WO2019015337A1 - 氮化物半导体元件及其制作方法 - Google Patents

氮化物半导体元件及其制作方法 Download PDF

Info

Publication number
WO2019015337A1
WO2019015337A1 PCT/CN2018/078671 CN2018078671W WO2019015337A1 WO 2019015337 A1 WO2019015337 A1 WO 2019015337A1 CN 2018078671 W CN2018078671 W CN 2018078671W WO 2019015337 A1 WO2019015337 A1 WO 2019015337A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
stress
nitride semiconductor
semiconductor device
type semiconductor
Prior art date
Application number
PCT/CN2018/078671
Other languages
English (en)
French (fr)
Inventor
卓昌正
陈圣昌
邓和清
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Publication of WO2019015337A1 publication Critical patent/WO2019015337A1/zh
Priority to US16/540,421 priority Critical patent/US20190371961A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to the field of semiconductor fabrication, and more particularly to a nitride semiconductor device and a method of fabricating the same.
  • UV light-emitting diodes have gradually replaced lower-power mercury lamps.
  • the International Minamata Prohibition on Mercury will enter into force in 2020, and this policy will accelerate the arrival of large-scale application of UV LEDs.
  • the buffer layer of deep ultraviolet LED is mainly A1N.
  • Fig. 1 shows a conventional deep ultraviolet LED epitaxial structure in which an A1N buffer layer is formed on a substrate, and an n-type nitride semiconductor layer, a quantum well light-emitting layer and a p-type nitride semiconductor layer are formed in the A1N buffer layer.
  • the n-type nitride semiconductor layer and the A1N buffer layer have lattice mismatch, which generates great compressive stress to the post-grown AlGaN, which leads to more dislocation density, which in turn affects the crystal quality and the luminous efficiency of the LED device.
  • the present invention provides a nitride semiconductor device which proposes a stress modulation layer epitaxy technique in which a material having a lattice constant greater than A1N is grown as a stress modulation layer on a substrate, and then an A1N buffer layer is grown.
  • the stress modulation layer is used to modulate the stress of the subsequent AlGaN to improve the crystal quality.
  • the technical solution of the present invention is: a nitride semiconductor device, comprising: a substrate, a stress modulation layer on the substrate, an A1N buffer layer on the stress modulation layer, which is sequentially located in the buffer An n-type semiconductor layer, an active layer, and a p-type semiconductor layer on the layer, wherein the stress modulation layer has a lattice constant greater than the A1N buffer layer, but not larger than a lattice constant of the n-type semiconductor layer.
  • the compressive stress of the n-type semiconductor layer is reduced by the stress modulation layer.
  • the stress modulation layer is Al x G ai — x N, wherein the value of the A1 component is 0.2 to 0.9. More preferably, the value of X may be 0.5 to 0.9, for example, 0.5 or 0.75. In some embodiments, the thickness of the stress-modulating layer is greater than the thickness of the A1N buffer layer.
  • the thickness of the stress-modulating layer is equal to the thickness of the A1N buffer layer.
  • the thickness of the stress-modulating layer may also be less than the thickness of the A1N buffer layer.
  • the stress modulation layer has a thickness dl ranging from 100 ⁇ dl ⁇ 5000 nm.
  • the thickness dl can be from 1000 to 3000 nm, for example, micrometers or 2 micrometers.
  • the thickness d2 of the A1N buffer layer ranges from 10 ⁇ d2 ⁇ 3000nm.
  • the thickness d2 may be between 20 and 500 nm, such as 50 nm; in some embodiments, the thickness d2 may be between 500 and 3000 nm, such as 2000 nm.
  • the convex curvature of the active layer is (K OOkm ⁇
  • the present invention provides a method for fabricating a nitride semiconductor device, comprising the steps of: providing a growth substrate; sequentially forming a stress modulation layer, an A1N buffer layer, and an n-type semiconductor layer on the growth substrate; The active layer and the p-type semiconductor layer; wherein the stress modulation layer has a lattice constant greater than the A1N buffer layer, but not greater than a lattice constant of the n-type semiconductor layer, by the stress modulation a layer that reduces the compressive stress of the n-type semiconductor layer.
  • the stress modulation layer, the A1N buffer layer, and the n-type semiconductor layer are sequentially formed by chemical vapor deposition
  • an active layer and a p-type semiconductor layer.
  • the stress modulation layer has a growth temperature of 1000 to 1300 °C.
  • the lattice constant of the stress-modulating layer is greater than The A1N buffer layer is not larger than the lattice constant of the n-type semiconductor layer.
  • the flow rate of the aluminum source is fixed, and the flow rate of the gallium source is changed, wherein the flow rate of the gallium source for growing the N-type semiconductor layer is fl, growing Al x Ga lx
  • the gallium source flow rate of the N stress modulation layer is f2, then 0 ⁇ f2 ⁇ fl.
  • the lattice constant of the stress-modulating layer is greater than the A1N buffer layer, but not greater than the lattice constant of the n-type semiconductor layer, by controlling the growth temperature.
  • the temperature at which the stress modulation layer is formed is T1
  • the temperature at which the A1N buffer layer is formed is ⁇ 2
  • the temperature at which the ⁇ -type semiconductor layer is formed is ⁇ 3, and the temperature lj T3 ⁇ T1 ⁇ T2.
  • the stress-modulating layer is formed using a graded growth temperature approach.
  • the nitride semiconductor device of the present invention is suitable for use in an ultraviolet light emitting diode, particularly a deep ultraviolet light emitting diode having a wavelength of 340 nm or less.
  • an ultraviolet light emitting diode particularly a deep ultraviolet light emitting diode having a wavelength of 340 nm or less.
  • FIG. 1 is a schematic view of a conventional deep ultraviolet LED epitaxial structure.
  • FIG. 2 is a schematic view of a nitride semiconductor device in accordance with an embodiment of the present invention.
  • FIGS. 3-5 show SEM photographs of the surface of an n-type semiconductor layer of different structures or different compositions.
  • FIG. 6 shows a schematic view of forming a stress-modulating layer by a gradual growth temperature method according to a second embodiment of the present invention.
  • This embodiment uses a metal organic chemical vapor deposition (MOCVD) epitaxial growth technique, using sapphire as a growth substrate for epitaxial growth, using trimethylgallium (TMGa), triethylgallium (TEG) a) , and trimethyl indium (TMIn), trimethyl aluminum (TMA1) and ammonia (NH3) silane (SiH4) and ferrocene (Cp2Mg) provide gallium source, indium source, aluminum source, respectively, for growth , and nitrogen source, silicon source, magnesium source.
  • MOCVD metal organic chemical vapor deposition
  • n-type AlGaN layer 230 of a silane is grown on the A1N buffer layer 220, wherein the A1 component has a value of 0.5 to 1.
  • a p-type AlGaN barrier layer of Mg, a p-type AlGa N layer of Mg, and a p-type GaN layer of Mg are sequentially grown on the active layer 400 as the p-type semiconductor layer 250.
  • the lattice constant of the control stress modulation layer 260 is between the A1N buffer layer 220 and the N-type AlGa N layer 230, wherein the Al x G ai — X N stress modulation layer is grown at a high temperature.
  • the A1 component x control mode can be based on the growth parameter of the N-type AlGaN layer 230, for example, the flow rate of the trimethyl aluminum (TMA1) is fixed, and only the flow rate of the trimethylgallium (TMGa) is changed, such as the growth type N.
  • the flow rate of the trimethylgallium (T MGa ) of the AlGaN layer 230 ⁇ is fl
  • the flow rate of the trimethylgallium (TMGa) of the Al x G ai — x N stress modulation layer 260 is f2
  • TMGa trimethylgallium
  • the A1 component X can also be achieved by controlling the growth temperature.
  • the temperature of the growth stress modulation layer 260 is T1
  • the temperature of the buffer layer 220 of the A1N is ⁇ 2
  • the temperature of the ⁇ -type AlGaN layer 230 is ⁇ 3
  • Embodiment 2 uses a metal organic chemical vapor deposition (MOCVD) epitaxial growth technique, using sapphire as a growth substrate for epitaxial growth, using trimethylgallium (TMGa), triethylgallium (TEG a), Methyl aluminum (TMA1) and ammonia (NH3) and silane (SiH4) provide gallium source, aluminum source, and nitrogen source, silicon source for growth, respectively, and grow to n-type AlGaN layer 300, and compare the presence or absence of stress The effect of the modulation layer 26 0 on the surface topography.
  • MOCVD metal organic chemical vapor deposition
  • the growth temperature to be 1000-1300 ° C, the growth stress modulation layer 260, the thickness of which is between 1000 and 5000 nm, preferably 2000 to 3000 nm, the material is Al x Ga X N, wherein the group A1
  • the fraction X may be 0.2 0.9, preferably 0.7 to 0.9.
  • n-type AlGaN layer 230 of the silane is grown on the A1N buffer layer 220, and the thickness thereof is between 1500 and 2500 nm, wherein the A1 component has a value of 0.5 to 1, and is 0.55 in this embodiment.
  • FIG. 3 is a photomicrograph of the surface of the n-type AlGaN layer of the stress-free modulation layer. The surface is subjected to a high-density pyramidal protrusion due to the compressive stress generated by the lattice constant mismatch between the A1N buffer layers. Things.
  • Figure 4 is a photomicrograph of the surface of an n-type AlGaN layer with a stress-modulating layer with an aluminum component of 0.9. The stress is obtained, and the compressive stress of the n-type AlGaN layer is reduced, thereby suppressing the surface pyramidal convexity. The object is formed. A further optimization of the aluminum component of the stress-modulating layer to 0.8 gives a better surface, as shown in Figure 5. Under this optimized bottom layer growth deep ultraviolet
  • This embodiment uses a metal organic compound chemical vapor deposition (MOCVD) epitaxial growth technique, using sapphire as a growth substrate for epitaxial growth, using trimethylgallium (TMGa), triethylgallium (TEG a), and Trimethyl indium (TMIn), trimethyl aluminum (TMA1) and ammonia (NH3) silane (SiH4) And ferrocene (Cp2Mg) provide gallium source, indium source, aluminum source, and nitrogen source, silicon source, and magnesium source, respectively, for growth.
  • MOCVD metal organic compound chemical vapor deposition
  • the gradual growth temperature is 1000 to 1300 ° C, and the growth stress modulation layer 260 has a thickness of 1000 to 3000 nm, and the material is Al x G ai — X N , such that the average lattice constant is greater than
  • the lattice constant of the A1N material layer, the specific A1 composition X of Al x Ga X N varies from 0.2 to 1.0, preferably from 0.6 to 0.9.
  • the thickness of the A1N buffer layer is 10 to 3000 nm, preferably 500 to 1000 nm.
  • the Al composition of the Ga xl N layer is 0.6 to 1, for example, 0.6.
  • the p-type GaN layer of the N layer and Mg serves as the p-type semiconductor layer 250.
  • the aluminum component of the stress-modulating layer 260 is controlled by a gradual growth temperature method, as shown in FIG. 6, wherein the temperature grading mode can be from low to high, high to low, and multiple temperature changing modes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种氮化物半导体元件及其制作方法,所述元件包括:衬底(210),位于所述衬底(210)上的应力调变层(260),位于所述应力调变层(260)上的AlN缓冲层(220),依次位于所述缓冲层(220)上的n型半导体层(230)、有源层(240)和p型半导体层(250),所述应力调变层(260)的晶格常数大于所述AlN缓冲层(220),但不大于所述n型半导体层(230)的晶格常数。通过在衬底(210)与AlN缓冲层(220)之间插入应力调变层(260),可以减少n型氮化物半导体层(230)的压应力,进而改善材料晶体质量,提升发光效率。

Description

氮化物半导体元件及其制作方法 技术领域
[0001] 本发明涉及半导体制备领域, 具体为一种氮化物半导体元件及其制作方法。
背景技术
[0002] 近年来紫外发光二极管随着产品功率提升与技术精进, 加上寿命长、 体积小等 优势, 已逐渐取代较低功率的汞灯。 同吋国际禁汞的 《水俣公约》 将于 2020年 生效, 这一政策将加速 UV LED规模化应用的到来。
[0003] 目前深紫外 LED的缓冲层主要以 A1N为主。 图 1为传统深紫外 LED外延结构, 在 衬底形成 A1N缓冲层, 在 A1N缓冲层形成 n型氮化物半导体层、 量子井发光层与 p 型氮化物半导体层。 其中因 n型氮化物半导体层与 A1N缓冲层存在晶格失配, 对 后生长的 AlGaN产生极大的压应力, 衍生出更多的位错密度, 进而影响晶体质量 与 LED器件发光效率。
技术问题
问题的解决方案
技术解决方案
[0004] 针对上述问题, 本发明提供一种氮化物半导体元件, 其提出应力调变层外延技 术, 在衬底上生长晶格常数大于 A1N的材料作为应力调变层, 接着生长 A1N缓冲 层, 采用应力调变层调变后续 AlGaN的应力, 改善晶体质量。
[0005] 本发明的技术方案为: 氮化物半导体元件, 包括: 衬底, 位于所述衬底上的应 力调变层, 位于所述应力调变层上的 A1N缓冲层, 依次位于所述缓冲层上的 n型 半导体层、 有源层和 p型半导体层, 所述应力调变层的晶格常数大于所述 A1N缓 冲层, 但不大于所述 n型半导体层的晶格常数。
[0006] 在本发明中, 借由所述应力调变层, 减少所述 n型半导体层的压应力。
[0007] 优选地, 所述应力调变层为 Al xGa i_xN, 其中 A1组分的取值 X为 0.2~0.9。 更佳 的, X的取值可以为 0.5~0.9, 例如取 0.5或 0.75等。 [0008] 在一些实施例中, 所述应力调变层的厚度大于所述 A1N缓冲层的厚度。
[0009] 在一些实施例中, 所述应力调变层的厚度等于所述 A1N缓冲层的厚度。
[0010] 在一些实施例中, 所述应力调变层的厚度也可以小于所述 A1N缓冲层的厚度。
[0011] 优选地, 所述应力调变层为厚度 dl的取值范围为: 100< dl≤5000nm。 在一些 实施例中, 所述厚度 dl可以取 1000~3000nm, 例如取微米或者 2微米。
[0012] 优选地, 所述 A1N缓冲层的厚度 d2的取值范围为: 10≤d2≤3000nm。 在一些实 施例中, 所述厚度 d2可以取 20~500nm之间, 例如 50nm; 在一些实施例中, 所述 厚度 d2可以取 500~3000nm之间, 例如 2000nm。
[0013] 优选地, 所述有源层的凸起曲率为 (K OOkm ^
[0014] 本发明同吋提供了一种氮化物半导体元件的制作方法, 包括步骤: 提供一生长 衬底; 在所述生长衬底上依次形成应力调变层、 A1N缓冲层、 n型半导体层、 有 源层和 p型半导体层; 其中, 所述应力调变层的晶格常数大于所述 A1N缓冲层, 但不大于所述 n型半导体层的晶格常数, 借由所述应力调变层, 减少所述 n型半 导体层的压应力。
[0015] 优选地, 采用化学气相沉积法依次形成应力调变层、 A1N缓冲层、 n型半导体层
、 有源层和 p型半导体层。
[0016] 优选地, 所述应力调变层的生长温度为 1000~1300°C。
[0017] 在一些实施例中, 在形成应力调变层、 A1N缓冲层、 n型半导体层的过程中, 通 过控制镓源或铝源的流量, 使得所述应力调变层的晶格常数大于所述 A1N缓冲层 , 但不大于所述 n型半导体层的晶格常数。 例如, 在形成应力调变层、 A1N缓冲 层、 n型半导体层的过程中, 固定铝源的流量, 改变镓源的流量, 其中生长 N型 半导体层吋的镓源流量为 fl, 生长 Al xGa l x
N应力调变层的镓源流量为 f2, 则 0<f2<fl。
[0018] 在一些实施例中, 藉由控制生长温度方式达成应力调变层的晶格常数大于所述 A1N缓冲层, 但不大于所述 n型半导体层的晶格常数。 例如, 形成应力调变层的 温度为 Tl, 形成 A1N缓冲层的温度为 Τ2, 形成 Ν型半导体层的温度为 Τ3, 贝 lj T3<T1<T2。
[0019] 在一些实施例中, 采用渐变生长温度方式形成应力调变层。 发明的有益效果
有益效果
[0020] 本发明所述氮化物半导体元件适用于紫外发光二极管, 特别是波长为 340nm以 下深紫外发光二极管。 通过在衬底与 A1N缓冲层之间插入应力调变层, 可以减少 n型氮化物半导体层的压应力, 进而改善材料晶体质量, 提升发光效率。
[0021] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明
附图说明
[0022] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0023] 图 1为传统深紫外 LED外延结构的示意图。
[0024] 图 2为根据本发明实施的一种氮化物半导体元件的示意图。
[0025] 图 3-5显示不同结构或不同组分的 n型半导体层表面 SEM照片。
[0026] 图 6显示了本发明第二个实施例之采用渐变生长温度方式形成应力调变层的示 意图。
本发明的实施方式
[0027] 以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明如何应 用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解并据以实 施。 需要说明的是, 只要不构成冲突, 本发明中的各个实施例以及各实施例中 的各个特征可以相互结合, 所形成的技术方案均在本发明的保护范围之内。
[0028] 实施例 1
[0029] 本实施例采用金属有机化合物化学气相沉淀 (MOCVD) 外延生长技术, 以蓝 宝石作为生长衬底, 进行外延生长, 采用三甲基镓 (TMGa) , 三乙基镓 (TEG a) , 和三甲基铟 (TMIn) , 三甲基铝 (TMA1) 和氨气 (NH3) 硅烷 (SiH4) 和二茂镁 (Cp2Mg) 分别提供生长所需要的镓源, 铟源、 铝源、 和氮源、 硅源 、 镁源。 如图 2所示, 该紫外 LED外延结构的生长过程具体如下。
[0030] (1) 将蓝宝石作为生长衬底 210特殊清洗处理后, 放入 MOCVD设备在 1100°C 以上烘烤 10分钟。
[0031] (2) 控制生长温度为 1000~1300°C, 生长应力调变层 260, 其厚度为 100~1000n m之间, 材料为 Al xGa iXN, 藉由 Al、 Ga流量控制, 使其晶格常数大于 A1N材料 层的晶格常数, 具体的 Al xGa iXN的 A1组分 X可取 0.2~0.9, 较佳值为 0.5~0.9。
[0032] (3) 控制生长温度为 1200~1450°C, 在生长应力调变层 260上生长 A1N缓冲层 22 0, 其厚度取 10~3000nm, 较佳值为 1000~3000nm。
[0033] (4) 在 A1N缓冲层 220上生长惨杂硅烷的 n型 AlGaN层 230, 其中 A1组分取值为 0 .5~1。
[0034] (5) 在 n型 AlGaN层 230上生长 Al xlGa xlN/Alx2Gal-x2N (xl<x2) 量子阱作为 有源层 240, 量子阱层 Al xlGa ixlN层的 A1组分为 0.3~0.9, 例如可取 0.4, 垒层 Al x2 Ga xlN层的 Al组分为 0.6~1, 例如可取 0.6。
[0035] (6) 在有源层 400上依次生长惨杂 Mg的 p型 AlGaN阻挡层、 惨杂 Mg的 p型 AlGa N层和 Mg的 p型 GaN层作为 p型半导体层 250。
[0036] 在本实施例中, 控制应力调变层 260的晶格常数介于 A1N缓冲层 220与 N型 AlGa N层 230之间, 其中采用高温生长 Al xGa iXN应力调变层 260, 其 A1组分 x控制方式 可以 N型 AlGaN层 230的生长参数为基准, 例如将三甲基铝 (TMA1) 的流量固定 , 仅改变三甲基镓 (TMGa) 的流量, 如生长 N型 AlGaN层 230吋的三甲基镓 (T MGa) 流量为 fl, 则生长 Al xGa i_xN应力调变层 260的三甲基镓 (TMGa) 流量 为 f2, 其 0<f2<fl, 较佳值为 f2=fl/2。 同样的也可以采用固定三甲基镓 (TMGa ) 流量, 通过改变三甲基铝 (TMA1) 流量的方式来达成组份的调控。
[0037] 在本实施例中, A1组分 X还可藉由控制生长温度方式达成。 例如生长应力调变 层 260的温度为 Tl, A1N缓冲层 220的温度为 Τ2, Ν型 AlGaN层 230的温度为 Τ3, 贝 1J Τ3<Τ1<Τ2, 较佳值可选择 Τ1=(Τ2+/Τ3)/2。
[0038] 实施例 2 [0039] 本实施例采用金属有机化合物化学气相沉淀 (MOCVD) 外延生长技术, 以蓝 宝石作为生长衬底, 进行外延生长, 采用三甲基镓 (TMGa) , 三乙基镓 (TEG a) , 三甲基铝 (TMA1) 和氨气 (NH3) 和硅烷 (SiH4) 分别提供生长所需要的 镓源、 铝源、 和氮源、 硅源, 生长至 n型 AlGaN层 300, 并比对有无应力调变层 26 0对表面形貌的影响。
[0040] (1) 将蓝宝石作为生长衬底 210特殊清洗处理后, 放入 MOCVD设备在 1100°C 以上烘烤 10分钟。
[0041] (2) 控制生长温度为 1000~1300°C, 生长应力调变层 260, 其厚度为 1000~5000 nm之间, 优选为 2000~3000nm, 材料为 Al xGa XN, 其中 A1组分 X可取 0.2 0.9, 较佳值为 0.7~0.9。
[0042] (3) 控制生长温度为 1200~1450°C, 在生长应力调变层 260上生长 A1N缓冲层 22 0, 其厚度取 10~1500nm, 较佳值为 10~1000nm, 较佳值为 100~1000nm。
[0043] (4) 在 A1N缓冲层 220上生长惨杂硅烷的 n型 AlGaN层 230, 其厚度为 1500~2500 nm之间, 其中 A1组分取值为 0.5~1, 本实施例取 0.55。
[0044] 图 3为无应力调变层之 n型 AlGaN层表面光学显微镜照片图, 由于受 A1N缓冲层 间晶格常数不匹配所产生的压应力影响, 表面产生高密度的角锥状凸起物。 图 4 为加入铝组份为 0.9的应力调变层的 n型 AlGaN层表面光学显微镜照片图, 因应 力获得调变, 使得 n型 AlGaN层所承受的压应力降低, 进而抑制表面角锥状凸起 物形成。 更进一部优化应力调变层的铝组份至 0.8, 可以获得更佳表面, 如图 5 所示。 在此优化后的底层生长深紫外
LED, 因底层压应力减小, 原本在 n型 AlGaN层 230上生长 Al xlGa ^
N/Alx2Gal-x2N (xl<x2) 量子阱作为有源层 240吋的原位曲翘 (in-situ curvature) 监控读值由原本凸起 (convex)曲率 100~300 km 1降低为 0~200 km 1
, 甚至为 0~100km -i, 有效改善有源层的均匀性与结晶质量。
[0045] 实施例 3
[0046] 本实施例采用金属有机化合物化学气相沉淀 (MOCVD) 外延生长技术, 以蓝 宝石作为生长衬底, 进行外延生长, 采用三甲基镓 (TMGa) , 三乙基镓 (TEG a) , 和三甲基铟 (TMIn) , 三甲基铝 (TMA1) 和氨气 (NH3) 硅烷 (SiH4) 和二茂镁 (Cp2Mg) 分别提供生长所需要的镓源, 铟源、 铝源、 和氮源、 硅源 、 镁源。 如图 2所示, 该紫外 LED外延结构的生长过程具体如下。
[0047] (1) 将蓝宝石作为生长衬底 210特殊清洗处理后, 放入 MOCVD设备在 1100°C 以上烘烤 10分钟。
[0048] (2) 渐变生长温度为 1000~1300°C, 生长应力调变层 260, 其厚度为 1000~3000 nm之间, 材料为 Al xGa iXN, 使其平均晶格常数大于 A1N材料层的晶格常数, 具 体的 Al xGa XN的 A1组分 X变化 0.2~1.0, 较佳值为 0.6~0.9。
[0049] (3) 控制生长温度为 1200~1450°C, 在生长应力调变层 260上生长 A1N缓冲层 22
0, 其中 A1N缓冲层的厚度取 10~3000nm, 较佳值为 500~1000nm。
[0050] (4) 在 A1N缓冲层 220上生长惨杂硅烷的 n型 AlGaN层 230, 其中 A1组分取值为 0
.5~1。
[0051] (5) 在 n型 AlGaN层 230上生长 Al xlGa xlN/Alx2Gal-x2N (xl<x2) 量子阱作为 有源层 240, 量子阱层 Al xlGa ixlN层的 A1组分为 0.3~0.9, 例如可取 0.4, 垒层 Al x2
Ga xlN层的 Al组分为 0.6~1, 例如可取 0.6。
[0052] (6) 在有源层 240上依次生长惨杂 Mg的 p型 AlGaN阻挡层、 惨杂 Mg的 p型 AlGa
N层和 Mg的 p型 GaN层作为 p型半导体层 250。
[0053] 在本实施例中, 采用渐变生长温度方式来控制应力调变层 260的铝组份, 如图 6 所示, 其中温度渐变方式可由低到高、 高到低、 多重变温方式。
[0054] 需要说明的是, 以上实施方式仅用于说明本发明, 而并非用于限定本发明, 本 领域的技术人员, 在不脱离本发明的精神和范围的情况下, 可以对本发明做出 各种修饰和变动, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应视权利要求书范围限定。

Claims

权利要求书
氮化物半导体元件, 包括: 衬底, 位于所述衬底上的应力调变层, 位 于所述应力调变层上的 A1N缓冲层, 依次位于所述缓冲层上的 n型半 导体层、 有源层和 p型半导体层, 所述应力调变层的晶格常数大于所 述 A1N缓冲层, 但不大于所述 n型半导体层的晶格常数。
根据权利要求 1所述的氮化物半导体元件, 其特征在于: 借由所述应 力调变层, 减少所述 n型半导体层的压应力。
根据权利要求 1所述的氮化物半导体元件, 其特征在于: 所述应力调 变层为 Al xGa !_XN, 其中 Al组分的取值 X为 0.2~0.9。
根据权利要求 1所述所氮化物半导体元件, 其特征在于: 所述应力调 变层的厚度大于或等于所述 A1N缓冲层的厚度。
根据权利要求 1所述的氮化物半导体元件, 其特征在于: 所述应力调 变层为厚度 dl的取值范围为: 100< dl≤5000nm。
根据权利要求 1所述的氮化物半导体元件, 其特征在于: 所述 A1N缓 冲层的厚度 d2的取值范围为: 10≤d2≤3000nm。
根据权利要求 1所述的氮化物半导体元件, 其特征在于: 所述有源层 的凸起曲率为 ( OO km ^
氮化物半导体元件的制作方法, 包括步骤:
提供一生长衬底;
在所述生长衬底上依次形成应力调变层、 A1N缓冲层、 n型半导体层 、 有源层和 p型半导体层;
其中, 所述应力调变层的晶格常数大于所述 A1N缓冲层, 但不大于所 述 n型半导体层的晶格常数, 借由所述应力调变层, 减少所述 n型半导 体层的压应力。
根据权利要求 8所述的氮化物半导体元件的制作方法, 其特征在于: 采用化学气相沉积法依次形成应力调变层、 A1N缓冲层、 n型半导体 层、 有源层和 p型半导体层。
根据权利要求 9所述的氮化物半导体元件的制作方法, 其特征在于: 所述应力调变层的生长温度为 1000~1300°C。
[权利要求 11] 根据权利要求 8所述的氮化物半导体元件的制作方法, 其特征在于: 所述应力调变层为 Al xGa ,_XN, 其中 Al组分的取值 X为 0.2~0.9。
[权利要求 12] 根据权利要求 8所述的氮化物半导体元件的制作方法, 其特征在于: 所述应力调变层的厚度大于或等于所述 A1N缓冲层的厚度。
[权利要求 13] 根据权利要求 8所述的氮化物半导体元件的制作方法, 其特征在于: 在形成应力调变层、 A1N缓冲层、 n型半导体层的过程中, 通过控制 镓源或铝源的流量, 使得所述应力调变层的晶格常数大于所述 A1N缓 冲层, 但不大于所述 n型半导体层的晶格常数。
[权利要求 14] 根据权利要求 8所述的氮化物半导体元件的制作方法, 其特征在于: 在形成应力调变层、 A1N缓冲层、 n型半导体层的过程中, 固定铝源 的流量, 改变镓源的流量, 其中生长 N型半导体层吋的镓源流量为 fl , 生长 Al xGa i_xN应力调变层的镓源流量为 f2, 则 0<f2<fl。
[权利要求 15] 根据权利要求 8所述的氮化物半导体元件的制作方法, 其特征在于: 形成应力调变层的温度为 Tl, 形成 A1N缓冲层的温度为 Τ2, 形成 Ν型 半导体层的温度为 Τ3, 贝 1J T3<T1<T2。
[权利要求 16] 根据权利要求 8所述的氮化物半导体元件的制作方法, 其特征在于: 采用渐变生长温度方式形成应力调变层。
PCT/CN2018/078671 2017-07-20 2018-03-12 氮化物半导体元件及其制作方法 WO2019015337A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/540,421 US20190371961A1 (en) 2017-07-20 2019-08-14 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710596729.3A CN107316928B (zh) 2017-07-20 2017-07-20 氮化物半导体元件及其制作方法
CN201710596729.3 2017-07-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/540,421 Continuation-In-Part US20190371961A1 (en) 2017-07-20 2019-08-14 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019015337A1 true WO2019015337A1 (zh) 2019-01-24

Family

ID=60178360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078671 WO2019015337A1 (zh) 2017-07-20 2018-03-12 氮化物半导体元件及其制作方法

Country Status (3)

Country Link
US (1) US20190371961A1 (zh)
CN (1) CN107316928B (zh)
WO (1) WO2019015337A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107316928B (zh) * 2017-07-20 2019-06-25 厦门三安光电有限公司 氮化物半导体元件及其制作方法
CN109545918B (zh) * 2018-09-27 2020-11-27 华灿光电(浙江)有限公司 一种氮化镓基发光二极管外延片及其制备方法
CN111009599A (zh) * 2020-01-02 2020-04-14 江西乾照光电有限公司 一种led外延片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880491A (en) * 1997-01-31 1999-03-09 The United States Of America As Represented By The Secretary Of The Air Force SiC/111-V-nitride heterostructures on SiC/SiO2 /Si for optoelectronic devices
CN103137805A (zh) * 2013-03-12 2013-06-05 南京大学 用于光电微型传感器的宽谱紫外发光二极管及其制作方法
CN103904177A (zh) * 2014-02-28 2014-07-02 华灿光电(苏州)有限公司 发光二极管外延片及其制造方法
CN104393130A (zh) * 2014-12-15 2015-03-04 聚灿光电科技(苏州)有限公司 一种GaN基LED外延结构及其制备方法
CN105633223A (zh) * 2015-12-31 2016-06-01 华灿光电(苏州)有限公司 AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件
CN107316928A (zh) * 2017-07-20 2017-11-03 厦门三安光电有限公司 氮化物半导体元件及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880491A (en) * 1997-01-31 1999-03-09 The United States Of America As Represented By The Secretary Of The Air Force SiC/111-V-nitride heterostructures on SiC/SiO2 /Si for optoelectronic devices
CN103137805A (zh) * 2013-03-12 2013-06-05 南京大学 用于光电微型传感器的宽谱紫外发光二极管及其制作方法
CN103904177A (zh) * 2014-02-28 2014-07-02 华灿光电(苏州)有限公司 发光二极管外延片及其制造方法
CN104393130A (zh) * 2014-12-15 2015-03-04 聚灿光电科技(苏州)有限公司 一种GaN基LED外延结构及其制备方法
CN105633223A (zh) * 2015-12-31 2016-06-01 华灿光电(苏州)有限公司 AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件
CN107316928A (zh) * 2017-07-20 2017-11-03 厦门三安光电有限公司 氮化物半导体元件及其制作方法

Also Published As

Publication number Publication date
CN107316928B (zh) 2019-06-25
US20190371961A1 (en) 2019-12-05
CN107316928A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
JP3219854U (ja) Iii−v族窒化物半導体エピタキシャルウエハ及びiii−v族窒化物半導体デバイス
CN104409587B (zh) 一种InGaN基蓝绿光发光二极管外延结构及生长方法
CN103531683B (zh) 一种氮化镓发光二极管及其制备方法
CN106159052B (zh) 一种发光二极管外延片及其制造方法
TWI766403B (zh) 一種微發光二極體外延結構及其製備方法
CN106328771B (zh) 一种在金属氮化镓复合衬底上外延无裂纹高晶体质量led外延层的方法
CN106684222B (zh) 一种发光二极管外延片的制造方法
CN104051586A (zh) 一种GaN基发光二极管外延结构及其制备方法
WO2019015217A1 (zh) 一种深紫外led
WO2019015337A1 (zh) 氮化物半导体元件及其制作方法
WO2017181710A1 (zh) 一种紫外发光二极管外延结构及其制备方法
CN111725371B (zh) 一种led外延底层结构及其生长方法
KR100583163B1 (ko) 질화물 반도체 및 그 제조방법
CN103779465A (zh) Led多量子阱结构装置及生长方法
CN103456852A (zh) 一种led外延片及制备方法
KR100781659B1 (ko) 개선된 버퍼층을 사용하여 발광 다이오드를 제조하는 방법및 그것에 의해 제조된 발광 다이오드
WO2019052130A1 (zh) 氮化物半导体元件
CN104900774B (zh) 一种提高led亮度的双缓冲层横向外延生长方法
CN103700739A (zh) 一种避免大尺寸外延片裂片的外延生长方法
CN114373840A (zh) 一种发光二极管外延片及其制备方法
CN111129243B (zh) GaN基紫外LED外延结构
CN106887487A (zh) 一种半导体发光器件及其制备方法
CN107910411B (zh) 发光二极管及其制备方法
CN103022294B (zh) 一种蓝宝石外延片结构及其制造方法
KR101321935B1 (ko) 질화물 반도체 발광 다이오드 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835877

Country of ref document: EP

Kind code of ref document: A1