CN113169041B - 形成多层垂直nor型存储器串阵列的方法 - Google Patents

形成多层垂直nor型存储器串阵列的方法 Download PDF

Info

Publication number
CN113169041B
CN113169041B CN201980080598.0A CN201980080598A CN113169041B CN 113169041 B CN113169041 B CN 113169041B CN 201980080598 A CN201980080598 A CN 201980080598A CN 113169041 B CN113169041 B CN 113169041B
Authority
CN
China
Prior art keywords
layer
trenches
etching
semiconductor
vias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980080598.0A
Other languages
English (en)
Other versions
CN113169041A (zh
Inventor
S.B.赫纳
W-Y.H.钱
J.周
E.哈拉里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunrise Memory Corp
Original Assignee
Sunrise Memory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunrise Memory Corp filed Critical Sunrise Memory Corp
Publication of CN113169041A publication Critical patent/CN113169041A/zh
Application granted granted Critical
Publication of CN113169041B publication Critical patent/CN113169041B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

提供了一种使用镶嵌局部位线形成3维垂直NOR型存储器串阵列的方法。本发明的方法还通过分两步蚀刻局部字线来避免条带化。通过分两步刻蚀局部字线,降低了局部字线的堆叠体(“字线堆叠体”)的图案化和蚀刻的深宽比,这提高了字线堆叠体的结构稳定性。

Description

形成多层垂直NOR型存储器串阵列的方法
相关申请的交叉引用
本申请涉及并要求于2018年12月7日提交的美国临时申请(“临时申请”)的优先权,序列号62/777,000,题为“Methods for Forming Multilayer Horizontal NOR-typeThin-film Memory Strings”。
本发明还涉及于2018年8月21日提交的美国专利申请(“非临时申请I”),序列号16/107,732,题为“Three-Dimensional vertical NOR Flash Thin film TransistorStrings”,其是2017年12月11日提交的美国专利申请序列号15/837,734且题为“Three-Dimensional vertical NOR Flash Thin film Transistor Strings”的继续申请,其是2016年11月4日提交的美国专利申请序列号15/343,332且题为“Three-Dimensionalvertical NOR Flash Thin film Transistor Strings”的分案申请,其与以下相关并要求其优先权:(i)美国临时专利申请,序列号62/260,137,题为“Three-Dimensional verticalNOR Flash film Transistor Strings”,于2015年11月25日提交。
本申请还与以下申请相关:美国临时专利申请(“临时专利申请II”),序列号62/625,818,题为“Three-dimensional Vertical NOR Flash Thin-film TransistorStrings”,于2018年2月2日提交;(ii)美国专利申请(“临时申请III”),序列号62/630,214,题为“Three-dimensional Vertical NOR Flash Thin-film Transistor Strings”,于2018年3月13日提交;以及(iii)美国临时专利申请(“临时申请IV”),序列号62/771,922,题为“Staircase Structures for Electrically Connecting Multiple HorizontalConductive Layers of a 3-Dimensional Memory Device”,提交于2018年11月27日。
非临时申请以及临时申请I、II、III和IV的公开内容通过引用整体并入本文中。
背景技术
1.技术领域
本发明涉及3维存储器结构。特别地,本发明涉及以垂直NOR型存储器串的阵列组织的3维存储器结构。
2.相关技术的讨论
形成垂直NOR型存储器串阵列的方法之前已经描述过;例如,形成这种存储器阵列的各种变体在以上通过引用并入的非临时申请和临时申请II和III中公开。
发明内容
根据本发明的一个实施例,提供了一种利用镶嵌局部垂直位线形成3维垂直NOR型存储器串阵列的方法。本发明的方法还通过分两步蚀刻局部字线来避免条带化。通过分两步刻蚀局部字线,降低了局部字线的堆叠体(“字线堆叠体”)的图案化和蚀刻的深宽比,这提高了字线堆叠体的结构稳定性。本发明还解决了在两个步骤中蚀刻字线条带时附带的对准问题。
通过结合附图考虑以下详细描述,可以更好地理解本发明。
附图说明
图1示出了设置在导电层(“全局互连线”)5上并与其隔离的存储器结构10,其包括多个导体,每个导体沿着第一方向(X方向)延伸。
图2示出了填充沟槽55的牺牲电介质层60,移除了沉积在存储器结构10的顶部的多余的电介质材料。
图3示出了另一掩模层,其沉积在存储器结构10上并被图案化以形成掩模结构70。
图4示出了第二组沟槽80,其通过蚀刻穿过存储器结构100的多层而形成,以形成多层堆叠体90。
图5示出了在通过选择性蚀刻移除每个多层中的SiN层30之后的具有腔35的存储器结构10。
图6示出了填充存储器结构10的字线带的腔35的金属层100。
图7示出了在通过任何合适的平坦化技术(例如CMP)从存储器结构10的顶表面移除了多余的牺牲电介质材料之后的沟槽80中的牺牲电介质层110。
图8示出了穿过存储器结构10的沟槽55和80中的通孔120的图案化和蚀刻。
图9示出了在图8中的通孔120中共形地沉积以下层:通孔120:(i)隧穿电介质层130,(ii)电荷存储层140,(iii)阻挡电介质层150,(iv)沟道层160,(v)衬垫层170和(vi)牺牲电介质层180。
图10示出了在重复图8的形成通孔和图9的沉积各个层之后得到的存储器结构10。
图11示出了使用光刻法和蚀刻在牺牲电介质层180中限定的轴200。
图12示出了每个轴200用半导体材料210填充,其形成了用于沿着该通孔形成的薄膜晶体管的公共源极区。
图13示出了通过重复图11至12的限定通孔、蚀刻衬垫层170和用半导体层填充通孔的步骤而提供的漏极半导体层220。
图14示出了设置在存储器结构10上方用于接触漏极半导体层220的全局互连线230。
图15示出了能够接触存储器结构10的局部字线240的楼梯结构。
图16示出了能够接触局部字线240的图15的楼梯结构中的通孔和导体250。
图17A和17B示出了条带化的现象,其是微观矩形特征的应力引起的变形。
图18、19、20和21,结合上面的图14-16,示出了根据本发明的第二实施例的存储器结构10的制造。
图22、23、24、25、26、27、28和29,结合上面的图8-16,示出了根据本发明的第二实施例的存储器结构10的制造。
为了便于附图之间的交叉引用和详细描述的简化,附图中相同的元件被分配相同的附图标记。
具体实施方式
在该详细描述中,针对一个实施例描述的工艺步骤可以用于不同的实施例中,即使在不同的实施例中未明确描述这些工艺步骤。当本文提及包括两个或更多个限定的步骤的方法时,限定的步骤可以以任何顺序或同时进行,除非本文另有规定或提供具体说明。此外,除非另有规定或明确说明,否则该方法还可以包括在任何限定的步骤之前、两个限定的步骤之间或所有限定的步骤之后执行的一个或多个其他步骤。
图1示出了设置在半导体衬底的平坦表面15上的导电层(“全局互连线”)5上并与之隔离的存储器结构10。法向于平坦表面15是沿着第一方向(Z方向)。全局互连线5中的导体包括多个导体,每个导体沿着正交于Z方向的第二方向(X方向)延伸。导电层5中的导体沿着第三方向(Y方向,基本上正交于X方向和Z方向)与和其相邻的导体分离和隔离。全局互连线5在尚未形成的垂直局部字线与形成在半导体衬底(未示出)中的控制、解码、电压源和感测电路之间提供电连接性。这种连接性可以是直接的,也可以是通过选择晶体管(未示出)进行的。
全局互连线5可以包括任何合适的导电材料,例如钨(W)、氮化钛(TiN)、钛(Ti)、钽(Ta)、铬(Cr)、钼(Mo)、钴(Co)或这些材料的任何组合。如图1所示,存储器结构10包括32个多层(例如,多层20),其中每个可以包括例如氮化硅(SiN)层30和氧化硅(SiO2)层40。替代地,层30可以例如包括p型掺杂或n型掺杂的硅或硅锗,而不是氮化硅。可以使用任何合适的技术来沉积每个多层中的每个层,例如,低压化学气相沉积(LPCVD)、等离子体增强化学气相沉积(PECVD)、原子层沉积(ALD,它本身是CVD的一种形式)、溅射、或蒸发,最优选通过PECVD。尽管图1示出了32个多层,但存储器结构10中的多层的数量可以是任何合适的数量(例如,一个、两个、十六个、六十四个或更多)。在沉积存储器结构10之后,沉积掩模层(例如,碳基掩模层)并使用光致抗蚀剂层(未示出)来将其图案化以形成掩模结构50。掩模结构50均具有宽度L2且通过宽度L1的沟槽和与其相邻的掩模结构分开,宽度L2优选不小于两倍的所需宽度L1。宽度L1限定了要形成的有源带之间的沟槽的所需宽度。
然后,第一组沟槽55通过以下方式形成:使用掩模结构50蚀刻穿过存储器结构10的多层,然后移除掩模结构50。图2示出了填充沟槽55的牺牲电介质层60,移除了沉积在存储器结构10的顶部的多余的电介质材料。从存储器结构10的顶部移除牺牲电介质层60可以使用任何合适的技术来完成稿,例如化学机械抛光(CMP)或者回蚀刻,最优选为CMP。牺牲电介质层60可以包括任何合适的材料(例如,SiO2、多孔SiO2、硼掺杂的SiO2(BSG)、磷掺杂的SiO2 PSG)、硼磷掺杂的SiO2(BPSG)、SiOH、SiCOH,这些材料的任何组合,或任何合适的材料)。最优选地,牺牲电介质层60由可以比SiN层30和SiO2层40被蚀刻快得多的材料形成。
此后,如图3所示,另一掩模层沉积在存储器结构10上并被图案化以形成掩模结构70。掩模结构70(其每一个在沟槽50之一中的牺牲电介质层60以及该沟槽的两侧的多层的部分上延伸)通过宽度L1彼此分开(如在掩模结构50中一样)以限定平行于第一组沟槽55的第二组沟槽80。图4示出了第二组沟槽80,其通过以下方式形成:蚀刻穿过存储器结构10的多层,从而形成各自沿着Y方向延伸的窄多层堆叠体(“字线堆叠体”)90。每个字线堆叠体中的每个多层形成“字线带”。字线堆叠体90均具有宽度L3,其远小于掩模结构50和70的宽度L2。通过在掩模结构50和70中使用相对较大的L2值,避免了被称为“条带化”的问题。
(图17A和17B示出了条带化的现象,其是微观矩形特征的应力引起的变形。图17A示出了微观矩形特征(例如,通过显影掩模材料形成的特征),其具有预期的尺寸,宽度X1、长度Y1和高度Z1。在一些制造过程中,当深宽比Z1/X1超过10时,矩形特征中的应力可能导致沿长度Y1的变形,使得所得的特征“条带”从预期的直线变为一系列相连的S曲线,如图17B所示。宽度较小时,条带化更加严重,尤其是当X1缩放到约45nm以下时)。
在实践中,由于现有光刻工具的局限性,可能发生一些未对准,使得每个掩模结构70在其下方的左右堆叠体上的重叠并不完全相等。例如,如果目标宽度L3为50纳米且最坏情况下的未对准为±5纳米,则左侧重叠可以达到55纳米宽,而右侧重叠可以窄至45纳米宽。宽度的这种制造可变性导致尚未形成的偶数和奇数金属导体字线的宽度的可变性。进而,宽度的可变性可能导致较窄的字线的较高电阻。可以在芯片设计中吸收这种可变性,例如,通过将每个堆叠体的左侧和右侧薄膜晶体管视为属于两个独立的组,每个组都设置有其专用的参考晶体管或参考存储器串,这些参考晶体管或参考存储器串由其相应的组构成。
接下来,如图5所示,存储器结构10中的每个字线带的SiN层30通过选择性蚀刻移除。可以使用任何合适的技术(例如腐蚀性气体或湿法化学酸或碱)移除SiN层30。例如,可以在加热到180℃的磷酸中通过湿法蚀刻来移除SiN层30。当每个SiN层30被一直蚀刻到沟槽55中的牺牲电介质层60时,蚀刻停止。由于没有对沟槽55中的牺牲电介质层60进行实质的蚀刻,它们的支撑允许字线堆叠体90保持其预期的结构形状(即,沿整个长度分别为窄、长和高),即使移除了每个字线带中的构成SiN层30,从而在字线堆叠体90中形成腔或不连续性35。注意,在现有技术水平下,可能不需要跨接在相邻堆叠体90之间并以适当间隔放置的支架来支撑狭窄的有源堆叠体。但是,将来对于高度缩放的3维存储器阵列可能需要这样的支架,当宽度L3变得过窄时,或当字线堆叠体过高时(例如,字线带的数量过大),使得以适当的间隔支撑非常长的字线堆叠体变得很谨慎。
然后提供一个或多个金属层以形成金属层100,该金属层填充每个字线带中的腔35。然后,通过适当的蚀刻从沟槽80的侧壁移除金属层100,仅将金属层100留在字线带中,如图6所示。在一些实施例中,通过选择性地蚀刻直到远离沟槽80的侧壁约6纳米,使金属层100进一步凹陷,以便容纳要放置在其中的氧化物盖层或硅阻挡盖层,如本领域普通技术人员已知的。氧化物盖层或硅阻挡盖层将金属层100分开以免与尚未形成的电荷俘获层直接接触。金属层100可以是任何合适的金属,例如TiN、TaN、Ta、W、Mo或这些金属的任何组合,其通过任何合适的技术来沉积,例如ALD、CVD、PVD、溅射、蒸发或这些技术的任何适当组合,最优选对于比如TiN的衬垫金属为ALD且对于诸如W或Mo的填充金属为CVD。如图7所示,在较薄的TiN层107之间的钨层105的组合形成金属层100。
图7示出了沉积在在通过任何合适的平坦化技术(例如CMP)从存储器结构10的顶表面移除了多余的牺牲电介质材料之后的沟槽80中的牺牲电介质层110。然后使用光刻法对牺牲电介质层60和110图案化,并进行蚀刻以提供长形的通孔120,其延伸穿过存储器结构10的高度(即,沿着Z方向),暴露字线堆叠体90的侧壁,如图8所示。每个沟槽中的通孔120中的相邻通孔隔开预定距离,例如,沿着每个通孔120的Y方向的长度。
然后,在长形的通孔120中依次共形地沉积以下膜:(i)隧穿电介质层130,(ii)电荷存储层140,(iii)阻挡电介质层150,(iv)沟道层160,(v)以及可选的衬垫层170,以及(vi)牺牲电介质层180。可以使用任何合适的技术,例如LPCVD、CVD、ALD、PVD或蒸发,最优选地是LPCVD和ALD,来沉积这些层。隧穿电介质层130可以是电荷载流子可以隧穿通过的任何合适的材料(例如二氧化硅)。隧穿电介质层130可以是任何合适的厚度(例如,0.5至10.0nm)。电荷存储层140可以是任何合适的材料,例如:(i)SiN或富硅的SiN,任何合适的形式(例如非晶、纳米晶体或多晶),或(ii)氮化硅、氧化硅基体、氧化硅或富硅氧化硅中的锗纳米晶体。电荷存储层140可以是任何合适的厚度(例如,0.5至20nm)。阻挡电介质层150可以是氧化硅、氮化硅、氮氮化硅、氧化铝或氧化铪,或这些材料的任何合适的组合。阻挡电介质层150可以是足以阻止载流子通过的任何合适的厚度(例如,3至30nm)。
沟道层160是合适的n型或p型半导体材料(例如,硅、硅锗、或铟镓锌化合物(IGZO),或氧化锌),其具有合适的厚度(例如,2至30nm)且通常原位相对较轻地掺杂或不掺杂。牺牲电介质层180可以包括任何合适的材料(例如,SiO2、多孔SiO2、硼掺杂的SiO2(BSG)、磷掺杂的SiO2(PSG)、硼磷掺杂的SiO2(BPSG)、SiOH、SiCOH,或这些材料的任何组合)。可选的衬垫层170是一种材料,其适于用作牺牲电介质层180(例如,氧化铝或氮化硅)的尚未进行蚀刻的蚀刻停止,其具有任何合适的厚度(例如,0.5至5nm)。在将这些层共形地沉积到通孔120中之后,可以从存储器结构10的顶部移除多余的材料,然后使用任何合适的技术(例如,CMP)进行平坦化。
之后,重复图8的形成通孔的步骤,以通过移除沟槽55和80的牺牲电介质层60和110的剩余部分来形成通孔125,同时保护通孔120中的沉积层。然后,在通孔125中共形地沉积与通孔120中相同的材料:(i)隧穿电介质层130,(ii)电荷存储层140,(iii)阻挡电介质层150,(iv)沟道层160,(v)可选的衬垫层170,以及(vi)牺牲电介质层180。所得的结构如图10所示。在图10中,沟槽55和80中的电介质材料现在被字线堆叠体90之间的连续沉积层的相邻行替换。如果需要,该第二组轴中的电荷存储材料可以具有与较早组的轴中的电荷存储材料不同的特性。
然后如图11所示,使用光刻法在牺牲电介质层180中限定轴200并对其进行蚀刻。每个轴200从存储器结构10的顶部向下延伸到全局互连线5,穿过存储器结构10和全局互连线5之间的隔离层中的开口。在轴200的蚀刻期间,其可以是牺牲电介质层180的大功率干法蚀刻,沟道层160的侧壁由对蚀刻具有抵抗力的衬垫层170保护。如图11所示,沿X方向的相邻的轴彼此对齐,但替代地也可以使它们彼此交错。沿X方向的轴200的每隔一个相邻的轴仅暴露于下面的全局互连线5中的同一导体。然后,例如通过湿法蚀刻移除每个轴200中暴露的衬垫层170的一部分,该湿法蚀刻不会损坏下面的沟道层160。
然后,用半导体材料210填充每个轴200,这形成了用于沿着该通孔形成的薄膜晶体管的公共源极区。源极半导体层210可以是任何合适的重n型掺杂或p型掺杂的材料,例如硅、锗或硅锗。替代地,仅沿着轴的壁部分地填充沉积的源极材料,然后用低电阻率的材料(例如,TiN或钨,未示出)填充腔中的剩余空间。可以使用平坦化技术(例如,CMP)移除覆盖存储器结构10的顶部的半导体层210的任何部分。所得的结构如图13所示。源极半导体层210电连接到全局互连线5。
漏极半导体层220通过以下方式提供:重复在牺牲电介质层180中限定和蚀刻通孔的步骤,蚀刻衬垫层170并用图11-12的重掺杂的n型或p型半导体层210填充通孔,除了漏极半导体层220的通孔的蚀刻不穿通到全局互连线5,使得漏极半导体层220不接触全局互连线5。所得的结构如图13所示。源极半导体层210在图13中用“X”标记。第二组全局互连线,标记为全局互连线230,其在存储器结构10上方用于接触局部漏极半导体层220,如图14所示,形成全局位线,其将每隔一个的相邻的轴220直接地或通过选择晶体管连接到衬底中的电路。此时,每个轴200的源极半导体区域210和漏极半导体层220形成垂直NOR型(VNOR)存储器串的薄膜存储晶体管的公共源极区和公共漏极区(“位线”),每个薄膜晶体管形成在字线带100和沟道层160、隧道电介质层130、电荷存储层140与阻挡电介质层150之间的横向重叠区域处。在一个实施例中,每个字线带100控制其每个侧边缘上的NOR型存储器晶体管。
在根据本发明的VNOR存储器阵列中,字线带的典型的标称最小宽度L1是50纳米,而将相邻的字线堆叠体分开的沟槽55或80的标称最小宽度可以是80纳米,且具有32个有源层的字线堆叠体的高度可以超过2,000纳米(2微米)。因此,50纳米的独立字线堆叠体的深宽比将为2000/50,或40:1,在蚀刻过程中保持不动将是一个严峻的挑战,更不用说通过连续的工艺步骤,这将对良率和成本产生不利影响。然而,使用根据本发明的方法,图1和图3的每个掩模结构50和70的宽度L2是50+80+50=180纳米,因此,使用掩模结构50或70的蚀刻的深宽比是2,000/180,或者11:1。
在一些实施例中,出于裸芯尺寸的考虑,有利的是,将通过全局互连线5或全局互连线230电连接的一些电路(例如,解码电路,以及一些读取、写入和擦除供给电压源)放置在存储器结构10正下方的半导体衬底的一部分中。(这些解码电路和电压源未在图14中示出)全局互连线5与半导体衬底中的这些电路之间的电连接易于获得。为了将半导体衬底中的这些电路电连接到存储器结构10上方的全局互连线230,可能需要在存储器结构10的一侧或多侧提供附加的垂直连接器,以及位于全局互连线230与半导体衬底中的电路之间的导体。在一个实施例中,可以通过以下方式来避免这种迂回路径:提供垂直导体,其将全局字线200直接通过密集封装的存储器结构10和密集间隔的全局互连线5连接到半导体衬底中的电路。这些垂直导体可以通过以下方式来实现:使局部垂直源极半导体层210或局部垂直漏极半导体层220中的所选半导体层也用作连接到半导体衬底中的电路的导体。当以此方式使用时,一种选择是用更导电的材料(例如金属)而不是重掺杂的半导体来填充通孔。为了使用这些垂直导体建立电气路径,可能需要额外的掩模和蚀刻步骤,以在将这些电路放置在半导体衬底中的地方正上方或附近的位置,在其相应的轴的底部穿通通孔开口。
在一些实施例中,当垂直局部源极半导体层210和垂直局部漏极半导体层220都连接到形成在存储器结构10上方的全局互连线230时,不需要在存储器结构10的下面形成全局互连线5。这样的布置避免了将源极半导体层210连接到全局互连线5所需的穿通掩模和蚀刻步骤。反之,半导体层210和漏极半导体层220可以都在存储器结构10的底部通过穿通通孔接触到全局互连线5。在任一情况下,可以避免两组全局互连线之一,前提是全局互连线具有全局互连线5或全局互连线230的约一半的节距,这可能需要双重曝光或更先进的光刻技术。
与局部字线的连接是通过“楼梯”方法进行的。在楼梯结构中,字线堆叠体中的字线带被切割成逐渐更大的长度,以允许垂直导体在台阶处接触连续的字线带的局部字线。例如,在以上通过引用并入的临时申请IV中公开了一种形成楼梯结构的类似方法。在存储器形成并连接到顶部和底部全局字线之后,通过“楼梯”方法进行与字线的连接。楼梯结构通过以下方式进行:首先提供掩模层以暴露并蚀刻掉每个字线堆叠体中的顶部字线带的一部分,以暴露字线带的金属层100,以及连续地(i)使掩模层凹陷;(ii)蚀刻掉每个暴露的字线带的一部分,在的每个台阶处暴露金属层100的一部分,直到字线堆叠体中的每个字线带——除了底部字线带以外——的一部分被移除,如图15所示。图15仅示出了沿着存储器结构10(沿着字线带的长度)的端部。(端部之间的部分,即,包含薄膜晶体管的部分,是图1-14中所示的部分)使用例如在临时申请IV中讨论的光致抗蚀剂凹陷技术,从一端或两端沿Y方向使掩模层凹陷,而不需要额外的光刻步骤来暴露连续的字线带。
然后将电介质材料沉积在楼梯结构上并通过CMP进行平坦化。图16示出了,对所得的电介质材料进行图案化和蚀刻以获得通孔开口,该通孔开口然后被导电材料(例如,难熔金属,例如钨)250填充,以提供到由楼梯结构暴露的每个有源层中的字线层240的端部的接触。以这种方式,每条字线连接到半导体衬底中的或在单独的配套集成电路上的选择电路(例如,解码器和电压源)。这种集成电路可以使用本领域已知的倒装晶片技术(例如,通过连接的晶片之间的多个微型铜柱)连接到半导体衬底中的电路。
根据本发明的另一实施例,高深宽比字线带的结构支撑是由在形成字线带之前形成的电介质支柱提供的。如图18所示,以与上面关于图1所讨论的基本相同的方式形成包括全局互连线的存储器结构10。然而,与图1的掩模层50不同,提供了掩模层260,其被图案化以允许轴265被蚀刻穿过字线堆叠体。在蚀刻轴265并移除掩模260之后,轴265被电介质材料填充以形成电介质支柱270,从结构10的顶部适当地移除多余的电介质材料(例如,通过CMP或回蚀刻),如图19所示。用于电介质支柱270的合适的电介质材料包括任何合适的材料(例如,SiO2、SiN、SiON、SiC、SiCOH、PSG、BSG或BPSG,最优选SiO2),其使用任何合适的技术来沉积(例如,ALD、LPCVD或PECVD,最优选LPCVD)。
然后,存储器结构10通过以下被图案化以形成字线堆叠体285:利用来自电介质支柱270的机械支撑来形成沟槽280,电介质支柱270基本上不被蚀刻。所得的结构如图20所示。电介质支柱270为字线带的高深宽比堆叠体280提供机械支撑。沉积牺牲电介质材料290(其可以是与电介质支柱270相同的材料)来填充沟槽280。可以从字线堆叠体285的顶部移除多余的牺牲电介质材料290,例如使用CMP或回蚀刻。之后,可以沉积和图案化掩模层(未示出),以允许从填充的沟槽280的每隔一个沟槽移除牺牲电介质材料290。在从沟槽280的每隔一个沟槽移除掩模层和牺牲电介质材料290之后的存储器结构10在图22中示出。存储器结构10的制造的其余部分可以根据上面的描述和图4-16进行。
本发明的又一实施例使用堆叠掩模来形成字线带。参照图22,沉积并图案化第一掩模层300。第一掩模层300限定了字线堆叠体的最终尺寸和节距。在形成第一掩模层300之后,如23所示,沉积并图案化第二掩模层310。第二掩模层310的节距和尺寸大于第一掩模层300,并且设置在第一掩模层300的顶部。第二掩模层310限定存储器结构10中的每隔一个最终字线堆叠体,如图23所示。图23还示出了沟槽320,其在限定第二掩模层310之后被蚀刻穿过存储器结构10。
平坦化步骤(例如,回蚀刻步骤)移除第二掩模层310的一部分,使得第二掩模层310的顶部与第一掩模层300齐平。然后沉积牺牲电介质材料以填充沟槽320,接着从第一掩模层300和第二掩模层310的顶部移除多余的牺牲电介质材料330,如图24所示。
然后通过选择性蚀刻技术移除第二掩模层310的其余部分。第一掩模层300和牺牲电介质层330然后用作掩模以蚀刻第二组沟槽340,如图25所示。之后,通过选择性蚀刻技术移除第一掩模层300的其余部分,如图26所示。
然后通过选择性蚀刻技术移除氮化硅层(40),留下腔350,如图27所示。然后沉积金属层360以填充沟槽340和腔350。然后通过各向同性蚀刻技术移除沟槽340的侧壁和牺牲电介质材料330的顶表面上的金属,留下填充腔350的金属360,如图28所示。该金属替换工艺的细节在上文结合图4和图5的描述中已经详细描述。此后,牺牲电介质材料370被沉积到沟槽340中,接着从存储器结构10的顶表面移除任何多余的牺牲电介质材料370。存储器结构10的制造的其余部分可以根据上面的描述和图8-16进行。
提供上述详细描述是为了说明本发明的具体实施例,而不是为了限制。在本发明的范围内的多种变化和修改是可能的。本发明在所附权利要求中得到阐述。

Claims (19)

1.一种高深宽比蚀刻的方法,包括:
在半导体衬底的表面上方制备多个材料多层,所述多个材料多层沿着正交于所述半导体衬底的表面的第一方向上下叠置,其中每个材料多层包括第一电介质材料的第一层和第一材料的第二层;
使用第一掩模沿着所述第一方向图案化和蚀刻所述材料多层以形成第一组沟槽,所述第一组沟槽将所述材料多层划分为第一组多层堆叠体,其中所述第一组沟槽中的每一个沿着平行于所述半导体衬底的表面的第二方向延伸;
用第二电介质材料填充所述第一组沟槽;以及
使用第二掩模沿着所述第一方向图案化和蚀刻所述第一组多层堆叠体以形成第二组沟槽,所述第二组沟槽将所述第一组多层堆叠体划分成第二组多层堆叠体,其中所述第二组沟槽中的每一个沿着平行于所述第一组沟槽的所述第二方向延伸;
用第二电介质材料填充所述第二组沟槽;以及
在所述第一组沟槽和第二组沟槽中选择性地蚀刻所述第二电介质材料的第一部分,以提供沿着所述第一方向延伸的第一多个轴;
在每个轴中共形地沉积电荷存储材料;
在所述电荷存储材料上共形地沉积具有第一导电性的半导体层;以及
用第三电介质材料填充每个轴。
2.如权利要求1所述的方法,其中蚀刻所述材料多层和蚀刻所述第一组多层均涉及深宽比小于40的蚀刻。
3.如权利要求1所述的方法,其中所述第二掩模提供掩模结构,每个掩模结构与所述第一组多层堆叠体中的至少两个相邻的多层堆叠体和它们之间的所述第一组第二电介质材料填充的沟槽中的一个重叠。
4.如权利要求1所述的方法,其中所述第一材料包括导电材料。
5.如权利要求4所述的方法,还包括:
在每个轴中穿过所述第三电介质材料选择性地蚀刻第一通孔和第二通孔;以及
用具有与所述第一导电性相反的第二导电性的第二半导体材料在每个轴中填充所述第一通孔和第二通孔。
6.如权利要求5所述的方法,还包括,在用所述第三电介质材料填充每个轴之前,在所述具有第一导电性的半导体层上沉积衬垫层,且其中所述方法还包括,在用所述第二半导体材料在每个轴中填充所述第一通孔和第二通孔之前,移除所述衬垫层以暴露所述具有第一导电性的半导体层。
7.如权利要求5所述的方法,还包括,在制备所述材料多层之前,在所述半导体衬底的表面上方提供多个导体,每个导体沿着正交于所述第一方向和第二方向中的每一个的第三方向延伸。
8.如权利要求7所述的方法,其中所述导体通过隔离层与所述材料多层隔离,其中在每个轴中蚀刻所述第一通孔和第二通孔还包括蚀刻穿过所述隔离层,以能够在所述第一通孔和第二通孔中的所选通孔中的导电材料之间提供导电路径,并且电连接到所述导体中的对应的导体。
9.如权利要求5所述的方法,还包括在所述第二组多层堆叠体上方提供多个导体,每个导体沿着正交于所述第一方向和第二方向中的每一个的第三方向延伸。
10.如权利要求9所述的方法,还包括提供导电路径,以使得所述第一通孔和第二通孔中的所选通孔中的所述第二半导体材料能够电连接到所述导体中的一个。
11.如权利要求9所述的方法,还包括:
在所述半导体衬底中提供电路元件;以及
将所述第一通孔和第二通孔中的所选通孔中的所述第二半导体材料电连接到所述电路元件中的对应的电路元件,所述电路元件中的每一个位于其对应的第一通孔和第二通孔下方。
12.如权利要求11所述的方法,还包括在所述电路元件和所述材料多层之间提供隔离层,其中将所述第一通孔和第二通孔中的所选通孔中的所述第二半导体材料中的所选第二半导体材料电连接到其对应的电路元件包括穿过所述隔离层形成导电路径。
13.如权利要求5所述的方法,还包括用所述第二半导体材料部分地填充所述第一通孔和第二通孔,之后用低电阻率导体材料填充所述第一通孔和第二通孔。
14.如权利要求4所述的方法,还包括:
在所述第一组沟槽和第二组沟槽中选择性地蚀刻所述第二电介质材料的第二部分,以提供沿着所述第一方向延伸的第二多个轴;
在所述第二多个轴中的每一个中共形地沉积电荷存储材料;
在所述第二多个轴中的每一个中的电荷存储材料上共形地沉积具有所述第一导电性的半导体层;以及
用所述第三电介质材料填充所述第二多个轴中的每一个。
15.如权利要求14所述的方法,其中所述第二多个轴中的所述电荷存储材料具有与所述第一多个轴中的电荷存储材料不同的特性。
16.如权利要求1所述的方法,所述第一材料包括牺牲层,所述方法还包括用导电材料选择性地替换所述牺牲层。
17.如权利要求16所述的方法,其中替换所述牺牲层包括横向地穿过所述第二组沟槽选择性地蚀刻所述牺牲层直至所述第一组沟槽中的所述第二电介质材料。
18.如权利要求1所述的方法,还包括在所述第二组多层堆叠体中的每个多层堆叠体的一个或多个端部处形成楼梯结构,其中每个楼梯结构具有沿着所述第二方向连续地延伸所述多层堆叠体的层的台阶,且其中每个台阶暴露所述多层堆叠体中的多层中的导电层。
19.如权利要求18所述的方法,还包括在所述楼梯结构上提供电绝缘材料,并且沿着所述第一方向提供通孔连接以电连接到所述楼梯结构的每个台阶中的所述导电层。
CN201980080598.0A 2018-12-07 2019-12-09 形成多层垂直nor型存储器串阵列的方法 Active CN113169041B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862777000P 2018-12-07 2018-12-07
US62/777,000 2018-12-07
PCT/US2019/065256 WO2020118301A1 (en) 2018-12-07 2019-12-09 Methods for forming multi-layer vertical nor-type memory string arrays

Publications (2)

Publication Number Publication Date
CN113169041A CN113169041A (zh) 2021-07-23
CN113169041B true CN113169041B (zh) 2024-04-09

Family

ID=70970318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980080598.0A Active CN113169041B (zh) 2018-12-07 2019-12-09 形成多层垂直nor型存储器串阵列的方法

Country Status (4)

Country Link
US (3) US11282855B2 (zh)
EP (1) EP3891780A4 (zh)
CN (1) CN113169041B (zh)
WO (1) WO2020118301A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11120884B2 (en) 2015-09-30 2021-09-14 Sunrise Memory Corporation Implementing logic function and generating analog signals using NOR memory strings
CN111033625B (zh) * 2017-06-20 2024-02-06 日升存储公司 三维nor存储器阵列架构及其制造方法
SG11202104885PA (en) 2018-12-07 2021-06-29 Yangtze Memory Technologies Co Ltd Novel 3d nand memory device and method of forming the same
WO2021127218A1 (en) 2019-12-19 2021-06-24 Sunrise Memory Corporation Process for preparing a channel region of a thin-film transistor
US11695073B2 (en) 2020-05-29 2023-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array gate structures
US11723209B2 (en) * 2020-05-29 2023-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional memory device and manufacturing method thereof
US11532640B2 (en) 2020-05-29 2022-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing a three-dimensional memory
US11710790B2 (en) * 2020-05-29 2023-07-25 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array channel regions
US11404091B2 (en) 2020-06-19 2022-08-02 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array word line routing
US11985825B2 (en) 2020-06-25 2024-05-14 Taiwan Semiconductor Manufacturing Co., Ltd. 3D memory array contact structures
US11532343B2 (en) * 2020-06-26 2022-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array including dummy regions
US11729987B2 (en) 2020-06-30 2023-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array source/drain electrode structures
US11640974B2 (en) * 2020-06-30 2023-05-02 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array isolation structures
US11963363B2 (en) * 2020-07-14 2024-04-16 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device and method for fabricating the same
US11647634B2 (en) 2020-07-16 2023-05-09 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method
US11355516B2 (en) 2020-07-16 2022-06-07 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method
US11903214B2 (en) 2020-07-16 2024-02-13 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional ferroelectric random access memory devices and methods of forming
US11545507B2 (en) * 2020-07-29 2023-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device and method for making same
US11495618B2 (en) 2020-07-30 2022-11-08 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method
US11423966B2 (en) 2020-07-30 2022-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array staircase structure
WO2022047067A1 (en) * 2020-08-31 2022-03-03 Sunrise Memory Corporation Thin-film storage transistors in a 3-dimensional array or nor memory strings and process for fabricating the same
US11508754B2 (en) * 2021-01-05 2022-11-22 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor memory structure and method for forming the same
US20220262809A1 (en) * 2021-02-12 2022-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array and methods of forming same
US11723199B2 (en) * 2021-03-03 2023-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Protective liner layers in 3D memory structure
US11716856B2 (en) * 2021-03-05 2023-08-01 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method
US20220384470A1 (en) * 2021-05-27 2022-12-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor memory device and method for making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681687A (zh) * 2012-09-11 2014-03-26 三星电子株式会社 三维半导体存储装置及其制造方法
CN106935588A (zh) * 2015-12-30 2017-07-07 株式会社东芝 半导体存储器装置

Family Cites Families (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213139A (en) 1978-05-18 1980-07-15 Texas Instruments Incorporated Double level polysilicon series transistor cell
US5583808A (en) 1994-09-16 1996-12-10 National Semiconductor Corporation EPROM array segmented for high performance and method for controlling same
US5646886A (en) 1995-05-24 1997-07-08 National Semiconductor Corporation Flash memory having segmented array for improved operation
JPH098290A (ja) 1995-06-20 1997-01-10 Mitsubishi Electric Corp 半導体装置及びその製造方法
US5789776A (en) 1995-09-22 1998-08-04 Nvx Corporation Single poly memory cell and array
US5768192A (en) 1996-07-23 1998-06-16 Saifun Semiconductors, Ltd. Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping
EP0833348B1 (en) 1996-09-30 2003-07-09 STMicroelectronics S.r.l. Method and circuit for checking multilevel programming of floating-gate nonvolatile memory cells, particlarly flash cells
US5915167A (en) 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
KR100242723B1 (ko) 1997-08-12 2000-02-01 윤종용 불휘발성 반도체 메모리 장치의 셀 어레이 구조 및 그 제조방법
US6040605A (en) 1998-01-28 2000-03-21 Hitachi, Ltd. Semiconductor memory device
US6107133A (en) 1998-05-28 2000-08-22 International Business Machines Corporation Method for making a five square vertical DRAM cell
JP2000200842A (ja) 1998-11-04 2000-07-18 Sony Corp 不揮発性半導体記憶装置、製造方法および書き込み方法
US6118171A (en) 1998-12-21 2000-09-12 Motorola, Inc. Semiconductor device having a pedestal structure and method of making
JP2000243972A (ja) 1999-02-24 2000-09-08 Toyota Central Res & Dev Lab Inc 薄膜半導体装置
JP4899241B2 (ja) 1999-12-06 2012-03-21 ソニー株式会社 不揮発性半導体記憶装置およびその動作方法
US6639835B2 (en) 2000-02-29 2003-10-28 Micron Technology, Inc. Static NVRAM with ultra thin tunnel oxides
JP2001357682A (ja) 2000-06-12 2001-12-26 Sony Corp メモリシステムおよびそのプログラム方法
US6455424B1 (en) 2000-08-07 2002-09-24 Micron Technology, Inc. Selective cap layers over recessed polysilicon plugs
US6580124B1 (en) 2000-08-14 2003-06-17 Matrix Semiconductor Inc. Multigate semiconductor device with vertical channel current and method of fabrication
AU2001286432A1 (en) 2000-08-14 2002-02-25 Matrix Semiconductor, Inc. Dense arrays and charge storage devices, and methods for making same
US6621725B2 (en) 2000-08-17 2003-09-16 Kabushiki Kaisha Toshiba Semiconductor memory device with floating storage bulk region and method of manufacturing the same
US20020193484A1 (en) 2001-02-02 2002-12-19 The 54 Group, Ltd. Polymeric resins impregnated with insect repellants
US6531727B2 (en) 2001-02-09 2003-03-11 Micron Technology, Inc. Open bit line DRAM with ultra thin body transistors
US6744094B2 (en) 2001-08-24 2004-06-01 Micron Technology Inc. Floating gate transistor with horizontal gate layers stacked next to vertical body
US7012297B2 (en) 2001-08-30 2006-03-14 Micron Technology, Inc. Scalable flash/NV structures and devices with extended endurance
US6873004B1 (en) 2002-02-04 2005-03-29 Nexflash Technologies, Inc. Virtual ground single transistor memory cell, memory array incorporating same, and method of operation thereof
US7064018B2 (en) 2002-07-08 2006-06-20 Viciciv Technology Methods for fabricating three dimensional integrated circuits
US6774458B2 (en) 2002-07-23 2004-08-10 Hewlett Packard Development Company, L.P. Vertical interconnection structure and methods
US7005350B2 (en) 2002-12-31 2006-02-28 Matrix Semiconductor, Inc. Method for fabricating programmable memory array structures incorporating series-connected transistor strings
KR100881201B1 (ko) 2003-01-09 2009-02-05 삼성전자주식회사 사이드 게이트를 구비하는 소노스 메모리 소자 및 그제조방법
US7307308B2 (en) 2003-04-07 2007-12-11 Silicon Storage Technology, Inc. Buried bit line non-volatile floating gate memory cell with independent controllable control gate in a trench, and array thereof, and method of formation
JP4108537B2 (ja) 2003-05-28 2008-06-25 富士雄 舛岡 半導体装置
KR100546331B1 (ko) 2003-06-03 2006-01-26 삼성전자주식회사 스택 뱅크들 마다 독립적으로 동작하는 멀티 포트 메모리장치
US20040262772A1 (en) 2003-06-30 2004-12-30 Shriram Ramanathan Methods for bonding wafers using a metal interlayer
KR100535651B1 (ko) 2003-06-30 2005-12-08 주식회사 하이닉스반도체 플래시 메모리 셀과, 낸드 및 노아 타입의 플래시 메모리장치의 독출방법
JP4545423B2 (ja) 2003-12-09 2010-09-15 ルネサスエレクトロニクス株式会社 半導体装置
US7378702B2 (en) 2004-06-21 2008-05-27 Sang-Yun Lee Vertical memory device structures
US7412560B2 (en) 2004-12-16 2008-08-12 Sandisk Corporation Non-volatile memory and method with multi-stream updating
US7366826B2 (en) 2004-12-16 2008-04-29 Sandisk Corporation Non-volatile memory and method with multi-stream update tracking
US7473589B2 (en) 2005-12-09 2009-01-06 Macronix International Co., Ltd. Stacked thin film transistor, non-volatile memory devices and methods for fabricating the same
US8314024B2 (en) 2008-12-19 2012-11-20 Unity Semiconductor Corporation Device fabrication
KR100673105B1 (ko) 2005-03-31 2007-01-22 주식회사 하이닉스반도체 반도체 소자의 수직형 트랜지스터 및 그의 형성 방법
US7612411B2 (en) 2005-08-03 2009-11-03 Walker Andrew J Dual-gate device and method
US7429767B2 (en) 2005-09-01 2008-09-30 Micron Technology, Inc. High performance multi-level non-volatile memory device
US7857907B2 (en) 2007-01-25 2010-12-28 Au Optronics Corporation Methods of forming silicon nanocrystals by laser annealing
JP2008251138A (ja) 2007-03-30 2008-10-16 Toshiba Corp 不揮発性半導体メモリ、不揮発性半導体メモリの制御方法、不揮発性半導体メモリシステム、及びメモリカード
CN101675505B (zh) * 2007-05-03 2012-11-21 朗姆研究公司 硬掩模开口以及利用硬掩模开口的蚀刻形貌控制
US20090179253A1 (en) 2007-05-25 2009-07-16 Cypress Semiconductor Corporation Oxide-nitride-oxide stack having multiple oxynitride layers
JP5130596B2 (ja) 2007-05-30 2013-01-30 国立大学法人東北大学 半導体装置
US20090157946A1 (en) 2007-12-12 2009-06-18 Siamak Arya Memory having improved read capability
US7542348B1 (en) 2007-12-19 2009-06-02 Juhan Kim NOR flash memory including bipolar segment read circuit
US7898857B2 (en) 2008-03-20 2011-03-01 Micron Technology, Inc. Memory structure having volatile and non-volatile memory portions
JP5354944B2 (ja) 2008-03-27 2013-11-27 株式会社東芝 半導体装置および電界効果トランジスタ
US8072811B2 (en) 2008-05-07 2011-12-06 Aplus Flash Technology, Inc, NAND based NMOS NOR flash memory cell, a NAND based NMOS NOR flash memory array, and a method of forming a NAND based NMOS NOR flash memory array
WO2009154799A1 (en) 2008-06-20 2009-12-23 Aplus Flash Technology, Inc. An apparatus and method for inhibiting excess leakage current in unselected nonvolatile memory cells in an array
JP2010118580A (ja) 2008-11-14 2010-05-27 Toshiba Corp 不揮発性半導体記憶装置
US8148763B2 (en) 2008-11-25 2012-04-03 Samsung Electronics Co., Ltd. Three-dimensional semiconductor devices
US8645617B2 (en) 2008-12-09 2014-02-04 Rambus Inc. Memory device for concurrent and pipelined memory operations
US20120028347A1 (en) 2009-01-28 2012-02-02 Tokai University Educational System Agent for suppressing replication of hiv and use thereof
US8178396B2 (en) 2009-03-11 2012-05-15 Micron Technology, Inc. Methods for forming three-dimensional memory devices, and related structures
JP2010251572A (ja) 2009-04-16 2010-11-04 Toshiba Corp 不揮発性半導体記憶装置
US8139418B2 (en) 2009-04-27 2012-03-20 Micron Technology, Inc. Techniques for controlling a direct injection semiconductor memory device
KR101635504B1 (ko) 2009-06-19 2016-07-04 삼성전자주식회사 3차원 수직 채널 구조를 갖는 불 휘발성 메모리 장치의 프로그램 방법
KR20110018753A (ko) 2009-08-18 2011-02-24 삼성전자주식회사 불휘발성 메모리 장치, 그것의 프로그램 방법, 그리고 그것을 포함하는 메모리 시스템
JP5031809B2 (ja) 2009-11-13 2012-09-26 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置
EP2333830B1 (en) 2009-12-07 2014-09-03 STMicroelectronics (Research & Development) Limited a package comprising a first and a second die coupled by a multiplexed bus
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
US8411477B2 (en) 2010-04-22 2013-04-02 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8395942B2 (en) 2010-05-17 2013-03-12 Sandisk Technologies Inc. Junctionless TFT NAND flash memory
KR101660432B1 (ko) 2010-06-07 2016-09-27 삼성전자 주식회사 수직 구조의 반도체 메모리 소자
US10217667B2 (en) 2011-06-28 2019-02-26 Monolithic 3D Inc. 3D semiconductor device, fabrication method and system
US8630114B2 (en) 2011-01-19 2014-01-14 Macronix International Co., Ltd. Memory architecture of 3D NOR array
KR20120085591A (ko) 2011-01-24 2012-08-01 김진선 3차원 비휘발성 메모리 소자, 그 동작 방법 및 그 제조 방법
KR20120085603A (ko) 2011-01-24 2012-08-01 김진선 3차원 비휘발성 메모리 소자, 그 동작 방법 및 그 제조 방법
KR20120085945A (ko) * 2011-01-25 2012-08-02 김진선 3차원 비휘발성 메모리 소자, 그 동작 방법 및 그 제조 방법
US20120208347A1 (en) * 2011-02-11 2012-08-16 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory devices and methods of fabricating the same
US8952418B2 (en) 2011-03-01 2015-02-10 Micron Technology, Inc. Gated bipolar junction transistors
JP2012204684A (ja) 2011-03-25 2012-10-22 Toshiba Corp 不揮発性半導体記憶装置
US9559216B2 (en) 2011-06-06 2017-01-31 Micron Technology, Inc. Semiconductor memory device and method for biasing same
US8604618B2 (en) 2011-09-22 2013-12-10 International Business Machines Corporation Structure and method for reducing vertical crack propagation
US8878278B2 (en) 2012-03-21 2014-11-04 Sandisk Technologies Inc. Compact three dimensional vertical NAND and method of making thereof
JP2013214552A (ja) 2012-03-30 2013-10-17 Toshiba Corp 半導体装置とその製造方法
US9645177B2 (en) 2012-05-04 2017-05-09 Seagate Technology Llc Retention-drift-history-based non-volatile memory read threshold optimization
US9054183B2 (en) 2012-07-13 2015-06-09 United Silicon Carbide, Inc. Trenched and implanted accumulation mode metal-oxide-semiconductor field-effect transistor
US8922243B2 (en) 2012-12-23 2014-12-30 Advanced Micro Devices, Inc. Die-stacked memory device with reconfigurable logic
US9697147B2 (en) 2012-08-06 2017-07-04 Advanced Micro Devices, Inc. Stacked memory device with metadata management
KR101975534B1 (ko) 2012-09-11 2019-05-07 삼성전자주식회사 연산기능을 갖는 반도체 메모리 장치
US8988937B2 (en) 2012-10-24 2015-03-24 Sandisk Technologies Inc. Pre-charge during programming for 3D memory using gate-induced drain leakage
JP2014093319A (ja) 2012-10-31 2014-05-19 Toshiba Corp 半導体装置およびその製造方法
KR101447547B1 (ko) 2012-11-23 2014-10-06 삼성전자주식회사 자기 공명 영상 촬상 방법 및 장치
US10403766B2 (en) 2012-12-04 2019-09-03 Conversant Intellectual Property Management Inc. NAND flash memory with vertical cell stack structure and method for manufacturing same
US9105310B2 (en) 2013-02-05 2015-08-11 Qualcomm Incorporated System and method of programming a memory cell
US8878271B2 (en) 2013-03-01 2014-11-04 Micron Technology, Inc. Vertical access device and apparatuses having a body connection line, and related method of operating the same
WO2014138124A1 (en) 2013-03-04 2014-09-12 Sandisk 3D Llc Vertical bit line non-volatile memory systems and methods of fabrication
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US9123778B2 (en) * 2013-03-13 2015-09-01 Macronix International Co., Ltd. Damascene conductor for 3D array
US9368625B2 (en) 2013-05-01 2016-06-14 Zeno Semiconductor, Inc. NAND string utilizing floating body memory cell
US9281044B2 (en) 2013-05-17 2016-03-08 Micron Technology, Inc. Apparatuses having a ferroelectric field-effect transistor memory array and related method
US9337210B2 (en) 2013-08-12 2016-05-10 Micron Technology, Inc. Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors
US9368214B2 (en) 2013-10-03 2016-06-14 Apple Inc. Programmable peak-current control in non-volatile memory devices
KR102128469B1 (ko) 2013-11-08 2020-06-30 삼성전자주식회사 반도체 장치
WO2015081413A1 (en) * 2013-12-05 2015-06-11 Conversant Intellectual Property Management Inc. A three dimensional non-volatile memory with charge storage node isolation
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
KR102066743B1 (ko) 2014-01-09 2020-01-15 삼성전자주식회사 비휘발성 메모리 장치 및 그 형성방법
KR102183713B1 (ko) * 2014-02-13 2020-11-26 삼성전자주식회사 3차원 반도체 장치의 계단형 연결 구조 및 이를 형성하는 방법
US9368601B2 (en) 2014-02-28 2016-06-14 Sandisk Technologies Inc. Method for forming oxide below control gate in vertical channel thin film transistor
US9583591B2 (en) * 2014-03-14 2017-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Si recess method in HKMG replacement gate technology
US20150372099A1 (en) 2014-06-19 2015-12-24 Taiwan Semiconductor Manufacturing Company, Ltd. Contact silicide formation using a spike annealing process
US20160013156A1 (en) 2014-07-14 2016-01-14 Apple Inc. Package-on-package options with multiple layer 3-d stacking
KR102140788B1 (ko) 2014-07-18 2020-08-03 삼성전자주식회사 저항성 메모리 장치, 저항성 메모리 시스템 및 저항성 메모리 장치의 동작방법
US9583539B2 (en) 2014-08-19 2017-02-28 Sandisk Technologies Llc Word line connection for memory device and method of making thereof
US9299580B2 (en) 2014-08-19 2016-03-29 Applied Materials, Inc. High aspect ratio plasma etch for 3D NAND semiconductor applications
US10014317B2 (en) 2014-09-23 2018-07-03 Haibing Peng Three-dimensional non-volatile NOR-type flash memory
US9230985B1 (en) 2014-10-15 2016-01-05 Sandisk 3D Llc Vertical TFT with tunnel barrier
US9595566B2 (en) 2015-02-25 2017-03-14 Sandisk Technologies Llc Floating staircase word lines and process in a 3D non-volatile memory having vertical bit lines
US10007573B2 (en) 2015-04-27 2018-06-26 Invensas Corporation Preferred state encoding in non-volatile memories
KR20160128127A (ko) 2015-04-28 2016-11-07 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US9620605B2 (en) 2015-05-15 2017-04-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device structure and method
US9553104B2 (en) * 2015-06-08 2017-01-24 Macronix International Co., Ltd. Semiconductor device and method of fabricating the same
US10254968B1 (en) 2015-06-10 2019-04-09 Firquest Llc Hybrid memory device for lookup operations
DE112016004265T5 (de) 2015-09-21 2018-06-07 Monolithic 3D Inc. 3d halbleitervorrichtung und -struktur
US9412752B1 (en) 2015-09-22 2016-08-09 Macronix International Co., Ltd. Reference line and bit line structure for 3D memory
US9842651B2 (en) 2015-11-25 2017-12-12 Sunrise Memory Corporation Three-dimensional vertical NOR flash thin film transistor strings
US9892800B2 (en) 2015-09-30 2018-02-13 Sunrise Memory Corporation Multi-gate NOR flash thin-film transistor strings arranged in stacked horizontal active strips with vertical control gates
US10121553B2 (en) * 2015-09-30 2018-11-06 Sunrise Memory Corporation Capacitive-coupled non-volatile thin-film transistor NOR strings in three-dimensional arrays
US9831266B2 (en) 2015-11-20 2017-11-28 Sandisk Technologies Llc Three-dimensional NAND device containing support pedestal structures for a buried source line and method of making the same
WO2017111790A1 (en) 2015-12-23 2017-06-29 Manusharow Mathew J Improving size and efficiency of dies
KR102398664B1 (ko) * 2016-01-26 2022-05-16 삼성전자주식회사 반도체 소자의 제조 방법
US10096613B2 (en) * 2016-04-13 2018-10-09 Toshiba Memory Corporation Semiconductor device and method for manufacturing same
US9985046B2 (en) 2016-06-13 2018-05-29 Sandisk Technologies Llc Method of forming a staircase in a semiconductor device using a linear alignment control feature
US10417098B2 (en) 2016-06-28 2019-09-17 International Business Machines Corporation File level access to block level incremental backups of a virtual disk
US10381372B2 (en) * 2016-07-13 2019-08-13 Sandisk Technologies Llc Selective tungsten growth for word lines of a three-dimensional memory device
US9995785B2 (en) 2016-09-30 2018-06-12 Intel Corporation Stacked semiconductor package and method for performing bare die testing on a functional die in a stacked semiconductor package
JP2018152419A (ja) 2017-03-10 2018-09-27 東芝メモリ株式会社 半導体記憶装置
US10504901B2 (en) * 2017-04-26 2019-12-10 Asm Ip Holding B.V. Substrate processing method and device manufactured using the same
US10608008B2 (en) 2017-06-20 2020-03-31 Sunrise Memory Corporation 3-dimensional nor strings with segmented shared source regions
CN111033625B (zh) 2017-06-20 2024-02-06 日升存储公司 三维nor存储器阵列架构及其制造方法
US10692874B2 (en) 2017-06-20 2020-06-23 Sunrise Memory Corporation 3-dimensional NOR string arrays in segmented stacks
KR102376993B1 (ko) * 2017-07-11 2022-03-22 에스케이하이닉스 주식회사 반도체 장치 및 이의 제조 방법
US10460817B2 (en) 2017-07-13 2019-10-29 Qualcomm Incorporated Multiple (multi-) level cell (MLC) non-volatile (NV) memory (NVM) matrix circuits for performing matrix computations with multi-bit input vectors
US10431596B2 (en) 2017-08-28 2019-10-01 Sunrise Memory Corporation Staggered word line architecture for reduced disturb in 3-dimensional NOR memory arrays
KR102332456B1 (ko) 2017-08-31 2021-12-02 마이크론 테크놀로지, 인크 두 개의 트랜지스터들과 하나의 캐패시터를 갖는 메모리 셀을 가지며, 기준 전압과 결합된 트랜지스터들의 바디 영역들을 갖는 장치
US10896916B2 (en) 2017-11-17 2021-01-19 Sunrise Memory Corporation Reverse memory cell
KR20220145927A (ko) 2017-12-28 2022-10-31 선라이즈 메모리 코포레이션 초미세 피치를 갖는 3차원 nor 메모리 어레이: 장치 및 방법
US10283493B1 (en) 2018-01-17 2019-05-07 Sandisk Technologies Llc Three-dimensional memory device containing bonded memory die and peripheral logic die and method of making thereof
US10381378B1 (en) 2018-02-02 2019-08-13 Sunrise Memory Corporation Three-dimensional vertical NOR flash thin-film transistor strings
US10475812B2 (en) 2018-02-02 2019-11-12 Sunrise Memory Corporation Three-dimensional vertical NOR flash thin-film transistor strings
KR102512754B1 (ko) 2018-03-30 2023-03-23 삼성전자주식회사 관통 전극을 통해 전송되는 제어 신호를 이용하여 데이터를 샘플링하는 메모리 장치
US10748931B2 (en) 2018-05-08 2020-08-18 Micron Technology, Inc. Integrated assemblies having ferroelectric transistors with body regions coupled to carrier reservoirs
US11069696B2 (en) 2018-07-12 2021-07-20 Sunrise Memory Corporation Device structure for a 3-dimensional NOR memory array and methods for improved erase operations applied thereto
TWI757635B (zh) 2018-09-20 2022-03-11 美商森恩萊斯記憶體公司 記憶體結構及其用於電性連接三維記憶裝置之多水平導電層之階梯結構的製作方法
TWI713195B (zh) 2018-09-24 2020-12-11 美商森恩萊斯記憶體公司 三維nor記憶電路製程中之晶圓接合及其形成之積體電路
US10651196B1 (en) * 2018-11-08 2020-05-12 Sandisk Technologies Llc Three-dimensional multilevel device containing seamless unidirectional metal layer fill and method of making same
WO2020117978A1 (en) 2018-12-04 2020-06-11 Sunrise Memory Corporation Methods for forming multilayer horizontal nor-type thin-film memory strings
EP3925004A4 (en) 2019-02-11 2023-03-08 Sunrise Memory Corporation VERTICAL THIN FILM TRANSISTOR AND USE AS BITLINE CONNECTOR FOR THREE DIMENSIONAL MEMORY ARRANGEMENTS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681687A (zh) * 2012-09-11 2014-03-26 三星电子株式会社 三维半导体存储装置及其制造方法
CN106935588A (zh) * 2015-12-30 2017-07-07 株式会社东芝 半导体存储器装置

Also Published As

Publication number Publication date
WO2020118301A1 (en) 2020-06-11
US20240099003A1 (en) 2024-03-21
US11282855B2 (en) 2022-03-22
US20220165751A1 (en) 2022-05-26
US11844217B2 (en) 2023-12-12
US20200185411A1 (en) 2020-06-11
CN113169041A (zh) 2021-07-23
EP3891780A4 (en) 2022-12-21
EP3891780A1 (en) 2021-10-13
WO2020118301A4 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
CN113169041B (zh) 形成多层垂直nor型存储器串阵列的方法
US11751392B2 (en) Fabrication method for a 3-dimensional NOR memory array
US11404431B2 (en) Methods for forming multilayer horizontal NOR-type thin-film memory strings
CN111430366B (zh) 三维存储器件及其形成方法
US11114459B2 (en) Three-dimensional memory device containing width-modulated connection strips and methods of forming the same
US20200098779A1 (en) Staircase Structures for Electrically Connecting Multiple Horizontal Conductive Layers of a 3-Dimensional Memory Device
US9515023B2 (en) Multilevel contact to a 3D memory array and method of making thereof
US11139237B2 (en) Three-dimensional memory device containing horizontal and vertical word line interconnections and methods of forming the same
US10847524B2 (en) Three-dimensional memory device having double-width staircase regions and methods of manufacturing the same
US11133252B2 (en) Three-dimensional memory device containing horizontal and vertical word line interconnections and methods of forming the same
US20210366920A1 (en) Through-stack contact via structures for a three-dimensional memory device and methods of forming the same
US11991881B2 (en) Three-dimensional memory device with off-center or reverse slope staircase regions and methods for forming the same
KR102591266B1 (ko) 스플릿 메모리 셀들을 포함하는 3차원 메모리 디바이스 및 그 형성 방법
US11641746B2 (en) Three-dimensional memory device with peripheral circuit located over support pillar array and method of making thereof
US20240121959A1 (en) Multi-tier memory device with different width central staircase regions in different vertical tiers and methods for forming the same
US11997850B2 (en) Three-dimensional memory device with staircase etch stop structures and methods for forming the same
US20230069307A1 (en) Three-dimensional memory device with staircase etch stop structures and methods for forming the same
US11749600B2 (en) Three-dimensional memory device with hybrid staircase structure and methods of forming the same
WO2023027786A1 (en) Three-dimensional memory device with staircase etch stop structures and methods for forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant