CN102378744B - 陶瓷、压电器件及其制备方法 - Google Patents

陶瓷、压电器件及其制备方法 Download PDF

Info

Publication number
CN102378744B
CN102378744B CN201080015258.9A CN201080015258A CN102378744B CN 102378744 B CN102378744 B CN 102378744B CN 201080015258 A CN201080015258 A CN 201080015258A CN 102378744 B CN102378744 B CN 102378744B
Authority
CN
China
Prior art keywords
orientation
ceramic
magnetic field
bifeo
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080015258.9A
Other languages
English (en)
Other versions
CN102378744A (zh
Inventor
斋藤宏
松田坚义
高岛健二
熊田伸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
University of Yamanashi NUC
Original Assignee
Canon Inc
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, University of Yamanashi NUC filed Critical Canon Inc
Publication of CN102378744A publication Critical patent/CN102378744A/zh
Application granted granted Critical
Publication of CN102378744B publication Critical patent/CN102378744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/24Complex oxides with formula AMeO3, wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. ortho ferrites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/605Making or treating the green body or pre-form in a magnetic field
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供压电陶瓷,其含有具有假立方型的{110}面取向的BiFeO3,其适合畴工程,该压电陶瓷包括由下述通式(1)表示的钙钛矿型金属氧化物,并且具有假立方型的{110}面取向:通式(1)xBiFeO3-(1-x)ABO3其中A和B均表示一种或多种金属离子;A表示具有1、2或3价的金属离子;和B表示具有3、4或5价的金属离子,条件是x在0.3≤x≤1的范围内。

Description

陶瓷、压电器件及其制备方法
技术领域
本发明涉及压电陶瓷、压电器件及其制备方法,更具体地,涉及无铅压电陶瓷和使用其的压电器件以及该压电器件的制备方法。
背景技术
用于压电器件(其用于超声马达、喷墨头等)的许多压电陶瓷,是所谓的PZT的材料,并且是包括铅(Pb)、锆(Zr)和钛(Ti)的氧化物。因此,从环境问题出发,正在进行不含有铅的压电陶瓷(无铅压电陶瓷)的开发。
与PZT相比,无铅压电陶瓷的压电常数低,并且不足。因此,对无铅压电陶瓷进行畴工程(domain engineering),由此改善压电性(S.Wada,Japanese Journal of Applied Physics,第46卷,No.10B,2007,第7039-7043页)。上述的畴工程,需要钙钛矿型压电陶瓷,其具有假立方型(pseudo-cubic form)的{110}面取向。
BiFeO3具有极大量的剩余极化,并且居里点也高。因此,含有BiFeO3的钙钛矿型压电材料是有前途的压电材料。例如,可例示其中将BiFeO3和BaTiO3溶解的薄膜压电材料(日本专利申请公开No.2007-287745)。但是,在含有BiFeO3的钙钛矿型压电材料中,从未提供取向并且适合畴工程的钙钛矿型压电陶瓷。原因在于,如果适当选择薄膜在其上生长的基材,容易在特定方向上获得取向,而在陶瓷的情况下,由于不设置用于支持取向的基材,因此难以获得取向。
因此,作为使陶瓷定向的方法,已知磁场取向(日本专利申请公开No.2008-037064)。日本专利申请公开No.2008-037064公开了如下方法,其包括为了使具有小磁各向异性的钙钛矿型压电材料进行利用磁场的取向,添加具有强磁各向异性的添加剂以施加磁场。但是,对 于利用磁场的取向,如果添加具有强磁各向异性的添加剂,则对电特性产生不利影响,这是不希望的。此外,日本专利申请公开No.2008-037064中记载的钙钛矿型压电材料具有假立方型的{100}面取向,其为不适合畴工程的取向。
鉴于上述情况而完成了本发明,其目的在于提供含有BiFeO3的压电陶瓷,其适合畴工程。
此外,本发明提供使用上述压电陶瓷的压电器件和该压电器件的制备方法。
发明内容
能够实现上述目的的压电陶瓷是由下述通式(1)表示的钙钛矿型金属氧化物制成的陶瓷,并且具有假立方型的{110}面取向:
通式(1)
xBiFeO3-(1-x)ABO3
其中A和B均表示一种或多种金属离子;A表示具有1、2或3价的金属离子;B表示具有3、4或5价的金属离子,条件是x在0.3≤x≤1的范围内。
能够实现上述目的的压电器件包括经设置以夹持该压电陶瓷的电极对。
此外,能够实现上述目的的压电器件的制备方法包括:
得到包括陶瓷粉末的陶瓷浆料(slurry)的浆料步骤,该陶瓷粉末由下述通式(1)表示的钙钛矿型金属氧化物制成;
在磁场中将该陶瓷浆料成形(form)以得到取向的陶瓷压实体(compact body)的取向步骤;
将该陶瓷压实体烧结以得到陶瓷烧结体的烧结步骤;和
形成电极对以夹持该陶瓷烧结体的电极形成步骤,其中该浆料步骤中的陶瓷粉末含有30摩尔%以上的溶解或混合的BiFeO3
通式(1)
xBiFeO3-(1-x)ABO3
其中A和B均表示一种或多种金属离子;A表示具有1、2或3价的金属离子;和B表示具有3、4或5价的金属离子,条件是x在0.3≤x≤1的范围内。
根据本发明,在具有大厚度的块体陶瓷中可提供块体陶瓷,其含有具有假立方型的{110}面取向的BiFeO3,其适合畴工程陶瓷。
由以下参照附图对示例性实施方案的说明,本发明进一步的特征将变得清楚。
附图说明
图1A和1B是表示取向的烧结体和非取向的烧结体(实施例1和比较例3)的X射线衍射(XRD)的坐标图;
图2是表示根据本发明的实施例2的BiFeO3的陶瓷的取向的烧结体的XRD的坐标图,其在10T的磁场中取向;
图3A和3B是表示取向的烧结体和非取向的烧结体(比较例1和比较例8)的XRD的坐标图;
图4是0.7BiFeO3-0.3BaTiO3的煅烧粉末的SEM照片;
图5是(110)立方取向的压电陶瓷(0.7BiFeO3-0.3BaTiO3)的截面SEM照片;
图6是表示BiFeO3的极化方向和自旋方向的示意图;
图7A和7B是表示利用磁场的取向过程的示意图;和
图8是本发明的压电器件的实例和表示电极表面与本发明的烧结体的磁场方向之间的位置关系的图。
具体实施方式
以下对本发明的实施方案详细说明。
根据本发明的压电陶瓷涉及由下述通式(1)表示的钙钛矿型金属氧化物制成的陶瓷,并且具有假立方型的{110}面取向:
通式(1)
xBiFeO3-(1-x)ABO3
通式(1)中,A和B均表示一种或多种金属离子;A表示具有1、2或3价的金属离子;B表示具有3、4或5价的金属离子。
应指出的是,A或B由多个金属离子构成时,A是具有2的平均价数的金属离子的情况下,B为具有4的平均价数的金属离子;A是具有3的平均价数的金属离子的情况下,B为具有3的平均价数的金属离子;A为具有1的平均价数的金属离子的情况下,B为具有5的平均价数的金属离子。
其中,价数的平均是通过用多个金属离子的价数乘以各个金属离子的组分比例而得到的值。例如,以0.5∶0.5的比例将具有2的价数的金属离子和具有4的价数的金属离子组合在一起的情况下,价数的平均变为3。
作为A的金属离子的具体实例,在一种金属离子的情况下,如果将具有1的价数的金属离子定义为A1,则A1=Li、Na、K、Ag。同样地,如果将具有2的价数的金属离子定义为A2,则A2=Ba、Sr、Ca。同样地,如果将具有3的价数的金属离子定义为A3,则A3=Bi、La、Ce、Nd。在多个金属离子的价数的平均为1的情况下,建立起A1xA11-x(0<x<1)。同样地,在价数的平均为2的情况下,建立起A2xA21-x(0<x<1)和A11/2A31/2。在价数的平均为3的情况下,建立起A3xA31-x(0<x<1)。作为B的金属离子的具体实例,在一种金属离子的情况下,如果将具有3的价数的金属离子定义为B3,则B3=Mn、Sb、Al、Yb、In、Fe、Co、Sc、Y、Sn。同样地,如果将具有4的价数的金属离子定义为B4,则B4=Ti、Zr。同样地,如果将具有5的价数的金属离子定义为B5,则B5=Nb、Sb、Ta。多个金属离子的价数的平均为3的情况下,建立起B3xB31-x(0<x<1)和B21/2B41/2和B22/3B51/3和B23/4B61/4和B11/3B42/3和B11/2B51/2和B13/5B62/5。但是,B1是具有1的价数的金属离子,并且B1=Cu。B2是具有2的价数的金属离子,并且B2=Mg、Ni、Zn、Co、Sn、Fe、Cd、Cu、Cr。B6为具有6的价数的金属离子,并且B6=W、Te、Re。多个金属离子的价数的平均为4的情况下,建立起B4xB41-x(0<x<1)和B31/2B51/2和B32/3B61/3和B21/3B52/3和B21/2B61/2和 B11/4B53/4和B12/5B63/5。多个金属离子的价数的平均为5的情况下,建立起B5xB51-x(0<x<1)和B41/2B61/2和B31/3B62/3和B21/4B63/4和B11/5B64/5
通式(1)中,ABO3为钙钛矿型陶瓷,并且其实例包括BaTiO3、KNbO3、NaNbO3、LiNbO3、LiTaO3、AgNbO3、BiCrO3、BiMnO3、BiCoO3、BiNiO3、(Bi0.5Na0.5)TiO3、(Bi0.5K0.5)TiO3、Bi(Zn0.5Ti0.5)O3。其中,可溶解两种以上。更优选地,可例示BaTiO3、BiCoO3、(Bi0.5K0.5)TiO3和Bi(Zn0.5Ti0.5)O3,其可与BiFeO3形成变晶相界(MPB)。
符号x在0.3≤x≤1、优选0.5≤x≤0.9的范围内。
根据本发明的压电陶瓷具有假立方型的{110}面取向。
应指出的是,以下,对于晶系假定为假立方的情形的晶体(Miller)指数,添加立方。假立方表示比立方晶系稍微扭曲的晶胞。例如,具有假立方型的{hkl}面取向表示为(hkl)立方取向。
根据本发明的包括xBiFeO3-(1-x)ABO3的压电陶瓷具有如下特征:具有(110)立方取向。其中,具有(110)立方取向意味着采用Lotgering法的假立方型的{110}面的Lotgering因子F为10%-100%,优选为15%-100%,进一步优选为50%-100%。原因在于,如果Lotgering因子F低于10%,与非取向在特性上基本上不存在差异。
Lotgering因子F的计算方法使用由目标晶体表面衍射的X射线的峰强度,并且由下式1计算。
F=(ρ-ρ0)/(1-ρ0)(式1)
其中,ρ0使用非取向样品的X射线衍射强度(I0)计算,并且在(110)立方取向的情况下,ρ0计算为{110}立方面的衍射的合计与总衍射强度的合计之比,由下式2表示。
ρ0=∑I0{110}立方/∑I0{hkl}立方(式2)
符号ρ使用取向样品的X射线衍射强度(I)计算,并且在(110)立方取向的情况下,ρ0计算为{110}立方面的衍射的合计与总衍射强度的合计之比,如上述式2中那样,由下式3表示。
ρ=∑I{110}立方/∑I{hk l}立方(式3)
为了使陶瓷经历畴工程,需要极化方向和取向方向彼此不同。BiFeO3具有菱形晶体的晶系,并且极化方向为<111>立方方向。因此,如果可以得到包括具有(110)立方取向的xBiFeO3-(1-x)ABO3的压电陶瓷,由于极化方向和取向方向彼此不同,由此适合畴工程。
此外,本发明的压电陶瓷的厚度为50μm以上,优选为100μm以上。即,该陶瓷为块体陶瓷。
根据本发明的压电器件具有如下特征:包括上述陶瓷和经设置以夹持该陶瓷的电极对。
优选与假立方型的{110}取向面平行地设置电极。
此外,根据本发明的压电器件的制备方法包括:
得到包括陶瓷粉末的陶瓷浆料的浆料步骤,该陶瓷粉末由上述通式(1)表示的钙钛矿型金属氧化物制成;
在磁场中将该陶瓷浆料成形以得到取向的陶瓷压实体的取向步骤;
将该陶瓷压实体烧结以得到陶瓷烧结体的烧结步骤;和
形成电极对以夹持该陶瓷烧结体的电极形成步骤,其中该浆料步骤中的陶瓷粉末含有30摩尔%以上的溶解或混合的BiFeO3,并且该取向步骤中的磁场方向与该电极形成步骤中的电极的法线方向(normal direction)相同。
以下对根据本发明的压电器件的制备方法进行说明。
首先,在浆料步骤中,得到包括陶瓷粉末的陶瓷浆料,该陶瓷粉末由xBiFeO3-(1-x)ABO3表示的钙钛矿型金属氧化物制成。
浆料步骤是如下步骤,其中,为了使陶瓷粉末进行利用磁场的取向,将陶瓷粉末分散在溶剂中以形成浆料。为了促进利用磁场的取向,陶瓷粉末的平均颗粒直径为50nm-30μm,优选100nm-10μm。利用磁场的取向中,必要的是磁场产生的取向能量大于浆料溶液的Brown运动的热能。磁场产生的取向能量与单位颗粒的质量成比例,并且热能与单位颗粒的表面积成比例。因此,如果陶瓷粉末的颗粒直径小于50nm,与表面积成比例的Brown运动的热能变为主导,因此利用磁场的取向受到抑制,这是不希望的。另一方面,如果颗粒直径变得大于30μm,烧结体的晶粒直径尺寸变大,因此其机械强度降低,这是不希望的。
陶瓷粉末的形状优选为各向同性,例如,优选球状。如果陶瓷粉末具有各向异性,则使压实体的密度降低,由此难以烧结。结果,使烧结体的密度降低,这是不希望的。
优选通过烧结使浆料用分散材料耗散以不使其电特性降低,例如,优选聚碳酸铵盐。
关于浆料用溶剂,优选水或乙醇。
浆料的固体浓度优选为30wt%-90wt%。如果浆料的固体浓度大于90wt%,作为浆料的分散状态并不好,利用磁场的取向受到抑制,这是不希望的。另一方面,如果固体浓度小于30wt%,在成形步骤中不能得到足够的压实体密度,这是不希望的。
向浆料中,除了分散材料以外,还可添加粘结剂以提高压实体的强度。此外,向浆料中,可添加用于促进烧结体的烧结的烧结助剂,例如,可例示CuO等。
接下来,通过取向步骤,在磁场下将陶瓷浆料成形,以由此得到取向的陶瓷压实体。取向步骤是使浆料步骤中的浆料经历磁场以使之成形,以由此得到取向的压实体的步骤。
通常,难以使钙钛矿型压电陶瓷进行利用磁场的取向。原因在于,要进行利用磁场的取向,磁各向异性是必要的,但通常的钙钛矿型压电陶瓷具有极小的磁各向异性。即使可利用磁场使通常的钙钛矿型压电陶瓷取向,也不可能使极化方向和取向方向彼此不同以适合畴工程。这是因为,通常的钙钛矿型压电陶瓷中,极化方向与磁各向异性的方向相同,因此如果利用磁场使通常的钙钛矿型压电陶瓷取向,在极化方向上发生取向。
参照图6和图7A和7B对利用磁场的取向的机理进行说明。
图6是表示BiFeO3的极化方向和自旋方向的示意图。BiFeO3是同时具有铁电性和反铁磁性的多铁性材料。如图6中所示,BiFeO3的极化方向4是<111>立方方向。与其相反,电子自旋的方向是,如由BiFeO3 的Fe原子的自旋方向5所示,[110]立方方向。因此,尽管BiFeO3的极化方向为<111>立方方向,但磁各向异性的方向变为[110]立方方向。结果,磁场的施加产生(110)立方取向。如上所述,在不同于通常的钙钛矿型压电陶瓷的BiFeO3中,极化方向不同于利用磁场的取向的方向。
接下来,对取向步骤进行说明。
图7A和7B是表示将BiFeO3和钙钛矿型压电陶瓷溶解或混合的情形的利用磁场的取向过程的示意图。图7A和7B中,压实粉末6含有其中溶解的BiFeO3和钙钛矿型压电陶瓷,并且附图标记7表示浆料;8表示磁场;和9表示利用磁场取向的浆料。压实体10含有其中使BiFeO3溶解取向的陶瓷粉末,并且附图标记11表示BiFeO3的陶瓷粉末;12表示钙钛矿型压电陶瓷ABO3的陶瓷粉末;和13表示其中使混合的陶瓷粉末取向的压实体。
首先,对将BiFeO3溶解在钙钛矿型压电陶瓷ABO3中的情形的取向步骤进行说明。
本发明的发明人进行了深入研究,结果发现其中含有30摩尔%以上的BiFeO3,钙钛矿型压电陶瓷,难以利用磁场取向,可具有适合畴工程的(110)立方取向。
将这种情况的利用磁场的取向过程的步骤示于7A中。
图7A是对于其中将BiFeO3和钙钛矿型压电陶瓷溶解的陶瓷粉末的利用磁场的取向过程的示意图。图7A中,对BiFeO3和钙钛矿型压电陶瓷ABO3进行煅烧,并且将溶解的陶瓷粉末6形成为浆料7。如果将磁场8施加于浆料7,如附图标记9所示,由于磁各向异性而在浆料中发生取向。保持这种状态以进行成形,由此能够得到取向的压实体10。
现在,对这种情形的取向机理进行说明。与作为典型的钙钛矿型压电陶瓷的BaTiO3相比,BiFeO3的每单位的磁各向异性的量大大约100倍。因此,将BiFeO3溶解于钙钛矿型压电陶瓷的情况下,可使磁各向异性增大,由此使利用磁场的取向发生。但是,如果使BiFeO3的含量减少到小于30摩尔%,则使磁各向异性降低。结果,与由磁场产生的 取向能量相比,Brown运动的热能变为主导,因此使取向显著降低。
接下来,对将BiFeO3与钙钛矿型压电陶瓷ABO3混合的情形的取向步骤进行说明。图7B是表示BiFeO3和钙钛矿型压电陶瓷的陶瓷粉末的情形的利用磁场的取向过程的示意图。
利用磁场的取向过程中,如图7B中所示,将BiFeO311和钙钛矿型压电陶瓷ABO312混合以得到浆料。然后,与将BiFeO3和钙钛矿型压电陶瓷ABO3溶解的情形同样地,使利用磁场的取向发生,以由此得到取向的压实体13。
对这种情况的取向机理进行说明。在1200℃-1500℃的高温下将通常的钙钛矿型陶瓷烧结。与其相反,BiFeO3具有容易烧结性例如在约800℃的低温下烧结。这意味着BiFeO3的晶粒生长速率显著地高于通常的钙钛矿型陶瓷。因此,在将BiFeO3和通常的钙钛矿型陶瓷混合以使利用磁场的取向发生的情况下,如图7B的压实体13中那样,只有BiFeO3进行(110)立方取向。但是,烧结中,具有比通常的钙钛矿型压电陶瓷ABO3显著高的晶粒生长速率的BiFeO3的晶粒生长成为主导,由此可得到具有(110)立方取向的烧结体。但是,如果BiFeO3的含量变得小于30摩尔%,即使BiFeO3的晶粒生长速率较高,占多数的不具有(110)立方取向的钙钛矿型压电陶瓷的影响变得极大,由此使取向的程度降低。
此外,混合时钙钛矿型压电陶瓷粉末的平均颗粒直径优选为BiFeO3的80%以下。原因在于,如果钙钛矿型压电陶瓷粉末的平均颗粒直径大于BiFeO3粉末的80%,可抑制利用磁场的BiFeO3粉末的取向,导致取向程度的降低。
在上述机理下,如果含有30摩尔%以上的BiFeO3,可通过利用磁场的取向过程得到具有(110)立方取向的压电陶瓷。
取向步骤中,作为成形方法,可采用不抑制由磁场产生的陶瓷颗粒的旋转的方法。此外,作为适合的方法,可给出刮刀(doctor blade)法、浇铸(casting)法和电泳。作为用于浇铸的模具,可以使用石膏模具和多孔氧化铝模具。
随着取向步骤中的磁场的强度尽可能强,取向能量变得越高,因此优选0.5T以上。强度更优选为1T以上,进一步更优选为10T-12T。
接下来,进行烧结陶瓷压实体以得到陶瓷烧结体的烧结步骤。
烧结步骤是用于加热取向步骤中得到的压实体以将其烧结的步骤。取决于其组成,可最佳地选择烧结温度,并且其优选的范围为700℃-1500℃。优选地,烧结体的平均晶粒直径为50μm以下。如果平均晶粒直径大于50μm,使烧结体的机械强度降低。烧结体的相对密度为80%以上,优选85%以上,进一步更优选87%以上。原因在于,如果相对密度小于80%,使烧结体的比介电常数显著降低并且也使机械强度降低。
陶瓷烧结体是本发明的压电陶瓷。
接下来,对在夹持由陶瓷烧结体构成的压电陶瓷的同时形成电极对的电极形成步骤进行说明。
电极形成步骤是包括将烧结步骤中得到的烧结体抛光(polishing)和形成电极的步骤。抛光中,可只形成具有取向步骤中磁场的方向作为法线方向的表面。例如,优选通过采用back Laue法找出取向轴来进行抛光。因此,进行抛光并且形成使取向轴找到的表面能够使取向的程度提高。浇铸中,在与石膏模具的接触表面上磁场产生的陶瓷的取向受到抑制,导致低的取向程度。因此,以50μm以上、更优选100μm以上进行抛光。抛光后,通过溅射或者通过银糊的烧结来形成电极。作为电极材料,优选银、金、铂等。在电极和压电陶瓷之间,可设置由Ti、TiO2、Cr等制成的紧密接触层。
此外,优选取向步骤中的磁场的方向与电极形成步骤中的电极的法线方向相同。参照图8,对磁场的方向与电极的法线方向之间的位置关系进行说明。优选如图8中所示那样,在烧结体14的两侧形成的电极15的法线与磁场16的方向相同。
在以下的实施例中,作为实例,将BaTiO3用作钙钛矿型压电陶瓷ABO3
实施例1
在xBiFeO3-(1-x)BaTiO3(0≤x≤1)中,其中x=0.7的压电陶瓷的制备如下所述进行。
如下所述得到BiFeO3粉末。对氧化铋和三氧化二铁粉末进行称重以得到相同的摩尔量,然后混合。Bi具有高的蒸汽压,因此担心Bi的不足。结果,优选添加与上述摩尔比相比过量的Bi。接下来,在使用电炉的氧化铝坩埚内在大气环境下在500℃-700℃的温度下对该混合物进行煅烧5小时。然后,在研钵内将煅烧粉末磨碎后,在大气环境下在500℃-700℃的温度下再次进行煅烧5小时。
作为BaTiO3粉末,使用了具有100nm的平均颗粒直径的BT01(由Sakai Chemical制造)。对上述的BiFeO3粉末和BaTiO3粉末进行称重以得到x=0.7的摩尔比。然后,将纯水、分散材料(Dispersant 5020,由Sannopco Co.制造)和Zr珠粒装入罐中,然后混合2小时以上。混合后,进行真空脱气以得到浆料。该浆料具有60wt%的粉末的固体浓度,并且调节分散剂的浓度以致相对于该固体含量,其浓度变为2wt%。
对于取向步骤,使用了超导磁体(JMTD-10T180:由Japan Superconductor Technology制造)。由该超导磁体产生了10T的磁场。通过浇铸来进行该成形。对于浇铸,使用了石膏模具。作为石膏模具,使用了具有50mm×50mm的顶表面和30mm的高度的由石膏制成的长方体,其中在其顶表面垂直地设置直径24mm和深10mm的圆柱状孔。磁场中,将浆料浇铸到石膏模具的圆柱孔中,并且使石膏模具在磁场中静置直至将浆料干燥。使石膏模具静止以使石膏模具的顶表面与重力方向垂直。在与石膏模具的顶表面垂直的方向上施加磁场。如上所述,将浆料干燥以得到盘状压实体。
通过使用电炉在大气环境下在1030℃的温度下进行压实体的烧结5小时,以由此得到压电陶瓷的烧结体,其具有14mmΦ和1mm的厚度。其中,采用Archimedian法对得到的烧结体的密度进行评价。进而,优选地,例如,通过使用back Laue法确定{110}立方面,将得到的烧结体抛光。然后,在抛光的(110)立方取向的烧结体的抛光面上形 成电极时,使在压电材料的(110)立方取向方向上施加的电场矢量的分量增加,由此能够得到更令人满意的压电特性。如上所述抛光后,通过XRD进行烧结体的结构分析,并且计算{110}立方面的Lotgering因子F。
实施例2-5
在xBiFeO3-(1-x)BaTiO3(0≤x≤1)中,在表1中所示的烧结温度下如实施例1中那样进行烧结体的制备。
比较例1和2
在xBiFeO3-(1-x)BaTiO3(0≤x≤1)中,根据表1中所示的制备条件,如实施例1中那样得到烧结体。
比较例3-9
在xBiFeO3-(1-x)BaTiO3(0≤x≤1)中,如实施例1中那样但无取向处理,根据表1中所示的制备条件得到烧结体。
实施例6
在xBiFeO3-(1-x)BaTiO3(0≤x≤1)中,通过如下所述对BiFeO3和BaTiO3进行煅烧,然后溶解,然后进行取向步骤,从而进行其中x=0.7的压电陶瓷的制备。
对氧化铋和氧化铁粉末和BaTiO3进行称量以得到摩尔比x=0.7,然后混合。Bi具有高蒸汽压,因此担心Bi的不足。因此,优选添加与上述摩尔比相比过量的Bi。作为BaTiO3,使用由Sakai Chemical制造的BT01(平均颗粒直径100nm)。然后,如实施例1中那样,进行煅烧以得到煅烧粉末。图4表示该煅烧粉末的SEM照片。可以看到煅烧粉末的颗粒直径分布在300nm-6μm的范围内,并且均具有各向同性形状。如实施例1中那样将煅烧粉末分散于纯水中以得到浆料。使用该浆料并且如实施例1中那样进行取向步骤、烧结和抛光。以与实施例1中相同的方式确定{110}立方面的Lotgering因子F和密度。
实施例7-9
在xBiFeO3-(1-x)BaTiO3(0≤x≤1)中,以与实施例6中相同的方式在表3中所示的烧结温度下进行烧结体的制备。
比较例10和11
在xBiFeO3-(1-x)BaTiO3(0≤x≤1)中,根据表3中所示的制备条件,如实施例6中那样得到烧结体。
比较例12-17
在xBiFeO3-(1-x)BaTiO3(0≤x≤1)中,如实施例6中那样但无取向步骤,根据表3中所示的制备条件得到烧结体。
将实施例1中的取向的烧结体和比较例3中的非取向的烧结体的XRD结果示于图1A和1B中。图1A是实施例1的XRD,和图1B是比较例3的XRD。由这些XRD结果,确定实施例1中{110}立方面的Lotgering因子F。将Lotgering因子F和相对密度示于表2中。
将取向的烧结体的截面SEM照片示于图5中。观察到取向的烧结体的平均晶粒直径为6μm。
由实施例2-5中的XRD的结果并且由比较例4-7中的XRD的各结果确定实施例2-5中的{110}立方面的Lotgering因子F。将{110}立方面的这些Lotgering因子F和相对密度以及电场施加(40kV/cm)时的畸变示于表2中。
由比较例1和2中的XRD的结果并且由比较例8和9中的XRD的各结果确定比较例1和2中的{110}立方面的Lotgering因子F。将{110}立方面的这些Lotgering因子F和相对密度示于表2中。
图2表示实施例2中的XRD结果。从图2中发现,不仅包括(110)立方取向,而且包括(211)立方取向。
将比较例1和比较例8的XRD结果示于图3A和3B中。图3A是比较例1的XRD。图3B是比较例8的XRD。
在实施例1-5中的{110}面上,设置均具有100nm的厚度的金电极,以由此得到本发明的压电器件。极化后,将40kV/cm的电场施加于这些压电器件时评价畸变。将畸变的结果示于表2中。
比较例1-9中,设置100nm厚的金电极,由此得到压电器件。极化后,通过激光Doppler法在室温(25℃)下测定向这些压电器件施加40kV/cm电场时的畸变。将畸变的测定结果示于表2中。
以与实施例1中相同的方式得到根据实施例6-9的{110}立方面的Lotgering因子F、相对密度和畸变。将结果示于表4中。
以与比较例1中相同的方式得到根据比较例10-17的{110}立方面的Lotgering因子F、相对密度和畸变。将结果示于表4中。
表1
X 烧结温度(℃) 取向处理
实施例1 0.7 1030
实施例2 1 800
实施例3 0.3 1140
实施例4 0.9 970
实施例5 0.5 1085
比较例1 0.2 1170
比较例2 0.1 1200
比较例3 0.7 1030
比较例4 1 800
比较例5 0.3 1140
比较例6 0.9 970
比较例7 0.5 1085
比较例8 0.2 1170
比较例9 0.1 1200
表2
X F[%] 相对密度[%] 畸变[%]
实施例1 0.7 74 94 0.037
实施例2 1 73 85 0.022
实施例3 0.3 17 97 0.033
实施例4 0.9 67 87 0.037
实施例5 0.5 53 90 0.036
比较例1 0.2 -16 97 0.013
比较例2 0.1 0.4 95 0.011
比较例3 0.7 无取向 93 0.026
比较例4 1 无取向 86 0.018
比较例5 0.3 无取向 95 0.026
比较例6 0.9 无取向 85 0.025
比较例7 0.5 无取向 91 0.026
比较例8 0.2 无取向 92 0.014
比较例9 0.1 无取向 90 0.010
表3
X 烧结温度(℃) 取向处理
实施例6 0.7 1030
实施例7 0.3 1140
实施例8 0.9 970
实施例9 0.5 1085
比较例10 0.2 1170
比较例11 0.1 1200
比较例12 0.7 1030
比较例13 0.3 1140
比较例14 0.9 970
比较例15 0.5 1085
比较例16 0.2 1170
比较例17 0.1 1200
表4
X F[%] 相对密度[%] 畸变[%]
实施例6 0.7 96 95 0.041
实施例7 0.3 34 98 0.034
实施例8 0.9 76 89 0.039
实施例9 0.5 69 92 0.037
比较例10 0.2 -14 96 0.011
比较例11 0.1 0.3 96 0.011
比较例12 0.7 无取向 92 0.025
比较例13 0.3 无取向 96 0.027
比较例14 0.9 无取向 80 0.025
比较例15 0.5 无取向 91 0.025
比较例16 0.2 无取向 91 0.013
比较例17 0.1 无取向 90 0.010
如上所述,由表2观察到,{110}立方面的Lotgering因子F在0.3≤x≤1的范围内,并且实施例1-5中{110}立方面的Lotgering因子F超过10%,并且相对密度超过85%。由上述结果可以观察到,x的优选范围在0.3≤x≤1的范围内。
由表2可知,通过分别将实施例1-5与比较例3-7进行比较,观察到20%以上的畸变的增加。特别地,x=0.5-0.9时畸变的增加率为30%以上。因此,可以看到这样的效果:通过(110)立方取向使根据本发明的压电陶瓷的压电性质改善。比较例中得到的烧结体是不具有特定取向的多晶材料。
由表4可以看到,即使对BiFeO3和BaTiO3进行煅烧后进行取向步骤的情况下,如实施例1-5中那样,实施例6-9中{110}立方面的Lotgering因子F在0.3≤x≤1的范围内超过10%,并且相对密度超过85%。由上述的结果可以看到,x的优选范围在0.3≤x≤1的范围内。
由表4可知,通过分别将实施例6-9与比较例12-15进行比较,观察到20%以上的畸变的增加。特别地,x=0.5-0.9时畸变的增加率为30%以上。因此,可以看到存在如下效果:通过(110)立方取向使根据本发明的压电陶瓷的压电性改善。用于比较的烧结体是不具有特定取向的多晶材料。
由表2和表4,可以说更优选在对BiFeO3和BaTiO3进行煅烧后进 行取向过程,原因在于可获得较高的Lotgering因子F、较高的相对密度和较高的畸变。
在x=0.5以上的组成中,甚至在将磁场从10T降低到1T的情况下,也能够获得类似的(110)立方取向的压电陶瓷和压电器件。
实施例10
在xBiFeO3-(1-x)AgNbO3(0≤x≤1)中,如下进行其中x=0.8的压电陶瓷的制备。
以与实施例1中相同的方式,得到了BiFeO3的烧结粉末。
如下得到了AgNbO3的煅烧粉末。对氧化银(I)和五氧化铌进行称重以使银和铌变为相同的摩尔量,然后混合。接下来,在使用电炉的氧化铝坩埚内在大气环境下在900℃-1000℃的温度下对该混合物进行煅烧4小时。然后,在研钵内将煅烧粉末磨碎后,使用电炉在大气环境下在900℃-1000℃的温度下再次进行煅烧7小时。对上述的BiFeO3煅烧粉末和AgNbO3煅烧粉末进行称重以获得x=0.8的摩尔比,并且如实施例1中那样得到浆料。如实施例1中那样对该浆料进行取向步骤以得到压实体。如实施例1中那样将得到的压实体烧结,由此得到烧结体。烧结温度为1000℃。以与实施例1中相同的方式采用XRD进行烧结体的结构分析,并且观察到(110)立方取向。{110}立方面的Lotgering因子F为66%。
实施例11
xBiFeO3-(1-x)BiCoO3(0≤x≤1)中,如下进行其中x=0.9的压电陶瓷的制备。
对氧化铋、氧化铁粉末和四氧化三钴进行称重以得到x=0.9的摩尔比,并且混合。Bi具有高蒸汽压,因此担心Bi的不足。结果,优选添加与上述摩尔比相比过量的Bi。然后,如实施例1中那样进行煅烧,以由此得到煅烧粉末。烧结温度为600℃-800℃。如实施例1中那样将煅烧粉末分散在纯水中,以由此得到浆料。如实施例1中那样使用该浆料进行取向步骤,并且烧结。烧结温度为850℃。以与实施例1中相同的方式采用XRD进行烧结体的结构分析,并且观察到(110) 立方取向。{110}立方面的Lotgering因子F为71%。
由实施例11和12,作为通式(1)所示的钙钛矿型压电陶瓷ABO3,甚至在使用BaTiO3以外的上述材料的情况下,同样地,也能够制备(110)立方压电陶瓷。
作为通式(1)所示的钙钛矿型压电陶瓷ABO3,甚至在使用BaTiO3以外的上述材料的情况下,同样地,也能够制备(110)立方取向的压电陶瓷。
由于本发明的压电陶瓷含有具有假立方型的{110}面取向的BiFeO3,其适合畴工程,因此该压电陶瓷可应用于压电器件和压电传感器。
尽管已参照示例性实施方案对本发明进行了说明,但应理解本发明并不限于所公开的示例性实施方案。下述权利要求的范围应给予最宽泛的解释以包括所有这样的变形以及等同的结构和功能。
本申请要求于2009年3月31日提交的日本专利申请No.2009-087240的权益,由此将其全文并入本文作为参考。

Claims (5)

1.具有假立方型的{110}面取向的块体陶瓷,其包括由下述通式(1)表示的钙钛矿型金属氧化物:
通式(1)
xBiFeO3-(1-x)ABO3
其中A和B均表示一种或多种金属离子;A表示具有1、2或3价的金属离子;和B表示具有3、4或5价的金属离子,条件是x在0.3≤x≤1的范围内,
其中该陶瓷的{110}取向部具有50μm以上的厚度,
其中该陶瓷是在磁场中通过取向步骤而制备的。
2.根据权利要求1的块体陶瓷,其中假立方型的{110}面的Lotgering因子F为10%-100%。
3.压电器件,其包括根据权利要求1的块体陶瓷和经设置以夹持该陶瓷的电极对。
4.根据权利要求3的压电器件,其中与假立方型的{110}取向面平行地设置该电极。
5.压电器件的制备方法,包括:
得到包括陶瓷粉末的陶瓷浆料的浆料步骤,该陶瓷粉末包括由下述通式(1)表示的钙钛矿型金属氧化物;
在磁场中将该陶瓷浆料成形以得到取向的陶瓷压实体的取向步骤;
将该陶瓷压实体烧结以得到陶瓷烧结体的烧结步骤;和
形成电极对以夹持该陶瓷烧结体的电极形成步骤,
其中浆料步骤中的陶瓷粉末含有30摩尔%以上的BiFeO3
通式(1)
xBiFeO3-(1-x)ABO3
其中A和B均表示一种或多种金属离子;A表示具有1、2或3价的金属离子;和B表示具有3、4或5价的金属离子,条件是x在0.3≤x≤1的范围内。
CN201080015258.9A 2009-03-31 2010-03-30 陶瓷、压电器件及其制备方法 Active CN102378744B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009087240 2009-03-31
JP2009-087240 2009-03-31
PCT/JP2010/056125 WO2010114148A1 (en) 2009-03-31 2010-03-30 Ceramic, piezoelectric device, and production method thereof

Publications (2)

Publication Number Publication Date
CN102378744A CN102378744A (zh) 2012-03-14
CN102378744B true CN102378744B (zh) 2014-08-06

Family

ID=42227807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080015258.9A Active CN102378744B (zh) 2009-03-31 2010-03-30 陶瓷、压电器件及其制备方法

Country Status (6)

Country Link
US (1) US8547001B2 (zh)
EP (1) EP2414303B1 (zh)
JP (1) JP5557572B2 (zh)
KR (1) KR101318516B1 (zh)
CN (1) CN102378744B (zh)
WO (1) WO2010114148A1 (zh)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549790B (zh) 2009-09-30 2015-07-22 佳能株式会社 压电材料、压电器件、排液头和超声马达
JP5854184B2 (ja) * 2010-03-02 2016-02-09 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波センサー及び赤外センサー
JP5854183B2 (ja) 2010-03-02 2016-02-09 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波センサー及び赤外センサー
JP5839157B2 (ja) * 2010-03-02 2016-01-06 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波センサー及び赤外センサー
JP5716897B2 (ja) * 2010-03-02 2015-05-13 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波センサー及び赤外センサー
JP5754619B2 (ja) * 2010-03-02 2015-07-29 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波センサー及び赤外センサー
JP5885931B2 (ja) 2010-03-15 2016-03-16 キヤノン株式会社 ビスマス鉄酸化物粉体、その製造方法、誘電体セラミックス、圧電素子、液体吐出ヘッドおよび超音波モータ
JP5676910B2 (ja) 2010-04-27 2015-02-25 キヤノン株式会社 セラミクスの製造方法および圧電材料
GB201012637D0 (en) * 2010-07-28 2010-09-15 Univ Leeds Ceramic
JP5740951B2 (ja) * 2010-12-09 2015-07-01 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、赤外線センサー及び超音波センサー
CN102529373B (zh) 2010-12-10 2015-06-03 精工爱普生株式会社 液体喷射头、液体喷射装置、压电元件以及压电陶瓷
JP5864168B2 (ja) 2010-12-28 2016-02-17 キヤノン株式会社 圧電材料、圧電素子、液体吐出ヘッド、超音波モータおよび塵埃除去装置
JP5751407B2 (ja) * 2011-01-19 2015-07-22 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波センサー及び赤外線センサー
JP5773127B2 (ja) * 2011-01-24 2015-09-02 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波デバイス及びirセンサー
JP5765525B2 (ja) * 2011-02-10 2015-08-19 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波デバイス及びirセンサー
JP5825466B2 (ja) * 2011-02-24 2015-12-02 セイコーエプソン株式会社 液体噴射ヘッド及び液体噴射装置並びに圧電素子
CN102185098A (zh) * 2011-03-21 2011-09-14 武汉理工大学 一种择优取向型铌酸盐无铅压电厚膜材料及其制备方法
JP6016333B2 (ja) 2011-05-27 2016-10-26 キヤノン株式会社 ニオブ酸ナトリウム粉末、ニオブ酸ナトリウム粉末の製造方法、板状粒子、板状粒子の製造方法、配向セラミックスの製造方法
CN102953116B (zh) * 2011-08-30 2015-02-04 中国科学院理化技术研究所 一种厘米级纯相BiFeO3单晶的制备方法
JP6063672B2 (ja) 2011-09-06 2017-01-18 キヤノン株式会社 圧電セラミックス、圧電セラミックスの製造方法、圧電素子、液体吐出ヘッド、液体吐出装置、超音波モータ、光学機器、振動装置、塵埃除去装置、撮像装置、圧電音響部品、および電子機器
JP5838417B2 (ja) * 2011-10-14 2016-01-06 株式会社ユーテック ポーリング処理方法、磁場ポーリング装置及び圧電体膜
JP6094168B2 (ja) * 2012-01-31 2017-03-15 Tdk株式会社 圧電組成物および圧電素子
CN102584194B (zh) * 2012-02-14 2013-12-25 桂林电子科技大学 一种可在高温条件下使用的钙钛矿型无铅压电陶瓷及其制备方法
JP6057049B2 (ja) * 2012-03-22 2017-01-11 セイコーエプソン株式会社 圧電素子、液体噴射ヘッド、液体噴射装置、超音波デバイス及びセンサー
JP2013207002A (ja) * 2012-03-27 2013-10-07 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置並びに圧電素子
US9240542B2 (en) * 2012-04-24 2016-01-19 Canon Kabushiki Kiasha Piezoelectric ceramic, piezoelectric element, ultrasonic motor, and dust removing device
JP2014012620A (ja) * 2012-07-05 2014-01-23 Murata Mfg Co Ltd 配向性セラミックの製造方法、及び配向性セラミック、並びにセラミック電子部品
JP6054672B2 (ja) * 2012-08-03 2016-12-27 トヨタ自動車株式会社 電極体及びその製造方法
EP2749550B1 (en) * 2012-12-28 2017-05-17 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic apparatus
WO2014116244A1 (en) * 2013-01-28 2014-07-31 Hewlett-Packard Development Company, L.P. Lead-free piezoelectric material
TWI518048B (zh) * 2013-01-29 2016-01-21 佳能股份有限公司 壓電材料,壓電裝置,與電子設備
JP6349738B2 (ja) * 2013-03-29 2018-07-04 Tdk株式会社 圧電組成物および圧電素子
EP2824091B1 (en) 2013-07-12 2020-02-19 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic equipment
JP6362087B2 (ja) 2013-07-12 2018-07-25 キヤノン株式会社 圧電材料、圧電素子、および電子機器
JP6381294B2 (ja) 2013-07-12 2018-08-29 キヤノン株式会社 圧電材料、圧電素子、および電子機器
US10593862B2 (en) 2013-12-18 2020-03-17 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic apparatus
TWI601581B (zh) 2014-05-30 2017-10-11 佳能股份有限公司 壓電材料、壓電元件、壓電元件製造方法和電子設備
TWI550923B (zh) * 2014-05-30 2016-09-21 佳能股份有限公司 壓電材料、壓電元件、壓電元件的製造方法和電子器件
EP2953177B1 (en) 2014-05-30 2017-01-25 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, and electronic device
JP6511871B2 (ja) * 2015-03-05 2019-05-15 コニカミノルタ株式会社 圧電組成物、圧電素子およびその製造方法ならびに超音波探触子
US9893268B2 (en) 2015-11-27 2018-02-13 Canon Kabushiki Kaisha Piezoelectric element, piezoelectric actuator, and electronic apparatus using the same
US9887347B2 (en) 2015-11-27 2018-02-06 Canon Kabushiki Kaisha Piezoelectric element, piezoelectric actuator and electronic instrument using the same
US9917245B2 (en) 2015-11-27 2018-03-13 Canon Kabushiki Kaisha Piezoelectric element, method of manufacturing piezoelectric element, piezoelectric actuator, and electronic apparatus
US10424722B2 (en) 2015-11-27 2019-09-24 Canon Kabushiki Kaisha Piezoelectric element, piezoelectric actuator, and electronic apparatus
US10727395B2 (en) 2016-06-28 2020-07-28 Canon Kabushiki Kaisha Piezoeletric material, piezoelectric element, liquid discharge head, liquid discharge apparatus, vibration wave motor, optical instrument, vibration apparatus, dust removing apparatus, imaging apparatus and electronic device
JP6806538B2 (ja) 2016-11-17 2021-01-06 日本化学工業株式会社 ビスマス鉄酸化物の製造方法
US10868232B2 (en) 2017-02-14 2020-12-15 Canon Kabushiki Kaisha Piezoelectric material, manufacturing method for piezoelectric material, piezoelectric element, vibration wave motor, optical equipment, and electronic device
JP6919236B2 (ja) * 2017-03-09 2021-08-18 Tdk株式会社 圧電組成物及び圧電素子
JP6919237B2 (ja) * 2017-03-09 2021-08-18 Tdk株式会社 圧電組成物及び圧電素子
GB2564634B (en) * 2017-05-12 2021-08-25 Xaar Technology Ltd A piezoelectric solid solution ceramic material
CN109293353B (zh) * 2018-09-03 2021-05-25 中国科学院上海硅酸盐研究所 一种高储能密度和高储能效率的无铅BiFeO3基铁电陶瓷材料及其制备方法
JP7194547B2 (ja) * 2018-10-01 2022-12-22 Dowaエレクトロニクス株式会社 複合酸化物粉末
JP7167700B2 (ja) * 2018-12-21 2022-11-09 Tdk株式会社 圧電組成物及び圧電素子
KR102148944B1 (ko) * 2019-05-03 2020-08-28 울산과학기술원 상온 다강성 물질, 그의 제조방법 및 그를 포함하는 전자장치
KR102242179B1 (ko) 2020-01-13 2021-04-20 전형민 Qr코드가 표시된 위조방지용 금박인쇄물 제조방법 및 이의 방법으로 제조된 금박인쇄물
KR102380196B1 (ko) * 2020-03-11 2022-03-30 창원대학교 산학협력단 우수한 물성을 가지는 비스무스 페라이트-티탄산 바륨계 친환경 무연 압전 세라믹스 및 그 제조방법
CN111362690A (zh) * 2020-03-17 2020-07-03 东北大学秦皇岛分校 一种铁酸铋-钛酸钡复合压电陶瓷的制备方法
KR102621718B1 (ko) * 2021-02-19 2024-01-08 창원대학교 산학협력단 압전 및 강유전 특성이 향상된 무연 압전 세라믹스 및 그 제조방법

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215008A (ja) * 1997-01-30 1998-08-11 Seiko Epson Corp 圧電体セラミックス薄膜デバイス
JP3975518B2 (ja) 1997-08-21 2007-09-12 株式会社豊田中央研究所 圧電セラミックス
JP4688271B2 (ja) * 2000-10-10 2011-05-25 京セラ株式会社 ビスマス層状化合物焼結体の製造方法
JP4477830B2 (ja) * 2002-03-25 2010-06-09 太陽誘電株式会社 圧電セラミック部品の製造方法及び圧電セラミック部品
EP1560279B1 (en) * 2004-01-27 2007-08-22 Matsushita Electric Industrial Co., Ltd. Piezoelectric element and method for manufacturing the same, and ink jet head and ink jet recording apparatus using the piezoelectric element
GB0421120D0 (en) * 2004-09-22 2004-10-27 Goodrich Control Sys Ltd Piezoelectric materials
US7477004B2 (en) * 2004-09-29 2009-01-13 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive article, and piezoelectric/electrostrictive film type element
JP5182087B2 (ja) * 2006-03-29 2013-04-10 日立金属株式会社 コイル部品およびその製造方法
JP5035504B2 (ja) * 2006-04-12 2012-09-26 セイコーエプソン株式会社 インクジェット式記録ヘッドおよびインクジェットプリンタ
JP4753028B2 (ja) * 2006-04-12 2011-08-17 セイコーエプソン株式会社 インクジェット式記録ヘッドおよびインクジェットプリンタ
JP2007287745A (ja) * 2006-04-12 2007-11-01 Seiko Epson Corp 圧電材料および圧電素子
JP5008925B2 (ja) * 2006-08-10 2012-08-22 株式会社村田製作所 配向性セラミックスの製造方法
US7525239B2 (en) 2006-09-15 2009-04-28 Canon Kabushiki Kaisha Piezoelectric element, and liquid jet head and ultrasonic motor using the piezoelectric element
JP5166048B2 (ja) 2008-01-21 2013-03-21 日本碍子株式会社 結晶配向セラミックス
EP2128111B1 (en) * 2007-02-26 2012-08-01 NGK Insulators, Ltd. Crystal aligned ceramic
US8158255B2 (en) 2007-02-26 2012-04-17 Ngk Insulators, Ltd. Plate-like polycrystalline particle, method for producing plate-like polycrystalline particles, and method for producing crystallographically-oriented ceramic
US20080248277A1 (en) 2007-02-26 2008-10-09 Ngk Insulators, Ltd. Ceramic sheet, method for producing the same, and method for producing crystallographically-oriented ceramic
JP4726082B2 (ja) * 2007-02-27 2011-07-20 国立大学法人長岡技術科学大学 結晶配向セラミックスの製造方法
US8211328B2 (en) 2007-12-27 2012-07-03 Ngk Insulators, Ltd. Crystallographically-oriented ceramic
JP2010021512A (ja) 2008-01-30 2010-01-28 Ngk Insulators Ltd 圧電/電歪膜型素子及びその製造方法
JP5475272B2 (ja) 2008-03-21 2014-04-16 日本碍子株式会社 圧電/電歪膜型素子
JP5208696B2 (ja) 2008-03-21 2013-06-12 日本碍子株式会社 板状多結晶粒子
JP5313792B2 (ja) 2008-07-17 2013-10-09 富士フイルム株式会社 ペロブスカイト型酸化物、酸化物組成物、酸化物体、圧電素子、及び液体吐出装置
JP5354538B2 (ja) 2008-07-30 2013-11-27 キヤノン株式会社 金属酸化物および圧電材料
US8216858B2 (en) 2009-02-18 2012-07-10 Canon Kabushiki Kaisha Ferroelectric material, method of producing ferroelectric material, and ferroelectric device
JP5885931B2 (ja) 2010-03-15 2016-03-16 キヤノン株式会社 ビスマス鉄酸化物粉体、その製造方法、誘電体セラミックス、圧電素子、液体吐出ヘッドおよび超音波モータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2007-287745A 2007.11.01

Also Published As

Publication number Publication date
JP5557572B2 (ja) 2014-07-23
EP2414303A1 (en) 2012-02-08
US8547001B2 (en) 2013-10-01
KR101318516B1 (ko) 2013-10-16
JP2010254560A (ja) 2010-11-11
WO2010114148A1 (en) 2010-10-07
KR20120002594A (ko) 2012-01-06
EP2414303B1 (en) 2016-03-30
CN102378744A (zh) 2012-03-14
US20110298336A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
CN102378744B (zh) 陶瓷、压电器件及其制备方法
Zuo et al. Phase structures and electrical properties of new lead-free (Na0. 5K0. 5) NbO3–(Bi0. 5Na0. 5) TiO3 ceramics
Saito et al. Synthesis of polycrystalline platelike KNbO3 particles by the topochemical micro-crystal conversion method and fabrication of grain-oriented (K0. 5Na0. 5) NbO3 ceramics
Hu et al. Fabrication of [1 0 0]-oriented bismuth sodium titanate ceramics with small grain size and high density for piezoelectric materials
US20090121374A1 (en) Method of manufacturing crystal oriented ceramics
Matsuoka et al. KNN–NTK composite lead-free piezoelectric ceramic
Singh et al. Structural and magnetic studies on (x) PbTiO3–(1− x) SrFe12O19 composite multiferroics
Kobi et al. Structural (in) stability and spontaneous cracking of Li-La-zirconate cubic garnet upon exposure to ambient atmosphere
Gao et al. Fabrication, dielectric, and thermoelectric properties of textured SrTiO3 ceramics prepared by RTGG method
JP3379387B2 (ja) 結晶配向セラミックス及びその製造方法
Xie et al. Comprehensive investigation of structural and electrical properties of (Bi, Na) CoZrO3-doped KNN ceramics
JP4726082B2 (ja) 結晶配向セラミックスの製造方法
Hussain et al. Sodium excess Ta‐Modified (K0. 5Na0. 5) NbO3 ceramics prepared by reactive template grain growth method
Li et al. The piezoelectric and dielectric properties of sodium–potassium niobate ceramics with new multiphase boundary
Fernández et al. In situ sol-gel co-synthesis at as low hydrolysis rate and microwave sintering of PZT/Fe2CoO4 magnetoelectric composite ceramics
Liu et al. Cu-modified Pb (Mg1/3Nb2/3) O3-PbZrO3-PbTiO3 textured ceramics with enhanced electromechanical properties and improved thermal stability
Fujii et al. Ferroelectric and piezoelectric properties of (Bi1/2Na1/2) TiO3–BiFeO3 ceramics
Park et al. Buffered template strategy for improving texture quality and piezoelectric properties of heterogeneous templated grain growth (K, Na) NbO3-based ceramics through interface engineering
Cha et al. Texturing behaviours of (K0. 47Na0. 51Li0. 02)(Nb0. 8Ta0. 2) O3 piezoelectric ceramics produced using NaNb1-xTaxO3 templates
Ganegoda et al. X-ray powder diffraction refinement of PbTi (1− x) FexO (3− δ) solid solution series
KR101635988B1 (ko) 복합 비스무스계 무연 압전 세라믹스 및 이를 포함하는 액츄에이터
CN111170736A (zh) 一种铅基钙钛矿结构高温压电陶瓷及其制备方法
JP2016172686A (ja) 直方体状の単結晶の製造方法および直方体状の単結晶、セラミックス、圧電素子、電子機器
JP5233778B2 (ja) 異方形状粉末及び結晶配向セラミックスの製造方法
Saito et al. Synthesis of polycrystalline platelike NaNbO 3 particles by the topochemical micro-crystal conversion from K 4 Nb 6 O 17 and fabrication of grain-oriented (K 0.5 Na 0.5) NbO 3 ceramics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant