CN1320711C - 用于波长转换的半导体光学放大器的制备方法 - Google Patents

用于波长转换的半导体光学放大器的制备方法 Download PDF

Info

Publication number
CN1320711C
CN1320711C CNB2004100889159A CN200410088915A CN1320711C CN 1320711 C CN1320711 C CN 1320711C CN B2004100889159 A CNB2004100889159 A CN B2004100889159A CN 200410088915 A CN200410088915 A CN 200410088915A CN 1320711 C CN1320711 C CN 1320711C
Authority
CN
China
Prior art keywords
layer
wavelength conversion
semi
optical amplifier
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100889159A
Other languages
English (en)
Other versions
CN1773791A (zh
Inventor
张瑞英
王圩
简永生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Beijing Jiaotong University
Original Assignee
Institute of Semiconductors of CAS
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS, Beijing Jiaotong University filed Critical Institute of Semiconductors of CAS
Priority to CNB2004100889159A priority Critical patent/CN1320711C/zh
Publication of CN1773791A publication Critical patent/CN1773791A/zh
Application granted granted Critical
Publication of CN1320711C publication Critical patent/CN1320711C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

一种用于波长转换的半导体光学放大器的制备方法,包括如下步骤:步骤1:在衬底上依次外延生长缓冲层、下限制层、n-型调制掺杂多量子阱有源区、上限制层以及盖层;步骤2:在盖层上生长二氧化硅层;步骤3:光刻腐蚀出斜角条形结构;步骤4:在斜角条形结构两侧掩埋半绝缘阻挡层;步骤5:腐蚀掉斜角条形结构顶层的二氧化硅;步骤6:再外延生长盖层和接触层;步骤7:在接触层上生长二氧化硅层;步骤8:光刻腐蚀出二氧化硅窗口;步骤9:在上下两面蒸镀或溅射上电极和下电极;步骤10:解理,在腔面两端蒸镀抗反射膜。

Description

用于波长转换的半导体光学放大器的制备方法
技术领域
本发明属于半导体技术领域,特别是指一种用于波长转换的半导体光学放大器的制备方法。
背景技术
波长转换是实现现代全光通信网络的关键技术,半导体光学放大器由于其快的动态增益特性而成为波长转换的首选器件,利用半导体光学放大器中的四波混频效应、交叉增益和交叉相位调制效应进行的波长转换成为实现波长转换的首选器件。利用交叉增益调制效应和交叉相位调制效应可以获得高的波长转换效率,但是这两种方式实现波长转换有两个缺点,就是在波长转换过程中不能实现对比特率和调制方式的透明。利用四波混频实现波长转换具有对信号的所有特性一切透明的特征。但是四波混频实现波长转换可失谐波长范围窄、转换效率低。因此,增加可失谐波长范围、提高四波混频的波长转换效率成为有效利用半导体光放大器(SOA)实现波长转换的关键。
对于SOA而言,其四波混频的最大波长转换效率满足:ηmax=G0*Ps 2,这里ηmax代表波长转换效率,G0指的是器件的不饱和增益,Ps指的是器件的饱和输出功率。而对于器件的饱和输出功率,又满足: P s = 1 g 0 * Γ * τ s ,这里,Ps依然指的是饱和输出功率,g0指的是微分增益,Γ指的是波导的光学限制因子,τs指的是器件的载流子寿命。从以上两个式子分析,减少载流子寿命和微分增益可以非常有效的增加器件的饱和输出功率,从而获得高的波长转换效率,而宽的增益带宽可以增加失谐波长范围。
另一方面,n型调制掺杂的量子阱结构被应用于量子阱激光器的实验和理论已经证明,由于n型调制掺杂量子阱能够使得离化杂质和自由载流子实现空间上的分离,量子阱内的大量自由载流子的存在可以提高导带电子的费米能级,减少受激吸收,提高自发发射速率,减少载流子寿命。同时,电子的有效质量小,导带的态密度小,该种结构中量子阱内大量自由载流子需要占据更多的导带能级,导致增益带宽展宽,微分增益减少。
发明内容
本发明的目的在于,提供一种用于波长转换的半导体光学放大器的制备方法,将n型调制掺杂的多量子阱有源区结构应用于半导体光学放大器,利用n型调制掺杂提供较大的载流子浓度,增加自发发射速率,从而缩短其载流子寿命,另一方面,大量载流子占据更多的导带能级,使得增益带宽展宽,微分增益减少,短的载流子寿命和小的微分增益都有利于获得高的饱和输出功率,而宽的增益带宽有利于波长失谐时不降低波长转换效率,因此,利用该种结构制备的半导体光学放大器,旨在有效提高其四波混频的波长转换效率。
本发明一种用于波长转换的半导体光学放大器的制备方法,其特征在于,包括如下步骤:
步骤1:在衬底上依次外延生长缓冲层、下限制层、n-型调制掺杂多量子阱有源区、上限制层以及盖层;
步骤2:在盖层上生长二氧化硅层;
步骤3:光刻腐蚀出斜角条形结构;
步骤4:在斜角条形结构两侧掩埋半绝缘阻挡层;
步骤5:腐蚀掉斜角条形结构顶层的二氧化硅;
步骤6:再外延生长盖层和接触层;
步骤7:在接触层上生长二氧化硅层;
步骤8:光刻腐蚀出二氧化硅窗口;
步骤9:在上下两面蒸镀或溅射上电极和下电极;
步骤10:解理,在腔面两端蒸镀抗反射膜。
其中生长多量子阱有源区设计中采用张压应变补偿或采用张应变阱/无应变垒的结构,以保证可以实现偏振不灵敏,同时无论哪一种结构,都要保证对于量子阱中的垒一定要采用适当浓度的n型调制掺杂,这个掺杂可以是整个垒层的掺杂,也可以是对垒层进行delta-掺杂。
其步骤2和步骤7中的二氧化硅生长使用等离子体化学气相沉积或热氧化学气相沉积方法。
其中所述的的斜角条形结构的角度是<10°的任意角度。
其中在腔面两侧蒸镀抗反射膜,该蒸镀抗反射膜是氮氧化硅或是二氧化硅,以满足该腔面的反射率在尽量宽的波长范围内达到10-4以下,以实现半导体光学放大器的行波放大。
附图说明
图1给出用于波长转换的SOA的导带能带结构示意图;
图2给出用于波长变换的半导体光学放大器的结构示意图;
图3给出波长转换的SOA的自发发射谱图;
图4给出n-型调制掺杂量子阱载流子寿命和调制掺杂面密度之间的关系图。
具体实施方式
请参阅图1,图1给出用于波长转换的SOA的导带能带结构示意图,从图中可以看出,为了获得良好的调制掺杂效果,只是将硅(Si)施主掺杂在垒的中央,两边被不掺杂的垒层包围,可以有效减少施主杂质扩散进入阱层中。
请参阅2所示,本发明一种用于波长转换的半导体光学放大器的制备方法,包括如下步骤:
步骤1:在衬底2上依次外延生长缓冲层3、下限制层81、n-型调制掺杂多量子阱有源区8、上限制层82以及盖层5;其中所述的调制掺杂量子阱8中的掺杂剂是Si或是Se或者其他n型掺杂剂,掺杂浓度以获得高的晶体质量和低的载流子寿命为标准;其步骤1中生长多量子阱有源区设计中采用张压应变补偿或采用张应变阱/无应变垒的结构,以保证可以实现偏振不灵敏,同时无论哪一种结构,都要保证对于量子阱8中的垒一定要采用适当浓度的n型调制掺杂,这个掺杂可以是整个垒层的掺杂,也可以是对垒层进行delta-掺杂;
步骤2:在盖层5上生长二氧化硅(SiO2)层(图中未示);该SiO2的生长使用等离子体化学气相沉积或热氧化学气相沉积方法;
步骤3:光刻腐蚀出斜角条形结构(图中未示);该斜角条形结构的角度是<10°的任意角度;
步骤4:在斜角条形结构两侧掩埋半绝缘阻挡层4;
步骤5:腐蚀掉斜角条形结构顶层的SiO2
步骤6:再外延生长盖层5和接触层6;
步骤7:在接触层6上生长SiO2层10;该SiO2的生长使用等离子体化学气相沉积或热氧化学气相沉积方法;
步骤8:光刻腐蚀出SiO2窗口;
步骤9:在上下两面蒸镀或溅射上电极7和下电极1;
步骤10:解理,在腔面两端蒸镀抗反射膜9;该在腔面两侧蒸镀抗反射膜,其反射膜是氮氧化硅或是二氧化硅,以满足该腔面的反射率在尽量宽的波长范围内达到10-4以下,以实现半导体光学放大器的行波放大。
图3给出不掺杂量子阱、掺杂浓度为3*1012/cm2和掺杂浓度为9*1012/cm2的调制掺杂量子阱制备的SOA在相同的操作电流300mA下的自发发射谱。从图中可以看出,尽管操作电流相同,但是随着调制掺杂浓度的增加,SOA的半宽逐渐增加,自发发射谱的强度也在逐渐增加,这表明随着调制掺杂浓度的增加,参与自发发射的载流子数在增加,宽的自发发射谱不仅有利于实现SOA的宽带放大,增加了实现四波混频时可以失谐的波长范围,同时也降低了微分增益,有利于提供高的饱和输出功率。
图4给出载流子寿命测试图,从图中可以看出,确实,n型调制掺杂量子阱结构有助于减少调制掺杂量子阱器件的载流子寿命,当掺杂浓度为3*1012/cm2时,其载流子寿命只有普通量子阱的52%,不考虑其他因素的影响,就此可以提高饱和输出功率约3.7倍,进而提高四波混频的波长转换效率约3.7倍。
本发明的优点
利用n型调制掺杂量子阱有源区结构制备用于波长变换的半导体光学放大器,具有以下优点:
1、采用硅烷(SiH4)作为掺杂剂,它在铟磷(InP)系半导体中扩散长度短,在垒中进行部分掺杂或deta掺杂,不会扩散到阱中,避免杂质散射,使得整体结构拥有很好的有源区质量。
2、在宽禁带的垒中进行调制参杂,垒中施主杂质发生离化,离化后的自由电子转移到禁带宽度小的阱中,但施主杂质依然保留在垒中,从而实现施主杂质与自由电子的空间分离,减少杂质散射,有利于载流子的快速输运。同时导带中高的电子浓度使得器件在较低的电流下实现布局反转,有利于降低工作电流。低的工作电流有利于降低非辐射复合,降低噪声指数。
3、量子阱导带中高的电子浓度占据更多的能级,使得增益谱展宽,使得SOA的带宽增加,容易实现宽带放大,另一方面,宽的增益谱导致材料的微分增益减少,有利于获得高的饱和输出功率。
最重要的是有源区本身极高的电子浓度有利于实现布局反转,增加自发发射速率,缩短载流子的寿命,增加半导体放大器的饱和输出功率,由此可以提高半导体光学放大器利用其四波混频效应实现波长转换的转换效率。

Claims (5)

1、一种用于波长转换的半导体光学放大器的制备方法,其特征在于,包括如下步骤:
步骤1:在衬底上依次外延生长缓冲层、下限制层、n-型调制掺杂多量子阱有源区、上限制层以及盖层;
步骤2:在盖层上生长二氧化硅层;
步骤3:光刻腐蚀出斜角条形结构;
步骤4:在斜角条形结构两侧掩埋半绝缘阻挡层;
步骤5:腐蚀掉斜角条形结构顶层的二氧化硅;
步骤6:再外延生长盖层和接触层;
步骤7:在接触层上生长二氧化硅层;
步骤8:光刻腐蚀出二氧化硅窗口;
步骤9:在上下两面蒸镀或溅射上电极和下电极;
步骤10:解理,在腔面两端蒸镀抗反射膜。
2、根据权利要求1所述的用于波长转换的半导体光学放大器的制备方法,其特征在于,其中生长多量子阱有源区设计中采用张压应变补偿或采用张应变阱/无应变垒的结构,以保证可以实现偏振不灵敏,同时无论哪一种结构,都要保证对于量子阱中的垒一定要采用适当浓度的n型调制掺杂,这个掺杂可以是整个垒层的掺杂,也可以是对垒层进行delta-掺杂。
3、根据权利要求1所述的用于波长转换的半导体光学放大器的制备方法,其特征在于,其步骤2和步骤7中的二氧化硅生长使用等离子体化学气相沉积或热氧化学气相沉积方法。
4、根据权利要求1所述的用于波长转换的半导体光学放大器的制备方法,其特征在于,其中所述的斜角条形结构的角度是<10°的任意角度。
5、根据权利要求1所述的用于波长转换的半导体光学放大器的制备方法,其特征在于,其中在腔面两侧蒸镀抗反射膜,该蒸镀抗反射膜是氮氧化硅或是二氧化硅,以满足该腔面的反射率在尽量宽的波长范围内达到10-4以下,以实现半导体光学放大器的行波放大。
CNB2004100889159A 2004-11-09 2004-11-09 用于波长转换的半导体光学放大器的制备方法 Expired - Fee Related CN1320711C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100889159A CN1320711C (zh) 2004-11-09 2004-11-09 用于波长转换的半导体光学放大器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100889159A CN1320711C (zh) 2004-11-09 2004-11-09 用于波长转换的半导体光学放大器的制备方法

Publications (2)

Publication Number Publication Date
CN1773791A CN1773791A (zh) 2006-05-17
CN1320711C true CN1320711C (zh) 2007-06-06

Family

ID=36760609

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100889159A Expired - Fee Related CN1320711C (zh) 2004-11-09 2004-11-09 用于波长转换的半导体光学放大器的制备方法

Country Status (1)

Country Link
CN (1) CN1320711C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715606A (zh) * 2013-12-18 2014-04-09 武汉华工正源光子技术有限公司 一种调制掺杂型多周期应变补偿量子阱外延生长方法
JPWO2015099176A1 (ja) * 2013-12-26 2017-03-23 古河電気工業株式会社 半導体レーザアレイ、半導体レーザ素子、半導体レーザモジュール、および波長可変レーザアセンブリ
CN114234952A (zh) * 2021-12-21 2022-03-25 江西省纳米技术研究院 高分辨角速度传感器、其制作方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1353867A (zh) * 1999-06-07 2002-06-12 日亚化学工业株式会社 氮化物半导体元件
JP2002368342A (ja) * 2001-06-11 2002-12-20 Anritsu Corp 多重量子井戸半導体素子
JP2003115643A (ja) * 2001-08-17 2003-04-18 Lucent Technol Inc 量子井戸層構造体
CN1423163A (zh) * 2001-12-07 2003-06-11 中国科学院半导体研究所 偏振不灵敏半导体光学放大器的制备方法
US20030210723A1 (en) * 2002-05-10 2003-11-13 Adams David M. Monolithically integrated high power laser optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1353867A (zh) * 1999-06-07 2002-06-12 日亚化学工业株式会社 氮化物半导体元件
JP2002368342A (ja) * 2001-06-11 2002-12-20 Anritsu Corp 多重量子井戸半導体素子
JP2003115643A (ja) * 2001-08-17 2003-04-18 Lucent Technol Inc 量子井戸層構造体
CN1423163A (zh) * 2001-12-07 2003-06-11 中国科学院半导体研究所 偏振不灵敏半导体光学放大器的制备方法
US20030210723A1 (en) * 2002-05-10 2003-11-13 Adams David M. Monolithically integrated high power laser optical device

Also Published As

Publication number Publication date
CN1773791A (zh) 2006-05-17

Similar Documents

Publication Publication Date Title
US5917195A (en) Phonon resonator and method for its production
KR100313183B1 (ko) 발광디바이스
Lee et al. Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED's for optical communication systems
US7964882B2 (en) Nitride semiconductor-based light emitting devices
CN102820395A (zh) 一种采用势垒高度渐变量子垒的led结构及其制备方法
CN100391069C (zh) 单模f-p腔量子级联激光器的器件结构
Gergely Surface recombination and diffusion processes in cathodoluminescence and electron bombardment induced conductivity
CN1320711C (zh) 用于波长转换的半导体光学放大器的制备方法
Cai et al. Enhanced front-illuminated pipin GaN/AlGaN ultraviolet avalanche photodiodes
US5343054A (en) Semiconductor light-detection device with recombination rates
CN108550668A (zh) 一种发光二极管外延片及其制作方法
CN1741329A (zh) 一种磷化铟基量子级联半导体激光器及制作方法
JP2945647B2 (ja) 太陽電池
CN1155099C (zh) 场效应晶体管
CN111490453B (zh) 含有分步掺杂下波导层的GaN基激光器及其制备方法
JP3792003B2 (ja) 半導体発光素子
Marzban et al. Design of a waveguide-coupled GeSn disk laser
CN1174469C (zh) 偏振不灵敏半导体光学放大器的制备方法
CN115621344B (zh) 异质结日盲探测器及其制备方法
JPH07335934A (ja) 光半導体素子,及びその製造方法
CN113193089B (zh) 基于掺杂(Si)GeSn有源区的CMOS技术兼容硅基光源器件及其制备方法
JPH0862554A (ja) 半導体光変調器
CN1921244A (zh) 雪崩量子子能带间跃迁半导体激光器
CN1564407A (zh) 一种偏振无关半导体光放大器
CN1527447A (zh) 波长可调谐分布布拉格反射半导体激光器的制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee