JP6717256B2 - 冷媒蒸発器およびその製造方法 - Google Patents

冷媒蒸発器およびその製造方法 Download PDF

Info

Publication number
JP6717256B2
JP6717256B2 JP2017094153A JP2017094153A JP6717256B2 JP 6717256 B2 JP6717256 B2 JP 6717256B2 JP 2017094153 A JP2017094153 A JP 2017094153A JP 2017094153 A JP2017094153 A JP 2017094153A JP 6717256 B2 JP6717256 B2 JP 6717256B2
Authority
JP
Japan
Prior art keywords
tube
refrigerant
plate
flow
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017094153A
Other languages
English (en)
Other versions
JP2018189337A5 (ja
JP2018189337A (ja
Inventor
鉄男 小佐々
鉄男 小佐々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017094153A priority Critical patent/JP6717256B2/ja
Priority to DE112018002406.7T priority patent/DE112018002406T5/de
Priority to PCT/JP2018/015659 priority patent/WO2018207556A1/ja
Priority to CN201880031072.9A priority patent/CN110651162B/zh
Publication of JP2018189337A publication Critical patent/JP2018189337A/ja
Publication of JP2018189337A5 publication Critical patent/JP2018189337A5/ja
Priority to US16/654,086 priority patent/US11346584B2/en
Application granted granted Critical
Publication of JP6717256B2 publication Critical patent/JP6717256B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • F25B39/024Evaporators with plate-like or laminated elements with elements constructed in the shape of a hollow panel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • F28F9/0217Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/224Longitudinal partitions

Description

本発明は、被冷却流体から吸熱して冷媒を蒸発させることで、被冷却流体を冷却する冷媒蒸発器およびその製造方法に関する。
従来、空調装置の冷凍サイクルに適用される冷媒蒸発器として、少なくとも2つの熱交換コア部と、一方の熱交換コア部からの冷媒を集合させるとともに他方の熱交換コア部に冷媒を分配する中間タンク部とを備えるものが種々提案されている。
このような冷媒蒸発器では、中間タンク部に、冷媒が流通する複数のチューブが挿入接合されているので、中間タンク部の内容積が大きくなる。このため、一方の熱交換コア部のチューブから中間タンク部に冷媒が流入する際に、冷媒流路断面積が急拡大する。また、中間タンク部から他方の熱交換コア部に冷媒が流出する際に、冷媒流路断面積が急縮小する。
したがって、特に夏季等の冷房熱負荷が高く冷媒流量が多い場合には、チューブから中間タンク部への冷媒流入部、および中間タンク部からチューブへの冷媒流出部において、圧力損失が増大する。これにより、空調装置の冷房性能が悪化するという問題があった。
また、中間タンク部内は、冷媒の流れ方向(中間タンク部の長手方向)においてほぼ同一の流路断面積であり、チューブから冷媒が集合する過程やチューブに冷媒を分配する過程で冷媒流速の変化を伴う。このため、中間タンク部内における長手方向の位置によって内壁面に加わる静圧が変化し、各チューブの入口と出口に加わる圧力および圧力差に差が生じる。このため、冷媒分配が悪化するという問題があった。
これに対し、特許文献1には、2つの熱交換コア部を送風空気流れ方向に対して直列に配置するとともに、送風空気の流れ方向から見たときに重合配置される2つの熱交換器コア部のチューブ同士を中間流路にて接続した冷媒蒸発器が開示されている。
この特許文献1において、中間流路は、第1プレート材、第2プレート材および第3プレート材の3枚のプレート材を重ね合わせることにより構成されている。具体的には、第1プレート材には、チューブの端部が挿入されるチューブ挿入穴が形成されている。第2プレート材には、チューブ挿入穴と連通する貫通孔が形成されている。第3プレート材は、貫通穴が設けられていない平板状に形成されている。そして、これら3枚のプレート材を重ね合わせると、第2プレート材の貫通孔により、中間流路が形成される。
このように、特許文献1の冷媒蒸発器では、第1熱交換コア部と第2熱交換コア部とを、送風空気の流れ方向からみたときに重合配置される一対のチューブ毎に接続することができる。このため、複数のチューブに対して冷媒の集合および分配を行う中間タンク部を廃止できるので、圧力損失の増大や冷媒分配の悪化等の問題を抑制できる。
特表2005−513403号公報
しかしながら、上記特許文献1に記載の冷媒蒸発器では、中間タンク部を3枚のプレート材により構成しているため、部品点数が増加するという問題がある。
本発明は上記点に鑑みて、少なくとも2つのコア部を備える冷媒蒸発器において、部品点数の増加を抑制しつつ、2つのコア部の接続部における圧力損失の増大を抑制するとともに、接続部の下流側のチューブへの冷媒分配の悪化を抑制することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器において、被冷却流体の流れ方向に対して直列に配置された第1蒸発部(10)および第2蒸発部(20)を備え、第1蒸発部は、冷媒が流れる複数の第1チューブ(15)を積層して構成された第1コア部(11)を有しており、第2蒸発部は、冷媒が流れる複数の第2チューブ(25)を積層して構成された第2コア部(21)を有しており、第1チューブおよび第2チューブは、被冷却流体の流れ方向から見たときに、互いに重合するように配置されており、第1チューブ、および、当該第1チューブに対して被冷却流体の流れ方向から見たときに重合配置される第2チューブを、一対のチューブ(15、25)とし、第1チューブおよび第2チューブそれぞれの長手方向を、チューブ長手方向としたとき、一対のチューブにおけるチューブ長手方向の一端側には、一対のチューブ同士を連通させる中間流路(40)が設けられており、第1コア部および第2コア部におけるチューブ長手方向の一端側には、板状に形成されるとともに、第1チューブおよび第2チューブそれぞれのチューブ長手方向の一端部が接合される第1プレート(51)と、板状に形成されるとともに、第1プレートに接合される第2プレート(52)とが設けられており、第2プレートには、第1コア部および第2コア部と反対側に向かって突出するとともに、被冷却流体の流れ方向に延びる複数のリブ(523)が形成されており、第2プレートにおけるリブの内側面、および、第1プレートにおけるリブと対向する面により、中間流路が構成されており、中間流路は、第1チューブから流出した冷媒を第2チューブに流入させるように構成されており、第1チューブ内の冷媒流路は、複数の細流路(150)に分割されており、複数の細流路は、被冷却流体の流れ方向に並んで配置されており、複数の細流路は、第2チューブから遠い順である、第1細流路〜第n細流路(nは自然数)で構成されており、第n細流路の流路断面積をS とし、中間流路における第n細流路から流出直後の冷媒が流通する部位の流路断面積をM としたとき、中間流路は、下記の式(1)の関係を満たすように構成されている。
Figure 0006717256
但し、式(1)において、kはn以下の自然数である。
これによれば、一対のチューブ(15、25)におけるチューブ長手方向の一端側に、一対のチューブ(15、25)同士を連通させる中間流路(40)を設けることで、第1コア部(11)の第1チューブ(15)と第2コア部(21)の第2チューブ(25)とを1本ずつ中間流路(40)により接続することができる。このため、複数のチューブ(15、25)に対して冷媒の分配または集合を行う、内容積の大きい中間タンク部を廃止することができる。そして、第1チューブ(15)と第2チューブ(25)との接続部である中間流路(40)において、冷媒流路の急拡大や急縮小を抑制し、チューブ(15、25)および中間流路(40)間の冷媒流速の差を小さくすることができる。これにより、中間流路(40)において圧力損失が増大すること、および、複数の第2チューブ(25)への冷媒分配が悪化することを抑制できる。このとき、中間流路(40)を第1プレート(51)および第2プレート(52)の2枚により構成しているので、部品点数の増加を抑制できる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態に係る冷媒蒸発器を示す斜視図である。 図1の分解斜視図である。 第1実施形態における第1コア部および第2コア部の要部を示す拡大斜視図である。 第1実施形態における中間タンク部近傍を示す拡大斜視図である。 第1実施形態における第1プレートを示す拡大斜視図である。 第1実施形態における第2プレートを示す拡大斜視図である。 第1実施形態における中間タンク部近傍を示す拡大断面図である。 図7のVIII−VIII断面図である。 第1実施形態における第1プレートの製造方法を示す説明図である。 第1実施形態における第2プレートの製造方法を示す説明図である。 第2実施形態に係る冷媒蒸発器の要部を示す拡大斜視図である。 第2実施形態における中間タンク部近傍を示す拡大断面図である。 第3実施形態に係る冷媒蒸発器の要部を示す拡大正面図である。 冷媒蒸発器における送風空気の風速分布と中間流路の流路断面積との関係を示す特性図である。 第4実施形態に係る冷媒蒸発器を示す分解斜視図である。 第5実施形態に係る冷媒蒸発器を示す分解斜視図である。 第5実施形態における第1プレートを示す拡大斜視図である。 第5実施形態における第2プレートを示す拡大斜視図である。 第5実施形態における第2プレートの排水孔近傍を示す拡大斜視図である。 第6実施形態における中間タンク部近傍を示す拡大断面図である。 第6実施形態における中間タンク部に凝縮水が付着した状態を示す説明図である。 他の実施形態(2)における中間タンク部近傍を示す拡大断面図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
本発明の第1実施形態について図1〜図10を用いて説明する。本実施形態に係る冷媒蒸発器は、車室内の温度を調整する車両用空調装置の蒸気圧縮式の冷凍サイクルに適用され、車室内へ送風する送風空気から吸熱して冷媒(液相冷媒)を蒸発させることで、送風空気を冷却する冷却用熱交換器である。
なお、本実施形態では、送風空気が特許請求の範囲における「外部を流れる被冷却流体」に相当する。また、図1および図2では、後述するフィン30の図示を省略している。
冷凍サイクルは、周知の如く、冷媒蒸発器1以外に、図示しない圧縮機、放熱器(凝縮器)、膨張弁等を備えおり、本実施形態では、放熱器と膨張弁との間に受液器を配置するレシーバサイクルとして構成されている。また、冷凍サイクルの冷媒には、圧縮機を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
図1および図2に示すように、本実施形態の冷媒蒸発器1は、送風空気の流れ方向(被冷却流体の流れ方向)Xに対して直列に配置された第1蒸発部10および第2蒸発部20を備えて構成されている。本実施形態では、第1蒸発部10は、第2蒸発部20に対して、送風空気の流れ方向Xの下流側(風下側)に配置されている。
第1蒸発部10および第2蒸発部20の基本的構成は同一であり、それぞれ熱交換コア部11、21と、熱交換コア部11、21の上側に配置されたタンク部12、22を有して構成されている。
以下、本実施形態では、第1蒸発部10における熱交換コア部を第1コア部11と称し、第2蒸発部20における熱交換コア部を第2コア部21と称する。また、第1蒸発部10におけるタンク部を第1タンク部12と称し、第2蒸発部20におけるタンク部を第2タンク部22と称する。
第1コア部11および第2コア部21それぞれは、上下方向に延びる複数のチューブ15、25と、隣り合うチューブ15、25の間に接合されるフィン30(図3参照)とが交互に積層配置された積層体で構成されている。
以下、複数のチューブ15、25および複数のフィン30の積層体における積層方向を、チューブ積層方向と称する。また、第1コア部11におけるチューブを第1チューブ15と称し、第2コア部21におけるチューブを第2チューブ25と称する。また、第1チューブ15および第2チューブ25それぞれの長手方向を、チューブ長手方向と称する。
第1チューブ15および第2チューブ25は、それぞれ、内部に冷媒が流れる冷媒通路が形成されている。第1チューブ15および第2チューブ25は、それぞれ、断面形状が送風空気の流れ方向Xに沿って延びる扁平形状となる扁平チューブで構成されている。
第1チューブ15および第2チューブ25は、送風空気の流れ方向Xから見たときに、互いに重合するように配置されている。以下、第1チューブ15、および、当該第1チューブ15に対して送風空気の流れ方向Xから見たときに重合配置される第2チューブ25を、一対のチューブ15、25と称する。冷媒蒸発器1は、複数組の一対のチューブ15、25を有している。
一対のチューブ15、25におけるチューブ長手方向の一端側には、一対のチューブ15、25同士を連通させる中間流路40が設けられている。本実施形態では、中間流路40は、一対のチューブ15、25の下端側に配置されている。このため、第1コア部11および第2コア部21の下方側には、複数の中間流路40が設けられている。複数の中間流路40は、チューブ積層方向に並んで配置されている。なお、この中間流路40の詳細については後述する。
第1チューブ15は、チューブ長手方向の他端側(上端側)が第1タンク部12に接続されている。また、第2チューブ25は、チューブ長手方向の他端側(上端側)が第2タンク部22に接続されている。
図3に示すように、フィン30は、薄板材を波形状に折り曲げて成形したコルゲートフィンである。フィン30は、チューブ15、25における平坦な外面側に接合され、送風空気と冷媒との伝熱面積を拡大させるための熱交換促進手段として機能する。本実施形態では、フィン30は、一対のチューブ15、25の双方に接合されている。
図1および図2に戻り、チューブ15、25およびフィン30の積層体には、チューブ積層方向の両端部に、各コア部11、12を補強するサイドプレート113、213がそれぞれ配置されている。なお、サイドプレート113、213は、チューブ積層方向の最も外側に配置されたフィン30に接合されている。
第1タンク部12は、チューブ積層方向一端側が閉塞されると共に、チューブ積層方向他端側に冷媒導入部12aが形成された筒状の部材で構成されている。冷媒導入部12aは、第1タンク部12のタンク内部に膨張弁(図示略)にて減圧された低圧冷媒を導入するものである。本実施形態では、第1タンク部12は、送風空気流れ上流側から見たときの左側端部が閉塞されると共に、送風空気流れ上流側から見たときの右側端部に冷媒導入部12aが形成されている。
第1タンク部12は、底部に各第1チューブ15のチューブ長手方向他端側(上端側)が挿入接合される貫通穴(図示略)が形成されている。第1タンク部12は、その内部空間が第1コア部11の各第1チューブ15に連通するように構成されている。第1タンク部12は、第1コア部11へ冷媒を分配する冷媒分配部として機能する。
第2タンク部22は、チューブ積層方向一端側が閉塞されると共に、チューブ積層方向他端側に冷媒導出部22aが形成された筒状の部材で構成されている。冷媒導出部22aは、第2タンク部22のタンク内部から圧縮機(図示略)の吸入側に冷媒を導出するものである。本実施形態では、第2タンク部22は、送風空気流れ上流側から見たときの左側端部が閉塞されると共に、送風空気流れ上流側から見たときの右側端部に冷媒導出部22aが形成されている。
第2タンク部22は、底部に各第2チューブ25のチューブ長手方向他端側(上端側)が挿入接合される貫通穴(図示略)が形成されている。第2タンク部22は、その内部空間が第2コア部21の各第2チューブ25に連通するように構成されている。第2タンク部22は、第2コア部21からの冷媒を集合させる冷媒集合部として機能する。
図4に示すように、第1コア部11および第2コア部21のチューブ長手方向一端側(下端側)には、複数の中間流路40を形成する流路形成部材である中間タンク部50が設けられている。中間タンク部50は、第1プレート51および第2プレート52を組み合わせることにより形成されている。
図5に示すように、第1プレート51は、略長方形の板状に形成されている。第1プレート51には、第1チューブ15および第2チューブ25それぞれのチューブ長手方向の一端部(下端部)が接合されている。具体的には、第1プレート51には、第1チューブ15におけるチューブ長手方向の一端部が挿入される第1挿入穴511と、第2チューブ25におけるチューブ長手方向の一端部が挿入される第2挿入穴512とが形成されている。第1挿入穴511および第2挿入穴512は、それぞれ、第1プレート51にバーリング加工を施すことにより形成されている。
図6に示すように、第2プレート52は、チューブ積層方向から見た断面がコの字状に形成されている。具体的には、第2プレート52は、平面部521と、2つの側面部522を有して構成されている。平面部521は、略長方形の板状に形成されるとともに、チューブ長手方向に直行する方向に伸びている。側面部522は、平面部521における送風空気の流れ方向Xの両端部のそれぞれから、コア部11、21と反対側に向かって延びている。平面部521および2つの側面部522は、一体に形成されている。
平面部521には、第1コア部11および第2コア部21と反対側に向かって突出するとともに、送風空気の流れ方向Xに延びる複数のリブ523が複数形成されている。このリブ523により、平面部521における第1プレート51側の面には、第1プレート51と反対側に向かって凹んだ凹部524が形成されている。各凹部524は、一対のチューブ15、25が挿入される第1挿入穴511および第2挿入穴512と連通している。
平面部521におけるリブ523以外の面は、第1プレート51に接合されている。そして、図7に示すように、第2プレート52の凹部524、および、第1プレート51におけるリブ523と対向する面により、中間流路40が構成されている。換言すると、第2プレート52におけるリブ523の内側面、および、第1プレート51におけるリブ523と対向する面により、中間流路40が構成されている。
図8に示すように、リブ523は、送風空気の流れ方向Xから見た断面が略U字状に構成されている。より詳細には、リブ523は、送風空気の流れ方向Xの全域にわたって、送風空気の流れ方向Xから見た断面が略U字状に構成されている。
本実施形態では、中間流路40は、チューブ積層方向の長さが一定となるように構成されている。このため、中間流路40の流路断面積は、中間流路40のチューブ長手方向の長さに基づいて決定される。
図7に戻り、中間流路40は、上流部41、中流部42、下流部43を有して構成されている。上流部41、中流部42および下流部43は、冷媒流れ上流側からこの順に配置されている。また、中流部42の流路断面積は、上流部41の流路断面積および下流部43の流路断面積の双方に対して大きい。
上流部41は、冷媒流れ下流側に向かって流路断面積が徐々に拡大するように構成されている。本実施形態では、上流部41は、冷媒流れ下流側に向かって流路断面積が直線的に拡大するように構成されている。具体的には、上流部41は、冷媒流れ下流側に向かって、チューブ長手方向の長さが徐々に長くなっている。
上流部41は、第1チューブ15のチューブ長手方向一端側(下端側)に配置されている。上流部41は、第1チューブ15と連通している。このため、上流部41には、第1チューブ15から流出した冷媒が流入する。
中流部42は、冷媒流れ下流側に向かって流路断面積が一定となるように構成されている。中流部42は、第1チューブ15および第2チューブ25間の隙間60に対応する位置に配置されている。中流部42は、上流部41に接続されている。このため、中流部42には、上流部41から流出した冷媒が流入する。
下流部43は、冷媒流れ下流側に向かって流路断面積が徐々に縮小するように構成されている。本実施形態では、下流部43は、冷媒流れ下流側に向かって流路断面積が直線的に縮小するように構成されている。具体的には、下流部43は、冷媒流れ下流側に向かって、チューブ長手方向の長さが徐々に短くなっている。下流部43は、第2チューブ25のチューブ長手方向一端側(下端側)に配置されている。
下流部43の冷媒流れ上流側は、中流部42に接続されている。このため、下流部43には、中流部42から流出した冷媒が流入する。また、下流部43の冷媒流れ下流側は、第2チューブ25と連通している。このため、下流部43を流れた冷媒は、第2チューブ25に流入する。
ところで、第1チューブ15は、第1チューブ15内の冷媒流路を送風空気の流れ方向Xに複数の細流路150に仕切る第1仕切部材151を有している。同様に、第2チューブ25は、第2チューブ25内の冷媒流路を送風空気の流れ方向Xに複数の細流路250に仕切る第2仕切部材251を有している。複数の細流路150、250は、送風空気の流れ方向Xに並んで配置されている。
中間流路40の中流部42の流路断面積は、第1チューブ15または第2チューブ25の流路断面積の0.3倍〜3.0倍に設定されている。換言すると、中間流路40の中流部42の流路断面積は、第1チューブ15における全ての細流路150の流路断面積の合計、または、第2チューブ25における全ての細流路250の流路断面積の合計の0.3倍〜3.0倍に設定されている。
ここで、中間流路40のうち、送風空気の流れ方向Xの最上流側の部位を最上流部44という。また、中間流路40のうち、送風空気の流れ方向Xの最下流側の部位を最下流部45という。
最上流部44および最下流部45は、中間流路40のうち流路断面積が最も小さくなるように構成されている。具体的には、最上流部44および最下流部45の流路断面積は、それぞれ、1本の細流路150、250の流路断面積の0.3倍〜3.0倍に設定されている。
ところで、第1チューブ15における複数の細流路150は、第2チューブ25から遠い順である、第1細流路1501〜第n細流路150n(nは自然数)で構成されている。以下、中間流路40における第n細流路150nから流出直後の冷媒が流通する部位を、第n流出部46nという。
本実施形態では、第1チューブ15における複数の細流路150は、第2チューブ25から遠い順である、第1細流路1501〜第7細流路1507で構成されている。このため、中間流路40には、第2チューブ25から遠い順に、第1流出部461〜第7流出部467が構成されている。
ここで、本実施形態の冷媒蒸発器の製造方法について説明する。
はじめに、冷媒蒸発器の各種構成部品、すなわち第1チューブ15、第2チューブ25、フィン30、第1タンク部12、第2タンク部22、第1プレート51および第2プレート52等を製造する。以下、中間タンク部50の第1プレート51および第2プレート52の製造方法について詳細に説明する。
まず、中間タンク部50の第1プレート51を、ロール成形により形成する。具体的には、図9に示すように、帯状の第1薄板710をロール材711として用意する。このロール材711に対して、第1ロール金型712によりロール成形を施すことにより、貫通穴である挿入穴511、512を複数形成する。そして、挿入穴511、512が形成された第1薄板710を、カッター713により、予め定めた基準第1長さに切断する。これにより、第1プレート51が形成される。
次に、中間タンク部50の第2プレート52を、ロール成形により形成する。具体的には、図10に示すように、帯状の第2薄板720をロール材721として用意する。このロール材721に対して、第2ロール金型722によりロール成形を施すことにより、リブ523を複数形成する。そして、リブ523が形成された第2薄板720を、カッター723により、予め定めた基準第2長さに切断する。これにより、第2プレート52が形成される。
続いて、上述のように形成された第1プレート51および第2プレート52に、複数の第1チューブ15および複数の第2チューブ25を仮固定する。さらに、このように仮固定された第1チューブ15および第2チューブ25に、フィン30、第1タンク部12および第2タンク部22を仮固定する。これにより、冷媒蒸発器の各種構成部品が仮固定された仮組み付け体が完成する。
続いて、この仮組み付け体を加熱炉内で加熱し、ろう付けする。これにより、冷媒蒸発器の各種構成部品がろう付けにより接合され、冷媒蒸発器が完成する。
以上説明したように、本実施形態では、一対のチューブ15、25におけるチューブ長手方向の一端側に、一対のチューブ15、25同士を連通させる中間流路40を設けている。これによれば、第1コア部11の第1チューブ15と第2コア部21の第2チューブ25とを1本ずつ中間流路40により接続することができる。
このため、複数のチューブ15、25に対して冷媒の分配または集合を行う、内容積の大きい中間タンク部を廃止することができる。そして、第1チューブ15と第2チューブ25との接続部である中間流路40において、冷媒流路の急拡大や急縮小を抑制し、チューブ15、25および中間流路40間の冷媒流速の差を小さくすることができる。これにより、中間流路40において圧力損失が増大すること、および、複数の第2チューブ25への冷媒分配が悪化することを抑制できる。
このように、圧力損失の低減および冷媒分配の均一化を図ることで、冷媒蒸発器の熱交換効率を高効率化し、車両用空調装置の冷房能力を向上させることができる。そして、冷房能力が同一の場合、圧縮機の消費動力の低減、並びに、冷媒蒸発器の小型化および軽量化を図ることができる。
ここで、図7に示すように、第1チューブ15の第n細流路150nの流路断面積をSとする。また、中間流路40における第n流出部46nの流路断面積をMとする。このとき、本実施形態の中間流路40は、下記の式(1)の関係を満たすように構成されている。
Figure 0006717256
但し、式(1)において、kはn以下の自然数である。
具体的には、本実施形態の中間流路40は、0.3S<M<3.0S、かつ0.3(S+S)<M<3.0(S+S)、かつ…かつ0.3(S+S+…+S)<M<3.0(S+S+…+S)の関係を満たすように構成されている。
これによれば、第1チューブ15の各細流路150から中間流路40に冷媒が流出する際に冷媒流路面積が急拡大することを抑制できるので、圧力損失を低減できる。
さらに、中間流路40は、下記の式(2)の関係を満たすように構成されていることが望ましい。
Figure 0006717256
但し、式(2)において、kはn以下の自然数である。
具体的には、本実施形態の中間流路40は、0.5S<M<2.0S、かつ0.5(S+S)<M<2.0(S+S)、かつ…かつ0.5(S+S+…+S)<M<2.0(S+S+…+S)の関係を満たすように構成されていることが望ましい。
これによれば、第1チューブ15の各細流路150から中間流路40に冷媒が流出する際に冷媒流路面積が急拡大することをより抑制できるので、圧力損失をより低減できる。
ここで、複数のチューブ15、25に対して冷媒の分配または集合を行う、内容積の大きい中間タンク部を備える従来の冷媒蒸発器を、比較例1の冷媒蒸発器という。
比較例1の冷媒蒸発器では、中間期や冬季等の冷房熱負荷が低く冷媒流量が少ない場合、かつ、中間タンク部を熱交換コア部の下方側に配置した場合には、中間タンク部内の内容積が大きく冷媒流速低下が著しいことにより、冷媒中に混在する冷凍機油が中間タンク部内に停滞しやすい。また、冷房熱負荷が低いことにより、中間タンク部内に冷媒が液相状態で停滞しやすい。このため、冷凍サイクルが冷凍機油不足運転や冷媒不足運転となり、冷凍機故障や性能不足に至るおそれがある。
また、中間タンク部内に気液二相状態の冷媒が存在し、各チューブ15、25を流れる冷媒の気相と液相の割合が異なることにより、チューブ15、25の入口と出口との圧力差が異なり、冷媒流量に偏りが生じる。このため、冷媒分布が悪化するおそれがある。
さらに、中間タンク部内に液相冷媒が停滞すると、中間タンク部における第2チューブへ25の出口部まで冷媒の液面が到達する場合がある。このとき、第2チューブ25に対して冷媒が気液混在で流出すると、冷媒流出時に異音が発生するおそれがある。
これに対し、本実施形態では、第1コア部11の第1チューブ15と第2コア部21の第2チューブ25とを内容積の小さい中間流路40により接続している。このため、冷媒流量が少ない場合でも、中間流路40に流入した液相冷媒や冷凍機油は停滞することなく第2チューブ25へ流出する。これにより、冷凍サイクルの冷媒不足運転および冷凍機油不足運転を抑制できる。
その結果、冷凍サイクルの冷媒充填量や冷凍機油封入量を低減できる。また、中間タンク部の底部において液相冷媒や冷凍機油の滞留(淀み)が抑制されるため、冷媒通過音を低減できる。
また、本実施形態のように、第1コア部11の第1チューブ15と第2コア部21の第2チューブ25とを1本ずつ中間流路40により接続することで、冷媒蒸発器の取付角度(姿勢)が垂直から傾斜した場合でも、各第2チューブ25に流入する冷媒の分配量は変化せず均一を維持できる。このため、車両用空調装置の冷房能力を維持することができる。
ここで、中間流路40を、第1プレート材、第2プレート材および第3プレート材の3枚のプレート材を重ね合わせることにより構成した従来の冷媒蒸発器を、比較例2の冷媒蒸発器という。比較例2の冷媒蒸発器は、3枚のプレート材により中間流路40を構成しているので、部品点数が増加する。
また、比較例2の冷媒蒸発器では、中間流路を形成するための第2プレート材を、平板状の金属材にプレス打ち抜き加工を施すことにより形成している。したがって、中間流路の流路面積は第2プレート材の板厚に依存することとなる。しかしながら、一般に第2プレート材の板厚は薄いため、中間流路の流路面積を大きくできず、圧力損失が増加する。
また、第2プレート材の板厚を厚くして、中間流路の流路面積を大きくすることも考えられるが、第2プレート材の材料の必要量が多くなり、重量増加、加工性悪化および材料コスト増加等の問題が生じる。
さらに、複数のチューブおよび3枚のプレート材をろう付け接合する際には、3枚のプレート材それぞれの熱容量が大きく、接合される部材同士の熱容量や伝熱の仕方が大きく異なる。このため、ろう付け条件が厳しくなり、製造が困難となる。
これに対し、本実施形態では、中間流路40を第1プレート51および第2プレート52の2枚により構成している。このため、部品点数の増加を抑制できる。また、冷媒蒸発器を構成するために必要な材料使用量を削減できるので、軽量化を図るとともに、加工性の悪化を抑制できる。このため、材料コストおよび加工コストを低減できる。
また、中間タンク部50(第1プレート51および第2プレート52)を、熱容量が小さく偏りの少ない2枚の薄板710、720で構成することで、第1プレート51および第2プレート52をろう付けにより接合することができる。このため、中間タンク部50において、信頼性の高い気密封止をろう付けという容易な方法で行うことができる。
また、第1プレート51および第2プレート52をそれぞれロール成形にて構成することで、ロール金型712、722を使用した連続加工が可能となる。このため、中間タンク部50の生産速度を上昇させることができるので、同一時間において冷媒蒸発器を大量に生産することができる。
また、第1プレート51および第2プレート52をそれぞれロール成形にて構成することで、冷媒蒸発器に要求される冷房能力が変化した場合に、薄板710、720を、冷房能力に応じたプレート長さに切断するという簡易な方法で対応することができる。このため、設計工数や製造段取り工数を簡素化できる。
また、第2プレート52を、チューブ積層方向から見た断面がコの字状となるように形成することで、リブ効果により第2プレート52の剛性を向上させることができる。このため、第2プレート52の薄肉化を図ることができるので、冷媒蒸発器の軽量化を図ることが可能となる。
(第2実施形態)
次に、本発明の第2実施形態について図11および図12に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、チューブ15、25の形状等が異なるものである。
図11および図12に示すように、本実施形態では、第1チューブ15の流路断面積が、第2チューブ25の流路断面積より小さい。具体的には、第1チューブ15における送風空気の流れ方向Xの長さが、第2チューブ25における送風空気の流れ方向Xの長さよりも短い。また、第1チューブ15内の細流路150の数が、第2チューブ25内の細流路250の数よりも少ない。
本実施形態によれば、第1チューブ15および第2チューブ25のうち、液相冷媒がより流れる第1チューブ15の流路断面積を小さくし、気相冷媒がより流れる第2チューブ25の流路断面積を大きくすることができる。このため、チューブ15、25内の冷媒流速の最大化および冷媒圧力損失量の最小化を図ることができるので、車両用空調装置の冷房性能を向上させることが可能となる。
(第3実施形態)
次に、本発明の第3実施形態について図13および図14に基づいて説明する。本第3実施形態は、上記第1実施形態と比較して、中間タンク部50の形状等が異なるものである。
図13に示すように、本実施形態では、チューブ積層方向に並んでいる複数の中間流路40、すなわちリブ523の形状が互いに異なっている。具体的には、送風空気の流れ方向Xから見たときに、複数の中間流路40(リブ523)は、チューブ長手方向の長さが互いに異なっている。これにより、複数の中間流路40の流路面積が互いに異なっている。
具体的には、本実施形態の中間タンク部50では、空気側熱負荷が大きい部分ほど、中間流路40の流路面積が大きい。より詳細には、図14に示すように、中間タンク部50では、送風空気の風速が速い部分ほど、中間流路40の流路面積が大きい。すなわち、送風空気の風速が速い部分ほど、中間流路40(リブ523)におけるチューブ長手方向の長さが長い。なお、複数の中間流路40(リブ523)におけるチューブ積層方向の長さは、等しくなっている。
本実施形態によれば、空気側熱負荷が大きい部分における中間流路40の流路面積を大きくし、空気側熱負荷が小さい部分における中間流路40の流路面積を小さくすることができる。このため、中間流路40から各第2チューブ25の最下流側に流出する気相冷媒の過熱度を均一化することができるので、冷媒蒸発器全域で冷媒が蒸発領域となる。その結果、圧縮機へ液相冷媒が流入すること(液バック)や、過大な過熱度の気相冷媒が圧縮機へ流入することを抑制できる。このため、車両用空調装置の冷房性能を向上することができるとともに、圧縮機の消費動力を低減できる。
(第4実施形態)
次に、本発明の第4実施形態について図15に基づいて説明する。本第4実施形態は、上記第1実施形態と比較して、第1タンク部12の形状等が異なるものである。なお、図15では、フィン30の図示を省略している。
図15に示すように、本実施形態の第1タンク部12は、チューブ積層方向一端側(図15の紙面右側)に、冷媒導出部12bが形成されている。冷媒導出部12bは、第1タンク部12のタンク内部から圧縮機(図示略)の吸入側に冷媒を導出するものである。
第1タンク部12の内部には、第1タンク部12のタンク内空間をチューブ積層方向に2つに仕切る仕切部材120が設けられている。この仕切部材120により、第1タンク部12のタンク内空間は、第1空間121と第2空間122とに仕切られている。本実施形態では、仕切部材120は、第1タンク部12におけるチューブ積層方向の中央部よりも冷媒導入部12aに近い側に配置されている。
第1空間121は、冷媒導入部12aと連通している。冷媒導入部12aは、第1空間121に外部から冷媒を流入させる流入部を構成している。
第2空間122は、冷媒導出部12bと連通している。冷媒導出部12bは、第2空間122から外部へ冷媒を流出させる流出部を構成している。
以下、第1コア部11を構成する第1チューブ15のうち、第1空間121と連通する第1チューブ15を第1流入側チューブ15aといい、第2空間122と連通する第1チューブ15を第1流出側チューブ15bという。
また、第2コア部21を構成する第2チューブ25のうち、第1流入側チューブ15aと対向する第2チューブ25、すなわち第1流入側チューブ15aの送風空気流れ上流側に配置される第2チューブ25を、第2流入側チューブ25aという。第2コア部21を構成する第2チューブ25のうち、第2流出側チューブ15bと対向する第2チューブ25、すなわち第2流出側チューブ15bの送風空気流れ上流側に配置される第2チューブ25を、第2流出側チューブ25bという。
次に、本実施形態に係る冷媒蒸発器における冷媒の流れについて、図15を用いて説明する。
膨張弁にて減圧された低圧冷媒は、矢印aの如く、第1タンク部12のチューブ積層方向他端側に形成された冷媒導入部12aから、第1空間121に導入される。第1空間121に導入された冷媒は、矢印bの如く第1コア部11の第1流入側チューブ15aを下降する。
第1流入側チューブ15aを下降した冷媒は、矢印cの如く、中間タンク部50の中間流路40を送風空気流れ下流側から上流側に向かって流れ、第2コア部21の第2流入側チューブ25aに流入する。第2流入側チューブ25aに流入した冷媒は、矢印dの如く第2流入側チューブ25aを上昇し、第2タンク部22に流入する。
第2タンク部22に流入した冷媒は、矢印eの如く第2タンク部22をチューブ積層方向他端側から一端側(図15の紙面左側から右側)に向かって流れて、第2コア部21の第2流出側チューブ25bに流入する。第2流出側チューブ25bに流入した冷媒は、矢印fの如く第2流出側チューブ25bを下降し、中間タンク部50の中間流路40に流入する。
中間流路40に流入した冷媒は、矢印gの如く、中間流路40を送風空気流れ上流側から下流側に向かって流れ、第1コア部11の第1流出側チューブ15bに流入する。第1流出側チューブ15bに流入した冷媒は、矢印hの如く第1流出側チューブ15bを上昇して、第1タンク部12の第2空間122に流入する。第2空間122に流入した冷媒は、矢印iの如く、第1タンク部12のチューブ積層方向一端側に形成された冷媒導出部12bから圧縮機吸入側に導出される。
本実施形態によれば、第1タンク部12内に仕切部材120を設けることで、冷媒蒸発器において、冷媒流れ上流側で使用するチューブ15、25の本数を少なくし、冷媒流れ下流側で使用するチューブ15、25の本数を多くすることができる。これにより、チューブ15、25内の冷媒流速の最大化および冷媒圧力損失量の最小化を図ることができるので、車両用空調装置の冷房性能を向上させることが可能となる。
(第5実施形態)
次に、本発明の第5実施形態について図16〜図19に基づいて説明する。本第5実施形態は、上記第1実施形態と比較して、中間タンク部50からの排水性を向上させる構成を設けた点が異なるものである。なお、図16では、フィン30の図示を省略している。
図16に示すように、第1プレート51および第2プレート52における中間流路40を構成しない部位には、第1プレート51および第2プレート52の双方を貫通する貫通孔である排水孔513、514、525、526が設けられている。
すなわち、第1プレート51には、凝縮水を排出させるための排水孔513、514が形成されている。また、第2プレート52には、凝縮水を排出させる排水孔525、526が形成されている。第2プレート52の排水孔525、526は、第1プレート51の排水孔513、514と対応する部位に配置されている。
このため、コア部11、21で生じた凝縮水は、チューブ15、25またはフィン30を伝って下降し、排水孔513、514、525、526を介して冷媒蒸発器の下方側に排出される。
具体的には、図17に示すように、第1プレート51における隣り合う第1挿入穴511の間に、第1排水孔513が設けられている。また、第1プレート51における隣り合う第2挿入穴512の間に、第2排水孔514が設けられている。第1排水孔513および第2排水孔514は、第1プレート51の表裏を貫通する貫通孔である。
本実施形態では、第1排水孔513および第2排水孔514は、三角形状に形成されている。具体的には、第1排水孔513は、送風空気流れ下流側に底辺を有する二等辺三角形状に形成されている。第2排水孔514は、送風空気流れ上流側に底辺を有する二等辺三角形状に形成されている。
図18に示すように、第2プレート52における隣り合うリブ524の間に、第3排水孔525および第4排水孔526が設けられている。第3排水孔525および第4排水孔526は、送風空気の流れ方向Xに並んで配置されている。第3排水孔525は、第4排水孔526よりも送風空気流れ下流側に配置されている。第3排水孔525および第4排水孔526は、第2プレート52の表裏を貫通する貫通孔である。
第3排水孔525は、第1プレート51の第1排水孔513と対応する部位に配置されている。チューブ長手方向から見たときに、第3排水孔525は、第1排水孔513と同様の形状に形成されている。すなわち、第3排水孔523は、送風空気流れ下流側に底辺を有する二等辺三角形状に形成されている。
第4排水孔526は、第1プレート51の第2排水孔514と対応する部位に配置されている。チューブ長手方向から見たときに、第4排水孔526は、第2排水孔514と同様の形状に形成されている。すなわち、第4排水孔526は、送風空気流れ上流側に底辺を有する二等辺三角形状に形成されている。
図19に示すように、第3排水孔525の外周縁部には、下方側に向けて切り起こされた切り起こし部527が設けられている。この切り起こし部527は、第3排水孔525をロール成形により形成する際に切り起こされた部分である。本実施形態では、二等辺三角形状の第3排水孔525の2つの等辺に、切り起こし部527がそれぞれ接続されている。なお、図示を省略しているが、第4排水孔526の外周縁部にも、同様の切り起こし部527が設けられている。
本実施形態によれば、第1プレート51および第2プレート52に排水孔513、514、525、526を設けることで、コア部11、21で生じた凝縮水を、排水孔513、514、525、526を介して排出することができる。
このとき、第1プレート51および第2プレート52は、ローラ成形(圧延プレス加工)により生産されているので、微細加工を行うことが可能である。このため、本実施形態のように、第1プレート51および第2プレート52に対して、挿入穴511、512およびリブ523に加えて排水孔513、514、525、526を形成することが可能となる。
さらに、本実施形態では、第2プレート52の排水孔525、526の外周縁部に、切り起こし部527を設けている。これにより、排水孔525、526から滴下する水滴の水切れ性を向上させることができる。
(第6実施形態)
次に、本発明の第6実施形態について図20および図21に基づいて説明する。本第6実施形態は、上記第5実施形態と比較して、中間タンク部50の形状が異なるものである。
図20および図21に示すように、本実施形態の第1プレート51は、平坦面515および傾斜面516を有して構成されている。平坦面515は、チューブ長手方向に直行する、すなわち水平方向に延びる面である。平坦面515には、第2挿入穴512が形成されている。
傾斜面516は、送風空気流れ下流側に向かって徐々に下方に傾斜している。傾斜面516には、第1挿入穴511が形成されている。傾斜面516は、平坦面515の送風空気流れ下流側に接続されている。また、平坦面515および傾斜面516は、一体に形成されている。
本実施形態によれば、第1プレート51の送風空気流れ下流側に、送風空気流れ下流側に向かって徐々に下方に傾斜した傾斜面516を設けているので、凝縮水の排水性をより向上させることができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、例えば以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。
(1)上記実施形態では、中間タンク部50を、コア部11、21のチューブ長手方向一端側(下端側)に配置した例について説明したが、中間タンク部50の配置はこれに限定されない。例えば、中間タンク部50を、コア部11、21のチューブ長手方向他端側(上端側)に配置してもよい。
(2)上記実施形態では、リブ523を、送風空気の流れ方向Xから見た断面が略U字状に構成した例について説明したが、リブ523の形状はこれに限定されない。例えば、図22に示すように、リブ523を、送風空気の流れ方向Xから見た断面が略V字状に構成してもよい。
(3)上記実施形態では、フィン30を、一対のチューブ15、25の双方に接合した例について説明したが、フィン30の配置はこれに限定されない。例えば、チューブ積層方向に隣り合う第1チューブ15同士に接合されるフィン30と、チューブ積層方向に隣り合う第2チューブ25同士に接合されるフィン30とを別体として設けてもよい。
(4)上記第3実施形態では、中間タンク部50を、送風空気の風速分布に応じて中間流路40の流路面積が変化するように構成した例について説明したが、中間タンク部50の構成はこれに限定されない。
例えば、中間タンク部50を、送風空気の温度分布(湿度分布)に応じて中間流路40の流路面積が変化するように構成してもよい。具体的には、送風空気の温度(湿度)が高い部位ほど、中間流路40の流路面積を大きくしてもよい。
(5)上記第5、6実施形態では、第2プレート52の第3排水孔525および第4排水孔526の外周縁部に、切り起こし部527をそれぞれ設けた例について説明したが、第3排水孔525および第4排水孔526の構成はこれに限定されない。例えば、第3排水孔525および第4排水孔526の外周縁部に、切り起こし部527を設けなくてもよい。
10 第1蒸発部
11 第1コア部
15 第1チューブ
20 第2蒸発部
21 第2コア部
25 第2チューブ
40 中間流路
51 第1プレート
52 第2プレート
523 リブ

Claims (13)

  1. 外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器であって、
    前記被冷却流体の流れ方向に対して直列に配置された第1蒸発部(10)および第2蒸発部(20)を備え、
    前記第1蒸発部は、前記冷媒が流れる複数の第1チューブ(15)を積層して構成された第1コア部(11)を有しており、
    前記第2蒸発部は、前記冷媒が流れる複数の第2チューブ(25)を積層して構成された第2コア部(21)を有しており、
    前記第1チューブおよび前記第2チューブは、前記被冷却流体の流れ方向から見たときに、互いに重合するように配置されており、
    前記第1チューブ、および、当該第1チューブに対して前記被冷却流体の流れ方向から見たときに重合配置される前記第2チューブを、一対のチューブ(15、25)とし、
    前記第1チューブおよび前記第2チューブそれぞれの長手方向を、チューブ長手方向としたとき、
    前記一対のチューブにおける前記チューブ長手方向の一端側には、前記一対のチューブ同士を連通させる中間流路(40)が設けられており、
    前記第1コア部および前記第2コア部における前記チューブ長手方向の一端側には、
    板状に形成されるとともに、前記第1チューブおよび前記第2チューブそれぞれの前記チューブ長手方向の一端部が接合される第1プレート(51)と、
    板状に形成されるとともに、前記第1プレートに接合される第2プレート(52)とが設けられており、
    前記第2プレートには、前記第1コア部および前記第2コア部と反対側に向かって突出するとともに、前記被冷却流体の流れ方向に延びる複数のリブ(523)が形成されており、
    前記第2プレートにおける前記リブの内側面、および、前記第1プレートにおける前記リブと対向する面により、前記中間流路が構成されており、
    前記中間流路は、前記第1チューブから流出した前記冷媒を前記第2チューブに流入させるように構成されており、
    前記第1チューブ内の冷媒流路は、複数の細流路(150)に分割されており、
    前記複数の細流路は、前記被冷却流体の流れ方向に並んで配置されており、
    前記複数の細流路は、前記第2チューブから遠い順である、第1細流路〜第n細流路(nは自然数)で構成されており、
    前記第n細流路の流路断面積をS とし、
    前記中間流路における前記第n細流路から流出直後の冷媒が流通する部位の流路断面積をM としたとき、
    前記中間流路は、下記の式(1)の関係を満たすように構成されている冷媒蒸発器。
    Figure 0006717256
    但し、式(1)において、kはn以下の自然数である。
  2. 前記中間流路は、下記の式(2)の関係を満たすように構成されている請求項に記載の冷媒蒸発器。
    Figure 0006717256
    但し、式(2)において、kはn以下の自然数である。
  3. 前記第1蒸発部は、前記第2蒸発部に対して前記被冷却流体の流れ方向下流側に配置されており、
    前記中間流路は、前記第1チューブから流出した前記冷媒を前記第2チューブに流入させるように構成されており、
    前記第1チューブ内の冷媒流路および前記第2チューブ内の冷媒流路は、それぞれ、複数の細流路(150、250)に分割されており、
    前記細流路は、前記被冷却流体の流れ方向に並んで配置されており、
    前記中間流路のうち、前記被冷却流体の流れ方向最下流側の部位(44)における流路断面積は、前記細流路の流路断面積の0.3倍〜3.0倍に設定されている請求項1または2に記載の冷媒蒸発器。
  4. 前記第1蒸発部は、前記第2蒸発部に対して前記被冷却流体の流れ方向下流側に配置されており、
    前記中間流路は、前記第1チューブから流出した前記冷媒を前記第2チューブに流入させるように構成されており、
    前記第1チューブ内の冷媒流路および前記第2チューブ内の冷媒流路は、それぞれ、複数の細流路(150、250)に分割されており、
    前記細流路は、前記被冷却流体の流れ方向に並んで配置されており、
    前記中間流路のうち、前記被冷却流体の流れ方向最上流側の部位(45)における流路断面積は、前記細流路の流路断面積の0.3倍〜3.0倍に設定されている請求項1ないしのいずれか1つに記載の冷媒蒸発器。
  5. 前記中間流路は、前記被冷却流体の流れ方向から見た断面形状がU字状またはV字状である請求項1ないしのいずれか1つに記載の冷媒蒸発器。
  6. 前記中間流路は、前記一対のチューブの下方側に配置されている請求項1ないしのいずれか1つに記載の冷媒蒸発器。
  7. 前記中間流路は、前記第1チューブから流出した前記冷媒を前記第2チューブに流入させるように構成されており、
    前記第1蒸発部は、前記第2蒸発部に対して前記被冷却流体の流れ方向下流側に配置されており、
    前記第1チューブの流路断面積は、前記第2チューブの流路断面積よりも小さい請求項1ないしのいずれか1つに記載の冷媒蒸発器。
  8. 前記複数の中間流路のうち少なくとも1つの前記中間流路の流路断面積は、他の前記中間流路の流路断面積と異なる請求項1ないしのいずれか1つに記載の冷媒蒸発器。
  9. 前記第1蒸発部は、前記複数の第1チューブにおける前記チューブ長手方向の他端部に接続されるとともに、前記複数の第1チューブに対して前記冷媒の集合あるいは分配を行う第1タンク部(12)を有しており、
    前記第2蒸発部は、前記複数の第2チューブのチューブ長手方向他端部に接続されるとともに、前記複数の第2チューブに対して前記冷媒の集合あるいは分配を行う第2タンク部(22)を有しており、
    前記第1タンク部には、
    当該第1タンク部内の空間を前記第1チューブの積層方向に第1空間(121)および第2空間(122)に仕切る仕切部材(120)と、
    前記第1空間に外部から前記冷媒を流入させる流入部(12a)と、
    前記第2空間から外部へ前記冷媒を流出させる流出部(12b)とが設けられている請求項1ないしのいずれか1つに記載の冷媒蒸発器。
  10. 前記中間流路は、前記一対のチューブの下方側に配置されており、
    前記第1プレートおよび前記第2プレートにおける前記中間流路を構成しない部位には、前記第1プレートおよび前記第2プレートの双方を貫通する貫通孔(513、514、525、526)が設けられている請求項1ないしのいずれか1つに記載の冷媒蒸発器。
  11. 前記貫通孔の外周縁部には、前記第2プレートから下方側に向かって切り起こされた切り起こし部(527)が接続されている請求項10に記載の冷媒蒸発器。
  12. 前記第1プレートにおける前記被冷却流体の流れ方向下流側には、被冷却流体の流れ方向下流側に向かって下方側に傾斜した傾斜面(516)が設けられている請求項1ないし11のいずれか1つに記載の冷媒蒸発器。
  13. 請求項1ないし12のいずれか1つに記載の冷媒蒸発器の製造方法であって、
    帯状の第1薄板(710)に対して、第1ロール金型(712)によりロール成形を施すことにより、前記第1チューブおよび前記第2チューブを挿入するための貫通穴(511、512)を複数形成する工程と、
    前記貫通穴が形成された前記第1薄板を予め定めた基準第1長さに切断することにより、前記第1プレートを形成する工程と、
    帯状の第2薄板(720)に対して、第2ロール金型(722)によりロール成形を施すことにより、前記リブを複数形成する工程と、
    前記リブが形成された前記第2薄板を予め定めた基準第2長さに切断することにより、前記第2プレートを形成する工程と、
    前記第1チューブおよび前記第2チューブを、前記第1プレートおよび前記第2プレートに仮固定する工程と、
    前記第1チューブ、前記第2チューブ、前記第1プレートおよび前記第2プレートを仮固定した仮組み付け体を加熱炉内で加熱し、ろう付けする工程とを備える冷媒蒸発器の製造方法。
JP2017094153A 2017-05-10 2017-05-10 冷媒蒸発器およびその製造方法 Active JP6717256B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017094153A JP6717256B2 (ja) 2017-05-10 2017-05-10 冷媒蒸発器およびその製造方法
DE112018002406.7T DE112018002406T5 (de) 2017-05-10 2018-04-16 Kältemittelverdampfer und Verfahren zu dessen Herstellung
PCT/JP2018/015659 WO2018207556A1 (ja) 2017-05-10 2018-04-16 冷媒蒸発器およびその製造方法
CN201880031072.9A CN110651162B (zh) 2017-05-10 2018-04-16 制冷剂蒸发器及其制造方法
US16/654,086 US11346584B2 (en) 2017-05-10 2019-10-16 Refrigerant evaporator and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017094153A JP6717256B2 (ja) 2017-05-10 2017-05-10 冷媒蒸発器およびその製造方法

Publications (3)

Publication Number Publication Date
JP2018189337A JP2018189337A (ja) 2018-11-29
JP2018189337A5 JP2018189337A5 (ja) 2019-05-09
JP6717256B2 true JP6717256B2 (ja) 2020-07-01

Family

ID=64104456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017094153A Active JP6717256B2 (ja) 2017-05-10 2017-05-10 冷媒蒸発器およびその製造方法

Country Status (5)

Country Link
US (1) US11346584B2 (ja)
JP (1) JP6717256B2 (ja)
CN (1) CN110651162B (ja)
DE (1) DE112018002406T5 (ja)
WO (1) WO2018207556A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240714B (zh) * 2019-07-19 2022-04-26 广州汽车集团股份有限公司 一种蒸发器
KR20230089605A (ko) * 2021-12-13 2023-06-21 삼성전자주식회사 열 교환기 및 이를 포함하는 열 교환 시스템

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9400687U1 (de) * 1994-01-17 1995-05-18 Thermal Waerme Kaelte Klima Verdampfer für Klimaanlagen in Kraftfahrzeugen mit Mehrkammerflachrohren
TW552382B (en) * 2001-06-18 2003-09-11 Showa Dendo Kk Evaporator, manufacturing method of the same, header for evaporator and refrigeration system
JP4121085B2 (ja) 2001-12-21 2008-07-16 ベール ゲーエムベーハー ウント コー カーゲー 特に自動車用の熱交換器
JP3903866B2 (ja) * 2002-07-19 2007-04-11 株式会社デンソー 冷却器
JP2004163036A (ja) * 2002-11-14 2004-06-10 Japan Climate Systems Corp 複列型熱交換器
JP4124136B2 (ja) 2003-04-21 2008-07-23 株式会社デンソー 冷媒蒸発器
JP4193741B2 (ja) * 2004-03-30 2008-12-10 株式会社デンソー 冷媒蒸発器
JP2007057176A (ja) * 2005-08-25 2007-03-08 Calsonic Kansei Corp 熱交換器
JP2008025956A (ja) * 2006-07-25 2008-02-07 Showa Denko Kk 熱交換器
JP2008116102A (ja) * 2006-11-02 2008-05-22 Denso Corp 冷却用熱交換器
JP2009014282A (ja) * 2007-07-05 2009-01-22 Japan Climate Systems Corp 熱交換器
JP5136050B2 (ja) * 2007-12-27 2013-02-06 株式会社デンソー 熱交換器
JP2009275956A (ja) * 2008-05-13 2009-11-26 Denso Corp 熱交換器
JP5687937B2 (ja) * 2010-03-31 2015-03-25 モーディーン・マニュファクチャリング・カンパニーModine Manufacturing Company 熱交換器
JP5413313B2 (ja) * 2010-06-25 2014-02-12 株式会社デンソー 熱交換器
CN103338738B (zh) 2011-01-31 2017-08-29 Ea制药株式会社 多室容器
JP5796564B2 (ja) * 2011-11-30 2015-10-21 株式会社デンソー 熱交換器
JP6050978B2 (ja) * 2012-07-23 2016-12-21 株式会社ケーヒン・サーマル・テクノロジー エバポレータ
EP3064880B1 (en) * 2013-10-30 2021-03-24 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus
JP2015152209A (ja) * 2014-02-13 2015-08-24 パナソニックIpマネジメント株式会社 熱交換器
EP3156752B1 (en) * 2014-06-13 2020-11-11 Mitsubishi Electric Corporation Heat exchanger
JP6341099B2 (ja) 2015-01-14 2018-06-13 株式会社デンソー 冷媒蒸発器

Also Published As

Publication number Publication date
WO2018207556A1 (ja) 2018-11-15
DE112018002406T5 (de) 2020-01-23
JP2018189337A (ja) 2018-11-29
CN110651162A (zh) 2020-01-03
CN110651162B (zh) 2021-12-07
US20200049382A1 (en) 2020-02-13
US11346584B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
US20120103583A1 (en) Heat exchanger and fin for the same
JP5768480B2 (ja) 蓄冷熱交換器
JP6341099B2 (ja) 冷媒蒸発器
JP6717256B2 (ja) 冷媒蒸発器およびその製造方法
JP6584636B2 (ja) 熱交換器および空気調和機
JP6425829B2 (ja) 熱交換器及び冷凍サイクル装置
WO2014068842A1 (ja) 冷媒蒸発器
JP6160385B2 (ja) 積層型熱交換器
JP6558269B2 (ja) 冷媒蒸発器
JP6558268B2 (ja) 冷媒蒸発器
JP2006194576A (ja) エバポレータ
JP5574737B2 (ja) 熱交換器
WO2014181547A1 (ja) 冷媒蒸発器
JP2010107147A (ja) 熱交換器およびその製造方法
JP2006029765A (ja) 熱交換器
JP2007178017A (ja) 熱交換器
US20200217589A1 (en) Tube assembly for heat management apparatus and method of manufacturing the same
KR102174251B1 (ko) 열교환기
JP6432275B2 (ja) 冷媒蒸発器
JP7164801B2 (ja) 熱交換器
JP6613996B2 (ja) 冷媒蒸発器
JP4334311B2 (ja) 熱交換器
JP2008256248A (ja) 冷却用熱交換器
JP2005083653A (ja) 冷媒蒸発器
WO2017037772A1 (ja) 熱交換器及び熱交換器の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R151 Written notification of patent or utility model registration

Ref document number: 6717256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250