CN104821352A - 一种InGaN/GaN量子阱界面中断生长结构及方法 - Google Patents

一种InGaN/GaN量子阱界面中断生长结构及方法 Download PDF

Info

Publication number
CN104821352A
CN104821352A CN201510249514.5A CN201510249514A CN104821352A CN 104821352 A CN104821352 A CN 104821352A CN 201510249514 A CN201510249514 A CN 201510249514A CN 104821352 A CN104821352 A CN 104821352A
Authority
CN
China
Prior art keywords
ingan
quantum well
growth
gan
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510249514.5A
Other languages
English (en)
Other versions
CN104821352B (zh
Inventor
徐丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Shi Hu Material Science And Technology Ltd
Original Assignee
Shanghai Shi Hu Material Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Shi Hu Material Science And Technology Ltd filed Critical Shanghai Shi Hu Material Science And Technology Ltd
Priority to CN201510249514.5A priority Critical patent/CN104821352B/zh
Publication of CN104821352A publication Critical patent/CN104821352A/zh
Application granted granted Critical
Publication of CN104821352B publication Critical patent/CN104821352B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明提出一种InGaN/GaN量子阱界面中断生长结构及方法,包括:在蓝宝石衬底上依次生长低温GaN成核层、非故意掺杂高温GaN层和n型GaN层;在所述n型GaN层上采用InGaN/GaN界面中断生长技术生长多量子阱层;在所述多量子阱层上依次生长p型AlGaN层和p型GaN层。该方法的特征在于,在InGaN量子阱生长初期,周期性地通入/停止TMIn进入反应室,在增加In气相分压的同时,增加In扩散时间,更加有效地提高InGaN量子阱生长初期In组分,使得InGaN量子阱In组分更加均匀,InGaN/GaN界面更加陡峭,从而提高LED波长均匀性和量子阱发光效率。该方法无需进行流量调整,简单实用,可操作性强。

Description

一种InGaN/GaN量子阱界面中断生长结构及方法
技术领域
本发明属于半导体技术领域,具体涉及一种InGaN/GaN量子阱界面中断生长结构及方法。
背景技术
相比于其它传统光源,高性能GaN基LED具有光电转换效率高、寿命长、损耗低、无污染等显著优势,目前已经普遍应用于通用照明、交通信号指示、显示屏和背光源等领域。随着大规模生产的不断进步,GaN基LED在提高发光效率和降低成本方面取得了飞速发展,尤其在照明领域,GaN基LED的渗透率稳步提高。对GaN基LED的外延生产来讲,提高InGaN/GaN量子阱界面陡峭性和量子阱中In组分均匀性是提高LED发光效率和波长均匀性的关键,对提高LED发光效率和生产良率以及降低生产成本具有非常重要意义。
研究表明,在InGaN量子阱中In组分并不是恒定不变的,而是随着量子阱厚度的变化而变化。由于In原子的引入导致InGaN/GaN界面处应变能增加,这种应变能会排斥In原子的引入,这种现象被称为pulling effect。在InGaN量子阱生长初期,In原子引入效率较低,随着InGaN厚度增加,In原子引入效率逐渐增加,直至达到饱和。在量子阱生长初期In组分明显低导致In组分在InGaN量子阱中分布不均匀,使得LED波长均匀性差,InGaN/GaN界面不陡峭,LED发光效率低。由于InGaN量子阱的厚度只有约3nm,因此如何提高InGaN量子生长初期In组分是关键。为改善LED波长均匀性,中国发明专利(CN 101872719A)提出一种改善InGaN量子阱In组分均匀性的外延生长方法,在InGaN量子阱生长初期,通过直接增加In在反应室中气相分压,以期达到增加量子阱生长初期In组分的目的。由于In组分由温度、In气相分压、扩散时间决定,在温度不变的情况下,In组分由In气相分压和扩散时间共同决定。因此,该方法只考虑了In气相分压,没有考虑扩散时间对In组分均匀性的影响。
发明内容
本发明针对现有InGaN量子阱In组分不均匀问题,提供一种InGaN/GaN量子阱界面中断生长结构及方法,目的是改善InGaN量子阱In组分均匀性和InGaN/GaN界面陡峭性。该方法在InGaN量子阱生长初期采用界面中断生长技术,在增加In气相分压的同时,增加In扩散时间,更加有效地提高InGaN量子阱生长初期In组分,使得InGaN量子阱In组分更加均匀,InGaN/GaN界面更加陡峭,从而提高LED波长均匀性和量子阱发光效率。该方法无需进行流量调整,简单实用,可操作性强。
具体实现步骤如下:
(1)在蓝宝石衬底上生长低温GaN成核层、非故意掺杂高温GaN层和n型GaN层。
(2)在所述n型GaN层上采用InGaN/GaN界面中断生长技术生长多量子阱层,步骤如下:①在InGaN量子阱生长初期的20-30s内,在TMIn流量保持不变的情况下,周期性地通入/停止TMIn进入反应室,周期数为1-10。通入TMIn进入反应室时间为T1,停止通入TMIn进入反应室时间为T2,此时TMIn进入Vent管路,不进入反应室,如此循环1-10个周期。在TMIn流量不变的情况下,通过改变T1调整量子阱生长初期In组分。延长通入TMIn进入反应室时间T1可以增加量子阱生长初期In组分,使量子阱生长初期In组分与量子阱生长后期In组分相等,InGaN/GaN量子阱界面更加陡峭,In组分随量子阱厚度的增加分布更加均匀。停止通入TMIn进入反应室T2时,增加In在衬底表明扩散时间不仅可以增加In引入效率,而且使得In组分在整个衬底表明分布更加均匀,提高片内波长均匀性。②完成上述周期性生长后,开始通入正常流量的TMIn和TEGa进入反应室生长InGaN,直至InGaN量子阱生长完成。③反复进行步骤①和②,周期数为3-20,完成InGaN/GaN多量子阱的生长。
(3)在步骤(2)所述多量子阱层上依次生长p型A1GaN层和p型GaN层,完成整个LED的生长。
附图说明
图1是本发明所述InGaN/GaN量子阱界面中断生长技术示意图。
具体实施方式
结合图1,本发明提供一种InGaN/GaN量子阱界面中断生长结构及方法,目的是改善InGaN量子阱In组分均匀性和InGaN/GaN界面陡峭性。具体实施步骤如下:
(1)在蓝宝石衬底上550℃生长低温GaN成核层、非故意掺杂高温GaN层和n型GaN层,高温生长温度为1050~1100℃。
(2)在所述n型GaN层上采用InGaN/GaN界面中断生长技术生长多量子阱层,步骤如下:①调整反应室气氛为完全N2气氛,生长压力为200~600mbar,N2流量为42slm,根据目标波长调整反应室温度至745℃,NH3流量为30slm。保持NH3流量不变,准备生长InGaN/GaN多量子阱。在InGaN量子阱生长初期的30s内,保持TMIn的流量为正常生长量子阱的流量1200sccm,周期性地通入/停止TMIn进入反应室,周期数为5。通入TMIn进入反应室时间T1为2s,停止通入TMIn进入反应室时间T2为3s,此时TMIn进入Vent管路,不进入反应室,如此循环6个周期。②完成上述周期性生长后,开始通入正常流量的TMIn和TEGa同时进入反应室生长InGaN,阱磊厚度和为5-20nm,直至InGaN量子阱生长完成。③反复进行步骤①和②,周期数为12,完成InGaN/GaN多量子阱的生长。
(3)在步骤(2)所述多量子阱层上依次生长p型AlGaN层和p型GaN层,完成整个LED的生长。
以上实例仅用于说明而非限制本发明技术方案。任何不脱离本发明范围的技术方案,均应涵盖在本发明专利保护范围之中。

Claims (6)

1.一种InGaN/GaN量子阱界面中断生长结构及方法,采用MOCVD技术,高纯NH3作为氮源,三甲基镓TMGa与三乙基镓TEGa作为镓源,三甲基铟TMIn作为铟源,三甲基铝TMAl作为铝源,硅烷SiH4和二茂镁CP2Mg分别作为n型和p型掺杂剂。该方法包括以下步骤:
(1)在蓝宝石衬底上生长低温GaN成核层、非故意掺杂高温GaN层和n型GaN层;
(2)在所述n型GaN层上采用InGaN/GaN界面中断生长技术生长多量子阱层;
(3)在所述多量子阱层上依次生长p型AlGaN层和p型GaN层。
本方法的特征在于:在InGaN量子阱生长初期,周期性地通入/停止TMIn进入反应室,提高量子阱生长初期In组分,使得InGaN量子阱生长初期In组分与正常生长时In组分一致,减小pulling effect,提高波长均匀性,增加量子阱界面陡峭性,提高发光效率。
2.根据权利要求1所述的一种InGaN/GaN量子阱界面中断生长结构及方法,其特征在于:在InGaN量子阱生长初期,TMIn和TEGa流量与正常生长流量相同,无需进行流量调整,简单实用,可操作性强。
3.根据权利要求1所述的一种InGaN/GaN量子阱界面中断生长结构及方法,其特征在于:在InGaN量子阱生长初期,周期性地通入/停止TMIn进入反应室,通入时间T1与停止时间T2的比值可以从0.1到10,通过调整这个比值提高量子阱生长初期In组分,使得InGaN量子阱生长初期In组分与正常生长时In组分一致。
4.根据权利要求1所述的一种InGaN/GaN量子阱界面中断生长结构及方法,其特征在于:在InGaN量子阱生长初期,周期性地通入/停止TMIn进入反应室的周期数可以从1到50,从而使InGaN量子阱生长初期的厚度与pulling effect的宽度一致。
5.根据权利要求1所述的一种InGaN/GaN量子阱界面中断生长结构及方法,其特征在于:所述LED包括蓝色、绿色、紫外LED等各种GaN基LED。
6.根据权利要求1所述的一种InGaN/GaN量子阱界面中断生长结构及方法,其特征在于:在InGaN量子阱生长初期,周期性地通入/停止TMIn进入反应室的方法,不限于本专利提供的LED结构,在InGaN量子阱生长初期采用TMIn中断式生长的LED结构均属于本专利保护范围。
CN201510249514.5A 2015-05-14 2015-05-14 一种InGaN/GaN量子阱界面中断生长结构及方法 Expired - Fee Related CN104821352B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510249514.5A CN104821352B (zh) 2015-05-14 2015-05-14 一种InGaN/GaN量子阱界面中断生长结构及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510249514.5A CN104821352B (zh) 2015-05-14 2015-05-14 一种InGaN/GaN量子阱界面中断生长结构及方法

Publications (2)

Publication Number Publication Date
CN104821352A true CN104821352A (zh) 2015-08-05
CN104821352B CN104821352B (zh) 2018-09-25

Family

ID=53731593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510249514.5A Expired - Fee Related CN104821352B (zh) 2015-05-14 2015-05-14 一种InGaN/GaN量子阱界面中断生长结构及方法

Country Status (1)

Country Link
CN (1) CN104821352B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428478A (zh) * 2015-11-24 2016-03-23 湘能华磊光电股份有限公司 Led外延片及其制备方法
CN105742434A (zh) * 2016-05-16 2016-07-06 安徽三安光电有限公司 一种氮化物发光二极管及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111192942B (zh) * 2019-10-16 2021-10-22 中国电子科技集团公司第五十五研究所 提升AlGaN/AlN多量子阱界面质量的生长方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061909A1 (en) * 2002-12-16 2004-07-22 The Regents Of The University Of California Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
CN1553524A (zh) * 1999-06-07 2004-12-08 ���ǻ�ѧ��ҵ��ʽ���� 氮化物半导体元件
CN102280542A (zh) * 2011-09-02 2011-12-14 华灿光电股份有限公司 一种氮化镓基发光二极管多量子阱的生长方法
CN204696142U (zh) * 2015-05-14 2015-10-07 上海世湖材料科技有限公司 一种InGaN/GaN量子阱界面中断生长外延结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553524A (zh) * 1999-06-07 2004-12-08 ���ǻ�ѧ��ҵ��ʽ���� 氮化物半导体元件
WO2004061909A1 (en) * 2002-12-16 2004-07-22 The Regents Of The University Of California Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
CN102280542A (zh) * 2011-09-02 2011-12-14 华灿光电股份有限公司 一种氮化镓基发光二极管多量子阱的生长方法
CN204696142U (zh) * 2015-05-14 2015-10-07 上海世湖材料科技有限公司 一种InGaN/GaN量子阱界面中断生长外延结构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428478A (zh) * 2015-11-24 2016-03-23 湘能华磊光电股份有限公司 Led外延片及其制备方法
CN105428478B (zh) * 2015-11-24 2018-09-25 湘能华磊光电股份有限公司 Led外延片及其制备方法
CN105742434A (zh) * 2016-05-16 2016-07-06 安徽三安光电有限公司 一种氮化物发光二极管及其制备方法
CN105742434B (zh) * 2016-05-16 2018-05-11 安徽三安光电有限公司 一种氮化物发光二极管及其制备方法

Also Published As

Publication number Publication date
CN104821352B (zh) 2018-09-25

Similar Documents

Publication Publication Date Title
CN102664145B (zh) 采用金属有机化合物气相外延技术生长非对称电子储蓄层高亮度发光二极管的方法
CN110970533B (zh) 一种led倒装芯片的紫光外延结构及其制备方法
CN204696142U (zh) 一种InGaN/GaN量子阱界面中断生长外延结构
CN102832306B (zh) 一种高亮度发光二极管的外延结构及其实现方法
CN105355737B (zh) 高发光效率的量子阱组合led外延结构及其制备方法
CN102280542B (zh) 一种氮化镓基发光二极管多量子阱的生长方法
CN105161586A (zh) 具有组合势垒多量子阱的led外延结构及其制备方法
CN104201262B (zh) 一种InGaN/AlGaN-GaN基多量子阱结构及其制备方法
CN106935690B (zh) 一种提高紫外led光输出功率的外延结构
CN102214739A (zh) 一种氮化镓基发光二极管的外延粗化方法
CN102427103B (zh) 氮化镓基ⅲ-ⅴ族化合物半导体led外延片及其生长方法以及包括其的led显示装置
CN104051586A (zh) 一种GaN基发光二极管外延结构及其制备方法
CN105449052A (zh) 一种采用mocvd技术制备高亮度近紫外led的方法
CN109755360A (zh) 具有组合阱的多量子阱led外延结构及其外延制备方法
CN203398149U (zh) 一种新型GaN基发光二极管外延结构
CN103346219B (zh) 复式多量子阱发光层结构的生长方法及led外延结构
CN104821352A (zh) 一种InGaN/GaN量子阱界面中断生长结构及方法
WO2017181710A1 (zh) 一种紫外发光二极管外延结构及其制备方法
CN109346585B (zh) 一种降低氮化镓基发光二极管工作电压的外延片及生长方法
CN104319317A (zh) 一种可有效提高p-GaN空穴注入层质量的外延生产方法
CN103746054A (zh) 阻挡电子泄漏和缺陷延伸的外延生长方法及其结构
CN107316926B (zh) 优化紫外led发光层的外延结构及其生长方法
CN103337451B (zh) 外延结构的电子阻挡层生长方法及其相应的外延结构
CN106910802B (zh) 一种实现短波长紫外led的外延结构
CN107689405B (zh) 紫外led外延结构及其生长方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180925

Termination date: 20190514

CF01 Termination of patent right due to non-payment of annual fee