WO2020235030A1 - 熱交換器およびそれを用いた冷凍サイクル装置 - Google Patents

熱交換器およびそれを用いた冷凍サイクル装置 Download PDF

Info

Publication number
WO2020235030A1
WO2020235030A1 PCT/JP2019/020208 JP2019020208W WO2020235030A1 WO 2020235030 A1 WO2020235030 A1 WO 2020235030A1 JP 2019020208 W JP2019020208 W JP 2019020208W WO 2020235030 A1 WO2020235030 A1 WO 2020235030A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
header
refrigerant
heat transfer
outdoor
Prior art date
Application number
PCT/JP2019/020208
Other languages
English (en)
French (fr)
Inventor
龍一 永田
真哉 東井上
前田 剛志
宗希 石山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021519964A priority Critical patent/JPWO2020235030A1/ja
Priority to PCT/JP2019/020208 priority patent/WO2020235030A1/ja
Publication of WO2020235030A1 publication Critical patent/WO2020235030A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle device using the heat exchanger.
  • a heat exchanger that functions as a condenser mounted on an indoor unit in an air conditioner that is a refrigeration cycle device is known.
  • the liquid refrigerant condensed by this heat exchanger is depressurized by the expansion valve, and becomes a gas-liquid two-phase state in which the gas refrigerant and the liquid refrigerant are mixed.
  • the refrigerant in the gas-liquid two-phase state is converted into a low-pressure gas refrigerant by evaporating the liquid refrigerant among the refrigerants in the gas-liquid two-phase state in a heat exchanger that functions as an evaporator mounted on the outdoor unit.
  • the refrigerating machine oil that lubricates the sliding part of the compressor is circulated together with the refrigerant.
  • the heat exchanger operates as a condenser
  • the gas refrigerant and the refrigerating machine oil flow into the upper header
  • the refrigerant flows through the heat transfer tube while changing the phase, and flows into the lower header as a liquid refrigerant.
  • the heat transfer tube has a flat multi-hole tube structure
  • the refrigeration mixed in the gas refrigerant is performed.
  • Machine oil is separated.
  • the separated refrigerating machine oil flows into the heat transfer tube together with the gas refrigerant.
  • the holes in the heat transfer tube are fine, it is difficult for the refrigerating machine oil to flow into the heat transfer tube, and there is a problem that the refrigerating machine oil stays in the header.
  • the present invention is for solving the above problems, and an object of the present invention is to provide a heat exchanger capable of reducing the retention of refrigerating machine oil and improving the quality, and a refrigerating cycle apparatus using the same.
  • the heat exchanger according to the present invention is provided with a plurality of heat transfer tubes extending in the first direction and arranged side by side at intervals in the second direction orthogonal to the first direction, and in the second direction.
  • a heat exchanger provided with an extension and including a header for communicating the ends of the plurality of adjacent heat transfer tubes in the first direction with each other, the header for discharging oil accumulated at the bottom.
  • a bypass tube is provided on the bottom surface side, and the plurality of heat transfer tubes have the center of the third direction intersecting the first direction and the second direction with respect to the center of the cross section orthogonal to the second direction of the header. , Is located in an eccentric position.
  • the refrigeration cycle apparatus using the heat exchanger includes a refrigerant circuit having at least a compressor, a condenser, an expansion valve and an evaporator, and mounts the heat exchanger as the condenser or the evaporator. It is a thing.
  • the center of the third direction in which the plurality of heat transfer tubes intersect the first direction which is the extension direction of the heat transfer tube and the second direction which is the extension direction of the header is the center of the header. It is arranged at an eccentric position with respect to the center of the cross section orthogonal to the two directions.
  • the header is provided with a bypass pipe on the bottom surface side for discharging the oil accumulated at the bottom portion. As a result, a gap is formed between the heat transfer tube and the inner wall of the header, and the refrigerating machine oil at the bottom flows in the extending direction of the header through this gap and is discharged through the bypass pipe, so that the refrigerating machine oil stays. Can be reduced.
  • FIG. 5 is a schematic view showing an example of an outdoor heat exchanger mounted on the air conditioner according to the second embodiment, and partially showing a cross section of a header of the outdoor heat exchanger and a main part of a flat pipe.
  • Embodiment 1 ⁇ Configuration of air conditioner 1> An air conditioner 1 as a refrigeration cycle device to which the heat exchanger according to the first embodiment is applied will be described with reference to FIG.
  • the heat exchanger according to the first embodiment is configured as at least one of the outdoor heat exchanger 12 and the indoor heat exchanger 14 of the air conditioner 1.
  • FIG. 1 is a schematic view showing a refrigerant circuit 5 of the air conditioner 1 according to the first embodiment.
  • the air conditioner 1 cools or heats the air in the room by transferring heat between the outside air and the air in the room via a refrigerant. It has an indoor unit 2 and an outdoor unit 3.
  • Examples of the refrigerant flowing through the air conditioner 1 include various refrigerants such as R32 refrigerant, R290 refrigerant which is a low GWP refrigerant, the above-mentioned mixed refrigerant containing R32 refrigerant as a main component, and mixed refrigerant containing R290 refrigerant as a main component.
  • Refrigerant can be applied.
  • a refrigerant having a smaller gas density than an R32 refrigerant or an R410A refrigerant such as an olefin-based refrigerant, propane or DME (dimethyl ether) has a higher refrigerant flow velocity per capacity, and therefore has a great effect of improving performance by reducing pressure loss.
  • olefin-based refrigerant examples include HFO1234yf, HFO1234ze (E), and the like. Further, as the refrigerating machine oil, an alkylbenzene oil type, an ester oil type, an ether oil type or the like is used.
  • the indoor unit 2 and the outdoor unit 3 are connected by pipes via the refrigerant pipes 4, 4a and 4b to form a refrigerant circuit 5 in which the refrigerant circulates.
  • the refrigerant circuit 5 is provided with a compressor 10, a flow path switching device 11, an outdoor heat exchanger 12, an expansion valve 13, and an indoor heat exchanger 14, and these are connected via refrigerant pipes 4, 4a, and 4b. There is.
  • the outdoor unit 3 has a compressor 10, a flow path switching device 11, an outdoor heat exchanger 12, and an expansion valve 13.
  • the compressor 10 compresses and discharges the sucked refrigerant.
  • the compressor 10 may include an inverter device. When the inverter device is provided, the operation frequency can be changed by the control unit 6 to change the capacity of the compressor 10.
  • the capacity of the compressor 10 is the amount of refrigerant delivered per unit time.
  • the flow path switching device 11 is, for example, a four-way valve, which switches the direction of the refrigerant flow path.
  • the air conditioner 1 can realize a heating operation or a cooling operation by switching the flow of the refrigerant by using the flow path switching device 11 based on the instruction from the control unit 6.
  • the outdoor heat exchanger 12 exchanges heat between the refrigerant and the outdoor air. Further, the outdoor heat exchanger 12 is provided with an outdoor blower 15 in order to improve the efficiency of heat exchange between the refrigerant and the outdoor air.
  • An inverter device may be attached to the outdoor blower 15. In this case, the inverter device changes the rotation speed of the fan by changing the operating frequency of the fan motor 16 which is the drive source of the outdoor blower 15.
  • the outdoor blower 15 is not limited to this as long as the same effect can be obtained.
  • the type of fan may be a sirocco fan or a plug fan.
  • the outdoor blower 15 may be a pushing type or a pulling type.
  • the outdoor heat exchanger 12 functions as an evaporator during the heating operation, and exchanges heat between the low-pressure refrigerant flowing in from the refrigerant pipe 4b side and the outdoor air to evaporate the refrigerant and vaporize it. And let it flow out to the refrigerant pipe 4a side. Further, the outdoor heat exchanger 12 functions as a condenser during the cooling operation, and the refrigerant compressed by the compressor 10 flowing in from the refrigerant pipe 4a side via the flow path switching device 11 and the outdoor air. Heat exchange is performed between the refrigerants to condense and liquefy the refrigerant, which is then discharged to the refrigerant pipe 4b side.
  • the outdoor air is used as the external fluid
  • the external fluid is not limited to the gas containing the outdoor air, and may be a liquid containing water.
  • the expansion valve 13 is a throttle device that controls the flow rate of the refrigerant, and adjusts the pressure of the refrigerant by adjusting the flow rate of the refrigerant flowing through the refrigerant pipe 4 by changing the opening degree of the expansion valve 13.
  • the expansion valve 13 expands the high-pressure liquid state refrigerant into the low-pressure gas-liquid two-phase state refrigerant to reduce the pressure.
  • the expansion valve 13 is not limited to this, and an electronic expansion valve, a capillary tube, or the like may be used as long as the same effect can be obtained.
  • the opening degree is adjusted based on the instruction of the control unit 6.
  • the indoor unit 2 includes an indoor heat exchanger 14 that exchanges heat between the refrigerant and the indoor air, and an indoor blower 17 that adjusts the flow of air that the indoor heat exchanger 14 exchanges heat with.
  • the indoor heat exchanger 14 acts as a condenser during the heating operation, exchanges heat between the refrigerant flowing in from the refrigerant pipe 4a side and the indoor air, condenses the refrigerant and liquefies it, and causes the refrigerant pipe. Let it flow out to the 4b side. Further, the indoor heat exchanger 14 functions as an evaporator during the cooling operation, and exchanges heat between the refrigerant brought into a low pressure state by the expansion valve 13 flowing in from the refrigerant pipe 4b side and the indoor air. The refrigerant takes heat from the air, evaporates it, vaporizes it, and causes it to flow out to the refrigerant pipe 4a side.
  • the indoor air is used as the external fluid
  • the external fluid is not limited to the gas containing the indoor air and may be a liquid containing water.
  • the operating speed of the indoor blower 17 is determined by the user's setting. It is preferable to attach an inverter device to the indoor blower 17 and change the operating frequency of the fan motor 18 to change the rotation speed of the fan.
  • the indoor blower 17 is not limited to this as long as the same effect can be obtained.
  • the type of fan may be a sirocco fan or a plug fan.
  • the indoor blower 17 may be a pushing type or a pulling type.
  • This gas-liquid two-phase refrigerant flows into the indoor heat exchanger 14 of the indoor unit 2, evaporates by heat exchange with the indoor air blown by the indoor blower 17, becomes a low-temperature low-pressure gas refrigerant, and becomes an indoor heat exchanger. Outflow from 14. At this time, the indoor air that has been cooled by being absorbed by the refrigerant becomes air-conditioned air (blown air) and is blown out from the indoor unit 2 into the room that is the air-conditioned space. The gas refrigerant flowing out of the indoor heat exchanger 14 is sucked into the compressor 10 via the flow path switching device 11 and is compressed again. In the cooling operation of the air conditioner 1, the above operation is repeated (indicated by the solid arrow in FIG. 1).
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 10 flows into the indoor heat exchanger 14 of the indoor unit 2 via the flow path switching device 11.
  • the gas refrigerant flowing into the indoor heat exchanger 14 is condensed by heat exchange with the indoor air blown by the indoor blower 17, becomes a low-temperature refrigerant, and flows out from the indoor heat exchanger 14.
  • the indoor air that has been warmed by receiving heat from the gas refrigerant becomes conditioned air (blow-out air) and is blown out from the indoor unit 2 into the room.
  • the refrigerant flowing out of the indoor heat exchanger 14 is expanded and depressurized by the expansion valve 13 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • This gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 12 of the outdoor unit 3, evaporates by heat exchange with the outside air blown by the outdoor blower 15, becomes a low-temperature low-pressure gas refrigerant, and becomes the outdoor heat exchanger 12.
  • the gas refrigerant flowing out of the outdoor heat exchanger 12 is sucked into the compressor 10 via the flow path switching device 11 and is compressed again. In the heating operation of the air conditioner 1, the above operation is repeated (indicated by the broken line arrow in FIG. 1).
  • the refrigerant flowing out from the outdoor heat exchanger 12 during the cooling operation or the indoor heat exchanger 14 during the heating operation is a gas refrigerant (single phase).
  • the moisture in the air is condensed and evaporated.
  • Water droplets form on the surface of the vessel.
  • the water droplets generated on the surface of the evaporator are dropped downward along the surfaces of the fins and the heat transfer tube, and are discharged as drain water below the evaporator.
  • the indoor heat exchanger 14 functions as an evaporator during the heating operation in a low outside air temperature state, moisture in the air may frost on the indoor heat exchanger 14. Therefore, the air conditioner 1 performs a "defrosting operation" to remove frost when the outside air becomes a constant temperature (for example, 0 ° C.) or less.
  • the "defrosting operation” is to supply hot gas (high temperature and high pressure gas refrigerant) from the compressor 10 to the indoor heat exchanger 14 in order to prevent frost from adhering to the indoor heat exchanger 14 that functions as an evaporator. It's about driving.
  • the defrosting operation may be executed when the duration of the heating operation reaches a predetermined value (for example, 30 minutes). Further, the defrosting operation may be executed before the heating operation is performed when the indoor heat exchanger 14 is at a set temperature (for example, -6 ° C.) or less.
  • the frost and ice adhering to the indoor heat exchanger 14 are melted by the hot gas supplied to the indoor heat exchanger 14 during the defrosting operation.
  • a bypass refrigerant pipe (not shown) between the discharge port of the compressor 10 and the indoor heat exchanger 14 so that hot gas can be directly supplied from the compressor 10 to the indoor heat exchanger 14 during the defrosting operation. ) May be used for connection.
  • the discharge port of the compressor 10 is connected to the indoor heat exchanger 14 via the flow path switching device 11 (for example, a four-way valve) so that the hot gas can be supplied from the compressor 10 to the indoor heat exchanger 14. It may be configured.
  • FIG. 2 is a schematic view showing an example of the outdoor heat exchanger 12 mounted on the air conditioner 1 according to the first embodiment.
  • FIG. 3 is a schematic view partially showing a cross section of a main part of the header 121 and the flat tube 123 of the outdoor heat exchanger 12 of FIG.
  • the X direction is the width direction of the outdoor heat exchanger 12, and the extension direction of the header 121 of the outdoor heat exchanger 12, that is, the flatness of the flat tube 123, which is a flat heat transfer tube, is the thickness direction. It shows the second direction in which the tubes 123 are arranged in parallel. Further, the Y direction is the height direction of the outdoor heat exchanger 12, and indicates the first direction (longitudinal direction) of the flat pipe 123, that is, the direction in which the refrigerant flows.
  • the Z direction is the depth direction of the outdoor heat exchanger 12, and is the third direction intersecting the X direction, which is the extension direction of the header 121, that is, the lateral direction of the flat pipe 123, and is supplied to the flat pipe 123. It shows the ventilation direction of the air to be blown.
  • the AF indicated by the white arrow indicates the ventilation direction of the air supplied from the outdoor blower 15 (see FIG. 1) to the outdoor heat exchanger 12, and the RF indicated by the white arrow indicates the ventilation direction to the outdoor heat exchanger 12. Indicates the flow direction of the supplied refrigerant.
  • the outdoor heat exchanger 12 may simply refer to the upper header 121 of the upper and lower headers 121 and 122 as the header 121.
  • the outdoor heat exchanger 12 is, for example, a heat exchanger having a single-row structure, the upper header 121 and the lower header 122, and the upper and lower headers 121 and 122. It is provided with a plurality of flat tubes 123 arranged between the two.
  • the plurality of flat tubes 123 are heat transfer tubes having a multi-hole tube structure having a flat cross section, are provided extending in the first direction, that is, the Y direction, and are provided in the second direction, that is, between the upper and lower headers 121 and 122. They are arranged side by side at intervals in the X direction. Further, in the case of the first embodiment, the upper and lower headers 121 and 122 are formed in a hollow cylindrical shape, respectively, and are arranged vertically in the direction of gravity in pairs, extending in the second direction, that is, in the X direction. The upper and lower headers 121 and 122 communicate with each other and 123b and 123b at the adjacent ends 123a and 123a in the first direction (Y direction) of the plurality of flat tubes 123, respectively.
  • the connection strength between the flat pipe 123 and the headers 121 and 122 is ensured, and the quality of the brazing material used for the connection is deteriorated by flowing into the refrigerant flow path in the flat pipe 123.
  • the flat tube 123 is projected into the headers 121 and 122 for the purpose of preventing the above.
  • the heat exchanger is not limited to the outdoor heat exchanger 12 which does not have fins, but is a type in which fins are interposed between adjacent flat tubes 123, or a short direction of the flat tubes 123.
  • a fin-and-tube heat exchanger of a type or the like in which fins are provided so as to project from both sides in the Z direction may be used.
  • the refrigerating machine oil mixed with the gas refrigerant flows into the header 121, the refrigerating machine oil mixed with the gas refrigerant is separated. Then, a part of the separated refrigerating machine oil flows into the plurality of flat pipes 123 together with the gas refrigerant. A part of the refrigerating machine oil that has flowed into each flat tube 123 together with the gas refrigerant flows to the lower header 122 and is returned to the compressor 10 together with the liquefied liquid refrigerant. At this time, since the holes in the flat pipes 123 are fine, it is difficult for the refrigerating machine oil to flow into the flat pipes 123. Therefore, a part of the refrigerating machine oil 50 stays at the bottom of the header 121.
  • the upper header 121 is provided with a bypass pipe 124 (see FIG. 2) on the bottom side for discharging the refrigerating machine oil 50 accumulated at the bottom.
  • the bypass pipe 124 is connected to a pipe on the low pressure side in the refrigerant circuit 5. Therefore, the refrigerating machine oil 50 that stays at the bottom of the upper header 121 and is discharged from the bypass pipe 124 is guided to the low-pressure side pipe of the refrigerant circuit 5 via the bypass pipe 124 and returned to the compressor 10. Will be done.
  • the plurality of flat tubes 123 have a center P1 in the third direction (Z direction) intersecting the first direction and the second direction (Y direction and X direction shown in FIG. 2).
  • the header 121 is arranged at an eccentric position with respect to the center P2 of the cross section orthogonal to the second direction. That is, the connection points A1 and A2 between the flat tube 123 and the header 121 are arranged in the third direction (Z) when the center P1 of the flat tube 123 and the center P2 of the header 121 are coaxially arranged as in the conventional case. Compared with the case where it is located on the same axis in the direction), the positional relationship is inclined in the Z direction.
  • each flat pipe 123 with respect to the header 121 is preferably the windward side of the air ventilation direction AF in the Z direction.
  • a large amount of heat transfer area on the wind side is exposed in each flat tube 123, so that the heat transfer efficiency can be improved.
  • the outdoor heat exchanger 12 functions as an evaporator, it becomes difficult for water droplets generated by dehumidification or defrosting to flow on the lower header 122, which has an advantage of suppressing deterioration of heat exchanger performance. There is also.
  • a plurality of flat tubes 123 intersect the first direction (Y direction) and the second direction (X direction) in the third direction ().
  • the center P1 in the Z direction) is arranged at a position eccentric with respect to the center P2 in the cross section orthogonal to the second direction (X direction) of the header 121.
  • the header 121 is provided with a bypass pipe 124 on the bottom surface side for discharging the refrigerating machine oil 50 accumulated at the bottom portion.
  • a gap 121a is formed between the flat pipe 123 and the inner wall of the header 121, and the refrigerating machine oil 50 at the bottom flows through the gap 121a in the extension direction (X direction) of the header 121 and passes through the bypass pipe 124. Therefore, the retention of the refrigerating machine oil 50 can be reduced. Moreover, by returning the discharged refrigerating machine oil 50 to the compressor 10, it is possible to prevent the compressor 10 from stopping due to seizure or the like, and to suppress quality deterioration such as shortening the life of the compressor 10. it can. Thus, it is possible to realize an outdoor heat exchanger 12 and an air conditioner 1 using the outdoor heat exchanger 12 which can reduce the retention of the refrigerating machine oil 50 and improve the quality.
  • FIG. 4 shows an example of the outdoor heat exchanger 12 mounted on the air conditioner 1 according to the second embodiment, and partially shows the main parts of the header 121 and the flat tube 123 of the outdoor heat exchanger 12 in cross section. It is a schematic diagram.
  • the plurality of flat tubes 123 are connected to the header 121 in the first direction (Y).
  • a notch 123aa is formed at the end 123a in the direction).
  • the cutout portion 123aa is opened at the end portion 123a of each flat pipe 123 so as to extend in the ventilation direction AF of the air supplied from the outdoor blower 15 which is an external blower and is located at the bottom surface of the header 121. ing.
  • the cutout portion 123aa extends from the position P3 at the end portion 123a of each flat pipe 123 to the position P4 located at the connection point A3 with the header 121 of the air ventilation direction AF, and this extended portion extends. It is located on the bottom surface of the header 121 and is open. At this time, the cutout portion 123aa is preferably arranged on the leeward side in the air ventilation direction AF.
  • the heat transfer coefficient in the pipe may decrease significantly, so the notch 123aa is installed on the leeward side of the AF in the ventilation direction. As a result, it is possible to avoid a decrease in the heat transfer coefficient in the pipe due to an increase in the oil circulation rate and suppress a decrease in heat exchanger performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

第一方向に延びて設けられ、第一方向に直交する第二方向に互いに間隔をあけて並んで配置された複数の伝熱管と、第二方向に延びて設けられ、隣り合う複数の伝熱管の第一方向における端部同士を連通するヘッダと、を備える熱交換器であって、ヘッダは、底部に滞留した油を排出するためのバイパス管を底面側に備え、複数の伝熱管は、第一方向および第二方向と交差する第三方向の中心を、ヘッダの第二方向に直交する断面の中心に対して、偏心した位置に配置されている。これにより、冷凍機油の滞留を低減し、品質を改善できる。

Description

熱交換器およびそれを用いた冷凍サイクル装置
 本発明は、熱交換器およびそれを用いた冷凍サイクル装置に関する。
 冷凍サイクル装置である空気調和装置において室内機に搭載された凝縮器として機能する熱交換器が知られている。この熱交換器で凝縮された液冷媒は、膨張弁によって減圧され、ガス冷媒と液冷媒とが混在する気液二相状態となる。そして、気液二相状態の冷媒は、室外機に搭載された蒸発器として機能する熱交換器にて気液二相状態の冷媒のうち液冷媒が蒸発されて低圧のガス冷媒となる。この後、この熱交換器から送り出された低圧のガス冷媒は、室外機に搭載された圧縮機に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機から吐出する。以下、このサイクルが繰り返される(例えば、特許文献1参照)。
 このような空気調和装置、すなわち冷凍サイクル装置の冷媒回路には、冷媒と共に、圧縮機の摺動部などを潤滑する冷凍機油が混在した状態で循環される。例えば、熱交換器が凝縮器として動作する場合、上側のヘッダにガス冷媒と冷凍機油とが流入し、冷媒は相変化しながら伝熱管内を流れ、液冷媒として下側のヘッダへ流入する。
 ここで、従来の熱交換器では、とりわけ伝熱管が扁平形状の多穴管構造である場合、冷凍機油が混じった状態のガス冷媒がヘッダ内に流入すると、当該ガス冷媒に混在していた冷凍機油が分離される。そして、分離された冷凍機油は、ガス冷媒と共に伝熱管内へ流入する。このとき、伝熱管の穴が微細であるため、冷凍機油が伝熱管内へ流入し難く、ヘッダ内に滞留する問題があった。
 そのため、特許文献1に記載の熱交換器では、上側のヘッダ内に突出した伝熱管の突出長さよりも短い突出長さ形状とした配管を設けるようにした。これにより、上側のヘッダに設けた配管を介して、当該ヘッダ内の冷凍機油を下側のヘッダに戻し、上側のヘッダ内に冷凍機油が滞留するのを抑制していた。
特開2005-24188号公報
 しかしながら、特許文献1の熱交換器では、ヘッダ内に突出した隣り合う複数の伝熱管のうちの一部の間に、前述した配管が配置されている。したがって、配管が配置された両隣の伝熱管の間の領域に関しては、冷凍機油が配管から排出されるが、配管が配置されていない領域の隣り合う伝熱管の間では、冷凍機油が排出されることなく滞留する虞があった。
 そして、このように冷凍機油がヘッダ内に滞留したままの状態で稼働が続くと、冷凍機油が圧縮機へ戻らず、圧縮機内の冷凍機油が枯渇してしまうことが懸念される。よって、圧縮機が焼付きなどに起因して停止し、ひいては圧縮機の寿命が短くなるなどといった品質低下に繋がる虞があった。
 本発明は、上記課題を解決するためのものであり、冷凍機油の滞留を低減し、品質の改善が可能な熱交換器およびそれを用いた冷凍サイクル装置を提供することを目的とする。
 本発明に係る熱交換器は、第一方向に延びて設けられ、前記第一方向に直交する第二方向に互いに間隔をあけて並んで配置された複数の伝熱管と、前記第二方向に延びて設けられ、隣り合う前記複数の伝熱管の前記第一方向における端部同士を連通するヘッダと、を備える熱交換器であって、前記ヘッダは、底部に滞留した油を排出するためのバイパス管を底面側に備え、前記複数の伝熱管は、前記第一方向および前記第二方向と交差する第三方向の中心を、前記ヘッダの前記第二方向に直交する断面の中心に対して、偏心した位置に配置されている、ものである。
 また、本発明に係る熱交換器を用いた冷凍サイクル装置は、少なくとも圧縮機、凝縮器、膨張弁および蒸発器を有する冷媒回路を備え、前記凝縮器または前記蒸発器として上記熱交換器を搭載した、ものである。
 本発明によれば、ヘッダに対し、複数の伝熱管が、当該伝熱管の伸長方向である第一方向およびヘッダの伸長方向である第二方向と交差する第三方向の中心を、ヘッダの第二方向に直交する断面の中心に対して、偏心した位置に配置されている。また、ヘッダには、底部に滞留した油を排出するためのバイパス管が底面側に備えられている。これにより、伝熱管とヘッダの内壁との間に隙間が形成され、この隙間を介して底部の冷凍機油がヘッダの伸長方向に流れ、バイパス管を介して排出されるので、冷凍機油の滞留を低減できる。しかも、排出した冷凍機油を圧縮機へと戻すことで、焼付きなどに起因して圧縮機が停止することを回避でき、圧縮機の寿命が短くなるなどといった品質の低下を抑制できる。かくして、冷凍機油の滞留を低減し、品質の改善が可能な熱交換器およびそれを用いた冷凍サイクル装置を実現できる。
実施の形態1に係る空気調和装置の冷媒回路を示す模式図である。 実施の形態1に係る空気調和装置に搭載される室外熱交換器の一例を示す模式図である。 図2の室外熱交換器のヘッダおよび扁平管の要部を部分的に断面で示す模式図である。 実施の形態2に係る空気調和装置に搭載される室外熱交換器の一例を示し、室外熱交換器のヘッダおよび扁平管の要部を部分的に断面で示す模式図である。
 以下、図面に基づいて実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。また、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
<空気調和装置1の構成>
 図1を参照しながら、実施の形態1に係る熱交換器を適用した冷凍サイクル装置としての空気調和装置1について説明する。なお、本実施の形態1に係る熱交換器は、空気調和装置1の室外熱交換器12または室内熱交換器14の少なくとも一方として構成されている。図1は、実施の形態1に係る空気調和装置1の冷媒回路5を示す模式図である。
 図1に示すように、本実施の形態1に係る空気調和装置1は、冷媒を介して外気と室内の空気との間で熱を移動させることにより、冷房または暖房して室内の空気調和を行うものであり、室内機2と室外機3とを有している。
 空気調和装置1を流れる冷媒としては、例えば、R32冷媒、低GWP冷媒であるR290冷媒、前述のR32冷媒を主成分とする混合冷媒、または、R290冷媒を主成分とする混合冷媒等の種々の冷媒を適用できる。また、オレフィン系冷媒、プロパンまたはDME(ジメチルエーテル)等、R32冷媒またはR410A冷媒に対して、ガス密度の小さい冷媒は、能力当たりの冷媒流速が高くなるため、圧力損失低減による性能改善効果が大きい。なお、オレフィン系冷媒としては、HFO1234yf、もしくは、HFO1234ze(E)等が挙げられる。また、冷凍機油としては、アルキルベンゼン油系、エステル油系またはエーテル油系等が用いられる。
 空気調和装置1においては、室内機2と室外機3とが冷媒配管4、4a、4bを介して配管接続され、冷媒が循環する冷媒回路5を構成している。冷媒回路5には、圧縮機10、流路切替装置11、室外熱交換器12、膨張弁13および室内熱交換器14が設けられ、これらが冷媒配管4、4a、4bを介して接続されている。
 室外機3は、圧縮機10、流路切替装置11、室外熱交換器12および膨張弁13を有している。圧縮機10は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機10は、インバータ装置を備えていてもよい。インバータ装置を備えた場合、制御部6によって運転周波数を変化させて、圧縮機10の容量を変更することができる。なお、圧縮機10の容量とは、単位時間当たりに送り出す冷媒の量である。
 流路切替装置11は、例えば四方弁であり、冷媒流路の方向の切り換えが行われる装置である。空気調和装置1は、制御部6からの指示に基づいて、流路切替装置11を用いて冷媒の流れを切り換えることで、暖房運転または冷房運転を実現することができる。室外熱交換器12は、冷媒と室外空気との熱交換を行う。また、室外熱交換器12には、冷媒と室外空気との間の熱交換の効率を高めるために、室外送風機15が設けられている。室外送風機15には、インバータ装置が取り付けられていてもよい。この場合、インバータ装置は、室外送風機15の駆動源であるファンモーター16の運転周波数を変化させてファンの回転速度を変更する。なお、室外送風機15は、同様の効果が得られるものであればこれに限らず、例えば、ファンの種類はシロッコファンでもよいし、プラグファンでもよい。また、室外送風機15は押し込み方式でもよいし、引っぱり方式でもよい。
 ここで、室外熱交換器12は、暖房運転時において蒸発器として機能し、冷媒配管4b側から流入した低圧の冷媒と、室外空気と、の間で熱交換を行って冷媒を蒸発させて気化させ、冷媒配管4a側に流出させる。また、室外熱交換器12は、冷房運転時において凝縮器として機能し、冷媒配管4a側から流路切替装置11を介して流入した圧縮機10にて圧縮済の冷媒と、室外空気と、の間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管4b側に流出させる。なお、ここでは室外空気を外部流体として用いる場合を例に説明したが、外部流体は室外空気を含む気体に限らず、水を含む液体であってもよい。
 膨張弁13は、冷媒の流量を制御する絞り装置であり、膨張弁13の開度を変化させることで冷媒配管4を流れる冷媒の流量を調節することにより、冷媒の圧力を調整する。膨張弁13は、冷房運転時において、高圧の液状態の冷媒を低圧の気液二相状態の冷媒へと膨張させ減圧させる。なお、膨張弁13としてはこれに限らず、同様の効果が得られるものであれば、電子膨張弁またはキャピラリーチューブ等でもよい。例えば、膨張弁13が、電子式膨張弁で構成された場合は、制御部6の指示に基づいて開度調整が行われる。
 室内機2は、冷媒と室内空気との間で熱交換を行う室内熱交換器14と、室内熱交換器14が熱交換を行う空気の流れを調整する室内送風機17と、を有する。
 室内熱交換器14は、暖房運転時において凝縮器の働きをし、冷媒配管4a側から流入した冷媒と、室内空気と、の間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管4b側に流出させる。また、室内熱交換器14は、冷房運転時において蒸発器として機能し、冷媒配管4b側から流入した膨張弁13によって低圧状態にされた冷媒と、室内空気と、の間で熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、冷媒配管4a側に流出させる。なお、ここでは室内空気を外部流体として用いる場合を例に説明したが、外部流体は室内空気を含む気体に限らず、水を含む液体であってもよい。
 室内送風機17の運転速度は、ユーザーの設定により決定される。室内送風機17には、インバータ装置を取り付け、ファンモーター18の運転周波数を変化させてファンの回転速度を変更することが好ましい。なお、室内送風機17は、同様の効果が得られるものであればこれに限らず、例えば、ファンの種類はシロッコファンでもよいし、プラグファンでもよい。また、室内送風機17は押し込み方式でもよいし、引っぱり方式でもよい。
<空気調和装置1の冷房および暖房運転の動作例>
 次に、空気調和装置1の動作例として冷房運転の動作を説明する。圧縮機10によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置11を経由して、室外熱交換器12に流入する。室外熱交換器12に流入したガス冷媒は、室外送風機15により送風される外気との熱交換により凝縮し、低温の冷媒となって、室外熱交換器12から流出する。室外熱交換器12から流出した冷媒は、膨張弁13によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室内機2の室内熱交換器14に流入し、室内送風機17により送風される室内空気との熱交換により蒸発し、低温低圧のガス冷媒となって室内熱交換器14から流出する。このとき、冷媒に吸熱されて冷却された室内空気は、空調空気(吹出風)となって、室内機2から空調対象空間である室内に吹き出される。室内熱交換器14から流出したガス冷媒は、流路切替装置11を経由して圧縮機10に吸入され、再び圧縮される。空気調和装置1の冷房運転は、以上の動作が繰り返される(図1中、実線の矢印で示す)。
 次に、空気調和装置1の動作例として暖房運転の動作を説明する。圧縮機10によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置11を経由して、室内機2の室内熱交換器14に流入する。室内熱交換器14に流入したガス冷媒は、室内送風機17により送風される室内空気との熱交換により凝縮し、低温の冷媒となって、室内熱交換器14から流出する。このとき、ガス冷媒から熱を受け取り暖められた室内空気は、空調空気(吹出風)となって、室内機2から室内に吹き出される。室内熱交換器14から流出した冷媒は、膨張弁13によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室外機3の室外熱交換器12に流入し、室外送風機15により送風される外気との熱交換により蒸発し、低温低圧のガス冷媒となって室外熱交換器12から流出する。室外熱交換器12から流出したガス冷媒は、流路切替装置11を経由して圧縮機10に吸入され、再び圧縮される。空気調和装置1の暖房運転は、以上の動作が繰り返される(図1中、破線の矢印で示す)。
 上述した冷房運転および暖房運転の際、圧縮機10に冷媒が液状態で流入すると、液圧縮を起こし、圧縮機10の故障の原因となってしまう。そのため、冷房運転時の室外熱交換器12、または、暖房運転時の室内熱交換器14から流出する冷媒は、ガス冷媒(単相)となっていることが望ましい。
 ここで、蒸発器では、ファンから供給される空気と、蒸発器を構成している伝熱管の内部を流動する冷媒との間で熱交換が行われる際に空気中の水分が凝縮し、蒸発器の表面に水滴が生ずる。蒸発器の表面に生じた水滴は、フィンおよび伝熱管の表面を伝って下方に滴下し、ドレン水として蒸発器の下方にて排出される。
 また、室内熱交換器14は、低外気温状態となっている暖房運転時、蒸発器として機能するため、空気中の水分が室内熱交換器14に着霜することがある。そのため、空気調和装置1では、外気が一定温度(例えば、0℃)以下となったときに霜を除去するための「除霜運転」を行う。
 「除霜運転」とは、蒸発器として機能する室内熱交換器14に霜が付着するのを防ぐために、圧縮機10から室内熱交換器14にホットガス(高温高圧のガス冷媒)を供給する運転のことである。なお、除霜運転を、暖房運転の継続時間が所定値(例えば、30分)に達した場合に実行するようにしてもよい。また、除霜運転を、室内熱交換器14が設定温度(例えば、マイナス6℃)以下の場合に、暖房運転を行う前に実行するようにしてもよい。室内熱交換器14に付着した霜及び氷は、除霜運転時に室内熱交換器14に供給されるホットガスによって融解される。
 例えば、除霜運転時に圧縮機10から室内熱交換器14にホットガスを直接的に供給できるように、圧縮機10の吐出口と室内熱交換器14との間をバイパス冷媒配管(図示せず)で接続するようにしてもよい。また、圧縮機10から室内熱交換器14にホットガスを供給できるように、圧縮機10の吐出口を、流路切替装置11(例えば、四方弁)を介して室内熱交換器14に接続する構成としてもよい。
<室外熱交換器12について>
 次に、本実施の形態1における空気調和装置1に搭載される熱交換器である室外熱交換器12について説明する。なお、以下に説明する構成の熱交換器としては、室外熱交換器12に限らず、室内熱交換器14に適用してもよいし、これら両方に適用してもよい。図2は、実施の形態1に係る空気調和装置1に搭載される室外熱交換器12の一例を示す模式図である。図3は、図2の室外熱交換器12のヘッダ121および扁平管123の要部を部分的に断面で示す模式図である。
 なお、図2以降において、X方向は室外熱交換器12の幅方向であり、室外熱交換器12のヘッダ121の伸長方向、すなわち扁平形状の伝熱管である扁平管123において厚み方向となる扁平管123が並列される第二方向を示している。また、Y方向は室外熱交換器12の高さ方向であり、同扁平管123における伸長方向(長手方向)である第一方向、すなわち冷媒が流れる方向を示している。さらに、Z方向は室外熱交換器12の奥行方向であり、ヘッダ121の伸長方向であるX方向と交差する第三方向、すなわち扁平管123の短手方向であって、当該扁平管123に供給される空気の通風方向を示している。そして、白抜き矢印で示すAFは、室外送風機15(図1参照)から室外熱交換器12へと供給される空気の通風方向を表し、白抜き矢印で示すRFは、室外熱交換器12へと供給される冷媒の流通方向を表している。また、以下の説明において、室外熱交換器12は、上下のヘッダ121および122のうち、上側のヘッダ121を単にヘッダ121と称する場合もある。
 図2に示すように、本実施の形態1に係る室外熱交換器12は、例えば一列構造の熱交換器であり、上側のヘッダ121および下側のヘッダ122と、これら上下のヘッダ121および122の間に配置される、複数の扁平管123と、を備えている。
 複数の扁平管123は、断面が扁平形状の多穴管構造の伝熱管であり、第一方向、すなわちY方向に延びて設けられ、上下のヘッダ121および122の間において、第二方向、すなわちX方向に互いに間隔をあけて並んで配置されている。また、本実施の形態1の場合、上下のヘッダ121および122は、それぞれ中空円筒状に形成され、重力方向の上下に一対で、第二方向、すなわちX方向に伸びて配置されている。そして、上下のヘッダ121および122は、それぞれ、複数の扁平管123における隣り合う第一方向(Y方向)の端部123aと123a同士、および、123bと123b同士を連通する。
 ここで、上下のヘッダ121および122では、一般に、扁平管123とヘッダ121および122との接続強度の確保と、接続に用いるロウ材が扁平管123内の冷媒流路へ流入することによる品質低下の防止と、を目的に扁平管123をヘッダ121および122内へ突き出した構造となっている。
 なお、熱交換器としては、フィンを備えていないタイプの室外熱交換器12に限らず、隣り合う扁平管123の間にフィンが介在されたタイプ、または、扁平管123の短手方向であるZ方向の両側部からフィンが突出して設けられたタイプ等のフィンアンドチューブ型熱交換器であってもよい。
 図3に示すように、ヘッダ121内に冷凍機油が混じった状態のガス冷媒が流入すると、当該ガス冷媒に混在していた冷凍機油が分離される。そして、分離された冷凍機油の一部は、ガス冷媒と共に複数の扁平管123内へそれぞれ流入する。ガス冷媒と共に各扁平管123内に流入した一部の冷凍機油は、下側のヘッダ122へ流れ、液化された液冷媒と共に圧縮機10へと返還される。このとき、各扁平管123の穴が微細であるため、冷凍機油は各扁平管123内へ流入し難い。よって、ヘッダ121の底部に一部の冷凍機油50が滞留する。
 そのため、上側のヘッダ121は、底部に滞留した冷凍機油50を排出するためのバイパス管124(図2参照)を底面側に備えている。このバイパス管124は、冷媒回路5における低圧側の配管に接続されている。よって、上側のヘッダ121の底部に滞留し、バイパス管124から排出される冷凍機油50は、当該バイパス管124を介して冷媒回路5の低圧側の配管へと導かれ、圧縮機10へと返還される。
 ここで、本実施の形態1の場合、複数の扁平管123は、第一方向および第二方向(図2に示すY方向およびX方向)と交差する第三方向(Z方向)の中心P1を、ヘッダ121の第二方向に直交する断面の中心P2に対して、偏心した位置に配置されている。つまり、各扁平管123とヘッダ121との接続点A1およびA2は、従来のような扁平管123の中心P1とヘッダ121の中心P2とが同軸上に配置される際に、第三方向(Z方向)の同軸上に位置する場合と比較して、当該Z方向に傾斜した位置関係となる。そして、ヘッダ121に対して、各扁平管123がZ方向にずれた位置に配置されることによって、ヘッダ121内に各扁平管123の側部との間の空間としての隙間121aが形成される。これにより、ヘッダ121の底部に滞留した冷凍機油50が、ヘッダ121の伸長方向であるX方向(図2参照)に流動し易くなり、バイパス管124への流入効率を向上させることができる。
 このとき、ヘッダ121に対する各扁平管123の偏心方向は、Z方向における空気の通風方向AFの風上側が好ましい。これにより、各扁平管123において風上側の伝熱面積が多く露出するため、伝熱効率を向上させることができる。また、例えば、室外熱交換器12が蒸発器として機能する場合、除湿または除霜によって生じた水滴が下側のヘッダ122上に流れ難くなり、熱交換器性能の低下を抑制できる効果を奏する利点もある。
<実施の形態1の効果>
 以上、説明したように、本実施の形態1によれば、ヘッダ121に対し、複数の扁平管123が、第一方向(Y方向)および第二方向(X方向)と交差する第三方向(Z方向)の中心P1を、ヘッダ121の第二方向(X方向)に直交する断面の中心P2に対して、偏心した位置に配置されている。また、ヘッダ121には、底部に滞留した冷凍機油50を排出するためのバイパス管124が底面側に備えられている。これにより、扁平管123とヘッダ121の内壁との間に隙間121aが形成され、この隙間121aを介して底部の冷凍機油50がヘッダ121の伸長方向(X方向)に流れ、バイパス管124を介して排出されるので、冷凍機油50の滞留を低減できる。しかも、排出した冷凍機油50を圧縮機10へと戻すことで、焼付きなどに起因して圧縮機10が停止することを回避でき、圧縮機10の寿命が短くなるなどといった品質の低下を抑制できる。かくして、冷凍機油50の滞留を低減し、品質の改善が可能な室外熱交換器12およびそれを用いた空気調和装置1を実現できる。
実施の形態2.
 次に、実施の形態2に係る室外熱交換器12およびそれを用いた空気調和装置1について説明する。図4は、実施の形態2に係る空気調和装置1に搭載される室外熱交換器12の一例を示し、室外熱交換器12のヘッダ121および扁平管123の要部を部分的に断面で示す模式図である。
 図3との対応部分に同一符号を付した図4に示すように、本実施の形態2の室外熱交換器12において、複数の扁平管123は、ヘッダ121と接続された第一方向(Y方向)の端部123aに、切欠部123aaが形成されている。具体的に、切欠部123aaは、各扁平管123の端部123aが、外部の送風機である室外送風機15から供給される空気の通風方向AFに延長し、ヘッダ121の底面に位置して開口されている。
 つまり、切欠部123aaは、各扁平管123の端部123aにおける側部が位置P3から、空気の通風方向AFのヘッダ121との接続点A3に位置する位置P4まで延長し、この延長した部位はヘッダ121の底面に位置して開口されている。このとき、切欠部123aaは、空気の通風方向AFにおける風下側に配置されることが好ましい。
<実施の形態2の効果>
 以上、説明したように、本実施の形態2では、各扁平管123の端部123aに切欠部123aaを設けることで、冷凍機油50がバイパス管124まで流れ易くなる。また、各扁平管123は、切欠部123aaが他の端部123aに比べて第一方向(Y方向)に短く形成されている分、管内圧力損失が低くなる。よって、上下のヘッダ121および122間の圧力差に応じて流量が決まるので、冷凍機油50が切欠部123aaの穴へ流入し易くなる。ただし、油循環率が増加するので管内熱伝達率は大幅に低下する虞があるため、切欠部123aaを通風方向AFの風下側に設置する。これにより、油循環率の増加による管内熱伝達率の低下を回避し、熱交換器性能低下を抑制できる。
 1 空気調和装置、2 室内機、3 室外機、4 冷媒配管、4a 冷媒配管、4b 冷媒配管、5 冷媒回路、6 制御部、10 圧縮機、11 流路切替装置、12 室外熱交換器、13 膨張弁、14 室内熱交換器、15 室外送風機、16 ファンモーター、17 室内送風機、18 ファンモーター、50 冷凍機油、121 上側のヘッダ、121a 隙間、122 下側のヘッダ、123 扁平管、123a 端部、123aa 切欠部、124 バイパス管、A1 接続点、A2 接続点、A3 接続点、A4 接続点、AF 空気の通風方向、RF 冷媒の流通方向。

Claims (5)

  1.  第一方向に延びて設けられ、前記第一方向に直交する第二方向に互いに間隔をあけて並んで配置された複数の伝熱管と、前記第二方向に延びて設けられ、隣り合う前記複数の伝熱管の前記第一方向における端部同士を連通するヘッダと、を備える熱交換器であって、
     前記ヘッダは、底部に滞留した油を排出するためのバイパス管を底面側に備え、
     前記複数の伝熱管は、
     前記第一方向および前記第二方向と交差する第三方向の中心を、前記ヘッダの前記第二方向に直交する断面の中心に対して、偏心した位置に配置されている、熱交換器。
  2.  前記複数の伝熱管は、
     前記ヘッダに対して、外部の送風機から供給される空気の通風方向における風上側に偏心した位置に配置される、請求項1に記載の熱交換器。
  3.  前記複数の伝熱管は、
     前記ヘッダと接続された前記第一方向の端部に、外部の送風機から供給される空気の通風方向に延長し、前記ヘッダの底面に位置して開口された切欠部が形成されている、請求項1または2に記載の熱交換器。
  4.  前記切欠部は、
     前記空気の通風方向における風下側に配置される、請求項3に記載の熱交換器。
  5.  少なくとも圧縮機、凝縮器、膨張弁および蒸発器を有する冷媒回路を備え、前記凝縮器または前記蒸発器として請求項1~4のいずれか一項に記載の熱交換器を搭載した、冷凍サイクル装置。
PCT/JP2019/020208 2019-05-22 2019-05-22 熱交換器およびそれを用いた冷凍サイクル装置 WO2020235030A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021519964A JPWO2020235030A1 (ja) 2019-05-22 2019-05-22
PCT/JP2019/020208 WO2020235030A1 (ja) 2019-05-22 2019-05-22 熱交換器およびそれを用いた冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020208 WO2020235030A1 (ja) 2019-05-22 2019-05-22 熱交換器およびそれを用いた冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020235030A1 true WO2020235030A1 (ja) 2020-11-26

Family

ID=73459345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020208 WO2020235030A1 (ja) 2019-05-22 2019-05-22 熱交換器およびそれを用いた冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JPWO2020235030A1 (ja)
WO (1) WO2020235030A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042289A1 (ja) * 2021-09-15 2023-03-23 三菱電機株式会社 冷凍サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304378A (ja) * 1999-04-23 2000-11-02 Mitsubishi Heavy Ind Ltd コンデンサ、冷媒系及び車両用空気調和装置
JP2007057176A (ja) * 2005-08-25 2007-03-08 Calsonic Kansei Corp 熱交換器
JP2015017738A (ja) * 2013-07-10 2015-01-29 日立アプライアンス株式会社 熱交換器
JP2017190896A (ja) * 2016-04-12 2017-10-19 株式会社デンソー 熱交換器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280467A (ja) * 1994-04-01 1995-10-27 Nippon Light Metal Co Ltd 熱交換器
JP2005024188A (ja) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd 熱交換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304378A (ja) * 1999-04-23 2000-11-02 Mitsubishi Heavy Ind Ltd コンデンサ、冷媒系及び車両用空気調和装置
JP2007057176A (ja) * 2005-08-25 2007-03-08 Calsonic Kansei Corp 熱交換器
JP2015017738A (ja) * 2013-07-10 2015-01-29 日立アプライアンス株式会社 熱交換器
JP2017190896A (ja) * 2016-04-12 2017-10-19 株式会社デンソー 熱交換器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042289A1 (ja) * 2021-09-15 2023-03-23 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2020235030A1 (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
US10386081B2 (en) Air-conditioning device
WO2018047416A1 (ja) 空気調和装置
US9958194B2 (en) Refrigeration cycle apparatus with a heating unit for melting frost occurring in a heat exchanger
CN109312971B (zh) 制冷循环装置
JP2010139097A (ja) 空気調和機
WO2021065913A1 (ja) 蒸発器、およびそれを備えた冷凍サイクル装置
US10914499B2 (en) Outdoor unit and refrigeration cycle apparatus including the same
JP7184897B2 (ja) 冷凍サイクル装置
WO2020235030A1 (ja) 熱交換器およびそれを用いた冷凍サイクル装置
JP2013155961A (ja) 熱交換器及びそれを備えた空気調和機
WO2018207321A1 (ja) 熱交換器及び冷凍サイクル装置
JP4608303B2 (ja) 蒸気圧縮式ヒートポンプ
WO2020202492A1 (ja) 熱交換器及び空気調和機
WO2020245982A1 (ja) 熱交換器及び冷凍サイクル装置
WO2021065914A1 (ja) 冷凍装置
JP7130116B2 (ja) 空気調和装置
WO2020165970A1 (ja) 空気調和用熱交換器
JP2016148483A (ja) 冷凍装置
WO2023281655A1 (ja) 熱交換器および冷凍サイクル装置
JPWO2019003385A1 (ja) 室外ユニットおよび冷凍サイクル装置
WO2020110301A1 (ja) 冷凍サイクル装置
WO2022102077A1 (ja) 冷凍サイクル装置
WO2017072866A1 (ja) 空気調和装置及び空気調和装置の室外機
WO2023188421A1 (ja) 室外機およびそれを備えた空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519964

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929454

Country of ref document: EP

Kind code of ref document: A1