CN104900774B - 一种提高led亮度的双缓冲层横向外延生长方法 - Google Patents

一种提高led亮度的双缓冲层横向外延生长方法 Download PDF

Info

Publication number
CN104900774B
CN104900774B CN201510231154.6A CN201510231154A CN104900774B CN 104900774 B CN104900774 B CN 104900774B CN 201510231154 A CN201510231154 A CN 201510231154A CN 104900774 B CN104900774 B CN 104900774B
Authority
CN
China
Prior art keywords
layer
gan
buffer
temperature
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510231154.6A
Other languages
English (en)
Other versions
CN104900774A (zh
Inventor
张璐
商毅博
于春丽
邹丹
李渝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORTHWESTERN POLYTECHNICAL UNIVERSITY MING DE COLLEGE
Original Assignee
NORTHWESTERN POLYTECHNICAL UNIVERSITY MING DE COLLEGE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORTHWESTERN POLYTECHNICAL UNIVERSITY MING DE COLLEGE filed Critical NORTHWESTERN POLYTECHNICAL UNIVERSITY MING DE COLLEGE
Priority to CN201510231154.6A priority Critical patent/CN104900774B/zh
Publication of CN104900774A publication Critical patent/CN104900774A/zh
Application granted granted Critical
Publication of CN104900774B publication Critical patent/CN104900774B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明是一种提高LED亮度的双缓冲层横向外延生长方法,包括以下步骤:1)以锥形PSS作为生长基底,低温生长第一AlxGa1‑xN buffer缓冲层,其中0≤x≤1;2)高温生长一层具有六角锥形的阵列微坑第一U‑GaN层;3)在NH3环境中进行高温退火,然后降至低温,再生长第二低温AlxGa1‑xN buffer缓冲层;4)高温生长第二U‑GaN层,完全覆盖第一U‑GaN层的六角锥形的阵列微坑,在微坑处形成空腔;5)依次生长掺杂SiH4的n‑GaN层、多量子阱有源层、掺杂p型AlGaN阻挡层、掺杂p型GaN层;6)在氮气氛围下退火。本发明的方法在蓝宝石衬底上生长一层具有六角锥形的阵列微坑,在此区域GaN基础上生长buffer‑2,即实现了GaN衬底上生长GaN,能得到具有更少缺陷、更小内应力和更少晶体取向差异的晶核。

Description

一种提高LED亮度的双缓冲层横向外延生长方法
技术领域
本发明属于半导体电子信息领域,特别涉及一种新的LED外延生长方法。
背景技术
GaN基LED发光二极管以其使用寿命长,安全可靠性强,节能环保等优势,成为继白炽灯、节能灯之后的第三代高效固态光源,LED已广泛应用到交通灯,汽车尾灯,广告显视屏,手机电视背光源和白光照明灯领域,应用前景非常广阔。目前大多采用MOCVD设备在蓝宝石衬底上生长GaN基LED,然而蓝宝石衬底和GaN材料的晶格常数存在较大的失配(16%),导致在GaN外延薄膜产生高达109-1010cm–2的线位错密度,高的线位错密度将影响外延薄膜的光学和电学特性,从而使器件的可靠性和内量子效率降低。因此,降低外延晶体中的位错密度是提高LED器件光电性能最有效的方法。
近年来,横向外延生长技术(ELOG)由于其能有效降低外延层中的位错密度而引起了很多研究者的兴趣,横向生长会使外延层中位错的方向发生改变,使位错从垂直方向改变为水平方向,最终在水平方向上湮灭。传统ELOG方法过程为:首先采用MOCVD技术在蓝宝石衬底上生长一层无掺杂的GaN,然后在其表面生长一层SiO2膜层,然后利用黄光技术,在表面涂布一层光刻胶,对SiO2膜层进行局部保护,并将其放入BOE中腐蚀,最终在GaN表面保留所需的SiO2区域。由于SiO2和GaN之间存在很大的晶格失配,在SiO2表面不会生长GaN,只能在GaN表面继续生长GaN,并且会向SiO2表面发生横向外延生长,最终完全覆盖SiO2区域。在此过程中,晶体中的位错会发生横行弯曲,并在合并过程中发生湮灭。有效降低外延层中的位错密度,提高晶体质量。但传统横向外延方法存在工艺过程复杂,二次外延过程耗时和易在操作过程中引起样品二次污染等原因,还未能在工业生产中得到有效利用。
发明内容
为了解决背景技术中所存在的技术问题,本发明是一种新的LED外延生长方法,能有效提升LED外延的晶体质量和发光效率。
本发明的技术解决方案是:一种提高LED亮度的双缓冲层横向外延生长方法,包括以下步骤:
1)以锥形PSS作为生长基底,低温生长第一AlxGa1-xN buffer缓冲层,其中0≤x≤1;
2)高温生长一层具有六角锥形的阵列微坑第一U-GaN层;
3)在NH3环境中进行高温退火,然后降至低温,再生长第二低温AlxGa1-xN buffer缓冲层,其中0≤x≤1;
4)高温生长第二U-GaN层,完全覆盖第一U-GaN层的六角锥形的阵列微坑,在微坑处形成空腔,并且形成平整表面;
5)依次生长掺杂SiH4的n-GaN层、多量子阱有源层、掺杂p型AlGaN阻挡层、掺杂p型GaN层;
6)在氮气氛围下退火。
第一层buffer层厚度为5nm-30nm,第一层U-GaN层厚度为1.3um-4.0um,第二层buffer层厚度为5nm-40nm,第二U-GaN厚度为1.0um-2.0um。
第一层buffer层生长温度为450℃-600℃,第一层U-GaN层生长温度为950℃-1100℃,第二层buffer层生长温度为600℃-700℃,第二U-GaN层生长温度为1000℃-1200℃。
采用如权利要求1所述方法制得的LED外延片,包括锥形PSS基底、缓冲层、U-GaN层、掺杂SiH4的n-GaN层、多量子阱有源层、掺杂p型AlGaN阻挡层以及掺杂p型GaN层;其特征在于:所述缓冲层和U-GaN层整体上分为依次生长的第一缓冲层、第一U-GaN层、第二缓冲层以及第二U-GaN层,其中第一U-GaN层表面为具有六角锥形阵列微坑的结构,第二U-GaN层完全覆盖第一U-GaN层的六角锥形微坑,形成空腔。
有益效果:
1)在蓝宝石衬底上生长一层具有六角锥形的阵列微坑,使微坑周围区域的GaN中,由于GaN和蓝宝石衬底之间晶格失配产生的应力在微坑处得到有效释放,减少应力产生的位错,提高该区域的晶体质量。在此区域GaN基础上生长buffer-2,即实现了GaN衬底上生长GaN,能得到具有更少缺陷、更小内应力和更少晶体取向差异的晶核。为后续GaN的生长提供良好的基础,从而提高外延晶体质量。
2)由于微坑的存在,在外延生长过程中,会在微坑附近发生横向外延生长,即后续生长的外延层会覆盖在微坑上方,并在微坑处形成一空腔。与传统ELOG方法相对比,本发明不仅达到了横向外延生长,提高晶体质量的目的,而且工艺过程更加简捷、省时,并有效避免了ELOG方法带来的样品二次污染等问题。
3)本发明会在外延层中形成倒六角锥型的空腔,增加了光线在LED内部的全反射,减少了晶体对光线的吸收,提高LED的光提取效率。
附图说明
图1为嵌入微坑侧视图;
图2为嵌入微坑俯视图;
图3为LED的外延整体结构示意图;
具体实施方式
本发明通过MOCVD技术,在圆锥形PSS蓝宝石衬底上完成整个外延过程。本发明中采用了双低温缓冲层的生长方法,首先在蓝宝石衬底上生长一层低温buffer-1;然后在一定温度下生长一层的无掺杂U-GaN-1,其表面嵌入阵列分布倒六角锥形微坑,如图1,图2所示;之后在NH3环境中对样品进行高温退火,再降至低温,再生长第二层buffer-2,之后再生长一层无掺杂的高温U-GaN-2,使其覆盖在微型空洞上,并形成一空腔;接着再生长一层掺杂SiH4的n-GaN,之后再生多量子阱有源层,然后生长掺杂p型AlGaN阻挡层,最后生长一层掺杂p型GaN层,如附图2。
本发明运用金属有机化合物化学气相沉淀(MOCVD)外延生长技术,采用三甲基镓(TMGa),三乙基镓(TEGa),和三甲基铟(TMIn),三甲基铝(TMAl)和氨气(NH3)硅烷(SiH4)和二茂镁(cp2mg)分别提供生长所需要的镓源,铟源,铝源,和氮源,硅源,镁源。本发明LED外延的具体生长结构和细节为:
实施例一,
1.将清洗后的蓝宝石衬底放入MOCVD设备中,在1100℃烘烤10分钟,。
2.降温度520℃生长一层厚度为20nm的低温buffer-1层,生长压力为500torr。
3.升温至1050℃生长一层约厚度2.0um的无掺杂U-GaN-1层,生长压力为100torr。
4.在NH3环境中,升温至1170℃,退火5min,压力为200torr。
5.降温至650℃生长一层厚度为20nm的低温buffer-2层,生长压力为500torr。
6.再升温至1160℃生长一层约厚度1.0um的无掺杂U-GaN-2层,生长压力为100torr。
7.升温至1170℃,生长一层厚度为2.0um掺杂硅烷的n-GaN层,生长压力位100torr。
8.切换载气,由氢气变为氮气,压力为100torr,生长多量子阱层。
9.切换载气,由氮气变为氢气,温度至1185℃,150torr,生长一层p型AlGaN层,厚度20nm,生长压力为100torr。
10.温度1080℃,生长一层厚为150nm掺杂Mg的p型GaN,生长压力位100torr。
11.切换气体,由氢气变为氮气,在氮气氛围下1200℃中退火20min。
此生长过程结束。
实施例二,
1.将清洗后的蓝宝石衬底放入MOCVD设备中,在1100℃烘烤10分钟,。
2.降温至650℃生长一层厚度为20nm的低温buffer-2层,生长压力为500torr。
3.再升温至1160℃生长一层约厚度1.0um的无掺杂U-GaN-2层,生长压力为100torr。
4.升温至1170℃,生长一层厚度为2.0um掺杂硅烷的n-GaN层,生长压力位100torr。
5.切换载气,由氢气变为氮气,压力为100torr,生长多量子阱层。
6.切换载气,由氮气变为氢气,温度至1185℃,150torr,生长一层p型AlGaN层,厚度20nm,生长压力为100torr。
7.温度1080℃,生长一层厚为150nm掺杂Mg的p型GaN,生长压力位100torr。
8.切换气体,由氢气变为氮气,在氮气氛围下1200℃中退火20min。
此生长过程结束。对比本发明外延生长方法(实施例一)与传统外延生长方法制备的外延片(实施例二)在同等芯片工艺条件下制备的芯片数据,本发明制备芯片较传统方法制备芯片的光效提升了约20%。明显提高了LED的发光效率。

Claims (4)

1.一种提高LED亮度的双缓冲层横向外延生长方法,其特征在于:包括以下步骤:
1)以锥形PSS作为生长基底,低温生长第一AlxGa1-xN buffer缓冲层,其中0≤x≤1;
2)高温生长一层具有六角锥形的阵列微坑第一U-GaN层;
3)在NH3环境中进行高温退火,然后降至低温,再生长第二低温AlxGa1-xN buffer缓冲层,其中0≤x≤1;
4)高温生长第二U-GaN层,完全覆盖第一U-GaN层的六角锥形的阵列微坑,在微坑处形成空腔,并且形成平整表面;
5)依次生长掺杂SiH4的n-GaN层、多量子阱有源层、掺杂p型AlGaN阻挡层、掺杂p型GaN层;
6)在氮气氛围下退火。
2.根据权利要求1所述的提高LED亮度的双缓冲层横向外延生长方法,其特征在于:
第一AlxGa1-xN buffer缓冲层厚度为5nm~30nm,第一层U-GaN层厚度为1.3um~4.0um,第二低温AlxGa1-xN buffer缓冲层厚度为5nm~40nm,第二U-GaN厚度为1.0um~2.0um。
3.根据权利要求1所述的提高LED亮度的双缓冲层横向外延生长方法,其特征在于:
第一AlxGa1-xN buffer缓冲层生长温度为450℃~600℃,第一层U-GaN层生长温度为950℃~1100℃,第二低温AlxGa1-xN buffer缓冲层生长温度为600℃~700℃,第二U-GaN层生长温度为1000℃~1200℃。
4.采用如权利要求1所述方法制得的LED外延片,包括锥形PSS基底、缓冲层、U-GaN层、掺杂SiH4的n-GaN层、多量子阱有源层、掺杂p型AlGaN阻挡层以及掺杂p型GaN层;其特征在于:所述缓冲层和U-GaN层整体上分为依次生长的第一缓冲层、第一U-GaN层、第二缓冲层以及第二U-GaN层,其中第一U-GaN层表面为具有六角锥形阵列微坑的结构,第二U-GaN层完全覆盖第一U-GaN层的六角锥形微坑,形成空腔。
CN201510231154.6A 2015-05-07 2015-05-07 一种提高led亮度的双缓冲层横向外延生长方法 Expired - Fee Related CN104900774B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510231154.6A CN104900774B (zh) 2015-05-07 2015-05-07 一种提高led亮度的双缓冲层横向外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510231154.6A CN104900774B (zh) 2015-05-07 2015-05-07 一种提高led亮度的双缓冲层横向外延生长方法

Publications (2)

Publication Number Publication Date
CN104900774A CN104900774A (zh) 2015-09-09
CN104900774B true CN104900774B (zh) 2017-05-17

Family

ID=54033310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510231154.6A Expired - Fee Related CN104900774B (zh) 2015-05-07 2015-05-07 一种提高led亮度的双缓冲层横向外延生长方法

Country Status (1)

Country Link
CN (1) CN104900774B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493310B (zh) * 2018-05-29 2020-04-14 华灿光电(浙江)有限公司 一种氮化镓基发光二极管外延片及其制作方法
US11621371B2 (en) * 2019-09-30 2023-04-04 Chongqing Konka Photoelectric Technology Research Institute Co., Ltd. Epitaxial structure, preparation method thereof, and LED
CN113740366B (zh) * 2020-05-27 2023-11-28 中国兵器工业第五九研究所 无损检测单晶体或定向结晶体内部晶体取向差异和晶界缺陷的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847673A (zh) * 2009-03-27 2010-09-29 大连美明外延片科技有限公司 一种氮化镓基led外延片及其生长方法
CN102790148A (zh) * 2011-05-20 2012-11-21 Lg伊诺特有限公司 生长衬底及发光器件
CN103456852A (zh) * 2012-05-30 2013-12-18 比亚迪股份有限公司 一种led外延片及制备方法
CN103487453A (zh) * 2013-08-20 2014-01-01 南京信息工程大学 异质外延生长的氮化镓位错密度测定方法
CN104485399A (zh) * 2014-12-01 2015-04-01 西安神光皓瑞光电科技有限公司 一种提高外延晶体质量的外延生长方法
CN104505444A (zh) * 2014-12-09 2015-04-08 西安神光安瑞光电科技有限公司 一种减少外延层缺陷密度的外延生长方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI237402B (en) * 2004-03-24 2005-08-01 Epistar Corp High luminant device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847673A (zh) * 2009-03-27 2010-09-29 大连美明外延片科技有限公司 一种氮化镓基led外延片及其生长方法
CN102790148A (zh) * 2011-05-20 2012-11-21 Lg伊诺特有限公司 生长衬底及发光器件
CN103456852A (zh) * 2012-05-30 2013-12-18 比亚迪股份有限公司 一种led外延片及制备方法
CN103487453A (zh) * 2013-08-20 2014-01-01 南京信息工程大学 异质外延生长的氮化镓位错密度测定方法
CN104485399A (zh) * 2014-12-01 2015-04-01 西安神光皓瑞光电科技有限公司 一种提高外延晶体质量的外延生长方法
CN104505444A (zh) * 2014-12-09 2015-04-08 西安神光安瑞光电科技有限公司 一种减少外延层缺陷密度的外延生长方法

Also Published As

Publication number Publication date
CN104900774A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
CN104409587B (zh) 一种InGaN基蓝绿光发光二极管外延结构及生长方法
CN103887380B (zh) 一种紫光led的外延生长方法
CN103730554B (zh) 一种氮化镓基led外延片的生长方法
CN101847673A (zh) 一种氮化镓基led外延片及其生长方法
CN104362233A (zh) 一种GaN基发光二极管的外延片及其制备方法
CN105633235B (zh) 一种n型GaN结构的GaN基LED外延结构及生长方法
CN103824909A (zh) 一种提高GaN基LED发光亮度的外延方法
CN101488550A (zh) 高In组分多InGaN/GaN量子阱结构的LED的制造方法
CN103872194B (zh) 一种提高GaN基LED有源区发光效率的外延生长方法
CN102709424A (zh) 一种提高发光二极管发光效率的方法
CN103337573A (zh) 半导体发光二极管的外延片及其制造方法
CN104051586A (zh) 一种GaN基发光二极管外延结构及其制备方法
CN103811601A (zh) 一种以蓝宝石衬底为基板的GaN基LED多阶缓冲层生长方法
CN104393125A (zh) 一种发光元件的制备方法
CN104319321B (zh) 间断式退火同温生长多量子阱led外延结构及制作方法
CN104332544A (zh) 一种提高led发光效率的外延生长方法
CN109103310A (zh) 一种提升氮化镓基led发光二极管抗静电能力的外延片及生长方法
CN104253181A (zh) 一种具有多重垒层led外延结构
CN203398149U (zh) 一种新型GaN基发光二极管外延结构
CN104900774B (zh) 一种提高led亮度的双缓冲层横向外延生长方法
CN114883460A (zh) 发光二极管外延片及其制备方法
CN103456852B (zh) 一种led外延片及制备方法
CN109326695A (zh) 一种提高氮化镓基led发光二极管亮度的外延片及生长方法
CN104617201B (zh) 一种适合高电流密度的GaN基LED外延结构及其生长方法
CN106229397A (zh) 一种发光二极管外延片的生长方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170517

Termination date: 20180507