CN1553524A - 氮化物半导体元件 - Google Patents

氮化物半导体元件 Download PDF

Info

Publication number
CN1553524A
CN1553524A CNA2004100633513A CN200410063351A CN1553524A CN 1553524 A CN1553524 A CN 1553524A CN A2004100633513 A CNA2004100633513 A CN A2004100633513A CN 200410063351 A CN200410063351 A CN 200410063351A CN 1553524 A CN1553524 A CN 1553524A
Authority
CN
China
Prior art keywords
layer
nitride semiconductor
type impurity
type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100633513A
Other languages
English (en)
Other versions
CN100380693C (zh
Inventor
G
谷沢公二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Publication of CN1553524A publication Critical patent/CN1553524A/zh
Application granted granted Critical
Publication of CN100380693C publication Critical patent/CN100380693C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3086Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3086Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer
    • H01S5/309Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer doping of barrier layers that confine charge carriers in the laser structure, e.g. the barriers in a quantum well structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种氮化物半导体元件,在n型氮化物半导体层和P型氮化物半导体层之间、具有由量子阱层和势垒层叠层而成、而且含有n型杂质的有源层,其特征在于:所述有源层叠层中至少与所述n型氮化物半导体层连接一侧的势垒层及/或量子阱层是含n型杂质的层,并且所述有源层中的n型杂质的浓度是所述n型氮化物半导体层一侧的浓度比所述p型氮化物半导体层一侧的浓度大。

Description

氮化物半导体元件
技术领域
本发明涉及使用在发光二极管(LED)、激光二极管(LD)等发光元件,太阳能电池、光传感器等受光元件或者晶体管、功率器件等电子器件的氮化物半导体元件,特别是发光峰值波长在450~540nm范围的量子阱结构发光元件的改良,以达到降低驱动电压或提高发光输出的目的。
背景技术
氮化物半导体作为高亮度纯绿色发光LED、蓝光LED已经用于全彩色LED显示器、交通信号灯、图像扫描器光源等各种光源中。这些LED元件基本上具有在蓝宝石衬底上顺序叠层生长的由GaN组成的缓冲区、由Si掺杂GaN组成的n型接触层、单量子阱结构(SQW:Single-Quantum-well)InGaN或多量子阱结构(MQW:Multi-Quantum-well)的有源层、由Mg掺杂A1GaN组成的P型包层、由Mg掺杂GaN组成的P型接触层而成的结构,是在20mA下发光波长为470nm的蓝色LED,有源层是单量子阱结构时是2.5mW、外部量子效率5%,有源层是多量子阱结构时是5mW、外部量子效率9.1%,发光波长为520nm的绿色LED情况下,单量子阱结构时是2.2mW、外量子效率4.3%,多量子阱结构时是3mW、外量子效率6.3%,显示出非常优秀的特性。
特别是由于多量子阱结构具有由多个微小能带组成的结构、效率高、即使在小电流下也能发光,因此,期待它能比单量子阱结构在更高发光输出等元件特性方面进一步提高。
作为利用这种多量子阱结构有源层的LED元件,如在特开平10-135514号公报所展示的那样,为获得良好的发光效率和发光输出,将由未掺杂GaN组成的势垒层和未掺杂InGaN组成的量子阱层叠层生长构成的多量子阱发光层,用具有比发光层的势垒层禁带宽度更宽的包层将发光层挟在中间形成了氮化物半导体元件。另外,在EP0372754A2中公开了一种发光元件,在n型氮化物半导体层和p型氮化物半导体层之间设有由量子阱和势垒层的有源层,并且该量子阱层由In1-yGayN(0<y<1)组成。
特别是在蓝绿系列发光元件中,为提高发光输出、就增加多量子阱结构的层数,那样就产生正向电压Vf升高、发光效率降低的问题。
发明内容
本发明的目的是:提供一种采用量子阱结构的有源层、即使层数很多正向电压也不上升的氮化物半导体元件,特别是能提供提高发光效率的高发光输出的氮化物半导体元件。
发明人在对量子阱结构氮化物半导体元件、特别是对多量子阱结构氮化物半导体发光元件发光现象的锐意研讨中发现:有源层中电子与空穴的复合仅发生在接近P型半导体层一侧的量子阱层中,而在接近n型半导体层的量子阱层处电子与空穴复合的几率很小,因而,并未充分发挥其作为发光层的功能,如果在难于发挥发光层功能的量子阱层一侧掺杂n型杂质、提高载流子浓度,就能降低正向电压、提高发光效率。
在有关知识的基础上、在n型氮化物半导体层和P型氮化物半导体层之间具有由量子阱层和势垒层叠层生长而成、包含n型杂质有源层的氮化物半导体元件,其特征是:本发明提出了在所述有源层的叠层中、至少与所述n型氮化物半导体层连接一侧的势垒层以及/或者量子阱层是包含n型杂质的层的氮化物半导体元件。
本发明中,由于这种n型杂质、有源层被补充从n型层的施主的供给、得到发光输出高的氮化半导体元件。就我们的知识所见,直到满足后述(1)式条件的层为止、因n型杂质掺杂就能够获得高发光输出的氮化物半导体元件。含n型杂质层超过式(1)的范围时、该层及在其上叠层生长层的结晶性变坏、发光输出也变坏。
因此、本发明中提供的氮化物半导体元件、所述有源层是多量子阱结构、当所述有源层的叠层总数为i层时、从叠层中满足下式的与n型氮化物半导体层接触一侧数起到j层为止的任一层中含有n型杂质。
j=i/6+2(但是、i≥4、j是舍掉小数的整数)      (1)
此外,在本发明中所谓的含n型杂质层基本意思是有意识的掺杂n型杂质的层,n型杂质浓度最好是5×1016~2×1018/cm3。因相邻层或别的层中所含n型杂质的扩散而含有n型杂质的情况、因原料或者装置污染混入杂质的层不是有意识的掺杂,但是当含有的n型杂质在所述浓度范围的情况时、也包含在含n型杂层中。
为使与所述有源层叠层中所述P型氮化物半导体层连接一侧的势垒层以及/或者量子阱层发挥作为通常的有源层的功能、最好是不含n型杂质的层。在与所述有意识掺杂浓度区域的关系中、不含n型杂质的意思是不足5×1016/cm3的浓度范围。
当与本发明相关的氮化物半导体元件的有源层是量子阱层的两侧被势垒层挟持的单量子阱结构情况时,最好与所述n型氮化物半导体层连接一侧的势垒层含n型杂质、而与所述P型氮化物半导体层连接一侧的势垒层不含n型杂质。
另一方面,当与本发明相关的氮化物半导体元件的有源层是量子阱层与势垒层交互叠层而成的多量子阱结构情况时、与所述n型氮化物半导体层连接一侧的势垒层以及/或者量子阱层最好含有n型杂质、而与所述P型氮化物半导体层连接一侧的势垒层以及/或者量子阱层不含n型杂质。
特别是,所述有源层的叠层总数是大于9层小于15层的情况时、从与含n型杂质的n型氮化物半导体层连接一侧数起小于4层、最好是小于3层。
还有,发光或者受光的峰值波长是450~540nm、最好是490~510nm的氮化物半导体元件中、所述有源层的量子阱层由InXGa1-XN(但是、0<X<1)构成,1n克分子(量)比比较大,量子阱层的结晶性降低、各层的发光效率降低。即使增加层数、由于本发明增加下层的载流子浓度就可以不增加正向电压而使整体的发光效率提高。
本发明中,所述n型杂质至少是Si、Ge、Sn中的一种,最好是Si。
本发明中,所述有源层中含有的n型杂质的浓度最好小于在n型氮化物半导体层中有意识掺杂的n型杂质浓度,即使所述有源层中含有的n型杂质的浓度一样,随着与n型氮化物半导体层连接一侧逐渐变远也可以不断减少。
通常,虽然所述有源层中含有的n型杂质浓度被调整在5×1016~2×1018/cm3,也可以调整所述有源层的势垒层中含有的n型杂质的浓度以及量子阱层中含有的n型杂质的浓度二者中的一方或双方。在双方都含有n型杂质的情况下,最好使所述有源层的量子阱层中含有的n型杂质浓度小于势垒层中含有的n型杂质的浓度。因此,一方面所述有源层的势垒层中含有的n型杂质的浓度是5×1016~2×1018/cm3,在量子阱层中含有的n型杂质的浓度有时不足5×1016cm3,比所述有源层的势垒层中包含的n型杂质的浓度还低。
在本发明中,与所述有源层的所述n型氮化物半导体层连接一侧的含n型杂质的势垒层或量子阱层的膜厚比与所述P型氮化物半导体层连接一侧的不含n型杂质的势垒层或者量子阱层膜厚厚时、构成适于高输出用氮化物半导体元件的结构。另一方面,与所述有源层中所述n型氮化半导体层连接一侧的含n型杂质的势垒层或者量子阱层的膜厚比与所述P型氮化物半导体层连接一侧不含n型杂质的势垒层或者量子阱层膜厚薄时、成为能在更低驱动电压下工作的理想的氮化物半导体元件。
本发明以特别适用于蓝绿系列多量子阱结构发光元件而获得显著的效果,既适用于具有多量子阱结构的发光元件又能减少正向电压。因此,本发明也提供在n型氮化物半导体层与P型氮化物半导体层之间具有由量子阱层和势垒层叠层生长而成的有源层、所述有源层中的量子阱层由InXGa1-XN(但是、0<x<1)构成,它是发光峰值波长在470~530nm的发光元件、所述有源层的叠层总数大于9层小于13层、从与n型氮化物半导体层连接一侧开始数起3层以下的层中含有从Si、Ge、Sn组成的群中选出的n型杂质5×1016~2×1018/cm3的发光元件。
本发明的最佳实施方式中,当与所述有源层中的所述n型氮化物半导体层连接一侧的含n型杂质的势垒层或者量子阱层的膜厚比与所述P型氮化物半导体层连接一侧的不含n型杂质的势垒层或者量子阱层的膜厚大时,成为高输出用发光元件,而当与所述有源层中的所述n型氮化物半导体层连接一侧的含n型杂质的势垒层或者量子阱层的膜厚比与所述P型氮化物半导体层连接一侧的不含n型杂质的势垒层或者量子阱层的膜厚小时,就成为能在低驱动电压下工作的发光元件。
本发明的最佳实施方式中,所述n型杂质用的是Si,所述有源层的量子阱层由InXGa1-XN(但是0<x<1)构成,最适用于发光峰值波长在490~510nm范围的发光元件。
所述有源层的势垒层最好由InyGa1-yN(但是、0≤y<1、y<x)或者AlGaN化合物半导体构成,具体的说能提供InGaN/GaN、InGaN/InGaN或者InGaN/AlGaN的组合。
最佳实施方式中,所述有源层由InxGa1-xN(但是、0<x<1)/InyGa1-yN(但是、0≤y<1,y<x)或者AlGaN的多量子阱层组成,形成在n型多层膜上,所述多层膜作为由不掺杂n型杂质的InZGa1-ZN(但是、0<z<1)/GaN叠层或者AlWGa1-WN/GaN(但是、0<w<1)叠层组成的缓冲超晶格层形成能提高所述有源层的结晶性。希望在多层膜和有源层上同时制作GaN的情况下,所述缓冲超晶格GaN层的厚度小于70,所述有源层的势垒层InyGa1-yN(但是、0≤y<1,y<x)的厚度大于70,因为GaN层的膜厚从小的区域变化向大的区域,能够区分缓冲超晶格区域和有源区域。
另一方面,所述有源层也可以形成的n型包层上,这种情况下、n型包层最好由多层膜构成,含有n型杂质、能够由比所述有源层的量子阱层禁带宽度能量大的InZGa1-ZN(但是、0<z<1,z<y)层或者AlWGa1-WN(但是0<w<1)层和GaN层的叠层形成。n型包层由多层膜形成时、所述有源层区域能够特别的用n型杂质浓度识别。也就是说,这是因为当所述有源层及n型包层中所含杂质是Si时,一方面所述有源层叠层中含有的Si浓度是5×1016~2×1018/cm3,而在n型包层的叠层中含有的Si浓度大于5×1017/cm3,而且比所述有源层的Si浓度还要多。
附图说明
图1是显示本发明一种实施方式的LED元件结构的模式断面图。
实施本发明的最佳方式
本申请以1999年6月7日提出的平成11年特许愿159482号为基础,构成本申请的内容。
以下,用图1所示的显示本发明一种实施方式的氮化物半导体元件结构的氮化物半导体元件模式断面图详细说明本发明。
图1示出在衬底1上顺序叠层生长缓冲层2、未掺杂GaN层3、由Si掺杂的GaN组成的n型接触层4、n型第1多层膜5、n型第2多层膜6、由InGaN/GaN组成的多量子阱结构有源层7、p型多层膜8,由Mg掺杂GaN组成的P型接触层9、由此形成的氮化物半导体元件。构成所述n型多层膜6及P型多层膜8的各自的氮化物半导体的组成、以及/或者层数因n型与P型而不同。
在本发明实施方式中,有源层采用顺序叠层生长阱层和势垒层的多层膜结构多量子阱结构,它的最小叠层结构是由1个势垒层和设在势垒层两侧的两个阱层组成的三层结构或者由1个阱层和设在它两侧的两个势垒层组成的3层结构。在多量子阱结构中、两侧的两个最外层分别由阱层或者势垒层构成,也可以是一方的最外层是阱层而另一方的最外层由势垒层构成。还有,多量子阱结构在P层一侧用势垒层终结也可以、用阱层终结也可以。
在这种多量子阱结构的有源层中,虽然阱层以及势垒层能够用含In和Ga的氮化物半导体(最好是InGaN)形成二者,也可以用含In和Ga的氮化物半导体(最好是InGaN)、GaN形成阱层,用AIN、GaN形成势垒层。例如,由多量子阱结构组成的有源层的阱层,应用至少含In的氮化物半导体,最好采用InXGa1-XN(0<X<1)。另一方面,势垒层选用禁带宽度能量比阱层大的氮化物半导体,最好采用InyGa1-yN(0≤Y<1,X>Y)或者AlZGa1-ZN(0<Z<0.5)。
有源层中包含的n型杂质能够采用Si、Ge、Sn、S、O、Ti、Zr等IV族或者VI族元素,理想的是采用Si、Ge、Sn、进一步说最理想的是用Si。
本发明中有源层中的n型杂质浓度n型层一侧比P型一侧大、更理想的是:从与n型氮化物半导体连接的层数起到满足所述(1)式的层为止都含有n型杂质。所谓的「n型杂质浓度n型层一侧比P型层一侧大」举例来说是指:如果有源层是阱层与势垒层交互叠层生长由合计11层组成的多量子阱的情况,是说在n层一侧的6层内含n型杂质、P型层一侧的5层内不含n型杂质的情况或者n层侧的6层内仅阱层含n型杂质,如果n层一侧n型杂质含量多的话,这个层数和含n型杂质的层数也可以改变。
本发明中、有源层的总膜厚没有特别的限制,阱层和势垒层叠层形成的总膜厚具体说是500~5000埃,最好是1000~3000埃。有源层总膜厚如果是所述范围内、从发光输出以及有源层晶体生长所需时间看是理想的。
构成有源层多量子阱结构的单一势垒层的膜厚是70~500埃,理想的是100~300埃。如果势垒层单一层膜厚是所述范围的话,能提高光电转换效率、降低Vf、减小漏电流、比较理想。
还有,有源层中阱层的单一膜厚小于100埃、理想的是70埃,更理想的是小于50埃。阱层的单一膜厚的下限没有特别限制,理想的是大于10埃。阱层的单一膜厚如果是在所述范围,从提高发光输出以及减少发光光谱半高宽看是理想的。
在有源层中包含的n型杂质浓度小于n型接触层中掺杂的Si的掺杂量,理想的是在5×1016cm3~1×1019/cm3、更理想的是5×1016cm3~5×1018/cm3,最理想的是在5×1016cm3~2×1018/cm3范围内调整。如果n型杂质的浓度是在所述范围内时,光电转换效率不降低、看不到I-V特性中漏电流的增加、Vf能降低是理想的。
还有、本发明中,作为有源层以外的器件结构没有特别的限制,可以用各种层结构。作为器件结构的具体实施方式可以举出下面实施例中所述的器件结构。还有、电极等也没有特别限定,可以用各种电极。
实施例
下面示出本发明一种实施方式的实施例。但是、本发明并不仅限于此。
[实施例1]
以图1为基础说明实施例1。
(衬底1)
将蓝宝石(C面)衬底1放置到MOVPE的反应容器内,通入氢气,使衬底温度升温到1050℃,进行衬底的清洗。此外,衬底1也可以采用R面或A面为主面的蓝宝石、尖晶石(MgAl2O4)那样的绝缘性衬底,或者SiC(包含6H、4H、3C)、Si、ZnO、GaAs、GaN等半导体衬底。
(缓冲层2)
接着,将温度下降到510℃,载运气体用氢气、原料气体用氨和TMG(三甲基镓)、在衬底1上生长膜厚约200埃的由GaN组成的缓冲层2。此外,在这样低温下生长的第1缓冲层2可以因衬底的种类、生长的方法而省略。还有、该缓冲层也可以使用Al比例较小的AlGaN。
(第1未掺杂GaN层3)
生长缓冲层2以后,仅仅停止TMG、将温度上升到1050℃、温度到1050℃之后,同样用原料气体TMG、氨气、生长膜厚1μm的未掺杂GaN层3。
(n型接触层4)
接着在1050℃下,同样的原料气体用TMG、氨气,掺杂气体用硅烷、生长膜厚2.165μm的掺杂Si 3×1019/cm3的GaN组成的n型接触层。
(n型第1多层膜层5)
其次,仅仅停止硅烷气体、在1050℃下,用TMG和氨气,生长膜厚3000埃的由未掺杂GaN组成的下层5a,接着在同样温度下追加硅烷气体、生长膜厚300埃的掺杂Si 4.5×1018/cm3 GaN组成的中间层5b,接着仅仅停止硅烷气体、在同样温度下、生长膜厚50埃的未掺杂GaN上层5c,生长3层总膜厚为3350埃的n型第1多层膜层5。
(n型第2多层膜6)
其次,在同样的温度下,生长40埃由未掺杂GaN组成的第2氮化物半导体层,再将将温度定为800℃、用TMG、TMI、氨生长20埃由未掺杂In0.13Ga0.87N组成的第1氮化物半导体层。而且、反复进行这些操作、以第2+第1的顺序交互叠层生长各10层、最后生长40埃由GaN组成的第2氮化物半导体层,这样生长由超晶格结构多层膜构成的640埃膜厚的n型第2多层膜6。
(有源层7)
再次,用TMG和氨生长由未掺杂GaN组成的膜厚200埃的势垒层,接着将温度定于800℃、用TMG、TMI、氨和硅烷气体生长Si掺杂5×1017/cm3、膜厚30埃由In0.3Ga0.7N组成的阱层。进一步、生长由未掺杂GaN组成的势垒层200埃和由Si掺杂5×1017/cm3的In0.3Ga0.7N组成的阱层30埃。而且以势垒+阱+势垒+阱……+势垒的顺序交互叠层生长未掺杂势垒层16层和阱层15层、阱层中仅仅最初的3层掺杂了Si、剩下的12层未掺杂,生长成总数31层、总厚度3650埃的由多量子阱结构组成的有源层7。
(P型多层膜8)
再次、在温度1050℃下,用TMG、TMA、氨、CP2Mg(CyclopentadienylMagnesium)生长膜厚为40埃、掺杂Mg 5×1019/cm3的由Al0.2Ga0.8N组成的第3氮化物半导体层,接着将温度定为800℃,用TMG、TMI、氨、CP2Mg生长膜厚为25埃、Mg掺杂为5×1019/cm3的由In0.02Ga0.98N组成的第4氮化物半导体层。而且反复进行这些操作、以第3+第4的顺序交互叠层生长各5层、最后生长膜厚40埃的第3氮化物半导体层,这样生长由超晶格结构多层膜构成的膜厚为365埃的P型多层膜层8。
(P型接触层9)
接着,在1050℃下、用TMG、氨、CP2Mg生长膜厚为700埃、由镁掺杂1×1020/cm3的P型GaN组成的P型接触层9。
反应结束后、将温度降到室温,进一步在氮气氛中、将晶片在反应容器内在700℃下进行退火,使P型层进一步低电阻化。
退火后、将晶片从反容器中取出,在最上层的P型接触层9的表面上形成规定形状的掩膜、用RIE(反应离子刻蚀)装置从P型接触层一侧开始进行刻蚀、如图1所示,使n型接触层4的表面露出。
刻蚀后、在最上层的P型接触层的几乎整个面上形成膜厚200埃的含Ni和Au的透光性P电极10,在刻蚀后露出的n型接触层4表面上形成含W和Al的n电极11,从而形成LED元件。
该LED元件在正向电流20mA下,显示470nm的蓝色发光,Vf3.4V、发光输出6.5mW。
[实施例2]
在实施例1中、有源层7按下述方法制作、其他相同,这样制作LED元件。
(有源层7)
用TMG、氨生长膜厚为200埃的、由未掺杂GaN组成的势垒层,接着在800℃温度下,进一步用TMG、TMI、氨,硅烷气体生长膜厚为30埃、Si掺杂为5×1017/cm3的由In0.3Ga0.7N组成的阱层。进一步、生长200埃由未掺杂GaN组成的势垒层,由30埃Si掺杂5×1017/cm3的In0.3Ga0.7N组成的阱层。而且按势垒+阱+势垒+阱……+势垒的顺序交互叠层生长未掺的势垒层11层和阱层10层,阱层的最初2层掺杂Si、剩余8层未掺杂、总数21层、总膜厚2500埃的多量子阱结构,由该多量子阱结构组成有源层7。
该LED元件在正向电流20mA下,显示470nm的蓝色发光、Vf3.4V、得到6.4mW的发光输出。
[实施例3]
在实施例1中,有源层7按以下方法制作、其它相同,由此制作LED元件。
(有源层7)
用TMG、氨生长膜厚为200埃、由未掺杂GaN组成的势垒层,接着将温度定为800℃,进一步用TMG、TMI、氨、硅烷气体生长膜厚为30埃、由Si掺杂5×1017/cm3的In0.3Ga0.7N组成的阱层。进一步生长膜厚为200埃的由未掺杂GaN组成的势垒层和膜厚为30埃的由未掺杂In0.3Ga0.7N组成的阱层。而且按势垒+阱+势垒+阱……+势垒的顺序交互叠层生长未掺杂势垒层6层和阱层5层、仅仅最初1层阱层掺杂Si、剩下的4层阱层未掺杂,总层数为11层、总厚度为1350埃的多量子阱结构,由多量子阱结构组成有源层7。
该LED元件在正向电流20mA下,显示470nm的蓝色发光、Vf3.4V、得到6.3mW的发光输出。
[实施例4]
在实施例1中,有源层7按以下方法制作、其它相同,由此制作LED元件。
(有源层7)
用TMG、氨生成膜厚为200埃的、由未掺杂GaN组成的势垒层,接着将温度定为800℃,进一步使用TMG、TMI、氨、硅烷气体生长膜厚为30埃的、由掺杂Si5×1017/cm3的In0.3Ga0.7N组成的阱层。进一步生长200埃由未掺杂GaN组成的势垒层和膜厚为30埃的由未掺杂In0.3Ga0.7N组成阱层。而且按势垒+阱+势垒+阱……+势垒的顺序交互叠层生长未掺杂的势垒层3层阱层2层,仅最初1层阱层掺Si、剩下1层阱层未掺杂、总层数5层、总膜厚660埃的多量子阱结构,由多量子阱结构组成有源层7。
该LED元件在正向电流20mA下,显示470nm的蓝色发光、Vf3.4V、得到6.2mW的发光输出。
[实施例5]
在实施例1中,有源层7按以下方法制作、其它相同、由此制作LED元件。
(有源层7)
用TMG、氨、硅烷气体生长膜厚200埃、由Si掺杂5×1017/cm3的GaN组成的势垒层,接着将温度定在800℃,进一步用TMG、TMI、氨生长膜厚为30埃的由未掺杂In0.3Ga0.7N组成的阱层。进一步生长膜厚为200埃、由掺杂Si 5×1017/cm3 GaN组成的势垒层和厚度为30埃、由掺杂Si 5×1017/cm3的In0.3Ga0.7N组成的阱层。而且按势垒+阱+势垒+阱+……+势垒的顺序交互叠层生长势垒层16层和阱层15层,势垒层仅最初3层掺杂Si、剩余13层未掺杂,15层阱层中仅最初3层掺杂Si、剩余12层未掺杂,总数为31层、总膜层为3650埃的多量子阱结构,由多量子阱结构组成有源层7。
该LED元件在正向电流20mA下、显示470nm的蓝色发光、Vf3.6V、得到6.4mW的发光输出。
[实施例6]
在实施例1中,有源层7按以下方法制作、其它相同,由此制作LED元件。
(有源层7)
用TMG、氨、硅烷气体生长膜厚200埃、由Si掺杂5×1017/cm3 GaN组成的势垒层,接着将温度定在800℃,进一步用TMG、TMI、氨和硅烷气体生长膜厚30埃的由Si掺杂5×1017/cm3的In0.3Ga0.7N组成的阱层。进一步生长由Si掺杂5×1017/cm3 GaN组成的势垒层200埃和由硅掺杂5×1017/cm3 In0.3Ga0.7N组成的阱层30埃。而且按势垒+阱+势垒+阱……+势垒的顺序交互叠层生长势垒层16层和阱层15层,总数31层,总膜厚3650埃的多量子阱结构,16层势垒层中仅最初的3层掺杂Si、剩余的13层未掺杂,15层阱层中仅最初的3层掺杂Si、剩余的12层未掺杂,由多量子阱结构组成有源层7。
该LED元件在正向电流20mA下,显示470nm的蓝色发光、Vf3.6V、得到6.2mW发光输出。
[实施例7]
在实施例1中,有源层7按以下方法制作、其它相同,由此制作LED元件。
(有源层7)
用TMG、氨、硅烷气体生长膜厚200埃、由Si掺杂5×1017/cm3 GaN组成的势垒层,接着将温度定在800℃,进一步用TMG、TMI、氨和硅烷气体生长膜厚30埃的由Si掺杂5×1017/cm3的In0.3Ga0.7N组成的阱层。进一步生长由Si掺杂5×1017/cm3 GaN组成的势垒层200埃和由硅掺杂5×1017/cm3 In0.3Ga0.7N组成的阱层30埃。而且按势垒+阱+势垒+阱……+势垒的顺序交互叠层生长势垒层11层和阱层10层,总数21层,总膜厚3650埃的多量子阱结构,11层势垒层中仅最初的2层掺杂Si、剩余的9层未掺杂,10层阱层中仅最初的2层掺杂Si、剩余的8层未掺杂,由多量子阱结构组成有源层7。
该LED元件在正向电流20mA下,显示470nm的蓝色发光、Vf3.6V,得到6.2mW发光输出。
[实施例8]
在实施例1中,有源层7按以下方法制作、其他相同,由此制作LED元件。
(有源层7)
用TMG、氨、硅烷气体生长膜厚200埃、由Si掺杂5×1017/cm3GaN组成的势垒层,接着将温度定在800℃,进一步用TMG、TMI、氨和硅烷气体生长膜厚30埃、由Si掺杂5×1017/cm3 In0.3Ga0.7N组成的阱层。进一步生长由未掺杂GaN组成的势垒层200埃和由未掺杂In0.3Ga0.7N组成的阱层30埃。而且按势垒+阱+势垒+阱……+势垒的顺序交互叠层生长势垒层11层和阱层10层,总数21层、总膜厚3650埃的多量子阱结构,11层势垒层中仅最初的1层掺杂Si、剩余的10层未掺杂,10层阱层中仅最初的1层掺杂Si、剩余的9层未掺杂,由多量子阱结构组成有源层7。
该LED元件在正向电流20mA下,显示470nm的蓝色发光、Vf3.6V、得到6.0mW的发光输出。
[实施例9]
在实施例1中,有源层7按以下方法制作、其它相同,由此制作LED元件。
(有源层7)
使用TMG、氨、硅烷气体生长膜厚为200埃、由Si掺杂5×1017/cm3的GaN组成的势垒层,接着将温度定在800℃,进一步用TMG、TMI、氨生长膜厚30埃、由未掺杂In0.3Ga0.7N组成的阱层,进一步生长200埃、由未掺杂GaN组成的势垒层,生长由单量子阱结构组成的有源层7。
该LED元件在正向电流20mA下,显示470nm的蓝色发光、Vf3.4V、得到5.6mW的发光输出。
[实施例10]
在实施例1中,到n型接触层4为止制作方法相同。
(第2未掺杂GaN层5)
其次,仅仅停止硅烷气体,在1050℃下同样生长膜厚1500埃的第2未掺杂GaN层5。
(n型多层膜6)
再次,将温度定在800℃,用TMG、TMI、氨生长由未掺杂In0.03Ga0.97N组成的第2氮化物半导体层20埃、接着使温度升高,在它上面生长由未掺杂GaN组成的第1氮化物半导体层40埃。而且、反复进行这些操作、按照第2+第1的顺序交互叠层生长各10层、最后生长由GaN组成的第2氮化物半导体层40埃,由这样生长的超晶格结构多层膜组成膜厚640埃的n型多层膜6。
有源层7以下与实施例1一样、由此制作LED元件。由于在n型接触层和有源层之间设有所述n侧第1多层膜5和n侧第2多层膜6、能够得到更加良好的静电耐压。
该LED元件在正向电流20mA下,显示470nm蓝色发光、Vf3.6V,得到6.5mW的发光输出。
[实施例11]
在实施例1中,省略了第2未掺杂GaN层5,n型多层膜6,其它一样、由此制作LED元件。
该LED元件在正向电流20mA下,显示470nm的蓝色发光、Vf3.8V,得到6.2mW的发光输出。
[实施例12]
在实施例1中、在P型多层膜8和P型接触层9之间形成如下一层。
(P型未掺杂AlGaN层)
在形成P型多层膜后,形成膜厚为2000埃的未掺杂Al0.05Ga0.95N层。由于从P型多层膜层8的Mg的扩散该层包含P型杂质、显示P型。
该LED元件与实施例1一样,在正向电流20mA下,显示470nm的蓝色发光、Vf3.4V,得到6.5mW的发光输出。
[实施例13]
在实施例3中,有源层7按以下方法制作其它一样、由此制作LED元件。
(有源层7)
用TMG、氨生长膜厚为200埃的由未掺杂GaN组成的势垒层,接着把温度定为800℃,进一步用TMG、TMI、氨、硅烷气体生长膜厚为30埃的由Si掺杂5×1017/cm3 In0.35Ga0.65N组成的阱层。进一步生长由未掺杂GaN组成的势垒层200埃和膜厚30埃、由未掺杂In0.35Ga0.65N组成的阱层。而且按势垒+阱+势垒+阱……+势垒的顺序交互叠层生长未掺杂的势垒层6层和阱层5层,总数11层,总膜厚1350埃的多量子阱结构,5层阱层中仅最初的1层掺杂Si,其余4层未掺杂。由这样的多量子阱结构组成有源层7。
该LED元件在正向电流20mA下,显示500nm的蓝色发光、Vf3.8V,得到5.2mW的发光输出。
[实施例14]
在实施例1中,有源层7按以下方法制作、其他一样,由此制作LED元件。
(有源层7)
用TMG、氨生长膜厚200埃、由未掺杂GaN组成的势垒层,接着将温度定为800℃,进一步用TMG、TMI、氨、硅烷气体生长膜厚30埃、由Si掺杂5×1017/cm3的In0.40Ga0.60N组成的阱层。进一步生长200埃由未掺杂GaN组成的势垒层和30埃由未掺杂In0.40Ga0.60N组成的阱层。而且按势垒+阱+势垒+阱……+势垒的顺序交互叠层生长未掺杂的势垒层5层和阱层4层,总数9层、总膜厚1120埃的多量子阱结构,4层阱层中仅最初的1层掺杂Si、剩余的3层未掺杂,由多量子阱结构组成有源层7。
该LED元件在正向电流20mA,显示530nm的蓝绿色发光、Vf3.5V,得到3.6mW发光输出。
[实施例15]
在实施例1中,省略第2多层膜6、其它一样,由此制作LED元件,尽管与实施例1相比、其元件特性及发光输出稍低,但与旧有的LED元件相比具有良好的发光输出。
[实施例16]
在实施例1中,将缓冲层2的膜厚定为150埃,第1未掺杂GaN层3的膜厚定为1.5μm,其它一样,由此制作LED元件、得到与实施例1同样的效果。
[实施例17]
在实施例13中,将缓冲层2的膜厚定为1 50埃、第1未掺杂GaN层3的膜厚定为1.5μm,其它一样,由此制作LED元件、得到与实施例13同样的效果。
[实施例18]
在实施例1中、有源层7按以下方法制作,其它一样,由此制作LED元件。
(有源层7)
用TMG、氨生长膜厚200埃、由未掺杂GaN组成的势垒层,接着将温度定为800℃,进一步用TMG、TMI、氨、硅烷气体生长膜厚30埃、由掺杂Si 5×1017/cm3的In0.3Ga0.7N组成的阱层。进一步生长200埃由未掺杂GaN组成的势垒层和膜厚30埃、由掺杂Si 1×1017/cm3 In0.3Ga0.7N组成阱层。进一步还生长200埃由未掺杂GaN组成的势垒层和膜厚30埃、由掺杂Si 5×1016/cm3的In0.3Ga0.7N组成的阱层。而且按势垒+阱+势垒+阱……+势垒的顺序交互叠层生长未掺杂的势垒层16层和阱层15层,总数31层,总膜厚3650埃的多量子阱结构,15层阱层中仅最初的3层掺杂Si、剩余的12层未掺杂,由多量子阱结构组成有源层7。
采用这样的有源层中掺Si的层离n型层越远、Si掺杂量越少的结构,得到与实施例1同样的效果。
产业上利用的可能性
本发明由于在阱层和势垒层多量子阱组成的有源层n层一侧掺杂n型杂质Si,而且将掺杂层限定,能够补充从n型层的施主供给,因而能够得到发光输出高的氮化物半导体元件,因而它不仅可用于发光二极管(LED)、激光二极管(LD)等发光元件,而且还可用于太阳能电池、光传感器等受光元件或者晶体管、功率器件等电子器件,是很有用的氮化物半导体元件。

Claims (24)

1.一种氮化物半导体元件,在n型氮化物半导体层和P型氮化物半导体层之间、具有由量子阱层和势垒层叠层而成、而且含有n型杂质的有源层,其特征在于:
所述有源层叠层中至少与所述n型氮化物半导体层连接一侧的势垒层及/或量子阱层是含n型杂质的层,并且所述有源层中的n型杂质的浓度是所述n型氮化物半导体层一侧的浓度比所述p型氮化物半导体层一侧的浓度大。
2.根据权利要求1所述的氮化物半导体元件,其特征在于:
在所述有源层叠层中与所述P型氮化物半导体层连接一侧的势垒层及/或量子阱层是不含n型杂质的层。
3.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述有源层是用势垒层挾持量子阱层两侧构成单量子阱结构、与所述n型氮化物半导体层连接一侧的势垒层含n型杂质、与所述P型氮化物半导体层连接一侧的势垒层不含n型杂质。
4.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述有源层由量子阱层和势垒层交互叠层而成的多量子阱结构、与所述n型氮化物半导体层连接一侧的势垒层及/或量子阱层含n型杂质、与所述P型氮化物半导体层连接一侧的势垒层及/或量子阱层不含n型杂质。
5.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述有源层的叠层总数大于9层小于15层,从与含n型杂质的n型氮化物半导体层连接一侧数起小于4层。
6.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述有源层的量子阱层由InXGa1-XN,其中,0<x<1,组成,发光或者受光峰值波长是470~530nm,理想的是490~510nm。
7.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述n型杂质至少是Si、Ge、Sn中的一种。
8.根据权利要求7所述的氮化物半导体元件,其特征在于:
所述n型杂质是Si。
9.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述有源层内含有的n型杂质的浓度小于n型氮化物半导体层中的n型杂质浓度。
10.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述有源层内含有的n型杂质浓度随远离与n型氮化物半导体层连接一侧而逐渐减少。
11.根据权利要求1所述的氮化物半导体元件,其特征在于:
包含在所述有源层中的含n型杂质层的n型杂质浓度是5×1016~2×1018/cm3
12.根据权利要求11所述的氮化物半导体元件,其特征在于:
在所述有源层的势垒层中含有的n型杂质的浓度是5×1016~2×1018/cm3
13.根据权利要求11所述的氮化物半导体元件,其特征在于:
在所述有源层的量子阱层中含有的n型杂质的浓度是5×1016~2×1018/cm3
14.根据权利要求8所述的氮化物半导体元件,其特征在于:
一方面在所述有源层的势垒中含有的n型杂质的浓度是5×1016~2×1018/cm3,另一方面在量子阱层中含有的n型杂质的浓度也是5×1016~2×1018/cm3,但是比在所述有源层的势垒层中含有的n型杂质的浓度小。
15.根据权利要求8所述的氮化物半导体元件,其特征在于:
一方面在所述有源层的势垒层中含有的n型杂质的浓度是5×1016~2×1018/cm3、而在量子阱层中含有的n型杂质的浓度不足5×1016/cm3,比所述有源层的势垒层中含有的n型杂质的浓度小。
16.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述有源层中的与所述n型氮化物半导体层连接一侧的含n型杂质的势垒层或者量子阱层的膜厚大于与所述P型氮化物半导体层连接一侧的不含n型杂质的势垒层或量子阱层的膜厚,以制作高输出用氮化物半导体元件。
17.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述有源层中的与所述n型氮化物半导体层连接一侧的含n型杂质的势垒层或者量子阱层的膜厚小于与所述P型氮化物半导体层连接一侧的不含n型杂质的势垒层或量子阱层的膜厚,以制作低驱动电压用氮化物半导体元件。
18.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述有源层是由量子阱层和势垒层交替叠层而成的多量子阱结构,与所述p型氮化物半导体层连接一侧的势垒层及/或量子阱层的n型杂质的浓度为5×1016/cm3以下。
19.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述有源层的势垒层由InyGa1-yN,其中,0≤y<1,y<x,组成。
根据权利要求1所述的氮化物半导体元件,其特征在于:
20.根据权利要求1所述的氮化物半导体元件,其特征在于:
所述有源层由InXGa1-XN,其中,0<x<1,/InyGa1-yN,其中,0≤y<1、y<x,的多量子阱层组成,形成在n型多层膜上。
21.根据权利要求20所述的氮化物半导体元件,其特征在于:
所述多层膜是作为缓冲超晶格层形成的、它由不掺杂n型杂质的InZGa1-ZN,其中,0<z<1,/GaN叠层或者AlWGa1-WN/GaN,其中,0<w<1,叠层组成。
22.根据权利要求21所述的氮化物半导体元件,其特征在于:
所述缓冲超晶格的GaN层的厚度小于70、所述有源层的势垒层厚度大于70。
23.根据权利要求20所述的氮化物半导体元件,其特征在于:
所述多层膜是作为包层形成的、它含n型杂质、由比所述有源层的量子阱层禁带宽度能量大的InZGa1-ZN,其中,0<z<1,z<y,层或者AlWGa1-WN,其中,0<w<1,层与GaN层的叠层组成。
24.一种发光元件,
具有在n型氮化物半导体层与P型氮化物半导体之间具有由量子阱层和势垒层叠层而成并且含有n型杂质的有源层的氮化物半导体元件,其特征在于:
所述有源层中至少与所述n型氮化物半导体层连接一侧的势垒层和/或量子阱层是含n型杂质的势垒层和/或量子阱层;
并且,所述有源层是多量子阱结构,当所述有源层的叠层总数为i层时,从与叠层中满足下式的n型氮化物半导体层连接一侧数起直到j层的任何一层中含有n型杂质;
j=i/6+2,其中,i≥4、j是舍去小数点的整数。
CNB2004100633513A 1999-06-07 2000-06-07 氮化物半导体元件 Expired - Lifetime CN100380693C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1999159482 1999-06-07
JP15948299A JP3719047B2 (ja) 1999-06-07 1999-06-07 窒化物半導体素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB008085390A Division CN1211867C (zh) 1999-06-07 2000-06-07 发光元件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100958459A Division CN100470862C (zh) 1999-06-07 2000-06-07 氮化物半导体元件

Publications (2)

Publication Number Publication Date
CN1553524A true CN1553524A (zh) 2004-12-08
CN100380693C CN100380693C (zh) 2008-04-09

Family

ID=15694743

Family Applications (3)

Application Number Title Priority Date Filing Date
CNB2006100958459A Expired - Fee Related CN100470862C (zh) 1999-06-07 2000-06-07 氮化物半导体元件
CNB008085390A Expired - Lifetime CN1211867C (zh) 1999-06-07 2000-06-07 发光元件
CNB2004100633513A Expired - Lifetime CN100380693C (zh) 1999-06-07 2000-06-07 氮化物半导体元件

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CNB2006100958459A Expired - Fee Related CN100470862C (zh) 1999-06-07 2000-06-07 氮化物半导体元件
CNB008085390A Expired - Lifetime CN1211867C (zh) 1999-06-07 2000-06-07 发光元件

Country Status (11)

Country Link
US (4) USRE42008E1 (zh)
EP (3) EP2309556B1 (zh)
JP (1) JP3719047B2 (zh)
KR (1) KR100574738B1 (zh)
CN (3) CN100470862C (zh)
AU (1) AU771693B2 (zh)
CA (2) CA2376453C (zh)
HK (1) HK1045909B (zh)
MY (1) MY127817A (zh)
TW (1) TW451536B (zh)
WO (1) WO2000076004A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821352A (zh) * 2015-05-14 2015-08-05 上海世湖材料科技有限公司 一种InGaN/GaN量子阱界面中断生长结构及方法

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719047B2 (ja) * 1999-06-07 2005-11-24 日亜化学工業株式会社 窒化物半導体素子
US6586762B2 (en) 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
US6906352B2 (en) * 2001-01-16 2005-06-14 Cree, Inc. Group III nitride LED with undoped cladding layer and multiple quantum well
US6800876B2 (en) 2001-01-16 2004-10-05 Cree, Inc. Group III nitride LED with undoped cladding layer (5000.137)
USRE46589E1 (en) 2001-01-16 2017-10-24 Cree, Inc. Group III nitride LED with undoped cladding layer and multiple quantum well
CA2444273C (en) * 2001-04-12 2012-05-22 Nichia Corporation Gallium nitride semiconductor device
EP1401027B1 (en) * 2001-05-30 2009-04-08 Cree, Inc. Group III nitride based light emitting diode with a superlattice structure
US7692182B2 (en) * 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US6958497B2 (en) * 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
CN1236535C (zh) * 2001-11-05 2006-01-11 日亚化学工业株式会社 氮化物半导体元件
JP3946541B2 (ja) * 2002-02-25 2007-07-18 三菱電線工業株式会社 発光装置およびそれを用いた照明装置、ならびに該発光装置の製造方法と設計方法
JP2004128444A (ja) * 2002-07-31 2004-04-22 Shin Etsu Handotai Co Ltd 発光素子及びそれを用いた照明装置
KR100583163B1 (ko) * 2002-08-19 2006-05-23 엘지이노텍 주식회사 질화물 반도체 및 그 제조방법
EP1400835B1 (en) 2002-09-17 2011-11-16 Nippon Telegraph And Telephone Corporation Semiconductor optical modulator and laser with such optical modulator
TW561637B (en) * 2002-10-16 2003-11-11 Epistar Corp LED having contact layer with dual dopant state
KR100525545B1 (ko) * 2003-06-25 2005-10-31 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100476567B1 (ko) 2003-09-26 2005-03-17 삼성전기주식회사 질화물 반도체 소자
US7897108B1 (en) * 2003-10-03 2011-03-01 The Research Foundation Of State University Of New York Sensor and method of sensing having an energy source and detector on the same side of a sensor substance
KR100641989B1 (ko) * 2003-10-15 2006-11-02 엘지이노텍 주식회사 질화물 반도체 발광소자
JP2005244207A (ja) * 2004-01-30 2005-09-08 Showa Denko Kk 窒化ガリウム系化合物半導体発光素子
KR100925059B1 (ko) * 2004-02-28 2009-11-03 삼성전기주식회사 백색 발광소자 및 그 제조방법
JP2005294813A (ja) * 2004-03-08 2005-10-20 Showa Denko Kk pn接合型III族窒化物半導体発光素子
JP2005340762A (ja) * 2004-04-28 2005-12-08 Showa Denko Kk Iii族窒化物半導体発光素子
JP2005340789A (ja) * 2004-04-28 2005-12-08 Showa Denko Kk Iii族窒化物半導体発光素子
JP2006013473A (ja) * 2004-05-24 2006-01-12 Showa Denko Kk Iii族窒化物半導体発光素子
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
KR100611491B1 (ko) * 2004-08-26 2006-08-10 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100670531B1 (ko) 2004-08-26 2007-01-16 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
CN100336235C (zh) * 2004-09-06 2007-09-05 璨圆光电股份有限公司 氮化镓系发光二极管结构
TWI239668B (en) * 2004-10-21 2005-09-11 Formosa Epitaxy Inc Structure of gallium-nitride based (GaN-based) light-emitting diode with high luminance
CN1320711C (zh) * 2004-11-09 2007-06-06 中国科学院半导体研究所 用于波长转换的半导体光学放大器的制备方法
US8060566B2 (en) 2004-12-01 2011-11-15 Aol Inc. Automatically enabling the forwarding of instant messages
US9002949B2 (en) 2004-12-01 2015-04-07 Google Inc. Automatically enabling the forwarding of instant messages
US7730143B1 (en) 2004-12-01 2010-06-01 Aol Inc. Prohibiting mobile forwarding
US20060267043A1 (en) 2005-05-27 2006-11-30 Emerson David T Deep ultraviolet light emitting devices and methods of fabricating deep ultraviolet light emitting devices
KR100565894B1 (ko) * 2005-07-06 2006-03-31 (주)룩셀런트 3족 질화물 반도체 발광소자의 활성층을 제어하는 방법
KR100691444B1 (ko) * 2005-11-19 2007-03-09 삼성전기주식회사 질화물 반도체 발광소자
JP2007235107A (ja) * 2006-02-02 2007-09-13 Mitsubishi Electric Corp 半導体発光素子
DE102006061167A1 (de) * 2006-04-25 2007-12-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
KR101234783B1 (ko) * 2006-07-13 2013-02-20 삼성전자주식회사 질화물계 반도체 발광소자 및 그 제조방법
US7769066B2 (en) 2006-11-15 2010-08-03 Cree, Inc. Laser diode and method for fabricating same
KR100826422B1 (ko) * 2006-11-21 2008-04-29 삼성전기주식회사 질화물 반도체 소자
JP2007123927A (ja) * 2006-12-18 2007-05-17 Mitsubishi Cable Ind Ltd 発光装置およびそれを用いた照明装置
US7834367B2 (en) 2007-01-19 2010-11-16 Cree, Inc. Low voltage diode with reduced parasitic resistance and method for fabricating
JP2008258503A (ja) * 2007-04-06 2008-10-23 Sumitomo Electric Ind Ltd 窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法
KR101065070B1 (ko) 2007-04-24 2011-09-15 에피스타 코포레이션 발광 소자
KR100875444B1 (ko) * 2007-06-25 2008-12-23 서울옵토디바이스주식회사 발광 다이오드 및 그 제조방법
DE102007031926A1 (de) * 2007-07-09 2009-01-15 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterkörper
US8519437B2 (en) 2007-09-14 2013-08-27 Cree, Inc. Polarization doping in nitride based diodes
DE102007046027A1 (de) * 2007-09-26 2009-04-02 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip mit einer Mehrfachquantentopfstruktur
US9012937B2 (en) 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same
CN100544038C (zh) * 2007-12-10 2009-09-23 厦门大学 无应变InAlGaN/GaN PIN光电探测器
EP3525301B1 (en) * 2007-12-28 2021-11-03 Avago Technologies International Sales Pte. Limited Device having delta doped active region
KR100957750B1 (ko) * 2008-08-12 2010-05-13 우리엘에스티 주식회사 발광 소자
TWI389344B (zh) 2008-08-25 2013-03-11 Epistar Corp 光電元件
CN101667612B (zh) * 2008-09-05 2011-11-02 晶元光电股份有限公司 光电元件
KR101018217B1 (ko) 2008-10-01 2011-02-28 삼성엘이디 주식회사 질화물 반도체 소자
JP2009071337A (ja) * 2008-12-29 2009-04-02 Mitsubishi Chemicals Corp 発光装置およびそれを用いた照明装置
KR101549811B1 (ko) * 2009-01-09 2015-09-04 삼성전자주식회사 질화물 반도체 발광소자
CN101488550B (zh) * 2009-02-27 2010-10-13 上海蓝光科技有限公司 高In组分多InGaN/GaN量子阱结构的LED的制造方法
JP5381439B2 (ja) * 2009-07-15 2014-01-08 住友電気工業株式会社 Iii族窒化物半導体光素子
KR100993085B1 (ko) 2009-12-07 2010-11-08 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지 및 라이트 유닛
US8536615B1 (en) 2009-12-16 2013-09-17 Cree, Inc. Semiconductor device structures with modulated and delta doping and related methods
US8604461B2 (en) 2009-12-16 2013-12-10 Cree, Inc. Semiconductor device structures with modulated doping and related methods
US8575592B2 (en) 2010-02-03 2013-11-05 Cree, Inc. Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses
WO2012035135A1 (de) * 2010-09-19 2012-03-22 Osram Opto Semiconductors Gmbh Halbleiterchip und verfahren zu dessen herstellung
WO2012040013A2 (en) * 2010-09-22 2012-03-29 First Solar, Inc. Photovoltaic device containing an n-type dopant source
JP5996846B2 (ja) 2011-06-30 2016-09-21 シャープ株式会社 窒化物半導体発光素子およびその製造方法
KR101541657B1 (ko) * 2011-07-25 2015-08-03 히타치가세이가부시끼가이샤 태양 전지 기판, 태양 전지 기판의 제조 방법, 태양 전지 소자 및 태양 전지
JP6005346B2 (ja) 2011-08-12 2016-10-12 シャープ株式会社 窒化物半導体発光素子およびその製造方法
US8669585B1 (en) 2011-09-03 2014-03-11 Toshiba Techno Center Inc. LED that has bounding silicon-doped regions on either side of a strain release layer
JP5911132B2 (ja) * 2012-02-27 2016-04-27 株式会社ナノマテリアル研究所 半導体デバイス
JP5853779B2 (ja) * 2012-03-14 2016-02-09 日亜化学工業株式会社 窒化物半導体素子
JP2014003121A (ja) * 2012-06-18 2014-01-09 Sharp Corp 窒化物半導体発光素子
KR20140019635A (ko) * 2012-08-06 2014-02-17 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
CN102945901B (zh) * 2012-10-30 2015-04-15 施科特光电材料(昆山)有限公司 一种大功率氮化物led结构及其制造方法
FR3004005B1 (fr) * 2013-03-28 2016-11-25 Commissariat Energie Atomique Diode electroluminescente a multiples puits quantiques et jonction p-n asymetrique
CN104409587B (zh) * 2014-10-22 2016-12-28 太原理工大学 一种InGaN基蓝绿光发光二极管外延结构及生长方法
DE102015100029A1 (de) * 2015-01-05 2016-07-07 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
JP6649693B2 (ja) 2015-04-17 2020-02-19 学校法人 名城大学 窒化物半導体発光素子及びその製造方法
JP2016219547A (ja) * 2015-05-18 2016-12-22 ローム株式会社 半導体発光素子
JP6387978B2 (ja) * 2016-02-09 2018-09-12 日亜化学工業株式会社 窒化物半導体発光素子
JP6188866B2 (ja) * 2016-05-19 2017-08-30 シャープ株式会社 窒化物半導体発光素子の製造方法
CN110494987B (zh) * 2017-04-24 2022-03-01 苏州晶湛半导体有限公司 一种半导体结构和制备半导体结构的方法
US11152543B2 (en) 2017-11-22 2021-10-19 Soko Kagaku Co., Ltd. Nitride semiconductor light-emitting element
JP6729644B2 (ja) * 2018-08-08 2020-07-22 日亜化学工業株式会社 窒化物半導体発光素子
JP6968122B2 (ja) * 2019-06-06 2021-11-17 日機装株式会社 窒化物半導体発光素子
JP7260807B2 (ja) * 2020-12-24 2023-04-19 日亜化学工業株式会社 窒化物半導体発光素子およびその製造方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197784A (ja) 1982-05-12 1983-11-17 Nec Corp 発光ダイオ−ド
JP3290672B2 (ja) 1990-08-20 2002-06-10 株式会社東芝 半導体発光ダイオード
JPH0330486A (ja) 1989-06-28 1991-02-08 Nec Corp 多重量子井戸発光素子
JP2564024B2 (ja) 1990-07-09 1996-12-18 シャープ株式会社 化合物半導体発光素子
JPH04218994A (ja) 1990-08-31 1992-08-10 Toshiba Corp 半導体発光装置
JP3105981B2 (ja) 1992-01-28 2000-11-06 シャープ株式会社 半導体発光素子
JPH05291618A (ja) 1992-04-08 1993-11-05 Asahi Chem Ind Co Ltd 発光素子
JPH065916A (ja) 1992-06-16 1994-01-14 Omron Corp 半導体発光素子
JP3243768B2 (ja) 1992-07-06 2002-01-07 日本電信電話株式会社 半導体発光素子
US5578839A (en) * 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
JPH06268315A (ja) 1993-03-12 1994-09-22 Fujitsu Ltd 半導体レーザ
JPH0773146B2 (ja) 1993-03-30 1995-08-02 日本電気株式会社 超格子構造体及び半導体発光素子
JPH07193333A (ja) 1993-12-27 1995-07-28 Mitsubishi Chem Corp 半導体発光素子
JPH07326824A (ja) 1994-05-30 1995-12-12 Sony Corp 発光素子
JP3121617B2 (ja) 1994-07-21 2001-01-09 松下電器産業株式会社 半導体発光素子およびその製造方法
US5557115A (en) 1994-08-11 1996-09-17 Rohm Co. Ltd. Light emitting semiconductor device with sub-mount
JPH08111558A (ja) 1994-10-07 1996-04-30 Hitachi Ltd 半導体レーザ素子
JP3228453B2 (ja) 1994-11-10 2001-11-12 日本電信電話株式会社 半導体量子井戸構造を有する光半導体装置
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
JP2735057B2 (ja) 1994-12-22 1998-04-02 日亜化学工業株式会社 窒化物半導体発光素子
EP0732754B1 (en) 1995-03-17 2007-10-31 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
JPH0936423A (ja) * 1995-07-24 1997-02-07 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子
JPH09232666A (ja) 1996-02-20 1997-09-05 Hitachi Ltd 半導体レーザ及び並列伝送用光送信モジュール
JP3653843B2 (ja) 1996-02-20 2005-06-02 株式会社日立製作所 半導体レーザ素子
JP3753793B2 (ja) 1996-06-14 2006-03-08 豊田合成株式会社 3族窒化物化合物半導体発光素子
JPH1012969A (ja) * 1996-06-19 1998-01-16 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JPH1022524A (ja) 1996-07-02 1998-01-23 Omron Corp 半導体発光素子
US5684309A (en) 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
JP3304787B2 (ja) * 1996-09-08 2002-07-22 豊田合成株式会社 半導体発光素子及びその製造方法
JP3700283B2 (ja) * 1996-10-02 2005-09-28 昭和電工株式会社 窒化物化合物半導体素子
US6542526B1 (en) 1996-10-30 2003-04-01 Hitachi, Ltd. Optical information processor and semiconductor light emitting device suitable for the same
JPH10163523A (ja) 1996-12-03 1998-06-19 Sumitomo Chem Co Ltd 3−5族化合物半導体の製造方法および発光素子
US6121634A (en) 1997-02-21 2000-09-19 Kabushiki Kaisha Toshiba Nitride semiconductor light emitting device and its manufacturing method
JP3713118B2 (ja) * 1997-03-04 2005-11-02 ローム株式会社 半導体発光素子の製法
SG63757A1 (en) * 1997-03-12 1999-03-30 Hewlett Packard Co Adding impurities to improve the efficiency of allngan quantum well led's
WO1999005728A1 (en) * 1997-07-25 1999-02-04 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP4787205B2 (ja) 1997-07-30 2011-10-05 富士通株式会社 半導体レーザの製造方法
US6555403B1 (en) 1997-07-30 2003-04-29 Fujitsu Limited Semiconductor laser, semiconductor light emitting device, and methods of manufacturing the same
JPH1168158A (ja) * 1997-08-20 1999-03-09 Sanyo Electric Co Ltd 窒化ガリウム系化合物半導体装置
JPH11135838A (ja) * 1997-10-20 1999-05-21 Ind Technol Res Inst 白色発光ダイオード及びその製造方法
JP3147063B2 (ja) 1997-11-28 2001-03-19 ダイキン工業株式会社 スクロール型流体機械
US6153894A (en) * 1998-11-12 2000-11-28 Showa Denko Kabushiki Kaisha Group-III nitride semiconductor light-emitting device
JP3719047B2 (ja) * 1999-06-07 2005-11-24 日亜化学工業株式会社 窒化物半導体素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821352A (zh) * 2015-05-14 2015-08-05 上海世湖材料科技有限公司 一种InGaN/GaN量子阱界面中断生长结构及方法
CN104821352B (zh) * 2015-05-14 2018-09-25 上海世湖材料科技有限公司 一种InGaN/GaN量子阱界面中断生长结构及方法

Also Published As

Publication number Publication date
CA2376453C (en) 2011-07-19
CN1881632A (zh) 2006-12-20
KR100574738B1 (ko) 2006-04-28
USRE42008E1 (en) 2010-12-28
EP2309556A2 (en) 2011-04-13
CA2376453A1 (en) 2000-12-14
JP3719047B2 (ja) 2005-11-24
CN100470862C (zh) 2009-03-18
HK1045909B (zh) 2005-11-18
EP1189289A4 (en) 2008-01-16
EP2309556B1 (en) 2017-04-12
EP2309556A3 (en) 2012-04-04
US6657234B1 (en) 2003-12-02
CA2696270C (en) 2015-03-31
CN100380693C (zh) 2008-04-09
USRE45672E1 (en) 2015-09-22
AU5106000A (en) 2000-12-28
HK1045909A1 (en) 2002-12-13
CN1353867A (zh) 2002-06-12
EP1189289B1 (en) 2015-09-16
EP2463922A3 (en) 2013-05-29
AU771693B2 (en) 2004-04-01
JP2000349337A (ja) 2000-12-15
EP2463922A2 (en) 2012-06-13
TW451536B (en) 2001-08-21
EP2463922B1 (en) 2019-07-24
EP1189289A1 (en) 2002-03-20
WO2000076004A1 (en) 2000-12-14
KR20020021121A (ko) 2002-03-18
CA2696270A1 (en) 2000-12-14
CN1211867C (zh) 2005-07-20
MY127817A (en) 2006-12-29
USRE46444E1 (en) 2017-06-20

Similar Documents

Publication Publication Date Title
CN1211867C (zh) 发光元件
CN1142598C (zh) 氮化物半导体发光器件
CN1274035C (zh) 具有未掺杂覆盖层的第ⅲ族氮化物led
CN1269229C (zh) 半导体发光器件及其制造方法
CN1160801C (zh) 氮化物半导体器件
CN100547814C (zh) N型ⅲ族氮化物半导体叠层结构
CN1883058A (zh) 半导体元件及其制造方法
CN1426119A (zh) 氮化物半导体发光器件
CN1877874A (zh) 发光二极管及其制造方法
CN1473363A (zh) 具有无镓层的iii族氮化物发光器件
CN1992359A (zh) 发光二极管及其制造方法
CN1613156A (zh) 具有支持衬底的氮化物半导体器件及其制造方法
CN1698213A (zh) 半导体发光元件及其制法,集成半导体发光元件及其制法,图像显示装置及其制法,照明装置及其制法
CN1666350A (zh) 具有不掺杂包层和多量子阱的ⅲ族氮化物led
CN101030618A (zh) 氮化物半导体发光装置制造方法
CN1649180A (zh) 半导体发光元件及其制造方法
CN1658454A (zh) 具有量子井结构的半导体元件和半导体元件的形成方法
CN1484324A (zh) 化合物半导体发光器件的外延衬底及制造方法和发光器件
CN1502154A (zh) 氮化镓系列化合物半导体元件
CN1993841A (zh) 氮化物半导体发光元件
CN1734802A (zh) 氮化物半导体发光元件及制造氮化物半导体发光元件的方法
CN101030698A (zh) 氮化物半导体发光装置制造方法
CN1487606A (zh) 氮化物系半导体发光元件
CN1864277A (zh) 氮化物半导体;使用该半导体的发光器件,发光二极管,激光器件和灯;及其制造方法
CN1499651A (zh) 白光发光二极管的制造方法及其发光装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20080409

CX01 Expiry of patent term