CN111170736B - 一种铅基钙钛矿结构高温压电陶瓷及其制备方法 - Google Patents

一种铅基钙钛矿结构高温压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN111170736B
CN111170736B CN202010119516.3A CN202010119516A CN111170736B CN 111170736 B CN111170736 B CN 111170736B CN 202010119516 A CN202010119516 A CN 202010119516A CN 111170736 B CN111170736 B CN 111170736B
Authority
CN
China
Prior art keywords
temperature
ceramic
lead
perovskite structure
piezoelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010119516.3A
Other languages
English (en)
Other versions
CN111170736A (zh
Inventor
董显林
董亚珠
周志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202010119516.3A priority Critical patent/CN111170736B/zh
Publication of CN111170736A publication Critical patent/CN111170736A/zh
Application granted granted Critical
Publication of CN111170736B publication Critical patent/CN111170736B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

本发明涉及一种铅基钙钛矿结构高温压电陶瓷及其制备方法,所述铅基钙钛矿结构高温压电陶瓷的化学组成为(1‑x)[0.36BiScO3‑0.64PbTiO3]‑xBi(Sn1/3Nb2/3)O3,其中0<x≤0.03。

Description

一种铅基钙钛矿结构高温压电陶瓷及其制备方法
技术领域
本发明属于压电陶瓷材料的制备领域,涉及一种铅基钙钛矿结构高温压电陶瓷及其制备方法。
背景技术
压电材料作为一类能使电能和机械能相互转换的功能材料,广泛应用于电子通讯、医疗设备、航空航天等领域。压电材料分为压电单晶、压电陶瓷、压电高分子以及压电复合材料等,但是压电陶瓷因其优异的压电性能,丰富的组分可调性及简单的制备工艺,占据了大部分的市场份额,在很多器件中都有着无法替代的作用,拥有着非常广阔的前景。
如今工业和科学技术的发展,在原子能、能源、航空航天、汽车等领域,都需要在高温恶劣环境中工作的高精度驱动器、探测换能器等压电器件,故而使用温度在300℃以下的锆钛酸铅陶瓷已经不能满足高温使用要求。居里温度高于锆钛酸铅100℃的BiScO3-PbTiO3高温压电陶瓷成为了使用温度在200-400℃最具有竞争力的材料。
本领域主要通过制备工艺、离子取代、固溶新元等手段来降低原材料的成本和调控BS-PT高温压电陶瓷的性能。利用两步烧结法制备出来纳米级的BiScO3-PbTiO3陶瓷,压电系数提高到520pC/N(J.Am.Ceram.Soc.91,2008:121-126.),但是改进制备工艺的重复性很差,成本较高;利用Nb(J Am Ceram Soc.2007;90(2):477-482.)、Fe(ApplPhys Lett.2005;87(24):242901.)、Co(ApplPhys Lett.2008;92(14):142905.)等取代Sc,居里温度保持为400℃以上,压电系数却降至180~300pC/N;在BiScO3-PbTiO3中固溶Pb(Cd1/3Nb2/3)O3(J.Appl.Phys.2013;114(2):027014.)、Pb(Zn1/3Nb2/3)O3(J.Appl.Phys.2013;113(14):144102.)、Pb(Nb1/3Mn2/3)O3(J.Eur.Ceram.Soc.2019;39(7):2348-2353.)等压电系数都是大于300pC/N,居里温度降至130~317℃;中国专利CN103936412A公开了一种BiScO3-xPbTiO3-0.05Pb(Sn1/3Nb2/3)O3压电陶瓷,同时具有较高的居里温度(400~420℃)和压电系数(370~560pC/N),但室温应变为0.10~0.25%,剩余极化强度为30~42μC/cm2(Adv.Funct.Mater.2019,29,1807920)。因此固溶新元成为了提高高温压电陶瓷材料的综合压电性能和居里温度的重要研究手段。
发明内容
本发明针对现有压电陶瓷材料居里温度和综合压电性能无法同时满足特定指标的情况,提供一种具有高居里温度、压电系数较高、剩余极化强度大、应变大及温度稳定性优异的铅基钙钛矿结构高温压电陶瓷材料。
第一方面,本发明提供一种铅基钙钛矿结构高温压电陶瓷,所述铅基钙钛矿结构高温压电陶瓷的化学组成为(1-x)[0.36BiScO3-0.64PbTiO3]-xBi(Sn1/3Nb2/3)O3,其中0<x≤0.03。
本发明采用锡、铌复合离子组合取代钙钛矿结构中的氧八面体中的B位的钛离子和钪离子,铋取代A位铅离子且补偿铋离子的挥发,从而调控准同型相界,提高压电性能。另外,本发明还采用Bi(Sn1/3Nb2/3)O3第三端元的固溶来可控调控微结构,在有效提高铅基钙钛矿结构压电陶瓷压电性的同时,协同优化其铁电性和增大应变,为铅基钙钛矿结构压电陶瓷在高温压电传感器中的应用提供了新思路。
其中,Bi(Sn1/3Nb2/3)O3第三端元的固溶量x(Bi(Sn1/3Nb2/3)O3的摩尔百分比)为0.03以下,不仅可以通过调整锡、铌的固溶度以及其取代量实现可控调控陶瓷结构和性能,而且满足高温压电传感器对陶瓷材料的要求——高压电系数、高居里温度和较优的铁电性。若x的取值大于0.03,则陶瓷材料的性能大幅度下降,与本发明提高陶瓷性能的目的背道而驰。
较佳地,所述铅基钙钛矿结构高温压电陶瓷在室温下的压电系数为380~500pC/N,居里温度为300~500℃,应变为0.2~0.4%,剩余极化强度为40~50μC/cm2
第二方面,本发明还提供上述任一项所述的铅基钙钛矿结构高温压电陶瓷的制备方法,所述制备方法包括:根据铅基钙钛矿结构高温压电陶瓷的化学组成(1-x)[0.36BiScO3-0.64PbTiO3]-xBi(Sn1/3Nb2/3)O3,以Bi2O3,Sc2O3,PbO,TiO2,SnO2,Nb2O5为原料,按照化学计量比进行称量后混料,在600~900℃保温合成2~4小时,获得陶瓷粉体以及将所述陶瓷粉体在1000~1200℃保温烧结1~3小时得到所述铅基钙钛矿结构高温压电陶瓷。
本发明的制备方法采用传统的固相反应工艺制备出锡、铌复合金属离子组合改性的铅基钙钛矿压电陶瓷。
较佳地,所述混料方式为湿法球磨混合,其中,原料:球磨介质:水的质量比=1:(1.2~1.8):(0.5~0.9),混合2~6小时,优选地所述球磨介质为玛瑙球。
较佳地,所述陶瓷粉体的粒径为1~2μm。
较佳地,所述制备方法还包括:在所述烧结之前向所述陶瓷粉体中加入粘结剂造粒,压制成型,然后排塑,得到陶瓷坯体;并对所述陶瓷坯体进行所述烧结。
所述粘结剂的加入量为陶瓷粉体重量的4~8wt.%;优选地,所述粘结剂为聚乙烯醇。
较佳地,所述排塑条件为以不高于2℃/min的升温速率升温至600~800℃,保温3小时以下。
较佳地,所述制备方法还包括:对所述铅基钙钛矿结构高温压电陶瓷进行印银,烘干,烧银处理,然后施加电极进行极化;其中所述烧银条件为700~800℃,保温60分钟以下;优选地,所述极化条件为在4~6kV/mm于100~140℃极化15~30分钟。
较佳地,所述陶瓷粉体在加入粘结剂造粒前,采用湿法球磨进行细磨而后烘干,其中,陶瓷粉体:球磨介质:水的质量比=1:(1.2~1.8):(0.5~0.9),细磨4~8小时,优选地所述球磨介质为玛瑙球。
附图说明
图1中的(A)为本发明实施方式中压电陶瓷材料(x=0,0.01,0.02,0.03)的X射线衍射图,其中图1中的右图(B)为(A)的局部放大图;
图2中的(A)、(B)、(C)、(D)分别为本发明实施方式中压电陶瓷材料(x=0,0.01,0.02,0.03)的扫描电镜图,图2中的插图(a)、(b)、(c)、(d)分别为(A)、(B)、(C)、(D)的局部断面形貌图;
图3为本发明实施方式中压电陶瓷材料(x=0,0.01,0.02,0.03)的压电系数随温度变化的曲线图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。以下各百分含量如无特别说明均指质量百分含量。
本发明针对现有压电陶瓷材料居里温度和综合压电性能无法同时满足高温压电传感器对特定指标要求,采用本发明提出的新方法,通过固溶Bi(Sn1/3Nb2/3)O3第三端元来调控准同型相界,在保证较高居里温度的同时,有效提高铅基钙钛矿结构压电陶瓷压电性,协同优化其铁电性、应变及温度稳定性,为铅基钙钛矿结构压电陶瓷在高温压电传感器中的应用提供了新思路。具体地,本发明铅基钙钛矿高温压电陶瓷的组成为(1-x)[0.36BiScO3-0.64PbTiO3]-xBi(Sn1/3Nb2/3)O3。其中,0<x≤0.03。
上述铅基钙钛矿高温压电陶瓷中,采用锡、铌复合离子组合取代钙钛矿结构中的氧八面体中的B位的钛离子和钪离子。相对BS-PT来说,本发明中的添加物是Sn4+、Nb5+复合金属离子与Bi3+组合形成的Bi(Sn1/3Nb2/3)O3三元化合物,该三元化合物在固溶之后形成了BS-PT基钙钛矿结构的陶瓷体系。作为溶质的锡、铌离子半径(69、64pm)与作为溶剂的钙钛矿结构B位的钛、钪离子(60.5、74.5pm)的半径相差在15%以内,故属于取代式固溶。又,本发明中是Bi3+取代Pb2+属于软性掺杂,产生了Pb2+空位,促进了畴壁的运动,陶瓷样品容易单畴化;而中国专利CN103936412A是Pb2+取代Bi3+属于硬性掺杂,产生氧空位,钉扎畴壁的运动,陶瓷样品很难单畴化。
另外,上述高温压电陶瓷中铋取代A位铅离子且补偿铋离子的挥发。本发明固溶的是富Bi相三元化合物,它相对Pb基化合物来说,具有减少Pb的用量、降低Pb污染、促进液相烧结等优势,而且本发明中铌锡酸铋为因变量(0<x≤0.03),因而本发明能够准确地确定锡、铌的固溶度以及其取代量对陶瓷结构和性能的影响。
Pb2+和Bi3+均存在6s2孤对电子,它们之间的排斥力会在不同程度上会影响其他成键电子的空间分布,又,偶极子的存在会使钙钛矿结构产生不同程度的非对称结构变化,导致了Pb基和Bi基的氧化物对称性发生不同程度的畸变,进而导致固溶之后陶瓷结构的变化。另外,Bi3+半径
Figure BDA0002392494050000041
小于Pb2+半径
Figure BDA0002392494050000042
而且一般来说Bi基化合物的容忍因子t小于1,导致Bi基化合物的对称性低于Pb基化合物。再,结合本发明和中国专利CN103936412A的实验结果,可明确指出,本发明中的铌锡酸铋固溶增强了三方相对称性,而中国专利CN103936412A中的铌锡酸铅固溶增强了四方相对称性,两者相结构的不同变化对陶瓷性能的影响见附图。另外,本发明固溶的铌锡酸铋因其A位Bi(6s,6p)和O(2p)轨道的杂化作用强于Pb(6s,6p)和O(2p)轨道的杂化作用,增强了A-O的键能,从而优化了铁电性。又,三方相相对与四方相来说,在极化过程中更容易产生形变及非180°畴的翻转,故而本发明有效地提高了陶瓷的应变。
本发明采用上述组成并调控其准同型相界,进而提高了高温压电陶瓷的压电系数并且保证了较高的居里温度(300~500℃),满足了高温压电期间对高温压电陶瓷材料的要求,为高温压电陶瓷材料再高温领域的应用起到了强有力的推进作用。一些示例中,所述高温压电陶瓷的压电系数≥450pC/N。另外,本发明中调控准同型相界的方法简单易行,更容易分析第三元对BSPT的影响。
室温下所述压电陶瓷的压电系数为380-500pC/N,居里温度为300-500℃,应变为0.2-0.4%。该材料有望使用在200-400℃的高温压电器件中。
本发明还公开上述铅基钙钛矿高温压电陶瓷的制备工艺,具体包括配料、混料、合成、细磨、成型、排塑、烧结等。
一些示例中,所述钙钛矿结构高温压电陶瓷材料的制备方法,可包括如下步骤:
步骤(a),按照化学计量比称量Bi2O3,PbO,SnO2,Sc2O3,Nb2O5,TiO2粉体;经一次湿式行星球磨、合成、二次行星球磨、烘干得到(1-x)[0.36BiScO3-0.64PbTiO3]-xBi(Sn1/3Nb2/3)O3陶瓷粉体。
所述一次湿式行星球磨,按照原料:球磨介质:水=1:(1.2~1.8):(0.5~0.9)的质量比,混料2~6小时。球磨介质可为玛瑙球。
又,所述的合成条件为在600~900℃保温合成2~4小时。优选地,以不高于2℃/min的升温速率升温至700~900℃,保温1~3小时,随炉冷却至室温后取出,得到合成物。
所述二次行星球磨,可按照合成物:球磨介质:水=1:(1.2~1.8):(0.5~0.9)的质量比进行细磨4~8小时。其中,球磨介质可为玛瑙球。二次行星球磨后于100~150℃烘干。
一些示例中,所述合成物(即陶瓷粉体)的粒径为1~2μm。
步骤(b),向二次行星球磨后的陶瓷粉体加入粘结剂造粒,陈化后压制成型,然后升温排塑,得到陶瓷坯体。
一些示例中,所述的粘结剂可为聚乙烯醇(PVA)。粘结剂的加入量可为陶瓷粉料重量的4~8wt.%。另外,所述排塑条件可为:以不高于2℃/min的升温速率升温至600~800℃,保温3小时以下。
步骤(c),将陶瓷坯体放入小型高温炉中,为了减少高温下氧化铅和氧化铋的挥发,用与步骤(a)所得的组成成分相同的陶瓷粉体覆盖陶瓷坯体,然后按照一定的条件烧结后得到所述的陶瓷片。
所述的烧结条件可为以不高于2℃/min的升温速率升温至1000~1200℃,保温1~3小时,随炉冷却至室温。
步骤(d),将烧结好的陶瓷片加工成所需尺寸,超声清洁,丝网印银,烘干,烧银,然后施行电极进行极化,得到所述的高温压电陶瓷材料。
所述的烧银条件可为700~800℃,保温60分钟以下。另外,所述极化条件可为100~140℃,4~6kV/mm,极化15~30分钟。
对比例1
1.采用传统的固相烧结法制备锡、铌复合离子组合取代的(1-x)[0.36BiScO3-0.64PbTiO3]-xBi(Sn1/3Nb2/3)O3高温压电陶瓷。其中,Bi(Sn1/3Nb2/3)O3的摩尔比为0。以Bi2O3,PbO,SnO2,Sc2O3,Nb2O5,TiO2粉体为原料,按照一定的化学计量比称量,采用湿式球磨法混料,按照原料:研磨介质:水=1:1.5:0.8的质量比混合4小时,使其混合均匀。120℃烘干之后,过40目筛,在3MPa压力下成型,以2℃/min的升温速率升温至850℃,保温2小时,合成所需的陶瓷粉体。
2.将步骤1中的陶瓷粉体进行研磨,过40目筛之后,采用湿式球磨法进行细磨,陶瓷粉体:研磨介质:水=1:1.5:0.7的质量比混合6小时,使其混合均匀,得到粒径在1~3μm之间的粉体。将所得的粉料进行烘干,加入6wt.%的PVA粘结剂,进行造粒,5MPa压力下成型,陈化24小时,过40目筛,在1.3MPa压力下压制成直径为13mm的圆片,再在低温炉中升温至750℃,保温60分钟,进行排塑,得到陶瓷坯体。
3.将陶瓷坯体填埋在装有相同组成组分陶瓷粉体的密闭氧化铝坩埚中,放到高温炉中,以2℃/min的升温速率升温至1080~1180℃,保温2小时,随炉冷却至室温之后取出,得到陶瓷片。
4.将获得的陶瓷片加工至厚度为0.5mm,超声清洗,烘干,丝网双面刷银,以2℃/min的升温速率升至750℃,保温10分钟,烧银,然后施行电极进行极化,极化条件为120℃,4~6kV/mm,极化20分钟,即得所述的钙钛矿结构的高温压电陶瓷。
实施例1
实施例1与对比例1基本相同,区别仅在于:x=0.01。
实施例2
实施例2与对比例1基本相同,区别仅在于:x=0.02。
实施例3
实施例1-3与对比例1基本相同,区别仅在于:x=0.03。
对极化过的陶瓷进行压电性能及其他电性能的测试:居里温度Tc按照GB/T3389.3中的有关要求进行测试;利用日本的Rigaku公司的RAX-10型X射线衍射仪分析压电陶瓷的相结构;采用中科院声学所生产的ZJ-3A型准静态d33测试仪测量压电陶瓷在室温的d33,测试频率为100Hz,每个试样测10个,取其平均值;使用德国aixACCT公司生产的铁电分析仪TF Analyzer 2000测试压电陶瓷的电滞回线和应变曲线。
表1为本发明在具体实施方式中x=0,0.01,0.02,0.03高温压电陶瓷的各项性能测试,其结果如表1所示。
表1具体实施方式中压电陶瓷材料的性能测试表
Figure BDA0002392494050000061
从表1可以看出,d33,Pr,S,Ec的值随着x的增大先增大再减小,在实施例2(x=0.02)时,即MPB附近取得最优值;Tc的值随着固溶量的增加呈现线性降低,在x=0.02时仍保持着较高的值(Tc=368℃)。
图1为本发明具体实施方式中x=0,0.01,0.02,0.03高温压电陶瓷的X射线图谱。从图中看出,上述压电陶瓷表现为单一的钙钛矿结构,(200)峰随着x值的增大逐渐地向左偏移,这是Sn4+,Nb5+取代B位Sc3+和Ti4+从而导致晶格常数增大的结果。另外,随着x值的不断增大,45°附近的(002)和(200)峰逐渐合二为一。这说明Bi(Sn1/3Nb2/3)O3中的Sn、Nb离子对B位离子Ti、Sc的取代,导致氧八面体发生畸变,从而使钙钛矿结构从四方相变化到三方相,即通过增加四方相中三方相的含量,改变了陶瓷的相结构,从而使其在某一固溶量(x=0.02)附近表现为三方相和四方相共存,即为准同型相界(MPB),而在中国专利CN103936412A主要依据BSPT的MPB在BS/PT在36/64附近设计组分,固溶定量的第三元,通过调控PT的摩尔量,进而调控了MPB组分。
图2为本发明具体实施方式中x=0,0.01,0.02,0.03高温压电陶瓷的扫描电镜图。其中插图表示相应组分的断面形貌。从图2看出,陶瓷表面几乎没有气孔,晶界清晰,晶粒均匀且致密,固溶第三元之后,平均晶粒尺寸从3.6μm降低至1.9μm,但是随着x的增大,晶粒尺寸没有明显变化。另外Bi(Sn1/3Nb2/3)O3促进了液相烧结,在有效降低晶粒尺寸的同时,提高了致密度。值得注意的是,本发明的陶瓷断面以穿晶断裂为主,主要因为晶界处的结合力较晶粒间的结合力强,再者,Bi(Sn1/3Nb2/3)O3固溶量未达到其固溶度致使晶界处几乎不存在Sn4+等离子的偏析,该断裂方式的陶瓷样品具有优异的力学性能,其优势明显高于沿晶断裂。
图3为本发明具体实施中x=0,0.01,0.02,0.03高温压电陶瓷的压电系数的温度稳定性。随着固溶量的增加,压电系数突变的温度点逐渐减低,主要是因为四方相的温度稳定性优于三方相。所有的陶瓷样品在200℃以下保持了较高的压电系数,特别是对于实施例1(x=0.01)来说,压电系数可以稳定至300℃。这对于高温传感器有着非常重要的意义。

Claims (12)

1.一种铅基钙钛矿结构高温压电陶瓷,其特征在于,所述铅基钙钛矿结构高温压电陶瓷的化学组成为(1-x)[0.36BiScO3-0.64PbTiO3]-xBi(Sn1/3Nb2/3)O3,其中0<x≤0.03。
2.根据权利要求1所述的铅基钙钛矿结构高温压电陶瓷,其特征在于,所述铅基钙钛矿结构高温压电陶瓷在室温下的压电系数为380~500 pC/N,居里温度为300~500℃,应变为0.2~0.4%,剩余极化强度为40~50μC/cm2
3.根据权利要求1或2所述的铅基钙钛矿结构高温压电陶瓷的制备方法,其特征在于,所述制备方法包括:根据铅基钙钛矿结构高温压电陶瓷的化学组成(1-x)[0.36BiScO3-0.64PbTiO3]-xBi(Sn1/3Nb2/3)O3,以Bi2O3、Sc2O3、PbO、TiO2、SnO2和Nb2O5为原料,按照化学计量比进行称量后混料,在600~900℃保温合成2~4小时,获得陶瓷粉体;以及将所述陶瓷粉体在1000~1200℃保温烧结1~3小时得到所述铅基钙钛矿结构高温压电陶瓷。
4.根据权利要求3所述的制备方法,其特征在于,所述混料方式为湿法球磨混合,其中,原料:球磨介质:水的质量比=1:(1.2~1.8):(0.5~0.9),混合2~6小时。
5.根据权利要求3所述的制备方法,其特征在于,所述陶瓷粉体的粒径为1~2μm。
6.根据权利要求3所述的制备方法,其特征在于,所述制备方法还包括:
在所述烧结之前向所述陶瓷粉体中加入粘结剂造粒,压制成型,然后排塑,得到陶瓷坯体;并对所述陶瓷坯体进行所述烧结。
7.根据权利要求6所述的制备方法,其特征在于,所述粘结剂的加入量为陶瓷粉体重量的4~8wt.%。
8.根据权利要求7所述的制备方法,其特征在于,所述粘结剂为聚乙烯醇。
9.根据权利要求6所述的制备方法,其特征在于,所述排塑条件为以不高于2℃/min的升温速率升温至600~800℃,保温3小时以下。
10.根据权利要求6所述的制备方法,其特征在于,所述制备方法还包括:对所述铅基钙钛矿结构高温压电陶瓷进行印银,烘干,烧银处理,然后施加电极进行极化。
11.根据权利要求10所述的制备方法,其特征在于,所述烧银条件为700~800℃,保温60分钟以下;所述极化条件为在4~6kV/mm于100~140℃极化15~30分钟。
12.根据权利要求6所述的制备方法,其特征在于,所述陶瓷粉体在加入粘结剂造粒前,采用湿法球磨进行细磨而后烘干,其中,陶瓷粉体:球磨介质:水的质量比=1:1.2~1.8:0.5~0.9,细磨4~8小时。
CN202010119516.3A 2020-02-26 2020-02-26 一种铅基钙钛矿结构高温压电陶瓷及其制备方法 Active CN111170736B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010119516.3A CN111170736B (zh) 2020-02-26 2020-02-26 一种铅基钙钛矿结构高温压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010119516.3A CN111170736B (zh) 2020-02-26 2020-02-26 一种铅基钙钛矿结构高温压电陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111170736A CN111170736A (zh) 2020-05-19
CN111170736B true CN111170736B (zh) 2021-04-16

Family

ID=70655029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010119516.3A Active CN111170736B (zh) 2020-02-26 2020-02-26 一种铅基钙钛矿结构高温压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111170736B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402273B (zh) * 2021-05-31 2022-05-10 中国科学院上海硅酸盐研究所 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法
CN116768626B (zh) * 2023-02-28 2024-02-13 电子科技大学 一种PbNb2O6基压电陶瓷材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180665A (zh) * 2011-03-07 2011-09-14 广州金升阳科技有限公司 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
US20130020524A1 (en) * 2011-07-24 2013-01-24 National Aeronautics And Space Administration High temperature piezoelectric ceramics
CN102924079A (zh) * 2012-11-06 2013-02-13 南京航空航天大学 一种三元体系压电陶瓷材料及其制备方法
CN103936412A (zh) * 2014-03-27 2014-07-23 北京大学 一种铌锡酸铅-钪酸铋-钛酸铅三元系高温压电陶瓷材料及其制备方法
WO2017114741A1 (en) * 2015-12-29 2017-07-06 Consejo Superior De Investigaciones Cientificas (Csic) A high temperature piezoelectric bisco3-pbtio3 ceramic material chemically engineered for enhanced voltage response, and a procedure for obtaining said ceramic material
EP3409652A1 (en) * 2017-05-31 2018-12-05 Consejo Superior de Investigaciones Cientificas (CSIC) A high temperature and voltage response piezoelectric, bisco3-pbtio3 based ceramic material microstructurally engineered for enhanced mechanical performance, a procedure for obtaining said ceramic material and its use as sensing device
CN110330332A (zh) * 2019-06-19 2019-10-15 南京航空航天大学 一种无烧结助剂低温烧结压电陶瓷材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180665A (zh) * 2011-03-07 2011-09-14 广州金升阳科技有限公司 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
US20130020524A1 (en) * 2011-07-24 2013-01-24 National Aeronautics And Space Administration High temperature piezoelectric ceramics
CN102924079A (zh) * 2012-11-06 2013-02-13 南京航空航天大学 一种三元体系压电陶瓷材料及其制备方法
CN103936412A (zh) * 2014-03-27 2014-07-23 北京大学 一种铌锡酸铅-钪酸铋-钛酸铅三元系高温压电陶瓷材料及其制备方法
WO2017114741A1 (en) * 2015-12-29 2017-07-06 Consejo Superior De Investigaciones Cientificas (Csic) A high temperature piezoelectric bisco3-pbtio3 ceramic material chemically engineered for enhanced voltage response, and a procedure for obtaining said ceramic material
EP3409652A1 (en) * 2017-05-31 2018-12-05 Consejo Superior de Investigaciones Cientificas (CSIC) A high temperature and voltage response piezoelectric, bisco3-pbtio3 based ceramic material microstructurally engineered for enhanced mechanical performance, a procedure for obtaining said ceramic material and its use as sensing device
CN110330332A (zh) * 2019-06-19 2019-10-15 南京航空航天大学 一种无烧结助剂低温烧结压电陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
0.36BiScO3-0.64PbTiO3 piezoelectric ceramics for high temperature ultrasonic transducer applications;Chunlong Fei;《Journal of Alloys and Compounds》;20180202;第743卷;第365-371页 *
Effects of Niobium Doping on the Microstructure and Electrical Properties of 0.36BiScO3–0.64PbTiO3 Ceramics;Chen Si;《Journal of The American Ceramic Society》;20070228;第90卷;第477-482页 *
Electrical properties of zirconium-modified BiScO3-PbTiO3 piezoelectric ceramics at re-designed phase boundary;Zhonghua Dai;《Materials Letters》;20171209;第215卷;第46-49页 *

Also Published As

Publication number Publication date
CN111170736A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
EP2414303B1 (en) Ceramic, piezoelectric device, and production method thereof
Xu et al. Synthesis and piezoelectric and ferroelectric properties of (Na0. 5Bi0. 5) 1− xBaxTiO3 ceramics
Zuo et al. Phase transition and electrical properties of lead free (Na0. 5K0. 5) NbO3–BiAlO3 ceramics
Hayati et al. Electromechanical properties of Ce-doped (Ba 0.85 Ca 0.15)(Zr 0.1 Ti 0.9) O 3 lead-free piezoceramics
Chen et al. Electromechanical properties and morphotropic phase boundary of Na 0.5 Bi 0.5 TiO 3-K 0.5 Bi 0.5 TiO 3-BaTiO 3 lead-free piezoelectric ceramics
Sun et al. Strong piezoelectricity of Li2CO3-doped BiFeO3–BaTiO3–Bi (Zn0. 5Ti0. 5) O3 lead-free piezoelectric ceramics with high Curie temperature and high temperature stability
Jia et al. Tailoring the tetragonal distortion to obtain high Curie temperature and large piezoelectric properties in BiFeO3-PbTiO3-BaTiO3 solid solutions
CN111170736B (zh) 一种铅基钙钛矿结构高温压电陶瓷及其制备方法
CN109704762B (zh) 一种铌酸锶基类反铁电陶瓷及其制备方法和应用
Wu et al. Microstructure, ferroelectric, and piezoelectric properties of (1− x− y) Bi0. 5Na0. 5TiO3–xBaTiO3–yBi0. 5Ag0. 5TiO3 lead-free ceramics
Liu et al. Cu-modified Pb (Mg1/3Nb2/3) O3-PbZrO3-PbTiO3 textured ceramics with enhanced electromechanical properties and improved thermal stability
CN113307619A (zh) 一种铁酸铋-钛酸铅-铌镁酸铋三元体系高温压电陶瓷的制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
Hayashi et al. Low-temperature sintering of LiBiO2-coated Pb (Mg1/3Nb2/3) O3-PbZrO3-PbTiO3 powders prepared by surface chemical modification method and their piezoelectric properties
Chao et al. Tailoring Electrical Properties and the Structure Evolution of (Ba 0.85 Ca 0.15)(Ti 0.90 Zr 0.10) 1− x Li 4 x O 3 Ceramics with Low Sintering Temperature
US8524109B2 (en) High curie temperature ternary piezoelectric ceramics
CN113402273B (zh) 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法
CN111333413A (zh) 铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法
Li et al. (Bi0. 5Na0. 5)(Zr0. 97W0. 01Fe0. 02) O3 doping effects on KNN‐based lead‐free ceramics prepared via two‐step sintering technique
CN114276128B (zh) 一种降低铁酸铋-钛酸钡压电陶瓷漏电流以及提高其高温电阻率的方法
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
Li et al. Phase Structures and Piezoelectric Properties of (K, Na, Li)(Nb, Sb) O 3-(Bi, Ag) ZrO 3 Lead-Free Ceramics
KR100875479B1 (ko) 비납계 압전 세라믹스 조성물 및 그 제조방법
Li et al. Effect of the template particles size on structure and piezoelectric properties of〈 0 0 1〉‐textured BNT‐based ceramics
CN116217226B (zh) 一种bs-pt基高温压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant