CN116217226B - 一种bs-pt基高温压电陶瓷材料及其制备方法 - Google Patents

一种bs-pt基高温压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN116217226B
CN116217226B CN202310157776.3A CN202310157776A CN116217226B CN 116217226 B CN116217226 B CN 116217226B CN 202310157776 A CN202310157776 A CN 202310157776A CN 116217226 B CN116217226 B CN 116217226B
Authority
CN
China
Prior art keywords
powder
temperature
piezoelectric ceramic
based high
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310157776.3A
Other languages
English (en)
Other versions
CN116217226A (zh
Inventor
周志勇
董亚珠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202310157776.3A priority Critical patent/CN116217226B/zh
Publication of CN116217226A publication Critical patent/CN116217226A/zh
Application granted granted Critical
Publication of CN116217226B publication Critical patent/CN116217226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种BS‑PT基高温压电陶瓷材料及其制备方法。所述BS‑PT基高温压电陶瓷的化学组成为(1‑y)BiScO3‑yPb1‑xxTi1‑zHfzO3;其中,x表示Pb空位的摩尔百分比,x=0~0.020;y=0.60~0.65;z=0~0.03;其中x和z不同时为0。

Description

一种BS-PT基高温压电陶瓷材料及其制备方法
技术领域
本发明涉及一种BS-PT基高温压电陶瓷材料及其制备方法,具体涉及一种高压电系数和高应变的BiScO3-PbTiO3基高温压电陶瓷材料及其制备方法,属于高温压电陶瓷领域。
背景技术
压电材料具有进行机电转换的功能,被广泛应用于石油勘探、医疗设备、航空航天等领域。压电材料被分为压电单晶、压电陶瓷、压电高分子以及压电复合材料,其中压电陶瓷因低廉的成本、优异的压电性能、丰富的组分可调性及简单的制备工艺,占据市场的大部分场额,应用前景非常广阔。
随着社会和科学技术的发展,在深部石油勘探等领域都需要高温恶劣环境中服役的高精度驱动器、高温换能器等压电器件,因此使用温度在300℃以下的Pb(Zr,Ti)O3陶瓷已经不能满足该应用要求。因此居里温度(TC)高于Pb(Zr,Ti)O3陶瓷约100℃的BiScO3-PbTiO3(BS-PT)高温压电陶瓷成为使用温度在200~400℃的重要候选压电材料。
本领域主要通过工艺改进、元素掺杂、固溶新元等手段来降低材料成本和调控BS-PT高温压电陶瓷的性能。利用两步烧结法制备的纳米级BS-PT陶瓷,压电系数提高到520pC/N(J Am Ceram Soc,2008;91:121-126.),但是工艺的重复性差,成本较高;利用Nb(J AmCeram Soc,2007;90:477-482.)、Fe(Appl Phys Lett,2005;87:242901.)、Co(Appl PhysLett2008;92:142905.)等取代Sc,居里温度保持为400℃以上,压电系数却降至180~300pC/N;在BiScO3-PbTiO3中固溶Pb(In1/3Nb2/3)O3(Acta Mater 2019;181:238-248)、Bi(Mn1/2Zr1/2)O3(J Eur Ceram Soc,2020;40:3003-3010.)、PbZrO3(Ceram Int.2018;44:6817-6822.)的压电系数大于300pC/N,居里温度降至130~317℃。例如郝俊杰,王晓慧,陈先中,等(高居里点BiScO3-PbTiO3压电陶瓷介电压电性能研究[J].稀有金属材料与工程,2011,40(4):3.)公开了0.64BS-PT陶瓷的性能:TC在420℃附近,d33约430pC/N,铁电性Pr约28μC/cm2,且从电滞回线来看,该陶瓷在2.5kV/mm时就已经出现了很大漏电流(主要表现在最大极化强度出现了圆滑的特征),说明耐压性急剧下降,很难加到5kV/mm的电压。
在陶瓷的实际应用过程中,会受到本征因素(晶体畸变、缺陷等)和非本征因素(畴翻转,畴壁移动等)的影响,而这些因素之间的相互竞争及相互作用使得陶瓷无法同时表达出多种优异的宏观性能。然而在实际工作环境中,压电陶瓷会受到温度、电场、力场等多场耦合的作用,仅仅依赖单一性能的优势是远远无法满足需求。因此,寻求综合性能优异的高温压电陶瓷是亟待解决的问题。
发明内容
针对现有压电陶瓷的压电系数、应变值及温度稳定性等综合性能无法同时满足特定领域需求指标的情况,本发明提供一种具有高压电系数、高剩余极化强度、高应变值、高退极化温度、高损耗稳定性的修饰改性的BS-PT基高温压电陶瓷材料及其制备方法。
一方面,本发明提供了一种BS-PT基高温压电陶瓷材料,所述BS-PT基高温压电陶瓷的化学组成为(1-y)BiScO3-yPb1-xxTi1-zHfzO3;其中,x表示Pb空位的摩尔百分比,x=0~0.020;y=0.60~0.65;z=0~0.03;其中x和z不同时为0。
在本发明中,BS-PT基高温压电陶瓷材料,是以在准同型相界(MPB)附近的BS-PT陶瓷为基体,采用A位缺量协同B位掺杂的思路增强陶瓷宏观性能:本发明以BS-PT基陶瓷为基础,利用物相平衡原理,在化学计量比的基础上通过A位Pb缺位和B位掺杂设计了(1-y)BiScO3-yPb1-xxTi1-zHfzO3体系。利用缺陷偶极子和自发极化之间的耦合及竞争效应来调控铁电畴的翻转及畴壁的移动,从而获得具有高电学性能特征的BS-PT基高温压电陶瓷。从晶体学来讲,A位的缺陷会导致晶胞中的晶格参数的降低,从而降低陶瓷的晶体对称性,可利用这一特性构筑准同型相界。从动力学来讲,空位的移动速率较低,意味着缺陷偶极子的方向趋于稳定的状态,说明其能耐受更高的温度和电场,从而能提高陶瓷的温度稳定性。从热力学来讲,缺陷偶极子的存在可以降低陶瓷的吉布斯自由能,特别是在MPB附近的自由能,平坦的自由能在电场的作用下更容易导致畴的翻转。另,HfO2是具有高介电常数和宽禁带宽度的材料,用Hf4+取代钙钛矿结构中的氧八面体中的B位的钛离子,既促进烧结,也进一步控制缺陷偶极的运动状态。故而,利用晶体学,热力学和动力学等的交互作用,获得具有高铁电、压电性能及高温度稳定性的BS-PT基压电陶瓷体系。本发明中利用的多种思路融合策略也为铅基钙钛矿结构压电陶瓷在高温压电传感器中的应用提供了新思路。
其中,将x和y分别控制在0.015和0.02以下,通过协同调控A位Pb缺量和B位Hf取代的含量,即可实现可控调整陶瓷的结构和性能,以满足高温压电传感器对陶瓷材料的要求(高压电系数、高居里温度和优异的铁电性)。若x(空位的含量)的取值过大,会导致钙钛矿结构的对称性遭到严重破坏,陶瓷的性能亦会大幅度下降,与本发明的目的背道而驰。若y(Hf的取代含量)的取值过大,陶瓷仍保持着四方相结构,没有相界出现,而且性能会明显的下降。
相较于三元固溶体体系,本发明利用二元组成设计不仅减少了Pb的用量,而且能精确地控制原子的取代作用,通过B位离子取代和A位Pb缺量重新构筑准同型相界,获得了具有高压电性能、高应变、高剩余极化强度及高退极化温度的BS-PT基高温压电陶瓷。
较佳的,x=0.005~0.015;
较佳的,y=0.64;
较佳的,z=0.02。
较佳的,所述BS-PT基高温压电陶瓷材料的室温压电系数为400~600pC/N;
所述BS-PT基高温压电陶瓷材料的居里温度为300~500℃;
所述BS-PT基高温压电陶瓷材料的应变为0.2~0.6%;
所述BS-PT基高温压电陶瓷材料的剩余极化强度为45~60μC/cm2
所述BS-PT基高温压电陶瓷材料的退极化温度350~450℃。
另一方面,本发明提供了一种BS-PT基高温压电陶瓷材料的制备方法,包括:
(1)以Bi2O3粉体、Sc2O3粉体、PbO粉体、TiO2粉体、HfO2粉体为原料,按照BS-PT基高温压电陶瓷材料的化学组成(1-y)BiScO3-yPb1-xxTi1-zHfzO3称量并混料,得到原料粉体;
(2)将所得原料粉体在600~900℃预烧处理,得到所述BS-PT基合成粉体;
(3)将上述的合成粉体进行细磨处理后,在鼓风干燥箱中进行120℃的烘干,得到细磨的BS-PT基粉体;
(4)将上述所得的粉体成型后,在1100~1200℃烧结处理,得到所述BS-PT基高温压电陶瓷材料。
该制备方法采用传统固相反应法制备出A位缺量及B位掺杂取代的BS-PT基高温压电陶瓷。
较佳的,步骤(1)中,所述混料方式为湿法行星球磨混合,其中,原料:球磨介质:水的质量比=1:(1.2~1.8):(0.5~0.9),混合时间为2~6小时。
较佳的,步骤(2)中,所述预烧处理的时间为2~4小时;所述合成后粉体的粒径为1~2μm。
较佳的,步骤(3)中,所述细磨处理为采用湿法行星球磨进行细磨;其中,陶瓷粉体:球磨介质:水的质量比=1:(1.2~1.8):(0.5~0.9),细磨的转速为300~400转/分钟,细磨的时间为4~8小时。
较佳的,步骤(4)中,所述烧结处理的时间为1~3小时。
较佳的,步骤(4)中,在烧结处理之前,在合成后的粉体中加入粘结剂,经造粒得到造粒粉体后,再压制成型及排塑,得到坯体,随后对所述坯体进行烧结处理;
优选地,所述粘结剂的加入量为粉体的4~8wt.%;所述粘结剂为聚乙烯醇、聚苯乙烯、甲基纤维素和聚乙二醇中的至少一种;
优选地,所述排塑的温度为500~700℃,保温时间不超过3小时;更优选地,所述排塑的升温速率不超过2℃/min。
较佳的,将所得BS-PT基高温压电陶瓷材料进行印银和烧银处理,然后进行极化处理;
优选地,所述烧银处理为:在700~800℃保温不超过60分钟;
优选地,所述极化处理为:在4~6kV/mm于100~140℃极化15~30分钟。
有益效果:
与BS-PT相比,本发明引入A位Pb缺量及B位Hf取代Ti,利用晶格对称性的畸变来调控相界以获得更高的压电性能。A位Pb缺量后导致钙钛矿结构中的晶体对称性降低,利用这一特性构筑相界。由空位引起的缺陷偶极子的移动速度慢,且缺陷偶极子易钉扎畴的翻转,限制畴壁的移动,而畴壁的稳定性是陶瓷温度稳定性的关键性非本征因素,因此缺陷偶极子的引入有助于提高陶瓷的温度稳定性。另外,缺陷偶极子能降低陶瓷中畴翻转所需要的吉布斯自由能,也就意味着降低畴翻转所需要的能量,因此可以提高陶瓷的铁电和压电性能。由于三者之间的相互作用,所获得的(1-y)BiScO3-y0.64Pb1-xxTi1-zHfzO3(x=0~0.015,y=0.64,z=0.02)陶瓷既能维持较高的居里温度,也能提高铁电和压电特性,即,获得了一系列综合性能优异的BS-PT基高温压电陶瓷。
附图说明
图1是高温压电陶瓷(1-y)BiScO3-y0.64Pb1-xxTi1-zHfzO3(x=0、0.005、0.010、0.015,y=0.64,z=0.02)的电滞回线图;
图2是BS-PT基高温压电陶瓷(1-y)BiScO3-y0.64Pb1-xxTi1-zHfzO3(x=0、0.005、0.010、0.015,y=0.64,z=0.02)的双极应变图;
图3为BS-PT基高温压电陶瓷(1-y)BiScO3-y0.64Pb1-xxTi1-zHfzO3(x=0、0.005、0.010、0.015,y=0.64,z=0.02)的室温压电系数;
图4是BS-PT基高温压电陶瓷(1-y)BiScO3-y0.64Pb1-xxTi1-zHfzO3(x=0、0.005、0.010、0.015,y=0.64,z=0.02)的介电常数及介电损耗随温度的变化。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。以下各百分含量如无特别说明均指质量百分含量。
针对现有综合电学性能无法同时满足深部石油勘探等领域用高温压电传感器的要求,对此,本发明提出新的组成设计,通过A位缺陷和B位掺杂来调控准同型相界,在保证高居里温度的同时,有效提高铅基钙钛矿结构压电陶瓷的压电性,并协同优化铁电性及退极化行为,为铅基钙钛矿结构压电陶瓷的组成设计优化提供了新思路。具体地,本发明公开一种修饰改性的钛酸铅基高温压电陶瓷(具体是BS-PT基高温压电陶瓷)的组成为0.36BiScO3-0.64Pb1-xxTi1-zHfzO3,其中,0≤x≤0.015,0≤z≤0.002。一些技术方案中,0<x≤0.015,0<z≤0.002。进一步优选为0.005≤x≤0.015,z=0.002。其中,A位Pb空位和B位Ti掺杂的协同作用是具有明显的增益效果的。
上述铅基钙钛矿高温压电陶瓷中,选择处在MPB附近的BS-PT组分为基体,同时采用A位Pb空位缺量及B位掺杂的策略重新获得准同型相界,增强性能可调性,获得具有高铁电、压电、和介电性能的BS-PT基压电陶瓷。
本发明以上述高温压电陶瓷为基础,调控了准同型相界,在提高压电系数和铁电性的同时,也保证了较高的居里温度(300~500℃),满足了深部石油勘探等高温应用领域对高温压电陶瓷材料的要求,有望用于使用温度200~400℃的高温压电换能器或高温压电传感器中。一些示例中,所述高温压电陶瓷的压电系数为380~560pC/N(优选为490~530pC/N),居里温度为300~500℃,应变为0.2~0.6%,剩余极化强度为40~60μC/cm2,退极化温度350~450℃。这和未掺杂的BiScO3-PbTiO3(TC=429℃,d33=430pC/N,Pr=39.8μC/cm2)相比,材料的综合性能明显改善。在组成设计过程中,曾尝试以BS-PT陶瓷为基础,通过固溶第三元构筑相界进行修饰改性,所得体系为BiScO3-PbTiO3-Bi(Sn1/3Nb2/3)O3,但是其压电系数(380~460pC/N),居里温度(340~440℃)和退极化温度(200~270℃),该性能均低于本发明。
本发明还公开上述BS-PT基高温压电陶瓷材料的制备工艺,具体包括配料、混料、合成、细磨、成型、排塑、烧结等。
以下示例性地说明钙钛矿结构的BS-PT基高温压电陶瓷材料的制备方法。
按照化学计量比称量Bi2O3、PbO、Sc2O3、HfO2和TiO2粉体,经湿法行星式球磨进行混料之后,得到混合后的原料粉体。
该湿法行星式球磨中,按照原料:球磨介质:水=1:(1.2~1.8):(0.5~0.9)的质量比,球磨2~6小时。所述球磨中的球磨介质可为玛瑙球。所述的合成条件为温度是600~900℃,保温2~4小时。优选地,以2℃/min的升温速率升温至700~900℃,保温1~3小时,随炉冷却至室温后取出,得到BS-PT基陶瓷的合成物前驱体。一些示例中,所述合成物的粒径为1~2μm。
将原料粉体经过高温煅烧合成,得到合成后的粉体(例如0.36BiScO3-0.64Pb1-xxTi0.98Hf0.02O3粉体)。
合成步骤完成后,对合成物的粉体进行第二次湿法行星式球磨,之后再烘干。按照合成物的粉体:球磨介质:水=1:(1.2~1.8):(0.5~0.9)的质量比进行细磨4~8小时。球磨介质为玛瑙球。球磨后于烘箱中在100~150℃烘干至沟壑状。
向合成后的粉体或二次细磨后的粉体加入粘结剂造粒,得到造粒粉体。将造粒粉体经陈化后压制成型,再经升温排塑,得到素坯。所述粘结剂可为聚乙烯醇(PVA)。粘结剂的加入量可为陶瓷粉料的4~8wt.%。另外,所述排塑条件可为:以不高于2℃/min的升温速率升温至500~700℃,保温3小时以下。
将压制完成的素坯放入(小型)高温马弗炉中,用获得后的合成粉体作为填料覆盖相应组分的陶瓷素坯,放于密闭的氧化铝坩埚中,用于减少在高温下氧化铅和氧化铋的挥发。随后,按照特定条件进行烧结后获得所述的BS-PT基陶瓷片。所述的烧结条件可为以不高于2℃/min的升温速率升温至1000~1200℃,保温1~3小时,随炉冷却至室温后取出。
将烧结好的陶瓷片双面加工成所需尺寸,之后进行超声清洁,丝网印银,烘干,烧银,然后施加直流电压进行极化,得到所述BS-PT基高温压电陶瓷材料。所述烧银条件可为700~800℃保温60分钟以下。另外,所述极化条件可为100~140℃,4~6kV/mm,极化15~30分钟。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
(1)采用固相烧结法制备0.36BiScO3-0.64Pb1-xxTi0.98Hf0.02O3高温压电陶瓷。其中,x(Pb空位的摩尔比)为0,0.005,0.010,0.015。以Bi2O3、PbO、TiO2、HfO2和Sc2O3粉体为原料,按照化学计量比称量,采用湿式球磨法混料,以原料:研磨介质:水=1:1.5:0.75的质量比混合4小时,使其混合均匀。将混合后的原料于120℃烘干之后,过40目筛,在3MPa压力下成型后,以2℃/min的升温速率升温至850℃并保温2小时,合成所需粉体;
(2)将上述合成的粉体破碎研磨,过40目筛之后,采用湿式球磨法进行细磨,粉体:研磨介质:水=1:1.5:0.7的质量比混合6小时,得到粒径在1~2μm之间的粉体。将所得粉料烘干,加入6wt.%的PVA粘结剂进行造粒,造粒后,在5MPa压力下成型,陈化24小时后,破碎研磨之后,过40目筛,在1.0MPa压力下压制成直径为8mm的圆片,再在低温马弗炉中升温至650℃并保温60分钟,进行排塑得到素坯体;
(3)将所获得的素坯填埋在装有相同组成陶瓷粉体的密闭氧化铝坩埚中,放到高温炉中,以2℃/min的升温速率升温至目标温度1100~1150℃并保温2小时,随炉冷却至室温之后取出,得到所需高温压电陶瓷片;
(4)将获得的陶瓷片双面加工至厚度为0.5mm,超声清洗,120℃烘干,丝网双面刷银,以2℃/min的升温速率升至750℃并保温10分钟,进行烧银。然后施加电场进行极化,极化条件为在120℃于4~6kV/mm极化20分钟,即得所述的0.36BiScO3-0.64PbTi0.98Hf0.02O3钙钛矿结构的高温压电陶瓷。
实施例2
实施例2与实施例1基本相同,区别仅在于:x=0.005。
实施例3
实施例3与实施例1基本相同,区别仅在于:x=0.010。
实施例4
实施例4与实施例1基本相同,区别仅在于:x=0.015。
实施例5
实施例5与实施例1基本相同,区别仅在于:x=0.005,z=0。
实施例6
实施例6与实施例1基本相同,区别仅在于:x=0.010,z=0。
实施例7
实施例7与实施例1基本相同,区别仅在于:z=0.01。
实施例8
实施例8与实施例1基本相同,区别仅在于:x=0.005,z=0.01。
对比例1
对比例1与实施例1基本相同,区别仅在于:x=0,y=0.62,z=0。
对比例2
对比例2与实施例1基本相同,区别仅在于:x=0,y=0.63,z=0。
对比例3
对比例3与实施例1基本相同,区别仅在于:z=0。
对比例4
对比例2与实施例1基本相同,区别仅在于:x=0,y=0.63,z=0。
对高温极化过的陶瓷进行测试:采用中科院声学所生产的ZJ-3A型准静态d33测试仪测量压电陶瓷在室温的d33,测试频率为100Hz,每个试样测10个,取平均值。对未极化的陶瓷进行测试:居里温度TC按照GB/T3389.3进行测试;使用德国aixACCT公司生产的铁电分析仪TF Analyzer 2000测试压电陶瓷的电滞回线和应变曲线(@5kV/mm)。本发明高温压电陶瓷的主要性能测试结果见表1。
表1为(1-y)BiScO3-yPb1-xxTi1-xHfzO3高温压电陶瓷材料的性能测试表。
从表1可以看出,随着x的增大,Pr和负应变先增大再减小,在实施例3(x=0.010)中获得了最大值,分别为54.6μC/cm2,0.471%;居里温度逐渐减低,但始终保持在400℃以上。压电系数d33在实施例2(x=0.005)附近获得最大值526pC/N。从表1中的数据可以看出优异性能的来源是一定量的A位Pb空位和一定含量的B位Hf含量的协同作用造成的。
图1为本发明中0.36BiScO3-0.64Pb1-xxTi0.98Hf0.02O3高温压电陶瓷(x=0、0.005、0.010、0.015)在5kV/cm电压、室温下的电滞回线图。从图1看出,A位缺Pb之后,剩余极化强度Pr从32.1μC/cm2增大至52.6μC/cm2,随着Pb空位的增加,剩余极化强度在x=0.010获得最大值54.6μC/cm2,之后降低至51.4μC/cm2
图2为本发明中0.36BiScO3-0.64Pb1-xxTi0.98Hf0.02O3高温压电陶瓷(x=0、0.005、0.010、0.015)在5kV/cm电压、室温下的双极应变图。从图中可以看出,随着缺Pb量的增加,正应变从0.191%逐渐增加至0.221%,负应变从0.184%增大至最大值0.471%(在x=0.010组分),之后再降低至0.431%,这一变化趋势跟剩余极化强度Pr类似。
图3为本发明中0.36BiScO3-0.64Pb1-xxTi0.98Hf0.02O3高温压电陶瓷(x=0、0.005、0.010、0.015)的室温下的压电系数。随着Pb缺量含量的增加,压电系数d33呈现先增大再减小的趋势,在x=0.005组分附近获得了最大值526pC/N,这对提高传感器的灵敏度具有非常重要的意义。
图4为中0.36BiScO3-0.64Pb1-xxTi0.98Hf0.02O3本发明高温压电陶瓷(x=0、0.005、0.010、0.015)的介电常数和介电损耗随温度升高的变化曲线。从图中可以看出,所有组分的居里温度都在400℃以上,介电损耗风所对应的退极化温度在400~430℃之间。这对高温压电陶瓷的高温应用有着极大的推动作用。
通过分析表1的数据可以分析出,与0.36BS-0.64PT陶瓷相比较,在0.36BiScO3-0.64PbTiHfzO3陶瓷中B位用Hf取代Ti时,当z=0.01时,陶瓷的剩余极化强度(从39.8μC/cm2提高至43.9μC/cm2)和负应变(0.249%提高至0.287%)都有提高,说明Hf能促进不可逆的非180°畴的翻转。如若提高Hf的取代量至z=0.02时,其剩余极化强度和负应变分别降低至32.1μC/cm2和0.184%。因此认为Hf的Ti的取代只有在某一特定范围之内才能达到最大的增益效果,低于或者高于该范围都会对陶瓷的性能产生一定的负面作用。
通过分析表1的数据可以分析出,仅仅从空位对陶瓷的性能的影响出发,在0.36BiScO3-0.64Pb1-xxTiO3陶瓷中,随着Pb空位的增加,剩余极化强度(从39.8μC/cm2提高至44.3μC/cm2)和负应变(0.249%提高至0.319%),同时保持着430℃左右的居里温度。主要是因为A位Pb缺量后导致钙钛矿结构中的晶体对称性降低,此外由空位引起的缺陷偶极子的移动速度慢,且缺陷偶极子易钉扎畴的翻转,限制畴壁的移动,但是如果空位的含量过高,大量的A位空位很容易产生空位的聚集或者钙钛矿结构的坍塌,同时局部电荷的对称分布遭到破坏,最终导致钙钛矿结构的严重损坏,微观结构的破坏最终会导致材料宏观性能的不稳定性,甚至大幅度下降。
通过对比表2中不同组分的(1-y)BiScO3-yPb1-xxTi1-xHfzO3陶瓷的性能,可以看出A位Pb空位和B位Hf的掺杂对陶瓷的性能提升有着明显的协同作用,而单一以Pb空位或者以Hf取代含量为变量,均达不到优异的性能指标。在Hf含量为0.02,Pb空位为0.005,陶瓷处于MPB附近,能获得最大的压电系数。当Hf含量为0.02,Pb空位为0.01时,陶瓷的剩余极化强度和负应变是最大的。获得如此优异的性能,可从一下几个方面进行分析,从晶体学来讲,A位的缺陷会导致晶胞中的晶格参数的降低,从而降低陶瓷的晶体对称性,可利用这一特性构筑准同型相界。从动力学来讲,空位的移动速率较低,意味着缺陷偶极子的方向趋于稳定的状态,说明其能耐受更高的温度和电场,从而能提高陶瓷的温度稳定性。从热力学来讲,缺陷偶极子的存在可以降低陶瓷的吉布斯自由能,平坦的自由能在电场的作用下更容易导致畴的翻转。另,HfO2是具有高介电常数和宽禁带宽度的材料,具有促进烧结的作用,用Hf4+取代钙钛矿结构中的氧八面体中的B位的钛离子,使陶瓷样品维持四方相结构,即,可提高因缺陷造成的对称性降低的问题,以此来促进准同型相界的形成,提高陶瓷的性能。也进一步控制缺陷偶极的运动状态。总的来说,利用晶体学,热力学和动力学等的交互作用,获得具有高铁电、压电性能及高温度稳定性的BS-PT基压电陶瓷体系。

Claims (10)

1.一种BS-PT基高温压电陶瓷材料,其特征在于,所述BS-PT基高温压电陶瓷的化学组成为(1-y)BiScO3-yPb1-xxTi1-zHfzO3;其中,x表示Pb空位的摩尔百分比,x=0~0.020;y=0.60~0.65;z=0~0.03;其中x和z均不为0。
2.根据权利要求1所述的BS-PT基高温压电陶瓷材料,其特征在于,x=0.005~0.015;y=0.64;
z=0.02。
3.根据权利要求1或2所述的BS-PT基高温压电陶瓷材料,其特征在于,所述BS-PT基高温压电陶瓷材料的室温压电系数为400~600pC/N;
所述BS-PT基高温压电陶瓷材料的居里温度为300~500℃;
所述BS-PT基高温压电陶瓷材料的应变为0.2~0.6%;
所述BS-PT基高温压电陶瓷材料的剩余极化强度为50~60μC/cm2
所述BS-PT基高温压电陶瓷材料的退极化温度350~450℃。
4.一种如权利要求1-3中任一项所述的BS-PT基高温压电陶瓷材料的制备方法,其特征在于,包括:
(1),以Bi2O3粉体、Sc2O3粉体、PbO粉体、TiO2粉体、和HfO2粉体为原料,按照BS-PT基高温压电陶瓷材料的化学组成(1-y)BiScO3-yPb1-xxTi1-zHfzO3称量并混料,得到原料粉体;
(2)将所得原料粉体在600~900℃预烧处理,得到陶瓷粉体;
(3)将上述陶瓷粉体进行细磨处理后,在鼓风干燥箱中进行120℃的烘干,得到细磨的BS-PT基粉体;
(4)将所得陶瓷粉体在1100~1200℃烧结处理,得到所述BS-PT基高温压电陶瓷材料。
5.根据权利要求4所述的制备方法,其特征在于,步骤(1)中,所述混料方式为湿法行星球磨混合,其中,原料:球磨介质:水的质量比=1:(1.2~1.8):(0.5~0.9),混合时间为2~6小时。
6.根据权利要求4所述的制备方法,其特征在于,步骤(2)中,所述预烧处理的时间为2~4小时;所述陶瓷粉体的粒径为1~2μm。
7.根据权利要求4所述的制备方法,其特征在于,步骤(3)中,所述细磨处理为采用湿法行星球磨进行细磨;其中,陶瓷粉体:球磨介质:水的质量比=1:(1.2~1.8):(0.5~0.9),细磨的转速为300~360转/分钟,细磨的时间为4~8小时。
8.根据权利要求4所述的制备方法,其特征在于,步骤(4)中,所述烧结处理的时间为1~3小时。
9.根据权利要求4所述的制备方法,其特征在于,步骤(4)中,在烧结处理之前,在陶瓷粉体中加入粘结剂,经造粒得到造粒粉体后,再压制成型及排塑,得到陶瓷坯体,随后对所述陶瓷坯体进行烧结处理;
所述粘结剂的加入量为陶瓷粉体的4~8wt.%;所述粘结剂为聚乙烯醇、聚苯乙烯、甲基纤维素和聚乙二醇中的至少一种;
所述排塑的温度为500~700℃,保温时间不超过3小时;所述排塑的升温速率不超过2℃/min。
10.根据权利要求4-9中任一项所述的制备方法,其特征在于,将所得BS-PT基高温压电陶瓷材料进行印银和烧银处理,然后进行极化处理;
所述烧银处理为:在700~800℃保温不超过60分钟;
所述极化处理为:在4~6kV/mm于100~140℃极化15~30分钟。
CN202310157776.3A 2023-02-23 2023-02-23 一种bs-pt基高温压电陶瓷材料及其制备方法 Active CN116217226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310157776.3A CN116217226B (zh) 2023-02-23 2023-02-23 一种bs-pt基高温压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310157776.3A CN116217226B (zh) 2023-02-23 2023-02-23 一种bs-pt基高温压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116217226A CN116217226A (zh) 2023-06-06
CN116217226B true CN116217226B (zh) 2024-03-12

Family

ID=86590634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310157776.3A Active CN116217226B (zh) 2023-02-23 2023-02-23 一种bs-pt基高温压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116217226B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200536108A (en) * 2004-04-23 2005-11-01 Seiko Epson Corp Ferroelectric film laminated body, ferroelectric memory, piezoelectric element, liquid jet head, and printer
CN1823025A (zh) * 2003-07-11 2006-08-23 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 钙钛矿材料,制备方法和在催化膜反应器中的使用
JP2007116156A (ja) * 2005-10-21 2007-05-10 Qinghua Univ 化合物熱電材料およびその製造方法
CN101910086A (zh) * 2007-11-15 2010-12-08 新泽西州州立大学(拉特格斯) 陶瓷材料及其衍生产品的水热液相烧结方法
EP3409651A1 (en) * 2017-05-31 2018-12-05 Consejo Superior de Investigaciones Cientificas (CSIC) A high temperature and power piezoelectric, bisco3-pbtio3 based ceramic material microstructurally engineered for enhanced mechanical performance, a procedure for obtaining said ceramic material and its use as part of an ultrasound generation device or ultrasonic actuation device
EP3409652A1 (en) * 2017-05-31 2018-12-05 Consejo Superior de Investigaciones Cientificas (CSIC) A high temperature and voltage response piezoelectric, bisco3-pbtio3 based ceramic material microstructurally engineered for enhanced mechanical performance, a procedure for obtaining said ceramic material and its use as sensing device
CN111269009A (zh) * 2020-01-20 2020-06-12 北京大学 一种锆锰酸铋-钪酸铋-钛酸铅系压电陶瓷材料及其制备方法
CN113402273A (zh) * 2021-05-31 2021-09-17 中国科学院上海硅酸盐研究所 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法
US11165430B1 (en) * 2020-12-21 2021-11-02 Kepler Computing Inc. Majority logic gate based sequential circuit
CN114262222A (zh) * 2021-12-31 2022-04-01 中国科学院上海硅酸盐研究所 一种调控铁酸铋-钛酸钡基压电陶瓷材料电阻率和极化强度的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1823025A (zh) * 2003-07-11 2006-08-23 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 钙钛矿材料,制备方法和在催化膜反应器中的使用
TW200536108A (en) * 2004-04-23 2005-11-01 Seiko Epson Corp Ferroelectric film laminated body, ferroelectric memory, piezoelectric element, liquid jet head, and printer
JP2007116156A (ja) * 2005-10-21 2007-05-10 Qinghua Univ 化合物熱電材料およびその製造方法
CN101910086A (zh) * 2007-11-15 2010-12-08 新泽西州州立大学(拉特格斯) 陶瓷材料及其衍生产品的水热液相烧结方法
EP3409651A1 (en) * 2017-05-31 2018-12-05 Consejo Superior de Investigaciones Cientificas (CSIC) A high temperature and power piezoelectric, bisco3-pbtio3 based ceramic material microstructurally engineered for enhanced mechanical performance, a procedure for obtaining said ceramic material and its use as part of an ultrasound generation device or ultrasonic actuation device
EP3409652A1 (en) * 2017-05-31 2018-12-05 Consejo Superior de Investigaciones Cientificas (CSIC) A high temperature and voltage response piezoelectric, bisco3-pbtio3 based ceramic material microstructurally engineered for enhanced mechanical performance, a procedure for obtaining said ceramic material and its use as sensing device
CN111269009A (zh) * 2020-01-20 2020-06-12 北京大学 一种锆锰酸铋-钪酸铋-钛酸铅系压电陶瓷材料及其制备方法
US11165430B1 (en) * 2020-12-21 2021-11-02 Kepler Computing Inc. Majority logic gate based sequential circuit
CN113402273A (zh) * 2021-05-31 2021-09-17 中国科学院上海硅酸盐研究所 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法
CN114262222A (zh) * 2021-12-31 2022-04-01 中国科学院上海硅酸盐研究所 一种调控铁酸铋-钛酸钡基压电陶瓷材料电阻率和极化强度的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tailored electrical properties in ternary BiScO3-PbTiO3ceramics by composition modification;Zhuang Liu et al;《Ceramics International》;第8058-8063页 *

Also Published As

Publication number Publication date
CN116217226A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
Jiang et al. High performance Aurivillius type Na 0.5 Bi 4.5 Ti 4 O 15 piezoelectric ceramics with neodymium and cerium modification
Chao et al. Effects of CuO addition on the electrical responses of the low-temperature sintered Pb (Zr0. 52Ti0. 48) O3–Pb (Mg1/3Nb2/3) O3–Pb (Zn1/3Nb2/3) O3 ceramics
CN102180665A (zh) 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
US10811593B2 (en) Perovskite relaxor-PBTI03 based ferroelectric ceramics with ultrahigh dielectric and piezoelectric properties through polar nanoregions engineering
Chen et al. Electromechanical properties and morphotropic phase boundary of Na 0.5 Bi 0.5 TiO 3-K 0.5 Bi 0.5 TiO 3-BaTiO 3 lead-free piezoelectric ceramics
CN106518070B (zh) 一种多元系高压电活性压电陶瓷材料及其制备方法
Xie et al. Comprehensive investigation of structural and electrical properties of (Bi, Na) CoZrO3-doped KNN ceramics
CN111362695A (zh) 一种锆钛酸铅压电陶瓷及其制备方法
Manotham et al. Improvements of depolarization temperature, piezoelectric and energy harvesting properties of BNT-based ceramics by doping an interstitial dopant
CN111170736B (zh) 一种铅基钙钛矿结构高温压电陶瓷及其制备方法
CN110511019A (zh) 一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法
Jiang et al. Dielectric and piezoelectric properties of BiMnO 3 doped 0.95 Na 0.5 K 0.5 NbO 3–0.05 LiSbO 3 ceramics
CN111333413B (zh) 铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法
CN116217226B (zh) 一种bs-pt基高温压电陶瓷材料及其制备方法
CN113402273B (zh) 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法
CN116693285A (zh) 一种超顺电相钛酸铋钠基弛豫储能陶瓷材料及其制备方法
KR100801477B1 (ko) 무연 세라믹스 및 그의 제조방법
Shi et al. Enhanced mechanical quality factor of BiScO 3–PbTiO 3 piezoelectric ceramics using glass composition
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN115353385A (zh) 一种增强无铅压电陶瓷热稳定性的制备方法
Qian et al. Influence of sintering temperature on electrical properties of (K 0.4425 Na 0.52 Li 0.0375)(Nb 0.8825 Sb 0.07 Ta 0.0475) O 3 ceramics without phase transition induced by sintering temperature
CN115894021B (zh) 一种高机械品质因数硬性压电陶瓷材料及其制备方法
CN117326866B (zh) 一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法
KR102370082B1 (ko) 무연 세라믹스 조성물 및 그의 제조방법
CN116751057B (zh) 一种具有超高电致应变和逆压电系数的压电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant