JP2007057176A - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
JP2007057176A
JP2007057176A JP2005244538A JP2005244538A JP2007057176A JP 2007057176 A JP2007057176 A JP 2007057176A JP 2005244538 A JP2005244538 A JP 2005244538A JP 2005244538 A JP2005244538 A JP 2005244538A JP 2007057176 A JP2007057176 A JP 2007057176A
Authority
JP
Japan
Prior art keywords
tube
oil
refrigerant
tubes
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005244538A
Other languages
English (en)
Inventor
Kazue Yoshida
一恵 吉田
Yuichi Kaitani
雄一 回谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2005244538A priority Critical patent/JP2007057176A/ja
Publication of JP2007057176A publication Critical patent/JP2007057176A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】二酸化炭素を冷媒とする冷凍サイクルに用いられる熱交換器に関して、オイルの滞留を少なくして熱交換量の低下を抑え、且つ大幅なコスト増を招くことなく、また複数パスの熱交換器にも適応可能とする。
【解決手段】設置姿勢上方の冷媒分配部21に少なくとも1本の第1オイル流しチューブ11Aを設け、冷媒分配部21への突き出し長さを同じパスの他のチューブよりも短くするとともに、短くした端部に傾斜部41を形成する。また、設置姿勢下方の冷媒分配部32に少なくとも1本の第2オイル流しチューブ11Bを設け、冷媒分配部32への突き出し長さを同じパスの他のチューブよりも長くするとともに、長くした端部に傾斜部42を形成する。さらに、第1オイル流しチューブ11Aの端部に形成した傾斜部41の短い側、および前記第2オイル流しチューブ11Bの端部に形成した傾斜部42の長い側をそれぞれ冷却風2の下流側に配置するようにした。
【選択図】 図1

Description

この発明は、二酸化炭素を冷媒とする冷凍サイクルに用いられる蒸発器などの熱交換器に関する。
近年の車両用空調装置における冷凍サイクルには、気液臨界温度・圧力以上に保持された超臨界流体である二酸化炭素などの温暖化係数の低い冷媒が用いられている。
このような冷凍サイクルでは、圧縮機を潤滑するためのオイルが封入され、冷媒とともに冷凍サイクル内を循環するようになっている。従来、二酸化炭素を冷媒とした冷凍サイクルの蒸発器には、液が多い2相冷媒(クオリティがより0に近い)が入り、液が少ない2相冷媒(クオリティがより1に近い)または液がない過熱蒸気の状態で排出される。このため、ガス冷媒よりもオイルの密度、粘性は大きくなる。また、一般的な蒸発器のヘッダタンクでは、冷媒分配部、冷媒集合部の冷媒通路断面積が大きく流速が落ちるため、この部分でオイル分離、滞留が生じやすくなっている。
ヘッダタンク内に滞留するオイルが多くなると圧縮機へ戻るオイルが少なくなって圧縮機の信頼性が低下し、さらには寿命の低下を招くことになる。
このような二酸化炭素を冷媒とした冷凍サイクルの蒸発器において、冷媒の熱交換量低下を防ぐために、入口ヘッダでオイルを分離し、熱交換器外部に導くようにした熱交換器が提案されている(特許文献1参照)。
また、オイルが滞留した場合の圧縮機の寿命低下を改善するために、蒸発器の上ヘッダ内にパイプの突出長さをより長くして、オイル戻しとする構造が提案されている(特許文献2)。
特開2003−28539号公報(第9頁、図17) 特開2005−24188号公報
上述した二酸化炭素を冷媒とした冷凍サイクルの蒸発器では、蒸発器の冷媒分配部、冷媒集合部で分離、滞留したオイルが熱交換部となる多穴管に流入し、そのチューブ穴の管壁に沿うようにして流れ、徐々に速度が増加する。このとき、多穴管の冷媒流入部付近ではオイルの速度がより遅くなるため、管壁のオイル膜は厚くなって空気と冷媒との間で熱抵抗となり、熱交換量が低下してしまうという課題があった。
また、特開2003−28539号公報に開示された熱交換器では、ヘッダパイプ内に冷媒とオイルとの分離を促進するための手段として、繊維状の金属線を編んだ細かいネットを設けているため、構造が複雑になり、コスト増になるという課題があった。
さらに、特開2005−24188号公報に提案された熱交換器は、1パスの蒸発器には効果的であるが、冷媒のターン部を備えた複数パスの蒸発器には適応することが難しく、このような複数バスの蒸発器においてオイルの滞留を少なくすることは困難であった。
この発明の目的は、オイルの滞留を少なくして熱交換量の低下を抑えた熱交換器を、大幅なコスト増を招くことなく、また複数パスの熱交換器にも適応可能にすることにある。
本発明に係わる熱交換器は、冷媒流路が形成された扁平のチューブ及び冷却用のフィンを交互に積層した熱交換部と、当該熱交換部と接合されて各チューブの両端部とそれぞれ連通する一対のヘッダタンクとを備え、前記熱交換部は所定数のチューブを1パスとする複数のパスに区分され、前記ヘッダタンクは冷媒分配部と冷媒集合部とからなり、冷媒が前記冷媒分配部と冷媒集合部とを折り返しながら前記各パスを順に流通するように構成された熱交換器であって、設置姿勢上方の前記冷媒分配部に突出する前記チューブのうちの少なくとも1本のチューブ(以下、第1オイル流しチューブ)の前記冷媒分配部への突き出し長さを同じパスの他のチューブよりも短くするとともに、短くした端部に傾斜部を形成し、設置姿勢下方の前記冷媒分配部に突出する前記チューブのうちの少なくとも1本のチューブ(以下、第2オイル流しチューブ)の前記冷媒分配部への突き出し長さを同じパスの他のチューブよりも長くするとともに、長くした端部に傾斜部を形成し、前記第1オイル流しチューブの端部に形成された傾斜部の短い側、および前記第2オイル流しチューブの端部に形成された傾斜部の長い側をそれぞれ前記熱交換部を通過する空気の下流側に配置したことを特徴とするものである。
本発明によれば、設置姿勢上方のヘッダタンクでは冷媒分配部に突出するチューブのうちの少なくとも1本が突き出し長さの短い第1オイル流しチューブとなっているため、滞留したオイルは突き出し長さの短い第1オイル流しチューブに流入し、オイルの液面を突き出し長さの短い第1オイル流しチューブの端部までと低くすることができる。同様に、設置姿勢下方のヘッダタンクでは冷媒分配部に突出するチューブのうちの少なくとも1本が突き出し長さの長いオイル流しチューブとなっているため、滞留したオイルは突き出し長さの長い第2オイル流しチューブに流入し、オイルの液面を突き出し長さの長い第2オイル流しチューブの端部までと低くすることができる。
したがって、各ヘッダタンク内でのオイルの滞留が少なくなり、圧縮機へ戻るオイルを増やして、圧縮機の信頼性を向上させ、圧縮機の寿命を延ばすことができる。なお、オイルが流入する第1および第2オイル流しチューブでは、オイルが流入しない他のチューブに対して熱交換量が低下することになるが、このようなオイル戻し専用のチューブを設けることにより、蒸発器全体として熱交換量の低下を一部に抑えることができる。
また、第1オイル流しチューブの短くした端部、および第2オイル流しチューブの長くした端部にそれぞれ傾斜部を形成したことにより、例えば、オイルの循環量が少なく、蒸発器でのオイルの分離量が少ない場合にはオイルの液面が下がるため、第1オイル流しチューブではオイルの液面内にあるチューブ穴のみにオイルが流入し、他のチューブ穴にはオイルが流入しなくなる。また、第2オイル流しチューブについても、オイルの液面内にあるチューブ穴のみにオイルが流入し、他のチューブ穴にはオイルが流入しなくなる。このように、第1オイル流しチューブの短くした端部、および第2オイル流しチューブの長くした端部にそれぞれ傾斜部形成したことにより、オイルによる熱交換量の低下をさらに抑えることができる。
また、第1オイル流しチューブの短くした端部において、傾斜部の短い側が冷却風の下流側に位置するように構成し、第2オイル流しチューブの長くした端部において、傾斜部の長い側が冷却風の下流側に位置するように構成したので、冷却風の下流側に流れるオイル/冷媒混合液は熱交換量が少なくなり、第1および第2オイル流しチューブを流れるオイルの粘性が低くなって、オイルの流れを良好にすることができる。
したがって、本発明に係わる熱交換器によれば、オイルの滞留を少なくして熱交換量の低下を抑えることができるだけでなく、このような効果を大幅なコストを招くことがなく実現することができ、また単パスの熱交換器だけでなく、複数パスの熱交換器にも適応可能することができる。
以下、本発明に係わる熱交換器を、二酸化炭素を冷媒とした冷房サイクルの蒸発器に適用した場合の実施例について説明する。
図1(a)、(b)は実施例1に係わる蒸発器の要部を示す断面図、図2は蒸発器の全体構成図、図3は蒸発器の内部構造を示す断面図である。
本実施例に係わる蒸発器1は、図2に示すように、内部を流通する冷媒と冷却風2との間で熱交換を行う熱交換部10と、この熱交換部10の両端に配置された一対のヘッダタンク20、30とから構成されている。
熱交換部10は、内部に冷媒流路となるチューブ穴が複数形成された多穴管構造の扁平のチューブ11と、波形に成形された冷却用のフィン12とを交互に積層した構造となっている。この熱交換部10の内部は冷媒の流通経路毎に区分され、本実施例では後述するようにパス(1)、パス(2)に区分されている。
ヘッダタンク20は設置姿勢上方に配置されるタンク部であり、冷媒をパス(1)のチューブ11に分配する冷媒分配部21と、パス(2)のチューブ11から排出された冷媒を集合する冷媒集合部22とに区分されている。このヘッダタンク20の一端には冷媒を供給する入口パイプ24が接続され、他端には冷媒を排出する出口パイプ25が接続されている。
ヘッダタンク30は設置姿勢下方に配置されるタンク部であり、パス(1)のチューブ11から排出された冷媒を集合する冷媒集合部31と、冷媒をパス(2)のチューブ11に分配する冷媒分配部32とに区分されている。
ヘッダタンク20、30は、熱交換部10の両端、すなわち各チューブ11の両端部と接合され、ヘッダタンク20、30の内部に形成された冷媒の流通路と、各チューブ11の内部に形成された冷媒流路とが連通するように構成されている。
また、ヘッダタンク20の中間部には冷媒の流通路を塞ぐデバイド23が挿入されている。このデバイド23を挿入することにより、熱交換部10を所定数のチューブ11を1パスとする複数のパスに区分することができる。本実施例では、ヘッダタンク20に1つのデバイド23を挿入することにより、パス(1)とパス(2)とに区分している。なお、パス数を増やす場合にはヘッダタンク20、30の所定位置にデバイドを挿入すればよく、また各パス毎のチューブ本数はデバイドの挿入位置を変えることによって適宜に変更することができる。
上記のように構成された蒸発器1において、入口パイプ24からヘッダタンク20に供給された冷媒は、冷媒分配部21からパス(1)の各チューブ11に分配され、それぞれのチューブ内を流通してヘッダタンク30へ流入する。この冷媒はヘッダタンク30の冷媒集合部31で合流して冷媒分配部32に流入し、ここからパス(2)の各チューブ11に分配される。そして、パス(2)のそれぞれのチューブ内を流通してヘッダタンク20へ流入し、冷媒集合部22で合流した後、出口パイプ25から排出される。この間、冷媒が各パスを流通する度に、熱交換部10を通過する冷却風2との間で熱交換がなされることになる。
次に、ヘッダタンク20、30内におけるチューブの突き出し長さ、端部形状および配置について説明する。
図3に示すように、ヘッダタンク20、30の内部には、接合された各チューブ11の端部が突き出すように挿入されている。本実施例では、ヘッダタンク20の冷媒分配部21に突出するチューブ11のうちの1本のチューブをオイル流しチューブ11Aとし、冷媒分配部21への突き出し長さを同じパス(1)の他のチューブ11よりも短くしている。また、ヘッダタンク30の冷媒分配部32に突出するチューブ11のうちの1本のチューブをオイル流しチューブ11Bとし、冷媒分配部32への突き出し長さを同じパス(2)の他のチューブ11よりも長くしている。これ以外のチューブ11は、すべて同じ突き出し長さで各ヘッダタンクに突出している。
また、図3のA−A線断面図となる図1(a)に示すように、オイル流しチューブ11Aの冷媒分配部21に突出する側の端部には傾斜部41が形成されるとともに、この傾斜部41の短い側が冷却風2の下流側に位置するように配置されている。他方、図3のB−B線断面図となる図1(b)に示すように、オイル流しチューブ11Bの冷媒分配部32に突出する側の端部には傾斜部42が形成されるとともに、この傾斜部42の長い側が冷却風2の下流側に位置するように配置されている。これ以外のチューブ11では、端部が直線的にカットされた形状となっている。
上記のように構成された蒸発器1では、ヘッダタンク20、30はチューブ11に対して冷媒の流通断面積が大きく、速度が遅くなるために冷媒とオイル14とが分離して内部に滞留することになる。このうち、ヘッダタンク20では、タンクの底面と突出したチューブ11の端部とが凹形状となり、チューブ11の端部までがオイル14の液面となる。またヘッダタンク30ではタンク底面と突出したチューブ11の端部までがオイル14の液面となる。
しかしながら、本実施例の蒸発器1では、図3に示すように、ヘッダタンク20の冷媒分配部21に突出するチューブ11のうちの1本が突き出し長さの短いオイル流しチューブ11Aとなっているため、滞留したオイル14は突き出し長さの短いオイル流しチューブ11Aに流入し、オイル14の液面を突き出し長さの短いオイル流しチューブ11Aの端部までと低くすることができる。同様に、ヘッダタンク30では冷媒分配部32に突出するチューブ11のうちの1本が突き出し長さの長いオイル流しチューブ11Bとなっているため、滞留したオイル14は突き出し長さの長いオイル流しチューブ11Bに流入し、オイル14の液面を突き出し長さの長いオイル流しチューブ11Bの端部までと低くすることができる。
したがって、本実施例によれば、ヘッダタンク20、30内でのオイル14の滞留を少なくして、圧縮機へ戻るオイルを増やすことができるので、圧縮機の信頼性が向上して、圧縮機の寿命を延ばすことができる。なお、オイル14が流入するオイル流しチューブ11A、11Bでは、オイル14が流入しない他のチューブ11に対して熱交換量が低下することになるが、このようなオイル戻し専用のチューブを設けることにより、蒸発器全体として熱交換量の低下を一部に抑えることができる。
また、冷凍サイクル内のオイル循環量は、圧縮機の種類、運転条件などにより変動し、蒸発器でのオイルの滞留状況も変化する。本実施例のようにオイル流しチューブ11Aの冷媒分配部21に突出する側の端部、およびオイル流しチューブ11Bの冷媒分配部32に突出する側の端部にそれぞれ傾斜部41、42を形成したので、例えば、オイルの循環量が少なく、蒸発器でのオイルの分離量が少ない場合にはオイルの液面が下がって、図1(a)に示すように、オイル流しチューブ11Aではオイル14の液面内にあるチューブ穴15のみにオイルが流入し、他のチューブ穴15にはオイルが流入しなくなる。同様に、オイル流しチューブ11Bについても、オイル14の液面内にあるチューブ穴15のみにオイルが流入し、他のチューブ穴15にはオイルが流入しなくなる。このように、オイル流しチューブ11Aの短くした端部、およびオイル流しチューブ11Bの長くした端部にそれぞれ傾斜部41、42を形成することにより、オイルによる熱交換量の低下をさらに抑えることができる。
なお本実施例では、傾斜部41、42として、図4(a)に示すように、端部を斜めにカットした形状について示したが、図4(b)に示すように、傾斜部41の一部に直線部43を設けた形状であってもよい。
また傾斜部は斜辺からなる形状に限定されるものではなく、一方の端部が他方の端部に対して長さの差をもった形状であればよく、斜辺、段差(切り欠き等)、またはこれらを組み合わせた形状であってもよい。例えば、図4(c)に示すように、端部に切り欠き部44を設けた形状であってもよい。このように切り欠き部44を設けた場合は、オイル14が流入するチューブ穴15をあらかじめ定めることができる。したがって、オイル14が流入するチューブ穴15を少なくすることにより、端部を斜めにカットした場合に比べてオイル14による熱交換量の低下をより抑えることができる。さらに、図4(d)に示すように、端部に切り欠き部45を設け、その切り欠き部45をさらに斜めにカットした形状であってもよく、このような形状とした場合でも、図4(a)と同等の効果を得ることができる。
また、オイル流しチューブ11A、11Bの端部形状は、図5(a)〜(c)に示すような形状としてもよい。図5(a)に示す傾斜部46は、チューブ幅方向の中心から左右に斜めカットした形状を示し、図5(b)に示す傾斜部47は、左右を斜めカットしたうえで、さらにチューブ幅方向の中心に直線部48を形成した形状を示している。また図5(c)はチューブ幅方向の左右に切り欠き部49を設けた形状を示している。さらに、図示していないが、図5(c)の切り欠き部49を斜めにカットした形状であってもよい。
このように、チューブ幅方向においてチューブ端の一部を斜めカットしたり、切り欠き部を形成したり、あるいは切り欠き部と斜めカットとを組み合わせた形状とすることによっても同等の効果を得ることができる。とくに図5(a)〜(c)に示す各形状では、蒸発器本体が左右に傾いた場合でも、余剰なオイル14を確実にオイル流しチューブ11A、11Bに流入させることができる。
また本実施例では、図1(a)に示すように、オイル流しチューブ11Aの短くした端部において、傾斜部41の短い側が冷却風2の下流側に位置するように構成し、図1(b)に示すように、オイル流しチューブ11Bの長くした端部において、傾斜部42の長い側が冷却風2の下流側に位置するように構成したので、オイル流しチューブ11A、11B内におけるオイル14の流れを良好にすることができる。
すなわち、蒸発器1には気液2相の冷媒が流れるが、冷却風2との熱交換が進むにつれて冷媒は乾いた状態になる。オイルは冷媒に対して粘性が高いが、オイルは液冷媒と相溶しているため、相溶している液冷媒の量が多ければオイル/冷媒混合液の粘性はオイル粘性に比べて低くなって、オイルの流れは良好になる。このように、オイル/冷媒混合液における液冷媒の比率を多くするには、オイルと冷却風とが熱交換する量を低く抑えればよいことになる。このため、図1(a)、(b)に示すように、冷却風2の下流側にオイル/冷媒混合液を流せば、冷却風2は上流側のチューブ穴を流れる冷媒と熱交換して吸熱するので、下流側ではオイル/冷媒混合液との温度差は小さくなり、熱交換量は少なくなる。したがって、オイル流しチューブ11A、11Bの下流側のチューブ穴15を流れるオイルの粘性が低くなって、オイルの流れを良好にすることができる。
なお、上記実施例1では、ヘッダタンクの流通路が1つの場合について説明したが、複数の流通路を備えたヘッダタンクにも同様に適用することができる。
以上説明したように、本実施例に係わる蒸発器1では、オイルの滞留を少なくして熱交換量の低下を抑えることができるという効果を、大幅なコストを招くことなく実現することができる。また、単パスの熱交換器だけでなく、複数パスの熱交換器にも適用することができる。
図6は実施例2に係わる蒸発器の内部構造を示す断面図、図7は実施例2に係わる蒸発器の他の構成における内部構造を示す断面図である。ただし、蒸発器の全体構成は実施例1と同じであるため、詳細な説明を省略する。
本実施例に係わる蒸発器100では、図6に示すように、熱交換部110を構成するチューブ111のヘッダタンク120、130への突き出し長さはすべて同じであり、且つすべてのチューブ111の上端部には傾斜部141が、また下端部には傾斜部142がそれぞれ形成されている。さらに、上下のヘッダタンク120、130は、熱交換部110に対し、チューブ111に形成された傾斜部141、142の傾きに合わせて斜めに配置されている。
ヘッダタンク120は上プレート121と下プレート122とを重ね合わせてロウ付け接合したもので、上プレート121には冷媒の流通路となる半円形部123が配置されている。この半円形部123は、ヘッダタンク120に突出するチューブ111の上端部に形成された傾斜部141の短い側に配置されている。また下プレート122には、チューブ111を挿入するためのチューブ挿入穴124が等間隔で形成されている。このチューブ挿入穴124は斜めに形成され、チューブ111を挿入したときに、チューブの端部が下プレート122の内面平坦部分と略並行になるように構成されている。
同様に、ヘッダタンク130についても上プレート131と下プレート132とからなり、上プレート131には冷媒の流通路となる半円形部133が配置されている。この半円形部133は、ヘッダタンク130に突出するチューブ111の下端部に形成された傾斜部142の長い側に配置されている。また、下プレート132には、チューブ111を挿入するためのチューブ挿入穴134が等間隔で形成されている。このチューブ挿入穴134は斜めに形成され、チューブ111を挿入したときに、チューブの端部が下プレート132の内面平坦部分と略並行になるように構成されている。
チューブ挿入穴124、134に挿入されるチューブ111の内部には、冷媒が流通する複数のチューブ穴113がチューブ幅方向に等間隔で複数形成されている
本実施例では、チューブ111の上端部に形成された傾斜部141の短い側が冷却風2の下流側に位置するように構成されるとともに、チューブ111の下端部に形成された傾斜部142の長い側が冷却風2の下流側に位置するように構成されている。
上記のように構成された蒸発器100においても、ヘッダタンク120、130はチューブ111に対して冷媒の流通断面積が大きくなり、速度が遅くなるために冷媒とオイルとが分離して内部に滞留することになる。
そして本実施例では、ヘッダタンク120に突出するすべてのチューブ111の上端部に傾斜部141が形成されているため、タンク内に滞留するオイル14はすべて傾斜部141の短い側に集まり、近傍のチューブ穴113に流入する。同様に、ヘッダタンク130についても、突出するすべてのチューブ111の下端部に傾斜部142が形成されているため、タンク内に滞留するオイル14はすべて傾斜部142の長い側に集まって、近傍のチューブ穴113に流入する。
したがって、本実施例によれば、ヘッダタンク120、130内でのオイルの14滞留を少なくして、圧縮機へ戻るオイルを増やすことができるので、圧縮機の信頼性を向上させ、圧縮機の寿命を延ばすことができる。なお、オイルが流入するチューブ穴113については、オイルが流入しない他のチューブ穴113に対して熱交換量が低下することになるが、すべてのチューブ111について一部のチューブ穴113にオイルを流入させるようにしたので、蒸発器全体として熱交換量の低下を一部に抑えることができる。また、すべてのチューブ111について一部のチューブ穴113にオイルを流入させるようにしたので、熱交換部110全体に亘って各チューブ111で熱交換量の低下が生じることになり、熱交換部110を通過する冷却風2の吹き出し温度をより均一にすることができる。
また、冷凍サイクル内のオイル循環量は、圧縮機の種類、運転条件などにより変動し、蒸発器でのオイルの滞留状況も変化する。本実施例では、ヘッダタンク120の半円形部123をチューブ111の上端部に形成した傾斜部141の短い側に配置し、ヘッダタンク130の半円形部133をチューブ111の下端部に形成した傾斜部142の長い側に配置したので、オイルの循環量が多くなった場合でも、より少ないチューブ穴113にオイルを流すことができるようになり、オイルの流入による熱交換量の低下を最小限に抑えることができる。
また、チューブ111の上端部に形成した傾斜部141の短い側が冷却風2の下流側に位置するように配置するとともに、チューブ111の下端部に形成した傾斜部142の長い側が冷却風2の下流側に位置するように配置したので、冷却風2は上流側のチューブ穴113を流れる冷媒と熱交換して吸熱するため、下流側ではチューブ穴113を流れるオイル/冷媒混合液との温度差が小さくなり、熱交換量は少なくなる。したがって、各チューブ111を流れるオイルの粘性が低くなって、オイルの流れを良好にすることができる。
なお、図6の実施例では、ヘッダタンクに冷媒の流通路(半円形部)を1つ形成した例について示したが、本発明は複数の流通路を備えたヘッダタンクにも同様に適用することができる。
図7は、冷媒の流通路となる半円形部をチューブ幅方向に2つ形成した例を示す構成例であり、図6と同等部分を同一符号で示している。
本例において、設置姿勢上方に位置するヘッダタンク220には半円形部221、222が形成され、設置姿勢下方に位置するヘッダタンク230には半円形部231、232が形成されている。
これによれば、設置姿勢上方に位置するヘッダタンク220内に滞留するオイル14は、半円形部222側に流れてチューブ111の上端部に形成された傾斜部141の短い側に集まる。また、設置姿勢下方に位置するヘッダタンク230内に滞留するオイル14は、半円形部232側に流れてチューブ111の下端部に形成された傾斜部142の長い側に集まる。そして、オイル14はそれぞれ近傍のチューブ穴113に流入することになる。したがって、本実施例においても、ヘッダタンク内でのオイルの滞留を少なくして、圧縮機へ戻るオイルを増やすことができるので、圧縮機の信頼性を向上させ、圧縮機の寿命を延ばすことができる。そのほか、オイルの流れは図6の実施例と同じとなるため、同等の効果を得ることができる。
また、図6、図7の構成において、チューブ111の端部に切り欠き部を形成してもよい。図8は、図7の構成に切り欠き部143を形成した構成を示している。このような切り欠き部143を形成すると、オイルは切り欠き部143に溜まるため、オイルの滞留量が切り欠き部143よりも少ない場合に、オイルを切り欠き部143直下のチューブ穴113に確実に流すことができる。また、蒸発器本体が斜めに傾いた場合でも、切り欠き部143にオイル14を溜めて、他のより広い範囲のチューブ穴113にオイルが流れ込むのを極力防ぐことができる。
なお、図8に示した切り欠き部143は、図6の実施例にも適用することができ、この場合も同等の効果を得ることができる。
(a)、(b)は実施例1に係わる蒸発器の要部を示す断面図。 蒸発器の全体構成図。 蒸発器の内部構造を示す断面図。 (a)〜(d)は傾斜部の構成例を示す図。 (a)〜(c)は傾斜部の他の構成例を示す図。 実施例2に係わる蒸発器の内部構造を示す断面図 実施例2に係わる蒸発器の他の構成における内部構造を示す断面図。 図7の構成に切り欠き部を形成した場合の構成を示す断面図。
符号の説明
1、100…蒸発器
2…冷却風
10、110…熱交換部
11、111…チューブ
11A、11B…オイル流しチューブ
12…フィン
14…オイル
15、113…チューブ穴
20、30、120、130、220、230…ヘッダタンク
21、32…冷媒分配部
22、31…冷媒集合部
41、42、46、47、141、142…傾斜部
43、48…直線部
44、45、49、143…切り欠き部
121、131…上プレート
122、132…下プレート
123、133、221、222、231、232…半円形部

Claims (1)

  1. 冷媒流路(15)が形成された扁平のチューブ(11)及び冷却用のフィン(12)を交互に積層した熱交換部(10)と、当該熱交換部(10)と接合されて各チューブ(11)の両端部とそれぞれ連通する一対のヘッダタンク(20、30)とを備え、前記熱交換部(10)は所定数のチューブ(11)を1パスとする複数のパスに区分され、前記ヘッダタンク(20、30)は冷媒分配部(21、32)と冷媒集合部(22、31)とからなり、冷媒が前記冷媒分配部(21、32)と冷媒集合部(22、31)とを折り返しながら前記各パスを順に流通するように構成された熱交換器(1)であって、
    設置姿勢上方の前記冷媒分配部(21)に突出する前記チューブ(11)のうちの少なくとも1本のチューブ(以下、第1オイル流しチューブ)の前記冷媒分配部(21)への突き出し長さを同じパスの他のチューブ(11)よりも短くするとともに、短くした端部に傾斜部(141)を形成し、
    設置姿勢下方の前記冷媒分配部(32)に突出する前記チューブ(11)のうちの少なくとも1本のチューブ(以下、第2オイル流しチューブ)の前記冷媒分配部(32)への突き出し長さを同じパスの他のチューブ(11)よりも長くするとともに、長くした端部に傾斜部(142)を形成し、
    前記第1オイル流しチューブ(11A)に形成された傾斜部(141)の短い側、および前記第2オイル流しチューブ(11B)に形成された傾斜部(142)の長い側をそれぞれ前記熱交換部(10)を通過する空気の下流側に配置したことを特徴とする熱交換器。
JP2005244538A 2005-08-25 2005-08-25 熱交換器 Pending JP2007057176A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244538A JP2007057176A (ja) 2005-08-25 2005-08-25 熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244538A JP2007057176A (ja) 2005-08-25 2005-08-25 熱交換器

Publications (1)

Publication Number Publication Date
JP2007057176A true JP2007057176A (ja) 2007-03-08

Family

ID=37920817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244538A Pending JP2007057176A (ja) 2005-08-25 2005-08-25 熱交換器

Country Status (1)

Country Link
JP (1) JP2007057176A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207556A1 (ja) * 2017-05-10 2018-11-15 株式会社デンソー 冷媒蒸発器およびその製造方法
WO2019026241A1 (ja) * 2017-08-03 2019-02-07 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
JPWO2020235030A1 (ja) * 2019-05-22 2020-11-26
CN114608352A (zh) * 2020-12-08 2022-06-10 杭州三花微通道换热器有限公司 换热器

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207556A1 (ja) * 2017-05-10 2018-11-15 株式会社デンソー 冷媒蒸発器およびその製造方法
JP2018189337A (ja) * 2017-05-10 2018-11-29 株式会社デンソー 冷媒蒸発器およびその製造方法
US11346584B2 (en) 2017-05-10 2022-05-31 Denso Corporation Refrigerant evaporator and method for manufacturing same
CN110651162B (zh) * 2017-05-10 2021-12-07 株式会社电装 制冷剂蒸发器及其制造方法
CN110651162A (zh) * 2017-05-10 2020-01-03 株式会社电装 制冷剂蒸发器及其制造方法
EP3663678A4 (en) * 2017-08-03 2020-08-05 Mitsubishi Electric Corporation REFRIGERANT DISTRIBUTOR, HEAT EXCHANGER AND REFRIGERATION CIRCUIT DEVICE
CN110945300A (zh) * 2017-08-03 2020-03-31 三菱电机株式会社 制冷剂分配器、热交换器及制冷循环装置
EP3848650A1 (en) * 2017-08-03 2021-07-14 Mitsubishi Electric Corporation Refrigerant distributor, heat exchanger, and refrigeration cycle apparatus
JPWO2019026241A1 (ja) * 2017-08-03 2019-11-07 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
JP7010958B2 (ja) 2017-08-03 2022-01-26 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
WO2019026241A1 (ja) * 2017-08-03 2019-02-07 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
US11555660B2 (en) 2017-08-03 2023-01-17 Mitsubishi Electric Corporation Refrigerant distributor, heat exchanger, and refrigeration cycle apparatus
JPWO2020235030A1 (ja) * 2019-05-22 2020-11-26
WO2020235030A1 (ja) * 2019-05-22 2020-11-26 三菱電機株式会社 熱交換器およびそれを用いた冷凍サイクル装置
CN114608352A (zh) * 2020-12-08 2022-06-10 杭州三花微通道换热器有限公司 换热器

Similar Documents

Publication Publication Date Title
JP4734021B2 (ja) 熱交換器
JP2006132920A (ja) 熱交換器
JP2008180486A (ja) 熱交換器
JP5585543B2 (ja) 車両用冷却装置
KR20060125775A (ko) 열교환기
JP4786234B2 (ja) 熱交換器
JP2006138620A (ja) 熱交換器
JP2007232287A (ja) 熱交換器および一体型熱交換器
CN101349488A (zh) 蒸发器
JP4774295B2 (ja) エバポレータ
JP2005195316A (ja) 熱交換器
CN100432579C (zh) 蒸发器
JP2007057176A (ja) 熱交換器
JP2005164226A (ja) エバポレータおよびその製造方法
JP4686220B2 (ja) 熱交換器
JP2006170601A (ja) エバポレータ
JP2011257111A5 (ja)
JP2006194576A (ja) エバポレータ
JP4617148B2 (ja) 熱交換器
JP2005090946A (ja) 熱交換器およびエバポレータ
CN115298507A (zh) 换热器
JP5508818B2 (ja) エバポレータ
JP2006112731A (ja) 細径多管式熱交換器の細径伝熱管ユニット
JP2009299923A (ja) 熱交換器
JP2005069670A (ja) 熱交換器およびエバポレータ