast, in the case of 1, 3, 5, 7 and 9 pipe bends, the deflection channels and the distribution and / or collecting device are arranged on one side of the heat exchanger.
  • the sections of a flow path are substantially the same length. According to a particularly preferred embodiment of the present invention, it is provided that the length of a flow path section between two pipe bends may deviate from the length of other sections of the same or different flow paths.
  • a tube formed as a flat tube in cross-section through the width, which is between 10 mm and 200 mm, preferably between 30 mm and 70 mm, and by a height which is between 1.0 mm and 3 mm, preferably between 1.4 mm and 2.4 mm and an outer wall thickness which is between 0.2 mm and 0.8 mm, preferably between 0.35 mm and 0.5 mm.
  • heat transfer channels have a circular or elliptical shape in the interior of the tubes in cross-section, which, however, in particular in the edge region of the flat tube, the outer contours of the flat tube is adapted so that a minimum wall thickness is not exceeded.
  • the components are made of at least one material selected from the group of materials including metals, in particular aluminum, manganese, magnesium, silicon, iron, brass, copper, tin, zinc , Titanium, chromium, molybdenum, vanadium and alloys thereof, in particular aluminum wrought alloys having a silicon content of 0 to 0.7% and a magnesium content of between 0.0 and 1%, are preferred between 0.0-0.5% and more preferably between 0.1 and 0.4%, preferably EN-AW 3003, EN-AW 3102, EN-AW 6060 and EN-AW 1110, plastics, fiber-reinforced plastics, composites, etc contains.
  • metals in particular aluminum, manganese, magnesium, silicon, iron, brass, copper, tin, zinc , Titanium, chromium, molybdenum, vanadium and alloys thereof, in particular aluminum wrought alloys having a silicon content of 0 to 0.7% and a magnesium content of between 0.0 and 1%, are preferred between 0.0-0.5% and more preferably between 0.1
  • the heat exchanger consists of flat tubes through which a liquid and / or vapor refrigerant flows, corrugated fins exposed to ambient air, a collection and distribution device for the supply and removal of the refrigerant, arranged between the flat tubes.
  • each one flat tube has two parallel flow sections, which flows through one after the other and are connected via the deflection, wherein each flat tube end a groove between the two flow Having sabêten in the middle of the flat tube end and that the bottom plate between the receiving openings webs, which correspond in their dimensions in height and width of the grooves and each form a joint connection with the grooves.
  • the collecting and distributing device has a channel plate with channel openings and webs between the channel openings, a cover plate with refrigerant inlet and -austrittsö réelleen and a refrigerant supply and a refrigerant discharge channel, which are arranged parallel to each other and in the longitudinal direction of the heat exchanger on wherein the bottom plate, the channel plate and the cover plate are arranged one above the other in such a way that the openings in the plates are aligned with the flat tube ends.
  • the refrigerant inlet openings are formed as calibrated bores, wherein the diameter of the bores is in particular variable.
  • the cover plate and the refrigerant supply and -abbowkanäle are integrally formed.
  • the heat exchanger which is particularly useful as an evaporator for motor vehicle air conditioners, consisting of flat tubes, which are flowed through by a liquid and / or vapor refrigerant, arranged between the flat tubes, acted upon by ambient air corrugated fins, a collecting and distributing device for the supply and the discharge of the refrigerant, wherein the collecting and distributing means consists of a plurality of stacked, perforated plates, whereby refrigerant channels are formed, the ends of the flat tubes are held in receiving openings of a bottom plate, and a deflection device for deflecting the refrigerant in Flow direction of the ambient air.
  • the heat exchanger consists of a series of flat tubes, wherein in each case a flat tube two parallel flow sections, which are successively flowed through and connected via the deflection, and wherein the collecting and distributing device has a between refrigerant inlet and outlet arranged calibration, the is designed as a cover plate with calibration openings for the refrigerant distribution.
  • the calibration openings are arranged on the refrigerant inlet side.
  • the flat tubes are designed as serpentine segments and the deflection device is arranged in the collecting and distributing device.
  • the collecting and distributing device has a channel plate with through-channel openings for deflecting the refrigerant and channel openings with webs, a cover plate with refrigerant inlet and outlet openings and a refrigerant supply and a refrigerant discharge channel.
  • the channel openings with webs are in each case arranged in alignment with the first flat tube end of the serpentine segment, whereas the continuous channel openings are arranged in alignment with the second flat tube end of the serpentine segment, wherein the refrigerant inlet and outlet openings are aligned with the channel openings and the continuous channel openings are covered by the cover plate ,
  • the serpentine segments have two or three deflections in width.
  • the flat tubes are U-tubes, that is, each with a deflection (in width) educated.
  • Two U-tubes are particularly preferably connected in series on the refrigerant side, and two adjacent channel openings, which are assigned to a U-tube outlet and a U-tube inlet, are in refrigerant communication with each other through a transverse channel in the channel plate.
  • the width b of the channel openings in the channel plate is greater than the width a of the receiving openings in the bottom plate.
  • the depth of the groove in the flat tube ends is greater than the thickness of the bottom plate.
  • one or more of the following dimensions apply to the heat exchanger: Width: 200 to 360 mm, in particular. 260 to 315 mm Height: 180 to 280 mm, in particular. 200 to 250 mm Depth: 30 to 80 mm, preferably 35 to 65 mm Volume: 0.003 to 0.006 m3, in particular.
  • the heat exchanger according to the invention is inserted into an air-conditioning device with at least one air feed element and at least one air duct provided in particular with at least one air flow control element in order to transfer heat from air flowing through the air duct to a refrigerant or vice versa.
  • the refrigerant then represents the first medium, while the second medium is given by the air.
  • thermoelectric heat exchanger according to the invention in any air conditioning alone or in conjunction with at least one other heat exchanger, wherein the at least one further heat exchanger may also be an inventive heat exchanger or a heat exchanger according to the prior art.
  • Fig. 1 shows as the first embodiment, an evaporator for an operated with CO 2 as a refrigerant automotive air conditioning system, in an exploded view.
  • This evaporator 1 is a single-row flat tube evaporator formed and has a plurality of flat tubes, of which only two flat tubes 2, 3 are shown.
  • These flat tubes 2, 3 are formed as extruded multi-chamber flat tubes, which have a plurality of flow channels 4. All flat tubes 2, 3 have the same length I and the same depth t.
  • a groove 5, 6 symmetrical to the central axis 2c in the flat tube 2 is incorporated.
  • the corrugated fins 7 are continuous in the depth direction, but may also be interrupted, for example in the middle of the depth t, in order to ensure better condensate drainage and / or thermal separation.
  • a bottom plate 8 is shown, in which a first row of slot-shaped openings 9a - 9f and a second row of just such openings 10a - 10f are arranged.
  • the openings 9a and 10a, 9b and 10b, etc. lie in the direction of the depth (air flow direction L) one behind the other and leave between each webs 11a, 11b - 11f. With regard to their width in the depth direction, these webs 11a-11f correspond to the width of the cutout 5 of the pipe ends 2a.
  • the number of openings 9a-9f or 10a-10f corresponds to the number of flat tubes 2, 3.
  • baffle 12 in which two rows of openings 13a - 13f and 14a - 14f (partially hidden) are arranged.
  • the arrangement of the apertures 13a-f and 14a-f corresponds to the arrangement of the apertures 9a-9f or 10a-10f, however, the apertures 13a-f and 14a-f are larger in their width b and depth than the corresponding dimensions of the apertures 9a - 9f or 10a - 10f, each having only a width of a, which corresponds to the thickness of the flat tubes 2, 3.
  • Between the openings 13a, 14a, 13b, 14b - 13f u. 14f are partial Leave webs 15a, 15f. With regard to their dimensions in the depth direction, these webs 15a-15f are smaller than the corresponding dimensions of the webs 11a-11f of the bottom plate 8.
  • a so-called cover plate 16 which has a first row of refrigerant inlet openings 17a, 17d and a second series of refrigerant outlet openings 18c, 18f.
  • These openings 17a, 17f and 18a, 18f are preferably formed as circular bores and adapted in terms of their diameter to the desired refrigerant distribution or flow rate.
  • a collecting box 19 with a housing and in each case a collecting chamber 20, 21 for the supply and the discharge of the refrigerant.
  • the collection box has for both collection chambers on its underside, shown in dashed lines, openings 22a, d and 23c, f, which correspond in terms of position and size with the openings 17a, d and 18c, f.
  • a cover plate 30 which has no openings, but closes the deflection channels 29a-29f with respect to the surroundings of the heat exchanger.
  • the above-described constituent parts of the evaporator 1 are mounted as follows: On the flat tube ends 2a, etc., the bottom plate 8 is placed, so that the webs 11a - 11f come to lie in the recesses 5 of the flat tube ends. About the bottom plate 8 then the baffle 12, the cover plate 16 and the collection box 19 with the collection chambers 20, 21 are stacked. In an analogous manner, the lower bottom plate 24 is pushed onto the flat tube ends 2b, so that the webs 27a - 27f come to lie in the recesses 6; Thereafter, the channel plate 28 and the cover plate 29 are added. After the evaporator 1 is thus joined together, it is soldered in a soldering furnace to form a solid block. During the soldering process, the plates are held by a positive or non-positive tension in their position to each other. But it is also possible to first mount the tail of base plate, baffle and cover plate and then connect with flat tubes.
  • the course of the refrigerant flow is exemplified by a series of arrows V1-V4 on the front side of the evaporator, by deflection arrows U1-U5 in the deflection channels 29a, 14a-b, 29b, 13b-c, 29c and the arrows R1, R2 and R3 the back of the evaporator 1 shown.
  • the refrigerant in this case CO 2 , flows through the evaporator starting from the distribution chamber 20, for example initially from V1 to V 1, V 2 , V 3 and V 4 from top to bottom, then is deflected in the deflection channel 29 a along U 1 to the rear of the evaporator 1 and flows from bottom to top.
  • Fig. 2 shows a further embodiment of the invention, namely an evaporator 40, in which the aforementioned flat tubes are formed as serpentine segments 41.
  • a serpentine segment 41 consists of four flat tube legs 42, 43, 44 u. 45, which are interconnected by three Umlenkbögen 46, 47, 48. Between the individual Flachrohrschenkeln 42 - 45 corrugated fins 49 are arranged.
  • the other parts of the evaporator are also shown in exploded view, ie a bottom plate 50, a baffle 51, a cover plate 52 and collecting chambers 53, 54 for a refrigerant supply or discharge.
  • the bottom plate 50 has a front row of slot-shaped openings 55 a, 55 b u.
  • This web 60a is in turn smaller than the recess 58 of the flat tube leg 42.
  • a deflection channel 61 Adjacent to the opening 59a and at a distance corresponding to that of the flat tube ends 42a-45a, a deflection channel 61 is arranged which extends over the entire depth of the flat tube leg 45. Adjacent to the deflection channel 61 then follows an opening 59b, which corresponds in size to the opening 59a. It corresponds to the next Flachrohrserpentinensegment, which is not shown here.
  • Above the baffle 51 is the cover plate 52, in the front row two refrigerant supply openings 62, 63 and in the rear row two refrigerant outlets 64 u. 65 has. The latter correspond in terms of size and location with the dashed lines in the collection chambers 53, 54 openings (without reference number).
  • serpentine segment portion 41 can also be traversed in the opposite direction in the width, ie in the drawing from left to right or from outside to inside. In view of the end face of the evaporator, this would therefore flow symmetrically from the outside to the inside on the front side; in the middle, both refrigerant flows - combined in a common deflection channel, which then functions as a mixing chamber - can be deflected in depth and again on the rear side flow from the inside to the outside.
  • Fig. 3 shows a further embodiment of the invention, namely an evaporator 70, the flat tubes of individual U-tubes 71 a, 71 b, 71 c, etc. are formed. It is thus a serpentine segment section with a deflection and two legs 72 u. 73. The not visible in the drawing ends of this flat tube leg 72 u. 73 are analogously, ie as described above, fixed in a bottom plate 74 with corresponding receptacles. About the bottom plate 74, a baffle 75 is arranged, which alternately two in the depth direction one behind the other slot-shaped openings 76, 77, leaving a web 78 and a depth direction has continuous deflection channel 79.
  • the cover plate - analogous to the embodiments described above - is omitted in this illustration.
  • Fig. 5 shows a further section along the line V - V in Fig. 3 , ie through the deflection channel 79d. Same parts are in turn with the same Reference numbers designated. It can be seen that the refrigerant, represented by the arrows, is deflected in the left flat tube section from bottom to top in the deflection channel 79d to the right and reaches the right or rear portion of the flat tube leg 71c to flow there from top to bottom.
  • This configuration of apertures makes it possible to connect two U-shaped refrigerant pipes one after the other on the refrigerant side, in this case the U-pipes 91a and 91b.
  • the refrigerant flow is shown by arrows: The refrigerant enters at A in the front part of the left leg of the U-tube 91a and flows down, is deflected, flows back up and is deflected in the baffle 93 via the transverse channel 101, ie following the arrow B in the next U-tube 91 b.
  • Fig. 1 are collection chambers 20 and 21 and in Fig. 4 Collecting boxes 81 and 82 for the supply and discharge of refrigerant shown.
  • a distribution device according to the DE 33 11 579 A1 , ie a coiled profile body, or according to the DE 31 36 374 A1 the applicant, a so-called slide body, use, so that a uniform refrigerant distribution and thus a uniform temperature distribution is achieved at the evaporator.
  • Fig. 7 shows a cross section of a heat exchanger 110 with an end piece 120, which has a bottom plate 130, a baffle 140, a cover plate 150 and manifolds 160, 170.
  • a tube 180 is received in two openings 190, 200 in the bottom plate 130, wherein a recess 210 in one end of the tube 180 rests against a web 220 of the bottom plate 130.
  • the recess 210 is slightly higher than the web 220, so that the pipe end protrudes slightly beyond the bottom plate 130.
  • Heat transfer channels (not shown) in the pipe 180 communicate with passages 230, 240 in the baffle plate 140.
  • the passages 230, 240 are again via recesses 250, 260 in the cover plate 150 and recesses 270, 280 in the housings 290, 300 of the headers 160, 170 connected to collection chambers 310, 320.
  • the edges of the recesses 250, 260 are provided with extensions 330, 340, which engage in the recesses 270, 280, whereby an orientation of the headers 160, 170 with respect to the cover plate 150 is accomplished such that the recesses 250th or 260 in the cover plate 150 with the recesses 270 and 280 in the collection box housings 290, 300 are aligned.
  • Fig. 8 shows a development of the heat exchanger Fig. 6
  • the configuration of Umlenkkanälen has in the heat exchanger 410 also a pattern that repeats after every two U-tubes 420, and that corresponds to a flow path through the heat exchanger 410.
  • two adjacent flow paths are arranged mirror-symmetrically to each other. This means that either the passageways 430, 440 of a flow path 450 adjacent to the passageways 460, 470 of an adjacent flow path 480 or a deflection channel 490 of a flow path 500 adjacent to one Deflection channel 510 of an adjacent flow path 520 comes to rest.
  • the flow paths 450, 480, 485, 500, 520, 550, 560 each consist of eight sections, whereas the flow path 445 consists of only four sections to reduce a pressure drop along the flow path 445, also due to the unfavorable flow conditions in the peripheral areas of one heat exchanger. In this case, mixing with the adjacent flow path 450 is also appropriate.
  • Fig. 9 11 shows another example of a connection pattern of flow path sections of a heat exchanger 610.
  • the flow path sections 620 on the inlet side 630 of the heat exchanger 610 have a smaller flow cross section than the flow path sections 640 on the exit side 650.
  • this asymmetry serves for a Adapting the flow cross-sections to the density of the first medium along the flow paths 660.
  • FIG. 12 shows another example of a wiring pattern of flow path portions of a heat exchanger 710 accomplished by a configuration of pass and turn passages of a baffle 720.
  • the flow paths 730 and 740 respectively each aligned so that an inlet and an outlet of the first medium, given by passages 750, 760 and 770, 780, as far as possible from edges 790 and 800 of the heat exchanger 710 are arranged.
  • FIG. 12 shows another example of a wiring pattern of flow path portions of a heat exchanger 810 accomplished by a configuration of the bypass and bypass passages 812, 814 of a baffle 820.
  • the flow path sections are in the order 1 (down) - 2 (up) - 3 (down) - 4 (up) - 5 (down) - 6 (up) etc. interconnected.
  • Fig. 12 shows a tube sheet 1010 with a cover plate 1020 and a plate 1030, which is formed by a one-piece design of a baffle plate with a bottom plate.
  • the cover plate 1020 has recesses 1040 for connection to two collection chambers, while in the plate 1030 passageways 1050 of the baffle plate and below it narrower tube receptacles 1060 can be seen in the bottom plate.
  • FIGS. 13 and 14 show the tubesheet Fig. 12 in a cross section or in a longitudinal section, in each case in the installed state with a tube 1070th
  • Fig. 15 shows a similar tube sheet 1110, the cover plate 1120 has no recesses.
  • deflection channels 1140 are arranged for deflection in the depth.
  • Fig. 16 shows a further possibility of the embodiment of a two-part tube sheet 1210.
  • the baffle plate is integrally formed with the cover plate, whereby a plate 1220 is formed.
  • the plate has a Deflection channel 1230 for a deflection in the depth, which is given by a curvature.
  • the bottom plate 1240 is also curved, so that the 1260 received in the recess 1250 of the bottom plate 1240 tube 1260 is held firm and thus more pressure stable.
  • the tube 1260 abuts the edge 1270, 1280 of the Umlenkkanals 1230, since the curvature in the plate 1220 is not as wide as the curvature in the plate 1240th
  • Fig. 17 shows a heat exchanger 1310 in pure countercurrent construction.
  • the pure countercurrent design is characterized in that deflections take place only in depth, but not in width. It does not matter, from how many sections the flow paths exist. The flow paths may for example consist of four sections, in each case then three deflections in depth are necessary.
  • the heat exchanger 1310 has flow paths 1320, each with a deflection in the depth and thus with two flow path sections, which are aligned with each other in the main flow direction of the second medium on.
  • the upper end piece 1330 has a tube plate 1340 and two collection boxes not shown for clarity.
  • Fig. 18 shows a cross section and Fig. 19 a broken oblique view of the plate 1400 from Fig. 17 .
  • a tube 1410 is received in a recess 1420, which also serves as a deflection channel for the first medium, wherein the deflection channel is closed to the outside through the area 1430 of the plate 1400.
  • a rejuvenation points the Recess 1420 edges 1440, 1450, which serve the pipe 1410 as a stop.
  • the tube 1410 serves to represent two sections (downwards 1460 and upwards 1470) of a flow path.
  • Fig. 20 shows a similarly constructed tube sheet 1800, which is also constructed in one piece and on the Umlenkkanäle 1820 and the pipe stops 1830 addition openings 1810 in the region of the cover plate to be connectable to one or two headers.
  • the invention allows a heat exchanger, which consists of a series of tubes (for the realization of heat transfer channels), two plates (the tubesheets) and two tubes (the collection boxes). This is an extremely simple and also pressure-stable construction of the heat exchanger feasible.
  • the tube sheet 2010 in Fig. 21 has between the pipe receiving recesses 2020 with the pipe stop edges 2030 for material savings as openings 2040 formed recesses.
  • the tube sheet 2110 in FIG Fig. 22 provided as side notches 2120 formed recesses.
  • the tubesheet 2210 in FIGS. 23 and 24 is completely severed between the 2220 pipe receiving cutouts. In this case, the tubes 2230 may be stabilized only by the corrugated fins 2240.
  • FIG. 12 shows another example of a wiring pattern of flow path portions of a heat exchanger 2310 accomplished by a configuration of pass and turn passages 2320, 2330 of a baffle 2340.
  • the flow path sections are in the order 1 (down) -2 (up) -3 (down) - 4 (up) - 5 (down) - 6 (up) interconnected.
  • a tube for each flow path section.
  • a tube preferably contains two or more flow path sections, for example the flow path sections 1, 4 and 5 or the flow path sections 2, 3 and 6.
  • flat tubes are particularly well suited for this purpose. Any further interconnection patterns of flow path sections are also conceivable over the ones shown.
  • Fig. 26 shows the top view of a heat exchanger, in particular an evaporator, in which the refrigerant is supplied via the refrigerant inlet 2401 and the subsequent refrigerant inlet pipe 2403 from the refrigerant circuit, for example, an air conditioner.
  • the input section has a cutting seal, which is connected in combination with, for example, a releasable coupling connection 2402 with the continuing piping system.
  • the refrigerant inlet pipe 2403 opens into a first head pipe 2407 and is continued thereafter to the two head pipes 2408 and 2409.
  • the refrigerant inlet tube is closed gas-tight or liquid-tight. This is done in particular by the installation of a soldered separator or by welding. The closing of the tube by bending is within the scope of the present invention.
  • the head pipes 2407, 2408 and 2409 according to a particularly preferred embodiment, at least one not shown Separating element, which is arranged for example in the middle of the head pipe.
  • the head pipes are divided into at least two sections, from which the coolant is introduced into the pipe 2419 and passed through the heat transfer channels of the pipe 2419 in the transverse manifold 2410 ', 2410 ", 2411', 2411” and 2412. From there, the refrigerant flows, which has already received heat to a certain extent from the circulating medium, for example in the rear region of the transverse distributor and is in turn conducted by the latter into the rear heat transfer channels of the tube 2419.
  • these flow paths open into the outlet section of the head pipe 2407, 2408 and 2409 and are returned via the refrigerant outlet pipe 2404 into the piping system of the air conditioner.
  • the refrigerant return pipe has a gasket 2406 and, for example, a coupling system 2405 for connection to the piping system.
  • this embodiment also has frame members 2416 and 2417.
  • the reference numeral 2418 designates the position of the cooling fins for the device.
  • Fig. 26 shows Fig. 27 the side view of a heat exchanger, in which in particular a preferred embodiment of the head pipes and the transverse manifold is shown.
  • the head pipes and the transverse manifolds show a round cross-section, wherein in particular in the head pipes 2408 and 2409 each two flow devices 2419 open.
  • the tube is a flat tube which, in a serpentine manner, provides the connection between the head tube and the transverse distributor. Between the respective serpentine sections of the tube, in particular cooling fins 2418 are arranged, which improve the heat transfer between the medium flowing around the tubes, such as air, and the refrigerant flowing in the flow device.
  • the cooling fins are designed such that they also extend serpentine between the serpentine sections of the tubes and the depth of the heat exchanger in addition with so-called gills, that is provided with slots, which in particular for generating turbulence and thus an improved heat transfer between the flowing medium and the heat dissipating fins serve.
  • the tubes in particular the flat tubes, have a certain penetration depth into the transverse distribution tubes or into the head tubes.
  • the end pieces of the serpentine sections which open in the head pipe or in the transverse distribution pipe are designed to be longer in order to have a predetermined spacing of the head pipe or of the transverse distribution pipe from the essentially throughflowed main body of the heat exchanger.
  • Fig. 28 adjusts the left side view of a heat exchanging device FIGS. 26 and 27
  • the refrigerant outflow 2404 and the refrigerant inflow 2403 and the head pipe 2407 can be seen.
  • Fig. 29 shows an alternative embodiment of a heat exchanger, in which in addition to the refrigerant inlet 2541 of the refrigerant outlet 2542, a pipe connection means 2540 and the head pipes 2543, 2545 and 2547 can be seen.
  • the separation elements 2549 can also be seen in this illustration, which subdivide the head tubes 2543, 2545 and 2547 into an inlet 2541 'and an outlet section 2542'.
  • the to the head pipe 2543, 2545 and 2547 connected pipe 2553 opens into the transverse distribution pipes 2544, 2546 and 2548.
  • Fig. 29 the frame members 2551 and 2552 and the cooling fins 2518 which protrude beyond the tube 2553.
  • the transverse distributors and the head pipes are closed off fluid-tight at their outer boundaries by means of additional separating elements.
  • These separating elements are preferably material, force and / or positively connected to the head pipe, transverse distribution pipe or the coolant inlet orméffenauslenfinrohr.
  • these tubes have an ⁇ -shaped cross-section, in the narrow region of which recesses are provided, through which, for example, the heat transfer tubes are received.
  • the heat transfer tubes have a predetermined depth of penetration into the head tube or the transverse distribution tube, and that for the assembly of the components in the manufacture of the heat exchanger, the flow device can be clamped with the head tubes or transverse manifolds.
  • the penetration depth is 0.01 to 10 mm, preferably 0.1 to 5 mm and particularly preferably 0.15 to 1 mm.
  • Fig. 31 is the side view of the alternative embodiment from the left Fig. 30 , in which the refrigerant inlet 2641 and the refrigerant outlet 2642 are shown in addition to the connection means 2640 'and 2640. Further, the separating element 2649 and the outer separating elements of the head tube 2643 are identified by the reference numerals 2649' and 2649 ".
  • the frame member 2653 laterally closes the heat exchanging device.
  • the show FIGS. 32, 33 and 34 Further design forms 2770, 2870 and 2970 for a heat transfer tube, in particular for a flat tube, with the flow paths 2773, 2873 and 2973, which has a hydraulic diameter between 0.1 and 3 mm, preferably between 0.5 and 2 mm and more preferably between 1 , 0 and 1.6 mm.
  • the bursting pressure range of a pipe is in particular according to the present invention> 300 bar, whereby the wall must have a minimum thickness depending on the material.
  • the wall between the outer boundary of the flat tube and the inner boundaries of the flow paths has a thickness which is between 0.1 and 0.3 mm, more preferably between 0.15 and 0.25 mm, and particularly preferred between 1.17 and 2.2 mm.
  • FIG. 3 illustrates an alternative embodiment of a tube 2770 having 25 flow paths 2773, the average hydraulic diameter of which is about 1.0 mm.
  • the pipe width 2775 is approx. 1.8 mm and the wall thickness 2771 approx. 0.3 mm.
  • the distance between the flow paths 2772 is about 1.6 mm.
  • the distance 2774 of Flow path 2773 and the lateral outer wall 2770 is about 0.6 mm.
  • the pipe 2870 in Fig. 33 has 28 flow paths, with their hydraulic diameter is about 1.4 mm.
  • the pipe width 2876 is approx. 2.2 mm and the wall thickness 2871 approx. 0.3 mm.
  • the distance between the flow paths 2872 is approximately 1.9 mm.
  • the distance 2874 of the flow path 2873 from the lateral outer wall 2870 is about 0.6 mm.
  • a flat tube 2970 is shown with 35 flow paths whose average diameter is between 1.0 mm.
  • the pipe width 2977 is approx. 1.8 mm and the wall thickness 2971 approx. 0.3 mm.
  • the distance between the flow paths 2972 is about 1.6 mm.
  • the distance 2974 of the flow path 2973 from the lateral outer wall 2970 is about 0.6 mm.
  • heat energy is extracted from the second medium, such as the air, and transferred to the refrigerant.
  • This refrigerant is combined in the outlet section of the head tube 3106 as a liquid-gas mixture and returned via the refrigerant discharge 3107 in the subsequent piping system, such as an air conditioner.
  • Figure 16 1 shows a schematic representation of a head pipe in a side view, wherein the through-openings for the refrigerant inlet or outlet 3113 'or 3113 "can be seen in addition to the separating elements 3110, 3111 and 3112.
  • the openings 3113' and 3113" offset from the central axis of the head tube 3114 by a distance 3115, said distance according to the present invention between 0 and 20 mm, preferably between 0 and 10 mm and particularly preferably between 0 and 5 mm.
  • the partition member 3110 divides the head pipe into two portions 3115 and 3116, respectively, which constitute either the refrigerant inlet portion or the refrigerant outlet portion according to the arrangement of the head pipe.
  • Fig. 37 shows an alternative embodiment for a passage of a pipe in a head pipe.
  • the passage 3122 in addition to the two legs 3120 and 3121 of the head tube, the passage 3122 can be seen, which is designed according to a preferred embodiment so that it is the outer Form of the inserted flat tube corresponds.
  • the breakthrough may also be designed so that, for example, two or more flat tubes are receivable in the head pipe.
  • Fig. 38 shows the cross section through a head pipe according to the Fig. 37 along the line AA.
  • the illustration shows the ⁇ -shaped basic structure of the head tube, which according to the present invention represents a particularly preferred embodiment.
  • the tube is inserted into the passage 3130 of the head tube and extends into the interior 3132 of the head tube.
  • This embodiment also has the possibility of connecting the pipe by clamping to the head pipe before an optionally provided integral connection of the individual components in the production of the heat exchanger.
  • the geometric shape of a head pipe according to the embodiment of Fig. 38 used so that the tapered portion is 3131 clamped after insertion of the tube with the tube.
  • two or more tubes in a head tube of the shape can Fig. 38 lead.
  • a particularly preferred arrangement of the tubes is provided as in Fig. 30 represented by the reference numeral 2654.
  • Fig. 39 shows a perspective view of a heat exchanger, in addition to the refrigerant inlet 3200 "and a head tube 3201 can be seen with the separating elements 3202, 3203 and 3204.
  • the separating element 3203 extends within the lumen of the head tube 3201 in the A type that engages a recess of the tube 3205.
  • the header tube 3201 is divided by the separator 3203 into a refrigerant inlet portion 3207 and a refrigerant outlet 3208.
  • the first medium flows from the inlet 3207 via the heat transfer channels 3209 of the tubes in the transverse manifold 3212, which is also closed by two separating elements 3211 and 3212 to the environment.
  • the transverse distributor 3212 the first medium is then redirected to the recirculating heat transfer channels 3210, which subsequently open into the outlet section 3208 via the head tube 3201. From this, the first medium via the outlet 3200 "discharged.
  • Fig. 40 shows an alternative embodiment of a heat exchanger in which the inlet 3200 'and the outlet 3200 "are connected to the head tube 3301.
  • the head tube 3301 has four dividers 3302, 3303, 3304 and 3305, which cover the head tube 3301 in FIG divides three sections 3306, 3307 and 3308.
  • the first medium is fed via the inlet 3201 into the first section of the head tube 3306 and directed via a flat tube into the transverse distributor section 308.
  • the first medium is in turn returned to the head tube section 307, and Following this, the first medium is led back into the cross-manifold section 309, and then returned to the third section 3308 of the head tube via the flat tube, following the section 3308, the first medium is directed into the outlet 3200 "and into the piping system, e.g. an air conditioner, returned.
  • the piping system e.g. an air conditioner
  • Fig. 41 shows an alternative embodiment of a heat exchanger, in particular, the transverse manifold 4300 is completed by two externally applied separating elements 3401 and 3402.
  • Fig. 42 shows a detailed view of the heat exchanger according to Fig. 41 in which, in addition to the head pipe 3501, the pipe 3502 and the cooling fins 3503 shown schematically can be seen.
  • the illustration shows, in particular in the lumen of the head tube 3501, the penetration depth 3505 of the Pipe 3502 in the interior of the head pipe and the or in the inlet pipe mounted opening or openings 3504, through which the head pipe with the inlet and outlet is fluidly connected.
  • Fig. 43 shows a section of the heat exchanger in a perspective view, in addition to the head tube 3501, the separator 3507, the tube 3503, the inlet 3506 and another separator 3508, which divides the head tube 3501 in an inlet or outlet section can be seen.
  • Fig. 44 shows an alternative embodiment of a heat exchanger according to the present invention
  • the head pipes 3601, 3602, 3603 and 3604 are arranged on one side of the heat exchanger and opposite the transverse distribution pipes 3605, 3606 and 3607. Further, the inlet 3608 "and the outlet 3608 'terminate in a coupling device 3609 which connects the two pipelines to the piping system, for example an air conditioning system.
  • Fig. 45 is a side view of the heat exchanger according to Fig. 17 , Here, in particular, the arrangement of the inlet 3608 'and the outlet 3608' can be seen, whose center line are each offset by a different amount from the center line of the head tubes. Furthermore, the two tubes have a different cross-section to account for the different density of the first medium before or after flowing through the heat exchanger.
  • Fig. 47 shows a head pipe for a heat exchanger according to the present invention, which in addition to two passages 3701 'and 3701 "for one or two flat tubes having the two openings 3702 and 3703 for the inlet and outlet as the outlet, since the use of the heat exchanger as evaporator, the specific gravity of the refrigerant decreases by evaporation.
  • Fig. 52 shows a side view of such a head tube, whose feedthroughs for the flat tubes with the reference numerals 3807 and 3808 are shown.
  • Fig. 53 shows a bottom view of a head pipe according to the present invention, which has four bushings 3805, 3806, 3807 and 3808 for the flat tubes.
  • FIGS 55, 56 . 57, 58 show different embodiments of an inlet and an outlet, in particular a refrigerant inlet and - outlet.
  • the embodiments differ in the shape of the openings for the transition into the head pipes and their hydraulic diameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • General Induction Heating (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Claims (25)

  1. Echangeur de chaleur (1), en particulier pour un véhicule automobile, comprenant des tubes (2, 3) qui sont traversés par un premier milieu, le long de plusieurs trajets d'écoulement (V1 - V4, U1 - U5, R1 - R3) hydrauliquement parallèles et s'étendant depuis une entrée jusqu'à une sortie de l'échangeur de chaleur (1), et baignés par un deuxième milieu suivant une direction principale d'écoulement partant d'une surface frontale de l'échangeur de chaleur, où les trajets d'écoulement parallèles sont disposés les uns à côté des autres, suivant la direction principale d'écoulement du deuxième milieu, et un trajet d'écoulement (V1 - V4, U1 - U5, R1 - R3) présente deux parties (2d, 2e) disposées l'une derrière l'autre suivant la direction principale d'écoulement du deuxième milieu, ainsi que deux parties (2d, 3) traversées suivant des directions de sens opposé et disposées l'une à côté de l'autre suivant la direction principale d'écoulement du deuxième milieu.
  2. Echangeur de chaleur selon la revendication précédente, caractérisé en ce que les trajets d'écoulement parallèles sont limités à chaque fois à une zone partielle continue d'une surface frontale de l'échangeur de chaleur, ladite surface étant prévue pour l'écoulement du deuxième milieu.
  3. Echangeur de chaleur selon l'une ou l'autre des revendications précédentes, caractérisé par au moins un dispositif répartiteur et / ou collecteur qui est raccordé aux tubes, de façon communicante, où tous les dispositifs répartiteurs et / ou collecteurs sont disposés sur un côté de l'échangeur de chaleur.
  4. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé par au moins un dispositif répartiteur et / ou collecteur qui comprend un fond tubulaire se composant de plaques placées les unes à côté des autres, où des extrémités des tubes peuvent être reliées à une plaque de fond du fond tubulaire, et où au moins un conduit de traversée et / ou de renvoi est formé par un évidement dans une plaque déflectrice du fond tubulaire et peut être obturé par une plaque de recouvrement, de façon étanche au fluide et par rapport à un environnement de l'échangeur de chaleur.
  5. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé par un dispositif répartiteur et / ou collecteur comprenant un carter et au moins une chambre collectrice.
  6. Echangeur de chaleur selon la revendication 5, caractérisé par une chambre collectrice s'étendant de façon transversale par rapport à la direction principale d'écoulement du deuxième milieu.
  7. Echangeur de chaleur selon la revendication 5 ou 6, caractérisé en ce que le dispositif répartiteur et / ou collecteur comprend un fond tubulaire comportant des évidements, où des tubes peuvent être logés dans les évidements.
  8. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif répartiteur et / ou collecteur présente au moins une entrée de fluide frigorigène et au moins une sortie de fluide frigorigène qui débouchent dans au moins un tube collecteur, où le tube collecteur au moins au nombre de un est divisé, par au moins un élément de séparation, en au moins une partie d'entrée et au moins une partie de sortie, et où au moins un tube baigné par le deuxième milieu débouche dans le tube collecteur au moins au nombre de un.
  9. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que deux parties de trajet d'écoulement, ou plus, sont reliées entre elles, hydrauliquement, par un répartiteur transversal.
  10. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins un conduit de renvoi relie entre eux les conduits de transmission de chaleur de deux parties de trajet d'écoulement qui sont traversées successivement par le premier milieu.
  11. Echangeur de chaleur selon la revendication 10, caractérisé en ce que les deux parties de trajet d'écoulement, reliées entre elles par le conduit de renvoi, sont disposées l'une à côté de l'autre suivant la direction principale d'écoulement du deuxième milieu.
  12. Echangeur de chaleur selon la revendication 10, caractérisé en ce que les deux parties de trajet d'écoulement, reliées entre elles par le conduit de renvoi, sont disposées l'une derrière l'autre suivant la direction principale d'écoulement du deuxième milieu.
  13. Echangeur de chaleur selon l'une quelconque des revendications 10 à 12, caractérisé en ce que les deux parties de trajet d'écoulement reliées entre elles sont disposées dans un seul tube.
  14. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le nombre des parties d'au moins un trajet d'écoulement est divisible par deux, en particulier par quatre.
  15. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que, concernant chaque trajet d'écoulement, la première partie hydraulique est disposée dans un tube qui, à l'intérieur d'une rangée de tubes, est contigu à deux côtés de tubes placées à l'opposé l'un de l'autre.
  16. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que deux trajets d'écoulement contigus s'étendent de façon symétrique l'un par rapport à l'autre.
  17. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que des conduits de renvoi d'au moins deux trajets d'écoulement communiquent entre eux.
  18. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une section d'écoulement d'un trajet d'écoulement se modifie en passant d'une section à une section hydraulique qui suit.
  19. Echangeur de chaleur selon là revendication 18, caractérisé en ce que la section d'écoulement du trajet d'écoulement augmente en direction d'une masse volumique, diminuant, que présente le premier milieu à l'intérieur du trajet d'écoulement, au cours d'un fonctionnement de l'échangeur de chaleur.
  20. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les deux parties de trajet d'écoulement disposées l'une à côté de l'autre sont disposées dans un tube et sont reliées entre elles par un raccord tubulaire, en particulier en forme de U.
  21. Echangeur de chaleur selon la revendication 20, caractérisé en ce qu'une courbure du raccord tubulaire se produit dans la direction d'un côté plus court du tube configuré en particulier comme un tube plat.
  22. Echangeur de chaleur selon la revendication 20 ou 21, caractérisé en ce que tous les tubes présentent précisément un raccord tubulaire.
  23. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins un tube présente plusieurs conduits de transmission de chaleur qui sont associés en particulier à différents trajets d'écoulement et qui sont traversés en particulier suivant des directions de sens opposé.
  24. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les tubes sont configurés comme des tubes plats, en particulier en comprenant des ailettes ondulées disposées entre les tubes.
  25. Dispositif de climatisation, en particulier pour des véhicules automobiles, comprenant au moins un élément de guidage d'air, au moins un échangeur de chaleur et au moins un conduit de guidage d'air, caractérisé en ce qu'au moins un échangeur de chaleur, en particulier un évaporateur de fluide frigorigène, est configuré conformément à l'une quelconque des revendications précédentes.
EP02795237A 2001-12-21 2002-12-19 Echangeur thermique notamment destine a un vehicule Expired - Lifetime EP1459026B1 (fr)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE10163202 2001-12-21
DE10163202 2001-12-21
DE10234118 2002-07-26
DE10234118 2002-07-26
DE10240556 2002-08-29
DE10240556 2002-08-29
PCT/EP2002/014582 WO2003054467A1 (fr) 2001-12-21 2002-12-19 Echangeur thermique notamment destine a un vehicule

Publications (2)

Publication Number Publication Date
EP1459026A1 EP1459026A1 (fr) 2004-09-22
EP1459026B1 true EP1459026B1 (fr) 2010-02-24

Family

ID=27214689

Family Applications (4)

Application Number Title Priority Date Filing Date
EP02793087A Expired - Lifetime EP1459025B1 (fr) 2001-12-21 2002-12-19 Dispositif d'echange de chaleur
EP02798351A Expired - Lifetime EP1459027B1 (fr) 2001-12-21 2002-12-19 Echangeur thermique notamment destine a un vehicule
EP02795237A Expired - Lifetime EP1459026B1 (fr) 2001-12-21 2002-12-19 Echangeur thermique notamment destine a un vehicule
EP08018381.7A Expired - Lifetime EP2026028B1 (fr) 2001-12-21 2002-12-19 Échangeur de chaleur, en particulier pour véhicule automobile

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP02793087A Expired - Lifetime EP1459025B1 (fr) 2001-12-21 2002-12-19 Dispositif d'echange de chaleur
EP02798351A Expired - Lifetime EP1459027B1 (fr) 2001-12-21 2002-12-19 Echangeur thermique notamment destine a un vehicule

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08018381.7A Expired - Lifetime EP2026028B1 (fr) 2001-12-21 2002-12-19 Échangeur de chaleur, en particulier pour véhicule automobile

Country Status (13)

Country Link
US (4) US7481266B2 (fr)
EP (4) EP1459025B1 (fr)
JP (4) JP4121085B2 (fr)
KR (1) KR100925910B1 (fr)
CN (2) CN100368752C (fr)
AT (3) ATE458975T1 (fr)
AU (3) AU2002360056A1 (fr)
BR (3) BR0215231A (fr)
CA (1) CA2471164C (fr)
DE (6) DE10260030A1 (fr)
ES (1) ES2316640T3 (fr)
MX (1) MXPA04006151A (fr)
WO (3) WO2003054467A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014117256B4 (de) 2014-11-25 2021-11-18 Denso Automotive Deutschland Gmbh Wärmetauscher für eine Klimaanlage eines Fahrzeugs

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002360056A1 (en) * 2001-12-21 2003-07-09 Behr Gmbh And Co. Heat exchanger, particularly for a motor vehicle
DE10322406A1 (de) * 2003-05-16 2004-12-02 Api Schmidt-Bretten Gmbh & Co. Kg Platten-Wärmeübertrager
JP4248931B2 (ja) * 2003-05-20 2009-04-02 カルソニックカンセイ株式会社 熱交換器
DE10336625A1 (de) * 2003-08-05 2005-03-10 Behr Gmbh & Co Kg Vorrichtung zum Austausch von Wärme und Verfahren zu deren Herstellung
DE10349150A1 (de) * 2003-10-17 2005-05-19 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere für Kraftfahrzeuge
FR2863044B1 (fr) * 2003-11-27 2006-01-13 Valeo Climatisation Module pour l'echange de chaleur entre fluides en circulation
DE102004001786A1 (de) * 2004-01-12 2005-08-04 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere für überkritischen Kältekreislauf
US7775067B2 (en) * 2004-03-17 2010-08-17 Showa Denko K.K. Heat exchanger header tank and heat exchanger comprising same
DE102004011608A1 (de) * 2004-03-18 2005-10-13 Obrist Engineering Gmbh Wärmetauscher einer Fahrzeugklimaanlage
JP2005326135A (ja) * 2004-04-12 2005-11-24 Showa Denko Kk 熱交換器
CN100487344C (zh) * 2004-04-12 2009-05-13 昭和电工株式会社 热交换器
DE102004044861A1 (de) * 2004-09-14 2006-03-16 Behr Gmbh & Co. Kg Wärmetauscher für Kraftfahrzeuge
DE102004048767A1 (de) * 2004-10-05 2006-04-06 Behr Gmbh & Co. Kg Verfahren zur Herstellung eines Wärmeübertragers
DE102004056557A1 (de) * 2004-11-23 2006-05-24 Behr Gmbh & Co. Kg Dimensionsoptimierte Vorrichtung zum Austausch von Wärme und Verfahren zur Optimierung der Dimensionen von Vorrichtungen zum Austausch von Wärme
DE102004058499A1 (de) * 2004-12-04 2006-06-14 Modine Manufacturing Co., Racine Wärmeübertrager, insbesondere für Kraftfahrzeuge
JP2006183962A (ja) * 2004-12-28 2006-07-13 Denso Corp 蒸発器
JP2006194522A (ja) * 2005-01-13 2006-07-27 Japan Climate Systems Corp 熱交換器
KR101090225B1 (ko) * 2005-01-27 2011-12-08 한라공조주식회사 열교환기
JP2008531976A (ja) * 2005-03-07 2008-08-14 ベール ゲーエムベーハー ウント コー カーゲー 熱交換器、特に自動車空調装置の蒸発器
US7275394B2 (en) * 2005-04-22 2007-10-02 Visteon Global Technologies, Inc. Heat exchanger having a distributer plate
DE102005020499A1 (de) 2005-04-29 2006-11-09 Behr Gmbh & Co. Kg Verdampfer, insbesondere Heckverdampfer für ein Kraftfahrzeug
DE102006025727A1 (de) * 2005-08-04 2007-02-08 Visteon Global Technologies, Inc., Van Buren Township Wärmeübertrager für Fahrzeuge und Verfahren zu seiner Herstellung
DE102005059919A1 (de) * 2005-12-13 2007-06-14 Behr Gmbh & Co. Kg Wärmetauscher, insbesondere Verdampfer
DE102005059920B4 (de) 2005-12-13 2019-07-04 Mahle International Gmbh Wärmetauscher, insbesondere Verdampfer
JP2007198721A (ja) * 2005-12-26 2007-08-09 Denso Corp 熱交換器
DE102006004710A1 (de) * 2006-01-31 2007-08-02 Behr Gmbh & Co. Kg Wärmeübertrageranordnung, insbesondere eines Heckverdampfers in einem Kraftfahrzeug
FR2898405B1 (fr) * 2006-03-07 2008-06-06 Valeo Systemes Thermiques Echangeur de chaleur, en particulier refroidisseur de gaz, comportant deux nappes de tubes reliees
JP4811087B2 (ja) * 2006-03-31 2011-11-09 株式会社デンソー 熱交換器
JP4724594B2 (ja) * 2006-04-28 2011-07-13 昭和電工株式会社 熱交換器
DE102006035951B4 (de) * 2006-07-31 2019-09-05 Mahle International Gmbh Wärmetauscher in Plattenbauweise, insbesondere Verdampfer und Vorrichtung zur Montage eines Sammlers in Plattenbauweise
KR101280618B1 (ko) * 2006-09-04 2013-07-02 한라비스테온공조 주식회사 증발기
DE102006046671A1 (de) * 2006-09-29 2008-04-03 Behr Gmbh & Co. Kg Wärmetauscher in Plattenbauweise, insbesondere Verdampfer für eine Kraftfahrzeug-Klimaanlage
US20080105419A1 (en) * 2006-11-07 2008-05-08 Kwangheon Oh Heat exchanger
US7965508B2 (en) * 2007-03-27 2011-06-21 Denso Corporation Cooling device for electronic component and power converter equipped with the same
EP2140219B1 (fr) * 2007-04-12 2023-07-12 AutomotiveThermoTech GmbH Véhicules à moteur
DE102008023055A1 (de) * 2007-05-22 2008-11-27 Behr Gmbh & Co. Kg Wärmeübertrager
JP5114771B2 (ja) * 2007-05-29 2013-01-09 株式会社ケーヒン・サーマル・テクノロジー 熱交換器
WO2008147361A1 (fr) * 2007-06-01 2008-12-04 Carrier Corporation Échangeur de chaleur à écoulement parallèle avec connecteurs
KR100941301B1 (ko) * 2007-06-15 2010-02-11 주식회사 경동나비엔 열교환기
JP5046771B2 (ja) * 2007-07-27 2012-10-10 三菱重工業株式会社 冷媒蒸発器
JP4972488B2 (ja) * 2007-08-07 2012-07-11 昭和電工株式会社 熱交換器
FR2921471A1 (fr) * 2007-09-21 2009-03-27 Hades Soc Par Actions Simplifi Boitier repartiteur de fluide caloporteur, pour le couplage d'une pompe a chaleur a une pluralite de circuits de captage et de distribution de chaleur
US9328966B2 (en) * 2007-11-01 2016-05-03 Modine Manufacturing Company Heat exchanger with a baffle reinforcement member
CN101487669B (zh) * 2008-01-17 2012-08-22 开利公司 包括多管式分配器的热交换器
EP2090851A1 (fr) * 2008-02-15 2009-08-19 Delphi Technologies, Inc. Échangeur de chaleur doté d'une chambre de mélange
CN202013133U (zh) * 2008-02-22 2011-10-19 利厄伯特公司 热交换器和热交换器系统
EP2108909A1 (fr) * 2008-04-07 2009-10-14 Delphi Technologies, Inc. Échangeur thermique fourni avec un bloc de fixation
DE102008025910A1 (de) 2008-05-29 2009-12-03 Behr Gmbh & Co. Kg Wärmeübertrager
EP2131131A1 (fr) 2008-06-06 2009-12-09 Scambia Industrial Developments AG Échangeur de chaleur
EP2314966A4 (fr) * 2008-06-10 2014-03-26 Halla Visteon Climate Control Systeme de climatisation pour vehicule a evaporateur du type a tubes et ailettes utilisant un refrigerant materiel hfo 1234yf
FR2933178A1 (fr) * 2008-06-26 2010-01-01 Valeo Systemes Thermiques Echangeur de chaleur et carter pour l'echangeur
US9759495B2 (en) * 2008-06-30 2017-09-12 Lg Chem, Ltd. Battery cell assembly having heat exchanger with serpentine flow path
DE102008047560A1 (de) 2008-09-16 2010-04-15 Behr Gmbh & Co. Kg Verwendung einer Aluminiumlegierung, Herstellung eines Verdampfers unter Verwendung der Aluminiumlegierung und Verdampfer für eine insbesondere mit CO2 betriebene Kraftfahrzeugklimaanlage
JP5408951B2 (ja) * 2008-10-16 2014-02-05 三菱重工業株式会社 冷媒蒸発器およびそれを用いた空調装置
TWI361880B (en) * 2008-11-17 2012-04-11 Heat exchanging module and working fluid distributor thereof and method for manufacturing heat exchange module
DE102008058210A1 (de) 2008-11-19 2010-05-20 Voith Patent Gmbh Wärmetauscher und Verfahren für dessen Herstellung
FR2941522B1 (fr) * 2009-01-27 2012-08-31 Valeo Systemes Thermiques Echangeur de chaleur pour deux fluides, en particulier evaporateur de stockage pour dispositif de climatisation
US8177932B2 (en) * 2009-02-27 2012-05-15 International Mezzo Technologies, Inc. Method for manufacturing a micro tube heat exchanger
JP5904351B2 (ja) * 2009-03-16 2016-04-13 藤本 雅久 吸収冷却器、熱交換器
FR2943775B1 (fr) * 2009-03-24 2012-07-13 Valeo Systemes Thermiques Echangeur de stockage pourvu d'un materiau stockeur et boucle de climatisation ou circuit de refroidissement comprenant un tel echangeur.
US8403030B2 (en) * 2009-04-30 2013-03-26 Lg Chem, Ltd. Cooling manifold
US8663829B2 (en) 2009-04-30 2014-03-04 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
US20100275619A1 (en) * 2009-04-30 2010-11-04 Lg Chem, Ltd. Cooling system for a battery system and a method for cooling the battery system
FR2947332B1 (fr) * 2009-06-25 2011-07-22 Valeo Systemes Thermiques Boite collectrice pour echangeur de chaleur ayant une aptitude au brasage amelioree
US8399118B2 (en) * 2009-07-29 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
US8399119B2 (en) * 2009-08-28 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
DE102009041524A1 (de) * 2009-09-15 2011-03-24 Mahle International Gmbh Plattenwärmetauscher
CN101660870B (zh) * 2009-09-16 2012-07-18 三花丹佛斯(杭州)微通道换热器有限公司 具有改进制冷剂分配性能的换热器
DE102009044119A1 (de) * 2009-09-28 2011-03-31 Contitech Kühner Gmbh & Cie. Kg Innerer Wärmetauscher, insbesondere für Kraftfahrzeugklimaanlagen
DE102009047620C5 (de) * 2009-12-08 2023-01-19 Hanon Systems Wärmeübertrager mit Rohrbündel
JP4715963B1 (ja) * 2010-02-15 2011-07-06 ダイキン工業株式会社 空気調和機用熱交換器
US8203839B2 (en) * 2010-03-10 2012-06-19 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling devices, power modules, and vehicles incorporating the same
CN101799253A (zh) * 2010-03-18 2010-08-11 王子异 一种具有密封盖板结构的热交换器
JP5687937B2 (ja) 2010-03-31 2015-03-25 モーディーン・マニュファクチャリング・カンパニーModine Manufacturing Company 熱交換器
DE202010007533U1 (de) * 2010-06-02 2010-08-19 Tfc Cooling Products E.K. Wärmetauscher
US9267737B2 (en) 2010-06-29 2016-02-23 Johnson Controls Technology Company Multichannel heat exchangers employing flow distribution manifolds
US9151540B2 (en) 2010-06-29 2015-10-06 Johnson Controls Technology Company Multichannel heat exchanger tubes with flow path inlet sections
JP4983998B2 (ja) * 2010-09-29 2012-07-25 ダイキン工業株式会社 熱交換器
US8662153B2 (en) 2010-10-04 2014-03-04 Lg Chem, Ltd. Battery cell assembly, heat exchanger, and method for manufacturing the heat exchanger
EP2444770B1 (fr) * 2010-10-20 2020-02-12 ABB Schweiz AG Échangeur de chaleur comprenant un caloduc pulsatif
JP5413433B2 (ja) * 2010-11-09 2014-02-12 株式会社デンソー 熱交換器
DE102011003649A1 (de) * 2011-02-04 2012-08-09 Behr Gmbh & Co. Kg Wärmeübertrager
CN102095315B (zh) * 2011-03-04 2012-01-25 刘小江 一种蜂窝孔式换热器
JP2012225634A (ja) * 2011-04-04 2012-11-15 Denso Corp 熱交換器
KR101283591B1 (ko) 2011-09-19 2013-07-05 현대자동차주식회사 차량용 열교환기
US9671181B2 (en) * 2011-09-30 2017-06-06 L&M Radiator, Inc. Heat exchanger with improved tank and tube construction
JP5796563B2 (ja) * 2011-11-29 2015-10-21 株式会社デンソー 熱交換器
JP5796564B2 (ja) * 2011-11-30 2015-10-21 株式会社デンソー 熱交換器
US9605914B2 (en) 2012-03-29 2017-03-28 Lg Chem, Ltd. Battery system and method of assembling the battery system
US9105950B2 (en) 2012-03-29 2015-08-11 Lg Chem, Ltd. Battery system having an evaporative cooling member with a plate portion and a method for cooling the battery system
US9379420B2 (en) 2012-03-29 2016-06-28 Lg Chem, Ltd. Battery system and method for cooling the battery system
US8852781B2 (en) 2012-05-19 2014-10-07 Lg Chem, Ltd. Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly
KR101339250B1 (ko) * 2012-06-11 2013-12-09 현대자동차 주식회사 차량용 열교환기
KR101315359B1 (ko) * 2012-06-27 2013-10-08 주식회사 고산 열교환기
US9306199B2 (en) 2012-08-16 2016-04-05 Lg Chem, Ltd. Battery module and method for assembling the battery module
DE102013106209B4 (de) * 2012-09-20 2020-09-10 Hanon Systems Klimatisierungsvorrichtung eines Kraftfahrzeuges mit einer Wärmeübertrageranordnung zur Wärmeaufnahme
US9083066B2 (en) 2012-11-27 2015-07-14 Lg Chem, Ltd. Battery system and method for cooling a battery cell assembly
US8852783B2 (en) 2013-02-13 2014-10-07 Lg Chem, Ltd. Battery cell assembly and method for manufacturing the battery cell assembly
US20140231059A1 (en) * 2013-02-20 2014-08-21 Hamilton Sundstrand Corporation Heat exchanger
DE102013203222A1 (de) 2013-02-27 2014-08-28 Behr Gmbh & Co. Kg Wärmeübertrager
CN105247309A (zh) * 2013-03-15 2016-01-13 开利公司 用于风冷式冷却器的热交换器
CN105121988A (zh) * 2013-04-10 2015-12-02 开利公司 折叠管多组热交换单元
US9647292B2 (en) 2013-04-12 2017-05-09 Lg Chem, Ltd. Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly
AU2013389570B2 (en) * 2013-05-15 2016-04-07 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus
WO2014184918A1 (fr) * 2013-05-15 2014-11-20 三菱電機株式会社 Colonne stratifiée, échangeur de chaleur, et climatiseur
US10107570B2 (en) * 2013-05-15 2018-10-23 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus
EP3018441B1 (fr) * 2013-05-15 2019-07-24 Mitsubishi Electric Corporation Collecteur stratifié, échangeur de chaleur et dispositif de conditionnement d'air
WO2014205799A1 (fr) * 2013-06-28 2014-12-31 Ingersoll Rand (China) Industrial Technologies Échangeurs thermiques à microcanaux
US9184424B2 (en) 2013-07-08 2015-11-10 Lg Chem, Ltd. Battery assembly
US9807915B2 (en) * 2013-09-12 2017-10-31 Hanon Systems Heat exchanger for cooling electric element
EP3051245B1 (fr) * 2013-09-26 2019-05-01 Mitsubishi Electric Corporation Collecteur de type stratifié, échangeur thermique, et appareil de climatisation
EP2857783A1 (fr) * 2013-10-04 2015-04-08 ABB Technology AG Dispositif d'échange de chaleur basé sur un tuyau à chaleur pulsée
US9257732B2 (en) 2013-10-22 2016-02-09 Lg Chem, Ltd. Battery cell assembly
JP6091641B2 (ja) * 2013-10-29 2017-03-08 三菱電機株式会社 熱交換器、及び、空気調和装置
US9444124B2 (en) 2014-01-23 2016-09-13 Lg Chem, Ltd. Battery cell assembly and method for coupling a cooling fin to first and second cooling manifolds
JP6120998B2 (ja) * 2014-01-27 2017-04-26 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
DE102014203038A1 (de) * 2014-02-19 2015-08-20 MAHLE Behr GmbH & Co. KG Wärmeübertrager
DE102014204935A1 (de) 2014-03-17 2015-10-01 Mahle International Gmbh Heizkühlmodul
US10084218B2 (en) 2014-05-09 2018-09-25 Lg Chem, Ltd. Battery pack and method of assembling the battery pack
US10770762B2 (en) 2014-05-09 2020-09-08 Lg Chem, Ltd. Battery module and method of assembling the battery module
CN106796089A (zh) * 2014-06-27 2017-05-31 泰坦X引擎冷却控股公司 带有加强的端头板的热交换器
DE102014219210A1 (de) * 2014-09-22 2016-03-24 Mahle International Gmbh Wärmeübertrager
US9484559B2 (en) 2014-10-10 2016-11-01 Lg Chem, Ltd. Battery cell assembly
US9412980B2 (en) 2014-10-17 2016-08-09 Lg Chem, Ltd. Battery cell assembly
US9786894B2 (en) 2014-11-03 2017-10-10 Lg Chem, Ltd. Battery pack
AU2014410872B2 (en) * 2014-11-04 2018-09-20 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus
US9627724B2 (en) 2014-12-04 2017-04-18 Lg Chem, Ltd. Battery pack having a cooling plate assembly
JP2016153718A (ja) * 2015-02-12 2016-08-25 カルソニックカンセイ株式会社 熱交換器、熱交換器の組み立て装置、及び熱交換器の組み立て方法
WO2016178278A1 (fr) * 2015-05-01 2016-11-10 三菱電機株式会社 Colonne stratifiée, échangeur de chaleur et climatiseur
US9816766B2 (en) * 2015-05-06 2017-11-14 Hamilton Sundstrand Corporation Two piece manifold
US11480398B2 (en) * 2015-05-22 2022-10-25 The Johns Hopkins University Combining complex flow manifold with three dimensional woven lattices as a thermal management unit
US9960465B2 (en) 2015-07-30 2018-05-01 Lg Chem, Ltd. Battery pack
CN106482398A (zh) * 2015-08-28 2017-03-08 杭州三花家电热管理系统有限公司 微通道换热器
EP3348946B1 (fr) * 2015-09-07 2020-03-25 Mitsubishi Electric Corporation Colonne stratifiée, échangeur de chaleur et climatiseur
US9755198B2 (en) 2015-10-07 2017-09-05 Lg Chem, Ltd. Battery cell assembly
US10821509B2 (en) * 2016-01-20 2020-11-03 General Electric Company Additive heat exchanger mixing chambers
US20170211888A1 (en) * 2016-01-21 2017-07-27 Hamilton Sundstrand Corporation Heat exchanger with center manifold and thermal separator
US10267576B2 (en) 2016-01-28 2019-04-23 L & M Radiator, Inc. Heat exchanger with tanks, tubes and retainer
JP6803061B2 (ja) * 2016-09-26 2020-12-23 伸和コントロールズ株式会社 熱交換器
WO2018078746A1 (fr) * 2016-10-26 2018-05-03 三菱電機株式会社 Distributeur et échangeur de chaleur
US10563895B2 (en) * 2016-12-07 2020-02-18 Johnson Controls Technology Company Adjustable inlet header for heat exchanger of an HVAC system
JP6746234B2 (ja) * 2017-01-25 2020-08-26 日立ジョンソンコントロールズ空調株式会社 熱交換器、及び、空気調和機
JP6716016B2 (ja) * 2017-03-31 2020-07-01 三菱電機株式会社 熱交換器およびそれを備えた冷凍サイクル装置
JP6717256B2 (ja) 2017-05-10 2020-07-01 株式会社デンソー 冷媒蒸発器およびその製造方法
WO2019024437A1 (fr) * 2017-07-31 2019-02-07 广东美的暖通设备有限公司 Échangeur de chaleur et appareil ménager
DE102017218818A1 (de) * 2017-10-20 2019-04-25 Mahle International Gmbh Wärmeübertrager
US11629896B2 (en) * 2018-05-01 2023-04-18 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
CN110530065A (zh) * 2018-05-25 2019-12-03 三花控股集团有限公司 换热器
CN110530180A (zh) * 2018-05-25 2019-12-03 三花控股集团有限公司 换热器
EP3745076B1 (fr) * 2018-05-25 2022-09-14 Zhejiang Sanhua Intelligent Controls Co., Ltd. Boîte collectrice de tuyau et échangeur de chaleur
CN109405573B (zh) * 2018-10-15 2024-01-12 李小强 换热装置
CN109316769B (zh) * 2018-10-15 2023-06-16 李强 降膜蒸发器的布膜组件
EP3875878B1 (fr) * 2018-10-29 2022-06-08 Mitsubishi Electric Corporation Échangeur de chaleur et dispositif à cycle de réfrigération
EP3862713A4 (fr) * 2018-11-07 2021-12-01 Daikin Industries, Ltd. Échangeur de chaleur et climatiseur
CN109520355A (zh) * 2018-12-21 2019-03-26 广东美的白色家电技术创新中心有限公司 换热装置及制冷设备
CN110118505A (zh) * 2019-06-19 2019-08-13 浙江银轮机械股份有限公司 集流管组件及热交换器
CN112186213B (zh) * 2019-07-02 2022-07-15 钦瑞工业股份有限公司 燃料电池堆的流道板改良结构
DE202019103964U1 (de) * 2019-07-18 2020-10-21 Akg Verwaltungsgesellschaft Mbh Wärmeaustauscher
EP4012296A4 (fr) * 2019-08-07 2022-09-21 Daikin Industries, Ltd. Échangeur de chaleur et dispositif de pompe à chaleur
JP6939869B2 (ja) * 2019-11-14 2021-09-22 ダイキン工業株式会社 熱交換器
US20230032094A1 (en) * 2019-12-12 2023-02-02 Zhejiang Sanhua Automotive Components Co., Ltd. Heat exchanger and assembly method therefor
CN112432522B (zh) * 2020-03-31 2022-09-06 杭州三花研究院有限公司 换热器
EP3907459A1 (fr) * 2020-05-04 2021-11-10 Valeo Autosystemy SP. Z.O.O. Échangeur de chaleur
JPWO2022244091A1 (fr) * 2021-05-18 2022-11-24
US20230392837A1 (en) * 2022-06-03 2023-12-07 Trane International Inc. Evaporator charge management and method for controlling the same

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1817948A (en) 1929-11-16 1931-08-11 Carrier Construction Company I Heat exchange device
US2332336A (en) * 1941-01-16 1943-10-19 Gen Electric Elastic fluid condenser
US2950092A (en) * 1957-11-01 1960-08-23 Carrier Corp Heat exchange construction
GB991914A (en) * 1962-10-24 1965-05-12 Foster Wheeler Ltd Tube connecting members
US3416600A (en) 1967-01-23 1968-12-17 Whirlpool Co Heat exchanger having twisted multiple passage tubes
US3703925A (en) * 1971-03-11 1972-11-28 Stewart Warner Corp Heat exchanger core
JPS5264733A (en) * 1975-11-21 1977-05-28 Hitachi Ltd Evaporator
DE3136374C2 (de) 1981-09-14 1985-05-09 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Kältemittelverdampfer, insbesondere für Klimaanlagen in Kraftfahrzeugen
US4502297A (en) * 1981-12-18 1985-03-05 Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co., Kg Evaporator particularly suitable for air conditioners in automotive vehicles
DE3311579C2 (de) 1983-03-30 1985-10-03 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG, 7000 Stuttgart Wärmetauscher
JPS6124953A (ja) * 1984-07-12 1986-02-03 株式会社デンソー 蒸発器
JPH0613957B2 (ja) * 1985-12-04 1994-02-23 松下冷機株式会社 熱交換器
JPS62153685A (ja) * 1985-12-24 1987-07-08 Showa Alum Corp 熱交換器
US4936379A (en) * 1986-07-29 1990-06-26 Showa Aluminum Kabushiki Kaisha Condenser for use in a car cooling system
JPS63134267A (ja) 1986-11-27 1988-06-06 Alps Electric Co Ltd プリンタ
JPS63134267U (fr) * 1987-02-26 1988-09-02
EP0328414A3 (fr) * 1988-02-12 1989-09-27 Acr Heat Transfer Manufacturing Limited Echangeur de chaleur
DE3813339C2 (de) 1988-04-21 1997-07-24 Gea Happel Klimatechnik Wärmetauscher für Kraftfahrzeuge und Verfahren zu seiner Herstellung
JPH01296087A (ja) * 1988-05-19 1989-11-29 Nippon Denso Co Ltd 熱交換用チューブ
JP2576197B2 (ja) * 1988-06-29 1997-01-29 日本電装株式会社 熱交換器
JPH0258665U (fr) * 1988-10-18 1990-04-26
US5060563A (en) * 1989-05-22 1991-10-29 Rex Plant Apparatus for producing a vegetable product
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
JPH0387169U (fr) * 1989-12-22 1991-09-04
JP2997816B2 (ja) 1990-07-09 2000-01-11 昭和アルミニウム株式会社 コンデンサ
US5174373A (en) * 1990-07-13 1992-12-29 Sanden Corporation Heat exchanger
JP2997817B2 (ja) 1990-07-23 2000-01-11 昭和アルミニウム株式会社 熱交換器
US5314013A (en) * 1991-03-15 1994-05-24 Sanden Corporation Heat exchanger
US5241839A (en) 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
JP2864173B2 (ja) 1991-05-30 1999-03-03 株式会社ゼクセル 熱交換器
JPH0526592A (ja) 1991-07-19 1993-02-02 Matsushita Refrig Co Ltd 冷媒分流器とその製造方法
JPH0566073A (ja) * 1991-09-05 1993-03-19 Sanden Corp 積層型熱交換器
US5205347A (en) * 1992-03-31 1993-04-27 Modine Manufacturing Co. High efficiency evaporator
US5242016A (en) 1992-04-02 1993-09-07 Nartron Corporation Laminated plate header for a refrigeration system and method for making the same
US5172761A (en) * 1992-05-15 1992-12-22 General Motors Corporation Heat exchanger tank and header
JPH05346297A (ja) * 1992-06-15 1993-12-27 Nippon Light Metal Co Ltd 熱交換器
JP2979926B2 (ja) * 1993-10-18 1999-11-22 株式会社日立製作所 空気調和機
JP3305460B2 (ja) * 1993-11-24 2002-07-22 昭和電工株式会社 熱交換器
EP0656517B1 (fr) * 1993-12-03 1999-02-10 Valeo Klimatechnik GmbH & Co. KG Echangeur de chaleur eau-air en aluminium pour véhicules automobiles
DE9400687U1 (de) * 1994-01-17 1995-05-18 Thermal-Werke, Wärme-, Kälte-, Klimatechnik GmbH, 68766 Hockenheim Verdampfer für Klimaanlagen in Kraftfahrzeugen mit Mehrkammerflachrohren
JPH07305990A (ja) * 1994-05-16 1995-11-21 Sanden Corp 多管式熱交換器
US5622219A (en) 1994-10-24 1997-04-22 Modine Manufacturing Company High efficiency, small volume evaporator for a refrigerant
JP3367235B2 (ja) * 1994-11-11 2003-01-14 株式会社デンソー 車両用空調装置の冷凍サイクル
JPH08254399A (ja) * 1995-01-19 1996-10-01 Zexel Corp 熱交換器
DE19515526C1 (de) 1995-04-27 1996-05-23 Thermal Werke Beteiligungen Gm Flachrohrwärmetauscher mit mindestens zwei Fluten für Kraftfahrzeuge
DE19519740B4 (de) * 1995-06-02 2005-04-21 Mann + Hummel Gmbh Wärmetauscher
US7234511B1 (en) * 1995-06-13 2007-06-26 Philip George Lesage Modular heat exchanger having a brazed core and method for forming
FR2738905B1 (fr) 1995-09-20 1997-12-05 Valeo Climatisation Tube d'echangeur de chaleur a canaux de circulation a contre-courant
JPH09189498A (ja) 1996-01-09 1997-07-22 Nippon Light Metal Co Ltd 熱媒体分流促進機構付ヘッダ及びその成形方法
EP0845648B1 (fr) 1996-11-27 2002-01-30 Behr GmbH & Co. Echangeur de chaleur à tubes plats, en particulier condenseur de type à serpentin
JPH10185463A (ja) 1996-12-19 1998-07-14 Sanden Corp 熱交換器
DE19719261C2 (de) * 1997-05-07 2001-06-07 Valeo Klimatech Gmbh & Co Kg Zweiflutiger Flachrohrverdampfer einer Kraftfahrzeugklimaanlage
DE19719256B4 (de) 1997-05-07 2005-08-18 Valeo Klimatechnik Gmbh & Co. Kg Mehr als zweiflutiger Flachrohrwärmetauscher für Kraftfahrzeuge mit Umlenkboden sowie Herstelungsverfahren
DE19729497A1 (de) 1997-07-10 1999-01-14 Behr Gmbh & Co Flachrohr-Wärmeübertrager
EP0905467B1 (fr) * 1997-09-24 2003-06-18 Showa Denko K.K. Evaporateur
US5941303A (en) 1997-11-04 1999-08-24 Thermal Components Extruded manifold with multiple passages and cross-counterflow heat exchanger incorporating same
JPH11287587A (ja) 1998-04-03 1999-10-19 Denso Corp 冷媒蒸発器
DE19819247A1 (de) * 1998-04-29 1999-11-11 Valeo Klimatech Gmbh & Co Kg Wärmetauscher für Kraftfahrzeuge, insbesondere Wasser/Luft-Wärmetauscher oder Verdampfer
DE19825561A1 (de) * 1998-06-08 1999-12-09 Valeo Klimatech Gmbh & Co Kg Wärmetauscher mit verrippten Flachrohren, insbesondere Heizungswärmetauscher, Motorkühler, Verflüssiger oder Verdampfer, für Kraftfahrzeuge
DE19826881B4 (de) 1998-06-17 2008-01-03 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere Verdampfer
DE19830863A1 (de) * 1998-07-10 2000-01-13 Behr Gmbh & Co Flachrohr mit Querversatz-Umkehrbogenabschnitt und damit aufgebauter Wärmeübertrager
DE19833845A1 (de) * 1998-07-28 2000-02-03 Behr Gmbh & Co Wärmeübertrager-Rohrblock und dafür verwendbares Mehrkammer-Flachrohr
JP2000304472A (ja) * 1999-04-23 2000-11-02 Calsonic Kansei Corp 冷凍サイクル用熱交換器
FR2793016B1 (fr) * 1999-04-30 2001-09-07 Valeo Climatisation Boite collectrice allongee pour echangeur de chaleur resistant aux fortes pressions internes
EP1065453B1 (fr) * 1999-07-02 2004-05-06 Denso Corporation Evaporateur de réfrigérant avec distribution de réfrigérant
JP2001027484A (ja) 1999-07-15 2001-01-30 Zexel Valeo Climate Control Corp サーペンタイン型熱交換器
DE19933913C2 (de) 1999-07-20 2003-07-17 Valeo Klimatechnik Gmbh Verdampfer einer Kraftfahrzeugklimaanlage
JP2001059694A (ja) * 1999-08-20 2001-03-06 Zexel Valeo Climate Control Corp 熱交換器
US6185957B1 (en) * 1999-09-07 2001-02-13 Modine Manufacturing Company Combined evaporator/accumulator/suctionline heat exchanger
FR2803378B1 (fr) * 1999-12-29 2004-03-19 Valeo Climatisation Echangeur de chaleur a tubes a plusieurs canaux, en particulier pour vehicule automobile
JP2001194087A (ja) 2000-01-13 2001-07-17 Zexel Valeo Climate Control Corp 熱交換器
JP2001248995A (ja) * 2000-03-03 2001-09-14 Zexel Valeo Climate Control Corp 熱交換器
JP2001330391A (ja) 2000-05-19 2001-11-30 Zexel Valeo Climate Control Corp 熱交換器
JP4686062B2 (ja) 2000-06-26 2011-05-18 昭和電工株式会社 エバポレータ
EP1167911B1 (fr) 2000-06-26 2013-12-25 Keihin Thermal Technology Corporation Evaporateur
DE10049256A1 (de) 2000-10-05 2002-04-11 Behr Gmbh & Co Serpentinen-Wärmeübertrager
DE10056074B4 (de) 2000-11-07 2017-03-23 Mahle International Gmbh Wärmeübertrager
JP3647375B2 (ja) 2001-01-09 2005-05-11 日産自動車株式会社 熱交換器
DE10105202A1 (de) * 2001-01-31 2002-08-01 Behr Gmbh & Co Wärmeübertrager-Rohrblock mit mehreren geschlitzten Sammelrohren
DE10123247B4 (de) 2001-05-12 2006-02-09 Hubert Herrmann Schutzhelm
TW552382B (en) * 2001-06-18 2003-09-11 Showa Dendo Kk Evaporator, manufacturing method of the same, header for evaporator and refrigeration system
EP1300644A3 (fr) * 2001-10-02 2003-05-14 Behr GmbH & Co. KG Echangeur de chaleur et procédé de fabrication associé
EP1300645A3 (fr) * 2001-10-02 2008-09-03 Behr GmbH & Co. KG Procédé de fabrication d'une structure de connection de tubes plats pour échangeur de chaleur
EP1321734A1 (fr) * 2001-10-02 2003-06-25 Behr GmbH & Co. KG Echangeur de chaleur à tubes plats et procédé de fabrication
AU2002360056A1 (en) 2001-12-21 2003-07-09 Behr Gmbh And Co. Heat exchanger, particularly for a motor vehicle
JP3960233B2 (ja) * 2002-04-03 2007-08-15 株式会社デンソー 熱交換器
DE102005044291A1 (de) * 2005-09-16 2007-03-29 Behr Industry Gmbh & Co. Kg Stapelscheiben-Wärmeübertrager, insbesondere Ladeluftkühler
KR100645734B1 (ko) * 2005-12-14 2006-11-15 주식회사 경동나비엔 난방/온수 겸용 콘덴싱 보일러의 열교환기
JP5351386B2 (ja) * 2006-05-17 2013-11-27 カルソニックカンセイ株式会社 熱交換器の配管コネクタ
US8371366B2 (en) * 2006-10-03 2013-02-12 Showa Denko K.K. Heat exchanger
CN101558277B (zh) * 2006-10-13 2012-11-28 开利公司 具有带分配插件的返回歧管的多通路热交换器
US8191615B2 (en) * 2006-11-24 2012-06-05 Dana Canada Corporation Linked heat exchangers having three fluids
DE102007024630A1 (de) * 2007-05-24 2008-11-27 Behr Gmbh & Co. Kg Wärmetauscher, insbesondere Ladeluftkühler oder Abgaskühler für eine Brennkraftmaschine eines Kraftfahrzeuges und dessen Herstellungsverfahren
JP5114771B2 (ja) * 2007-05-29 2013-01-09 株式会社ケーヒン・サーマル・テクノロジー 熱交換器
EP2014892B1 (fr) * 2007-07-11 2010-08-25 João de Deus & Filhos, S.A. Agencement d'échangeur de chaleur
WO2009013802A1 (fr) * 2007-07-23 2009-01-29 Tokyo Roki Co. Ltd. Échangeur de chaleur de type stratifié de plaques
JP5046771B2 (ja) * 2007-07-27 2012-10-10 三菱重工業株式会社 冷媒蒸発器
GB0715979D0 (en) * 2007-08-15 2007-09-26 Rolls Royce Plc Heat exchanger
US8353330B2 (en) * 2007-11-02 2013-01-15 Halla Climate Control Corp. Heat exchanger
US8210246B2 (en) * 2008-03-11 2012-07-03 Delphi Technologies, Inc. High performance three-fluid vehicle heater
US8322407B2 (en) * 2008-04-29 2012-12-04 Honda Motor Co., Ltd. Heat exchanger with pressure reduction
JP4645681B2 (ja) * 2008-05-19 2011-03-09 株式会社デンソー 蒸発器ユニット
JP5142109B2 (ja) * 2008-09-29 2013-02-13 株式会社ケーヒン・サーマル・テクノロジー エバポレータ
US8408284B2 (en) * 2011-05-05 2013-04-02 Delphi Technologies, Inc. Heat exchanger assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014117256B4 (de) 2014-11-25 2021-11-18 Denso Automotive Deutschland Gmbh Wärmetauscher für eine Klimaanlage eines Fahrzeugs
DE102014117256B8 (de) 2014-11-25 2022-01-05 Denso Automotive Deutschland Gmbh Wärmetauscher für eine Klimaanlage eines Fahrzeugs

Also Published As

Publication number Publication date
WO2003054466A1 (fr) 2003-07-03
JP2005513402A (ja) 2005-05-12
US7481266B2 (en) 2009-01-27
MXPA04006151A (es) 2004-11-01
EP2026028A2 (fr) 2009-02-18
JP4121085B2 (ja) 2008-07-16
JP4473321B2 (ja) 2010-06-02
BR0215235A (pt) 2004-11-16
AU2002358769A1 (en) 2003-07-09
DE50212972D1 (de) 2008-12-11
CA2471164C (fr) 2009-10-06
WO2003054465A1 (fr) 2003-07-03
KR20040063952A (ko) 2004-07-14
CN1620590A (zh) 2005-05-25
JP2008180503A (ja) 2008-08-07
ATE461407T1 (de) 2010-04-15
BR0215231A (pt) 2004-11-16
DE10260029A1 (de) 2004-02-05
JP2005513403A (ja) 2005-05-12
CN100368752C (zh) 2008-02-13
CN100342196C (zh) 2007-10-10
DE50214246D1 (de) 2010-04-08
US8590607B2 (en) 2013-11-26
EP2026028A3 (fr) 2012-06-20
EP1459025A1 (fr) 2004-09-22
US7650935B2 (en) 2010-01-26
AU2002363887A1 (en) 2003-07-09
WO2003054467A1 (fr) 2003-07-03
EP2026028B1 (fr) 2018-07-18
JP4331611B2 (ja) 2009-09-16
ES2316640T3 (es) 2009-04-16
DE10260107A1 (de) 2003-10-02
CN1620589A (zh) 2005-05-25
EP1459027B1 (fr) 2008-10-29
EP1459026A1 (fr) 2004-09-22
US20050103486A1 (en) 2005-05-19
AU2002360056A1 (en) 2003-07-09
EP1459025B1 (fr) 2010-03-17
US20050039901A1 (en) 2005-02-24
BRPI0215085A2 (pt) 2016-06-28
US20050006073A1 (en) 2005-01-13
JP2005513401A (ja) 2005-05-12
ATE412863T1 (de) 2008-11-15
CA2471164A1 (fr) 2003-07-03
US7318470B2 (en) 2008-01-15
US20090126920A1 (en) 2009-05-21
KR100925910B1 (ko) 2009-11-09
ATE458975T1 (de) 2010-03-15
EP1459027A1 (fr) 2004-09-22
DE10260030A1 (de) 2003-07-03
DE50214296D1 (de) 2010-04-29

Similar Documents

Publication Publication Date Title
EP1459026B1 (fr) Echangeur thermique notamment destine a un vehicule
DE102005015799B4 (de) Kältemittelverdampfer
EP2150757B1 (fr) Échangeur de chaleur
EP1682840B1 (fr) Echangeur de chaleur, en particulier pour vehicules automobiles
EP2232183B1 (fr) Échangeur de chaleur, en particulier radiateur pour des véhicules automobiles
DE10049256A1 (de) Serpentinen-Wärmeübertrager
EP2135025B1 (fr) Échangeur de chaleur pour la vaporisation d'une partie liquide d'un milieu, pourvu d'une dérivation pour une partie à l'état de vapeur du milieu
WO1998050750A1 (fr) Echangeur de chaleur a tubes aplatis avec deux flux ou davantage et un fond de deviation pour vehicules a moteur, ainsi que son procede de fabrication
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
EP1411310B1 (fr) Echangeur de chaleur à structure en serpentin
DE102005059920B4 (de) Wärmetauscher, insbesondere Verdampfer
DE102006032570A1 (de) Einheit, aufweisend einen Gaskühler und einen inneren Wärmetauscher, und Wärmetauscher
EP1563239B1 (fr) Echangeur de chaleur
EP2994712B1 (fr) Échangeur de chaleur
EP3009780B2 (fr) Fluide caloporteur
EP1656532A1 (fr) Dispositif d'echange thermique
DE102006004983A1 (de) Wärmetauscher, insbesondere Verdampfer einer Kraftfahrzeug-Klimaanlage
DE102020213172A1 (de) Stapelscheibe für einen Stapelscheibenwärmeübertrager und zugehöriger Stapelscheibenwärmeübertrager
EP2053333A2 (fr) Caloporteur interne pour un circuit de refroidissement
DE3310237A1 (de) Waermetauscher fuer eine waermepumpe oder kaeltemaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEHR GMBH & CO. KG

17Q First examination report despatched

Effective date: 20060427

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50214246

Country of ref document: DE

Date of ref document: 20100408

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100224

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100525

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100524

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

26N No opposition filed

Effective date: 20101125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101224

Year of fee payment: 9

BERE Be: lapsed

Owner name: BEHR G.M.B.H. & CO. KG

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120102

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101219

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 458975

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101219

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111219

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50214246

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50214246

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20150227

Ref country code: DE

Ref legal event code: R081

Ref document number: 50214246

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20150227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190109

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214246

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701