WO2017181710A1 - 一种紫外发光二极管外延结构及其制备方法 - Google Patents

一种紫外发光二极管外延结构及其制备方法 Download PDF

Info

Publication number
WO2017181710A1
WO2017181710A1 PCT/CN2016/111667 CN2016111667W WO2017181710A1 WO 2017181710 A1 WO2017181710 A1 WO 2017181710A1 CN 2016111667 W CN2016111667 W CN 2016111667W WO 2017181710 A1 WO2017181710 A1 WO 2017181710A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
growing
epitaxial structure
ultraviolet light
emitting diode
Prior art date
Application number
PCT/CN2016/111667
Other languages
English (en)
French (fr)
Inventor
陈圣昌
邓和清
卓昌正
徐宸科
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2017181710A1 publication Critical patent/WO2017181710A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention belongs to the field of semiconductor optoelectronics, and in particular relates to an ultraviolet light emitting diode epitaxial structure and a method for fabricating the same.
  • UV LED can be used not only in the field of lighting, but also in the field of biomedical, anti-counterfeiting, air, water purification, biochemical detection, high-density information storage, etc., which can replace traditional mercury-containing mercury lamps with toxic and harmful substances.
  • the market for ultraviolet light is very promising.
  • the ultraviolet LED epitaxial growth technology is not mature enough, the material for growing high-performance ultraviolet LED is difficult to prepare, and the p-layer is difficult and the luminous efficiency is low, and the luminous efficiency of the ultraviolet LED chip is not high.
  • the preparation cost is high, the difficulty is high, and the yield is low.
  • the object of the present invention is to provide a new ultraviolet light emitting diode epitaxial structure and a preparation method thereof, which can obviously improve the crystal quality of the ultraviolet LED epitaxial growth material and enhance the light emission brightness of the ultraviolet LED.
  • the technical solution of the present invention includes: an ultraviolet light emitting diode epitaxial structure and a preparation method thereof, comprising the following steps: (1) providing a substrate; (2) a long high temperature A1N layer; (3) then growing a low temperature A1N (4) re-growing a high-temperature A1N layer; (5) growing an n-type AlGaN layer; (6) growing an active layer; (7) growing a p-type AlGaN layer.
  • the present invention also makes the following optimization definitions and improvements: [0009]
  • the above step (2) or (4) the high temperature A1N layer has a growth temperature of 1300 ° C or more and a growth pressure of 50 20
  • Otorr thickness is 0.5 ⁇ 3 ⁇ .
  • the above step (3) The low temperature A1N layer has a growth temperature of 600 to 850 ° C, a growth pressure of 50 to 200 torr, and a thickness of 0.3 to 2 ⁇ .
  • the thickness of the high temperature A1N layer in the above step (2) or (4) is 0.5 ⁇ 3 ⁇ .
  • the thickness of the low temperature A1N layer in the above step (3) is 0.3 to 2 ⁇ m.
  • the thickness of the high temperature A1N layer is greater than the thickness of the low temperature A1N layer.
  • the active layer includes a growth period of several times of Al x G ai _ x N/Al y G ai _ y N (x ⁇ y) quantum wells, the well layer Al x Ga in each period
  • the thickness of X N and the barrier layer Al y Ga y N are 4 nm and 8 nm, respectively.
  • the epitaxial wafer structure prepared according to the above method comprises, in order from bottom to top, a substrate; a high temperature A1 N layer; a low temperature A1N layer; a high temperature A1N layer; an n-type AlGaN layer; an active layer and p-type AlGaN.
  • a substrate for a substrate
  • a high temperature A1 N layer for a substrate
  • a low temperature A1N layer for a substrate
  • A1N layer a low temperature A1N layer
  • a high temperature A1N layer n-type AlGaN layer
  • p-type AlGaN p-type AlGaN.
  • the epitaxial structure is also optimized as follows:
  • the high temperature A1N layer has a thickness of 0.5 to 3 ⁇ m
  • the low temperature A1N layer has a thickness of 0.3 to 2 ⁇ m
  • the high temperature A1N layer has a thickness greater than that of the low temperature A1N layer.
  • the above active layer includes a plurality of periods of Al x Ga , _ X N/A1 y Ga y N (x ⁇ y) quantum wells, well layers Al x Ga X N and barrier layers Al y in each period
  • the thickness of Ga y N is 4 nm and 8 nm, respectively.
  • the present invention has the following beneficial effects: First epitaxially growing a high-temperature A1N layer, and then epitaxially growing a low-temperature A1 N layer, since the low-temperature A1N layer is a three-dimensional island instead of a two-dimensional film, and then continues to grow a high-temperature A1N layer, a three-dimensional island Will slowly grow up and annex each other. During the island and island annexation, the dislocations of the A1N layer will be bent, which will increase the probability of dislocations annihilation, improve the crystal quality of the upper A1N layer, and enhance the UV LED epitaxy. The overall crystal quality of the structural layer material enhances the luminance of the ultraviolet LED.
  • FIG. 1 is a schematic view showing an epitaxial structure of an ultraviolet light emitting diode of the present invention.
  • 100 substrate
  • 101 high temperature A1N layer
  • 102 low temperature A1N layer
  • 103 n-type AlGaN layer
  • 104 active layer
  • 105 p-type AlGaN barrier layer
  • 106 p-type AlGaN Layer
  • 107 p-type GaN layer.
  • the present invention uses a metal organic compound chemical vapor deposition (MOCVD) epitaxial growth technique, using sapphire as a growth substrate for epitaxial growth, using trimethylgallium (TMGa), triethylgallium (TEGa), and top three Indium (TMIn), trimethylaluminum (TMA1) and ammonia (NH3) silane (SiH4) and ferrocene (Cp2Mg) provide the gallium source required for growth, indium source, aluminum source, and nitrogen source, silicon Source, magnesium source.
  • MOCVD metal organic compound chemical vapor deposition
  • a n-type AlGaN layer 103 of a silane having a thickness of 500 nm was grown at a temperature of 1060 ° C, and the growth pressure was 200 torr.
  • the quantum well is used as the active layer 104, and the thicknesses of the quantum well layer Al x Ga ⁇ X N layer and the barrier layer Al y Ga ⁇ y N layers are 4 nm and 8 nm, respectively.
  • a p-type AlGaN barrier layer 105 having a thickness of 10 nm was grown at a temperature of 1000 ° C and a growth pressure of 150 torr.
  • a p-type Al-GaN layer 106 of Mg is grown to a thickness of 20 nm.
  • a relatively high-temperature A1N layer is epitaxially grown, and then a thin low-temperature A1N layer is epitaxially grown. Since the low-temperature A1N layer is a three-dimensional island instead of a two-dimensional film, the thicker high-temperature A1N layer is further grown. The three-dimensional islands will gradually grow up and annex each other. During the island-island annexation process, the dislocations of the lower layer of the A1N layer will be bent, thereby increasing the probability of dislocations annihilating each other and improving the crystal quality of the upper layer A1N layer. Improve the overall crystal quality of the epitaxial structure layer material.
  • the tensile stress of the epitaxial film is alleviated to some extent, and the epitaxial film is prevented from being cracked due to excessive tensile stress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种紫外发光二极管外延结构及其制备方法,包括:提供一衬底(100);先生长高温AlN层(101);然后生长低温AlN层(102);再生长高温AlN层(101);生长n型AlGaN层(103);生长有源层(104);生长p型AlGaN层(106)。由于低温AlN层(102)是三维小岛而不是二维薄膜,再继续生长高温AlN层(101),三维小岛会慢慢长大并相互吞并,在岛与岛吞并过程中,下层AlN层延伸上来的位错会被弯曲,从而增加位错相互湮灭的几率,提高上层AlN层的晶体质量,提升外延结构层材料的整体结晶质量,提升紫外LED的发光亮度。

Description

发明名称:一种紫外发光二极管外延结构及其制备方法 技术领域
[0001] 本发明属于半导体光电子领域, 具体涉及一种紫外发光二极管外延结构及其制 备方法。
背景技术
[0002] 随着 LED应用的发展, 紫外 LED的市场需求越来越大, 发光波长覆盖 210~400n m的紫外 LED, 具有传统的紫外光源无法比拟的优势。 紫外 LED不仅可以用在照 明领域, 同吋在生物医疗、 防伪鉴定、 空气, 水质净化、 生化检测、 高密度信 息储存等方面都可替代传统含有毒有害物质的紫外汞灯, 在目前的 LED背景下, 紫外光市场前景非常广阔。
[0003] 目前, 紫外 LED外延生长技术还不够成熟, 生长高性能紫外 LED的材料制备困 难, 并且 p层惨杂难度大, 发光区域发光效率低下等限制, 导致紫外 LED芯片的 发光效率不高, 制备成本高, 难度大, 成品率低。
[0004] 紫外 LED芯片市场潜力巨大, 应用领域广阔, 价格昂贵, 因此如何制备结晶质 量较好、 高功率的紫外 LED芯片, 是当前亟需解决的问题。
技术问题
问题的解决方案
技术解决方案
[0005] 本发明的目的在于: 提出一种新的紫外发光二极管外延结构及其制备方法, 能 够明显改善紫外 LED外延生长材料的结晶质量, 提升紫外 LED的发光亮度。
[0006] 本发明的技术方案包括: 一种紫外发光二极管外延结构及其制备方法, 包括以 下步骤: (1) 提供一衬底; (2) 先生长高温 A1N层; (3) 然后生长低温 A1N 层; (4) 再生长高温 A1N层; (5) 生长 n型 AlGaN层; (6) 生长有源层; (7 ) 生长 p型 AlGaN层。
[0007] 以上所称的"高温"、 "低温 "在本领域是具有明确意义的技术术语。
[0008] 基于上述基本方案, 本发明还做如下优化限定和改进: [0009] 上述步骤 (2) 或 (4) 高温 A1N层的生长温度为 1300°C以上, 生长压力为 50 20
Otorr, 厚度为 0.5~3μηι。
[0010] 上述步骤 (3) 低温 A1N层的生长温度为 600~850°C, 生长压力为 50~200torr, 厚 度为 0.3~2μηι。
[0011] 上述步骤 (2) 或 (4) 中高温 A1N层的厚度为 0.5~3μηι。
[0012] 上述步骤 (3) 中低温 A1N层的厚度为 0.3~2μηι。
[0013] 上述高温 A1N层的厚度大于所述低温 A1N层的厚度。
[0014] 上述步骤 (6) 有源层包括生长若干个周期的 Al xGa i_xN/Al yGa i_yN(x<y)量子阱 , 每个周期中的阱层 Al xGa XN和垒层 Al yGa yN的厚度分别为 4nm和 8nm。
[0015] 相应的, 按照上述方法制得的外延片结构, 从下至上依次包括: 衬底; 高温 A1 N层; 低温 A1N层; 高温 A1N层; n型 AlGaN层; 有源层以及 p型 AlGaN层。
[0016] 该外延结构也相应作如下优化限定:
[0017] 上述高温 A1N层的厚度为 0.5~3μηι, 低温 A1N层的厚度为 0.3~2μηι, 高温 A1N层 的厚度大于所述低温 A1N层的厚度。
[0018] 上述有源层包括若干个周期的 Al xGa ,_XN/A1 yGa yN(x<y)量子阱, 每个周期中 的阱层 Al xGa XN和垒层 Al yGa yN的厚度分别为 4nm和 8nm。
发明的有益效果
有益效果
[0019] 本发明具有以下有益效果: 采用先外延生长高温 A1N层, 然后外延生长低温 A1 N层, 由于低温 A1N层是三维小岛而不是二维薄膜, 再继续生长高温 A1N层, 三 维小岛会慢慢长大并相互吞并, 在岛与岛吞并过程中, 底下 A1N层延伸上来的位 错会被弯曲, 从而增加位错相互湮灭的几率, 提高上层 A1N层的晶体质量, 提升 紫外 LED外延结构层材料的整体结晶质量, 提升紫外 LED的发光亮度。 此外, 藉 由三维小岛在相互吞并过程中相互挤压, 在一定程度上缓解薄膜的张应力, 避 免薄膜由于张应力过大产生裂纹。 对附图的简要说明
附图说明
[0020] 图 1为本发明的紫外发光二极管的外延结构示意图。 [0021] 图示说明: 100: 衬底; 101: 高温 A1N层; 102: 低温 A1N层; 103: n型 AlGaN 层; 104: 有源层; 105: p型 AlGaN阻挡层; 106: p型 AlGaN层; 107: p型 GaN 层。 本发明的实施方式
[0022] 本发明采用金属有机化合物化学气相沉淀 (MOCVD) 外延生长技术, 以蓝宝 石作为生长衬底, 进行外延生长, 采用三甲基镓 (TMGa) , 三乙基镓 (TEGa ) , 和三甲基铟 (TMIn) , 三甲基铝 (TMA1) 和氨气 (NH3) 硅烷 (SiH4) 和 二茂镁 (Cp2Mg) 分别提供生长所需要的镓源, 铟源、 铝源、 和氮源、 硅源、 镁源。 如图 1所示, 该紫外 LED外延结构的生长过程具体如下:
[0023] (1) 将蓝宝石作为生长衬底 100特殊清洗处理后, 放入 MOCVD设备在 1100°C 烘烤 10分钟。
[0024] (2) 升温到 1350°C生长一层厚度 1.5μηι的高温 A1N层 101, 生长压力为 150torr。
[0025] (3) 降温到 650°C生长一层厚度 Ιμηι的低温 A1N层 102, 生长压力为 150torr。
[0026] (4) 再升温到 1350°C生长一层厚度 1.5μηι的高温 A1N层 101, 生长压力为 150torr
[0027] (5) 在温度 1060°C生长一层厚度 500nm的惨杂硅烷的 n型 AlGaN层 103, 生长压 力为 200torr。
[0028] (6) 在氮气氛围 250torr, 温度 1060°C条件下, 生长 8个周期的 Al xGa ^ XN/A1 y
Ga !_yN (x<y) 量子阱作为有源层 104, 量子阱层 Al xGa ^ XN层和垒层 Al yGa ^ yN层 的厚度分别为 4nm和 8nm。
[0029] (7) 在温度 1000°C, 生长压力为 150torr, 生长一层惨杂 Mg的 p型 AlGaN阻挡层 105, 厚度为 10nm。
[0030] (8) 在温度 900°C, 生长压力为 200torr, 生长一层惨杂 Mg的 p型 AlGaN层 106, 厚度为 20nm。
[0031] (9) 在温度 850°C, 生长压力为 300torr, 生长一层惨杂 Mg的 p型 GaN层 107, 厚 度为 60nm。 [0032] (10) 在氮气氛围下, 退火 20分钟, 外延生长过程结束。
[0033] 本实施例采用先外延生长较厚的高温 A1N层, 然后外延生长较薄的低温 A1N层 , 由于低温 A1N层是三维小岛而不是二维薄膜, 再继续生长较厚的高温 A1N层, 三维小岛会慢慢长大并相互吞并, 在岛与岛吞并过程中, 下层 A1N层延伸上来的 位错会被弯曲, 从而增加位错相互湮灭的几率, 提高上层 A1N层的晶体质量, 提 升外延结构层材料的整体结晶质量。 此外, 藉由三维小岛在相互吞并过程中相 互挤压, 在一定程度上缓解外延薄膜的张应力, 避免外延结构薄膜由于张应力 过大产生裂纹。
[0034] 需要说明的是, 以上实施方式仅用于说明本发明, 而并非用于限定本发明, 本 领域的技术人员, 在不脱离本发明的精神和范围的情况下, 可以对本发明做出 各种修饰和变动, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应视权利要求书范围限定。

Claims

权利要求书
[权利要求 1] 一种紫外发光二极管外延结构的制备方法, 其特征在于: 包括以下步 骤:
(1) 提供一衬底;
(2) 先生长高温 A1N层;
(3) 然后生长低温 A1N层;
(4) 再生长高温 A1N层;
(5) 生长 n型 AlGaN层;
(6) 生长有源层;
(7) 生长 p型 AlGaN层。
[权利要求 2] 根据权利要求 1所述的紫外发光二极管外延结构的制备方法, 其特征 在于: 所述步骤 (2) 或 (4) 中高温 A1N层的生长温度为 1300°C以上
, 生长压力为 50~200torr。
[权利要求 3] 根据权利要求 1所述的紫外发光二极管外延结构的制备方法, 其特征 在于: 所述步骤 (3) 中低温 A1N层的生长温度为 600~850°C, 生长压 力为 50~200torr。
[权利要求 4] 根据权利要求 1所述的紫外发光二极管外延结构的制备方法, 其特征 在于: 所述步骤 (2) 或 (4) 中高温 A1N层的厚度为 0.5~3μηι。
[权利要求 5] 根据权利要求 1所述的紫外发光二极管外延结构的制备方法, 其特征 在于: 所述步骤 (3) 中低温 A1N层的厚度为 0.3~2μηι。
[权利要求 6] 根据权利要求 1所述的紫外发光二极管外延结构的制备方法, 其特征 在于: 所述高温 A1N层的厚度大于所述低温 A1N层的厚度。
[权利要求 7] —种紫外发光二极管外延结构, 其特征在于: 从下至上依次包括: 衬 底; 高温 A1N层; 低温 A1N层; 高温 A1N层; η型 AlGaN层; 有源层以 及 p型 AlGaN层。
[权利要求 8] 根据权利要求 7所述的紫外发光二极管外延结构, 其特征在于: 所述 高温 A1N层的厚度为 0.5~3μηι。
[权利要求 9] 根据权利要求 7所述的紫外发光二极管外延结构, 其特征在于: 所述 低温 AIN层的厚度为 0.3~2μηι。
[权利要求 10] 根据权利要求 7所述的紫外发光二极管外延结构, 其特征在于: 所述 高温 A1N层的厚度大于所述低温 A1N层的厚度。
PCT/CN2016/111667 2016-04-18 2016-12-23 一种紫外发光二极管外延结构及其制备方法 WO2017181710A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610239649.8 2016-04-18
CN201610239649.8A CN105762240B (zh) 2016-04-18 2016-04-18 一种紫外发光二极管外延结构及其制备方法

Publications (1)

Publication Number Publication Date
WO2017181710A1 true WO2017181710A1 (zh) 2017-10-26

Family

ID=56335360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111667 WO2017181710A1 (zh) 2016-04-18 2016-12-23 一种紫外发光二极管外延结构及其制备方法

Country Status (2)

Country Link
CN (1) CN105762240B (zh)
WO (1) WO2017181710A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762240B (zh) * 2016-04-18 2018-10-16 厦门市三安光电科技有限公司 一种紫外发光二极管外延结构及其制备方法
CN108767080A (zh) * 2018-05-31 2018-11-06 扬州乾照光电有限公司 基于AlN衬底的LED外延结构及生长方法和LED
CN109728138B (zh) * 2018-12-30 2020-07-28 广东省半导体产业技术研究院 氮化铝自支撑衬底及其制备方法
CN110504340B (zh) * 2019-09-18 2021-10-08 福建兆元光电有限公司 一种氮化镓发光二极管led外延片的生长方法
CN113257969A (zh) * 2021-05-10 2021-08-13 广东先导稀材股份有限公司 非极性AlGaN基紫外LED外延片及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040841A (ja) * 1999-07-16 2000-02-08 Toyoda Gosei Co Ltd 窒化ガリウム系化合物半導体の成長方法
CN101060076A (zh) * 2007-05-14 2007-10-24 武汉大学 一种GaN绝缘或半绝缘外延层的制备方法
US20090146187A1 (en) * 2007-12-07 2009-06-11 Rohm Co., Ltd. Nitride semiconductor element and process for producing the same
CN101515618A (zh) * 2009-03-31 2009-08-26 西安电子科技大学 蓝宝石衬底上的多量子阱紫外led器件及制作方法
CN101771121A (zh) * 2009-12-28 2010-07-07 山东华光光电子有限公司 一种SiC或Si衬底GaN基晶体的结构及其生长方法
CN105762240A (zh) * 2016-04-18 2016-07-13 厦门市三安光电科技有限公司 一种紫外发光二极管外延结构及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515619B (zh) * 2009-03-31 2010-08-25 西安电子科技大学 基于蓝宝石衬底的AlGaN基多量子阱uv-LED器件的制作方法
WO2010111854A1 (zh) * 2009-03-31 2010-10-07 西安电子科技大学 紫外发光二极管器件及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040841A (ja) * 1999-07-16 2000-02-08 Toyoda Gosei Co Ltd 窒化ガリウム系化合物半導体の成長方法
CN101060076A (zh) * 2007-05-14 2007-10-24 武汉大学 一种GaN绝缘或半绝缘外延层的制备方法
US20090146187A1 (en) * 2007-12-07 2009-06-11 Rohm Co., Ltd. Nitride semiconductor element and process for producing the same
CN101515618A (zh) * 2009-03-31 2009-08-26 西安电子科技大学 蓝宝石衬底上的多量子阱紫外led器件及制作方法
CN101771121A (zh) * 2009-12-28 2010-07-07 山东华光光电子有限公司 一种SiC或Si衬底GaN基晶体的结构及其生长方法
CN105762240A (zh) * 2016-04-18 2016-07-13 厦门市三安光电科技有限公司 一种紫外发光二极管外延结构及其制备方法

Also Published As

Publication number Publication date
CN105762240B (zh) 2018-10-16
CN105762240A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
JP3219854U (ja) Iii−v族窒化物半導体エピタキシャルウエハ及びiii−v族窒化物半導体デバイス
CN104037287B (zh) 生长在Si衬底上的LED外延片及其制备方法
WO2017181710A1 (zh) 一种紫外发光二极管外延结构及其制备方法
CN106098871B (zh) 一种发光二极管外延片的制备方法
CN107180899B (zh) 一种深紫外led
CN102097548B (zh) 一种自支撑GaN基发光二极管的制备方法
CN106711295B (zh) 一种GaN基发光二极管外延片的生长方法
CN106328771B (zh) 一种在金属氮化镓复合衬底上外延无裂纹高晶体质量led外延层的方法
CN106057990B (zh) 一种GaN基发光二极管的外延片的制作方法
CN105529382B (zh) 一种红黄光的发光二极管外延片及芯片的制备方法
CN102306691A (zh) 一种提高发光二极管发光效率的方法
CN104051586A (zh) 一种GaN基发光二极管外延结构及其制备方法
CN106848017B (zh) 一种GaN基发光二极管的外延片及其生长方法
CN113782651B (zh) 一种图形化深紫外led外延结构及其制备方法
CN103456852A (zh) 一种led外延片及制备方法
WO2019015337A1 (zh) 氮化物半导体元件及其制作方法
CN110931605A (zh) 一种led外延接触层的生长方法
CN111987197A (zh) AlGaN基深紫外发光二极管及其AlGaN外延片和制备方法
CN105679898B (zh) 具有翘曲调节结构层的led外延结构及其生长方法
CN106920866B (zh) 一种调控紫外发光二极管外延片波长的外延方法
CN113745379B (zh) 一种深紫外led外延结构及其制备方法
CN105098008A (zh) 一种含三元超晶格的GaN基LED外延结构及其制备方法
WO2023193257A1 (zh) 发光芯片、发光芯片外延层及其生长方法
CN211719609U (zh) 一种光电器件结构
CN109545919B (zh) n型AlGaN层调制掺杂的高效紫外发光二极管及制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899289

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899289

Country of ref document: EP

Kind code of ref document: A1