CN110511019A - 一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法 - Google Patents

一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法 Download PDF

Info

Publication number
CN110511019A
CN110511019A CN201910949705.0A CN201910949705A CN110511019A CN 110511019 A CN110511019 A CN 110511019A CN 201910949705 A CN201910949705 A CN 201910949705A CN 110511019 A CN110511019 A CN 110511019A
Authority
CN
China
Prior art keywords
ball
ceramics
ball milling
temperature
ferroelectric ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910949705.0A
Other languages
English (en)
Inventor
曹文萍
李伟力
张文钟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Commerce
Original Assignee
Harbin University of Commerce
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Commerce filed Critical Harbin University of Commerce
Priority to CN201910949705.0A priority Critical patent/CN110511019A/zh
Publication of CN110511019A publication Critical patent/CN110511019A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种有效降低应变滞后性的BNT基无铅铁电陶瓷及其制备方法,它涉及一种窄滞后的陶瓷的制备方法。本发明要解决现有铁电陶瓷应变滞后性严重的问题。本发明的制备方法如下:a)利用固相球磨法制备受主(MnO)掺杂的(Bi0.5Na0.5)0.65Sr0.35Ti(1‑x)O3‑xMnO陶瓷粉体;b)在850~950℃温度下预烧粉体;c)将粉末冷压成片,在1140℃‑1160℃温度下烧结成致密的陶瓷。本发明通过受主掺杂在四方相区的0.65BNT‑0.35ST陶瓷中构建缺陷偶极子,利用缺陷偶极子使畴翻转可逆制备出应变大滞后小的铁电陶瓷,该方法在其他陶瓷的制备中从未出现。本发明应用于制备陶瓷领域。

Description

一种有效降低应变滞后性的BNT基无铅铁电陶瓷及其制备 方法
技术领域
本发明属于无铅压电陶瓷领域,具体涉及一种具有窄滞后的钛酸秘钠基无铅铁电材料及其制备方法,是一种环境友好的应变大滞后小的驱动材料。
背景技术
铁电陶瓷由于其优良的力电耦合性质,体积小,响应快等优点,在传感器、驱动器等领域得到广泛的应用。当前,绝大多数的压电驱动器仍以传统的Pb(ZrxTi1-x)O3(PZT)基陶瓷作为驱动材料,其应变可以达到0.1%-1%的数量级。然而,由于PZT体系含铅量较高,在生产和使用过程中对人类健康和环境造成极大的危害,因此,寻找具有优异应变性能的环境友好型的无铅铁电材料便成为必然。
在无铅铁电材料的研究中,钛酸铋钠((Bi0.5Na0.5)TiO3,BNT)由于具有铁电性强、居里温度高等特点,成为最有希望代替铅基材料、应用最有前景的无铅材铁电料之一。目前的研究发现在BNT基陶瓷中通过元素掺杂、改善制备工艺等方法可以获得0.3-0.7%的大应变,该应变主要来源于电场激发下非极性相(弛豫相)和铁电相之间的可逆相变。但就实际应用而言,还有很多问题亟待解决,主要体现在以下两个方面:(1)大应变一般是在较高电场下(>80kV/cm)获得的,如何设计在较小电场下具有大应变的材料依然是一个较大的挑战;(2)应变的滞后性较大(一般大于40%),严重影响了驱动器的灵敏度,难以在实际中得到应用。
发明内容
本发明为了解决上述问题,提出了一种通过受主掺杂(MnO掺杂)在四方相结构的0.65Bi0.5Na0.5TiO3-0.35SrTiO3(钛酸锶)陶瓷晶格内构建缺陷偶极子,利用缺陷偶极子使畴翻转可逆获得窄滞后的BNT-ST陶瓷及其制备方法。
本发明的一种有效降低应变滞后性的BNT基无铅铁电陶瓷,它的化学组成通式为(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO;其中,所述的x=5~10mol‰;所述的陶瓷是由Na2CO3、SrCO3、TiO2、Bi2O3及MnO按化学计量比(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO制成。
本发明的一种有效降低应变滞后性的BNT基无铅铁电陶瓷的方法,它是按照以下步骤制备的:
一、配料:
将原料Na2CO3、SrCO3、TiO2、Bi2O3及MnO,按化学计量比(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO进行称量;其中,x=5~10mol‰;
二、球磨:
将步骤一称量的原料放入球磨罐中球磨,球磨介质为无水乙醇和氧化锆磨球,其中,球磨条件为:球料比为(3~5):1,转速为300~350r/min,球磨时间为6~12h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h;
三、预烧:
将步骤二烘干后的粉料放入刚玉陶瓷坩埚中,以5℃/min的升温速率升温至850~950℃,保温2~5h;
四、二次球磨:
将步骤三预烧后粉体再放入球磨罐中,球磨介质为无水乙醇和氧化锆磨球,其中,球磨条件为:转速为300~350r/min,球磨时间为6~12h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h;
五、造粒
将步骤四烘干后粉体研磨、过筛,然后添加5wt.%聚乙烯醇充分研磨进行造粒;
六、成型
将步骤五造粒后的粉体放入模具内,在8~10MPa的压力下压制成圆片;
七、排胶
将步骤六的圆片放入烧结炉中,以1℃/min的升温速率升温至500℃,保温1h进行排胶;
八、烧结
将步骤七中排胶后的圆片放入刚玉陶瓷坩埚中,以10℃/min的升温速率升温至1140~1160℃,保温2~5h,随炉冷至室温,得到(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO无铅铁电陶瓷;
九、镀电极
将步骤八中得到的(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO无铅铁电陶瓷表面抛光,在抛光后的陶瓷片上下表面涂一层银电极;然后将带有电极的无铅铁电陶瓷放入烧结炉中在温度为500℃条件下退火,保温30min,即完成。
本发明包含以下有益效果:
本发明给出的MnO受主掺杂改性的0.65Bi0.5Na0.5TiO3-0.35SrTiO3陶瓷材料的应变滞后性(H)较现有的高于40%的水平降低至12%-14%,且同时拥有较大的应变,在60kV/cm电场下其大小保持在0.19%-0.22%。
在四方相区的0.65Bi0.5Na0.5TiO3-0.35SrTiO3陶瓷内进行受主掺杂(MnO)能够成功在陶瓷晶格内构建缺陷偶极子,利用缺陷偶极子使畴翻转可逆可以有效降低四方相区BNT-ST陶瓷的应变滞后性,窄滞后铁电陶瓷的制备为铁电材料在驱动器、微位移器等领域的应用提供技术保障。
附图说明
图1是实施例4制备的受主掺杂钛酸铋钠基陶瓷的XRD图谱;
图2是实施例4制备的受主掺杂钛酸铋钠基陶瓷在20kV/cm电场时的电滞回线图;
图3是实施例4制备的受主掺杂钛酸铋钠基陶瓷在60kV/cm电场时的电滞回线图;
图4是实施例4制备的受主掺杂钛酸铋钠基陶瓷在60kV/cm电场时的电滞应变图。
具体实施方式
具体实施方式一:本实施方式的一种有效降低应变滞后性的BNT基无铅铁电陶瓷,它的化学组成通式为(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO;其中,所述的x=5~10mol‰;所述的陶瓷是由Na2CO3、SrCO3、TiO2、Bi2O3及MnO按化学计量比(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO制成。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述的x=6~8mol‰。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一不同的是:所述的x=7~9mol‰。其它与具体实施方式一相同。
具体实施方式四:本实施方式的一种有效降低应变滞后性的BNT基无铅铁电陶瓷的方法,其特征在于它是按照以下步骤制备的:
一、配料:
将原料Na2CO3、SrCO3、TiO2、Bi2O3及MnO,按化学计量比(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO进行称量;其中,x=5~10mol‰;
二、球磨:
将步骤一称量的原料放入球磨罐中球磨,球磨介质为无水乙醇和氧化锆磨球,其中,球磨条件为:球料比为(3~5):1,转速为300~350r/min,球磨时间为6~12h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h;
三、预烧:
将步骤二烘干后的粉料放入刚玉陶瓷坩埚中,以5℃/min的升温速率升温至850~950℃,保温2~5h;
四、二次球磨:
将步骤三预烧后粉体再放入球磨罐中,球磨介质为无水乙醇和氧化锆磨球,其中,球磨条件为:转速为300~350r/min,球磨时间为6~12h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h;
五、造粒
将步骤四烘干后粉体研磨、过筛,然后添加5wt.%聚乙烯醇充分研磨进行造粒;
六、成型
将步骤五造粒后的粉体放入模具内,在8~10MPa的压力下压制成圆片;
七、排胶
将步骤六的圆片放入烧结炉中,以1℃/min的升温速率升温至500℃,保温1h进行排胶;
八、烧结
将步骤七中排胶后的圆片放入刚玉陶瓷坩埚中,以10℃/min的升温速率升温至1140~1160℃,保温2~5h,随炉冷至室温,得到(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO无铅铁电陶瓷;
九、镀电极
将步骤八中得到的(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO无铅铁电陶瓷表面抛光,在抛光后的陶瓷片上下表面涂一层银电极;然后将带有电极的无铅铁电陶瓷放入烧结炉中在温度为500℃条件下退火,保温30min,即完成。
具体实施方式五:本实施方式与具体实施方式四不同的是:步骤二的球磨条件为:球料比为(4~5):1,转速为320~350r/min,球磨时间为8~12h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h。其它与具体实施方式四相同。
具体实施方式六:本实施方式与具体实施方式四不同的是:步骤四的球磨条件为:转速为320~350r/min,球磨时间为8~10h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h。其它与具体实施方式四相同。
具体实施方式七:本实施方式与具体实施方式四不同的是:步骤八的烧结条件为:以10℃/min的升温速率升温至1150~1160℃,保温2~4h。其它与具体实施方式四相同。
本发明内容不仅限于上述各实施方式的内容,其中一个或几个具体实施方式的组合同样也可以实现发明的目的。
通过以下实施例验证本发明的有益效果:
实施例1
本实施例的一种有效降低应变滞后性的BNT基无铅铁电陶瓷的方法是按照以下步骤进行的:
将原料Na2CO3、SrCO3、TiO2、Bi2O3及MnO,按化学计量比(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO进行称量;其中,x=5mol‰;
二、球磨:
将步骤一称量的原料放入球磨罐中球磨,球磨介质为无水乙醇和氧化锆磨球,其中,球磨条件为:球料比为5:1,转速为350r/min,球磨时间为12h;球磨后,将球磨所得浆料于80℃下保温烘干10h;
三、预烧:
将步骤二烘干后的粉料放入刚玉陶瓷坩埚中,以5℃/min的升温速率升温至950℃,保温2h;
四、二次球磨:
将步骤三预烧后粉体再放入球磨罐中,球磨介质为无水乙醇和氧化锆磨球,其中,球磨条件为:转速为350r/min,球磨时间为12h;球磨后,将球磨所得浆料于80℃下保温烘干10h;
五、造粒
将步骤四烘干后粉体研磨、过筛,然后添加5wt.%聚乙烯醇充分研磨进行造粒;
六、成型
将步骤五造粒后的粉体放入模具内,在8MPa的压力下压制成圆片;
七、排胶
将步骤六的圆片放入烧结炉中,以1℃/min的升温速率升温至500℃,保温1h进行排胶;
八、烧结
将步骤七中排胶后的圆片放入刚玉陶瓷坩埚中,以10℃/min的升温速率升温至1140℃,保温2h,随炉冷至室温,得到(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO无铅铁电陶瓷;
九、镀电极
将步骤八中得到的(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO无铅铁电陶瓷表面抛光,在抛光后的陶瓷片上下表面涂一层银电极;然后将带有电极的无铅铁电陶瓷放入烧结炉中在温度为500℃条件下退火,保温30min,即完成;
该实施例1制备的(Bi0.5Na0.5)0.65Sr0.35Ti0.995O3-0.005MnO无铅铁电陶瓷的在60kV/cm电场下的应变大小为1.9%,应变滞后性为12.1%。
实施例2
该方案与实施例1相比,第八步的烧结温度为1150℃,所制备的(Bi0.5Na0.5)0.65Sr0.35Ti0.995O3-0.005MnO无铅铁电陶瓷的在60kV/cm电场下的应变大小为1.95%,应变滞后性为12.5%。
实施例3
该方案与实施例1相比,第一步的x=10mol‰,所制备的(Bi0.5Na0.5)0.65Sr0.35Ti0.99O3-0.01MnO无铅铁电陶瓷的在60kV/cm电场下的应变大小为2.1%,应变滞后性为13.8%。
实施例4
该方案与实施例1相比,第一步的x=10mol‰,并且第八步的烧结温度为1150℃,所制备的(Bi0.5Na0.5)0.65Sr0.35Ti0.99O3-0.01MnO无铅铁电陶瓷的在60kV/cm电场下的应变大小为2.2%,应变滞后性为14%。
图1给出了在本实施例的条件下(Bi0.5Na0.5)0.65Sr0.35Ti0.99O3-0.01MnO无铅铁电陶瓷的XRD图谱。由图1可见,所制备的陶瓷样品为纯钙钛矿相,无任何杂相产生,说明MnO完全固溶在BNT-ST陶瓷中。此外,(200)晶面的衍射峰有一个微小的劈裂,说明该陶瓷的相结构仍为四方相。
图2给出了在本实施例的条件下(Bi0.5Na0.5)0.65Sr0.35Ti0.99O3-0.01MnO陶瓷在电场为20kV/cm时的电滞回线。由图2可见,MnO掺杂后,电滞回线的剩余极化强度Pr明显降低,出现了瘦腰型双电滞回线。由于Mn离子和Ti离子半径相近,MnO掺杂后Mn离子取代Ti离子。Mn离子在晶体中主要是以Mn2+和Mn3+的形式存在,当Mn离子取代晶体中的Ti4+时,为了保持电价的平衡,陶瓷晶格内会产生氧空位。由于氧空位容易发生扩散,从而能够与B位的Mn离子形成缺陷偶极子。(Bi0.5Na0.5)0.65Sr0.35Ti0.99O3-0.01MnO陶瓷室温时的晶体结构为四方相,当施加电场时,会诱导晶格中产生90o畴变,自发偶极矩Ps转向电场的方向。由于氧空位的迁移率相对较慢,相应的由缺陷偶极子所形成的缺陷偶极矩PD无法跟上电场的变化而保留原来的取向。因此,当撤掉电场后,与自发极化垂直的缺陷偶极矩会提供一个恢复力,已转向的自发极化在恢复力的作用下会恢复到施加电场前的无序状态。从宏观上来讲,去掉电场后极化强度会降低,从而出现双电滞回线。
图3给出了在本实施例的条件下(Bi0.5Na0.5)0.65Sr0.35Ti0.99O3-0.01MnO陶瓷在电场为60kV/cm时的电滞回线。在60kV/cm电场下,双电滞回线的形状略有改变。这可能是由于在较高电场下部分缺陷偶极子发生移动造成的。
图4给出了在本实施例的条件下(Bi0.5Na0.5)0.65Sr0.35Ti0.99O3-0.01MnO陶瓷在电场为60kV/cm时的碟形曲线。由图4可见,(Bi0.5Na0.5)0.65Sr0.35Ti0.99O3-0.01MnO陶瓷的应变大小为0.22%。根据滞后性的计算公式(图中所示)计算所得的应变滞后性为14%,远小于目前所报道的结果。

Claims (7)

1.一种有效降低应变滞后性的BNT基无铅铁电陶瓷,其特征在于它的化学组成通式为(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO;其中,所述的x=5~10mol‰;所述的陶瓷是由Na2CO3、SrCO3、TiO2、Bi2O3及MnO按化学计量比(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO制成。
2.根据权利要求1所述的一种有效降低应变滞后性的BNT基无铅铁电陶瓷,其特征在于所述的x=6~8mol‰。
3.根据权利要求1所述的一种有效降低应变滞后性的BNT基无铅铁电陶瓷,其特征在于所述的x=7~9mol‰。
4.制备如权利要求1所述的一种有效降低应变滞后性的BNT基无铅铁电陶瓷的方法,其特征在于它是按照以下步骤制备的:
一、配料:
将原料Na2CO3、SrCO3、TiO2、Bi2O3及MnO,按化学计量比(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO进行称量;其中,x=5~10mol‰;
二、球磨:
将步骤一称量的原料放入球磨罐中球磨,球磨介质为无水乙醇和氧化锆磨球,其中,球磨条件为:球料比为(3~5):1,转速为300~350r/min,球磨时间为6~12h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h;
三、预烧:
将步骤二烘干后的粉料放入刚玉陶瓷坩埚中,以5℃/min的升温速率升温至850~950℃,保温2~5h;
四、二次球磨:
将步骤三预烧后粉体再放入球磨罐中,球磨介质为无水乙醇和氧化锆磨球,其中,球磨条件为:转速为300~350r/min,球磨时间为6~12h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h;
五、造粒
将步骤四烘干后粉体研磨、过筛,然后添加5wt.%聚乙烯醇充分研磨进行造粒;
六、成型
将步骤五造粒后的粉体放入模具内,在8~10MPa的压力下压制成圆片;
七、排胶
将步骤六的圆片放入烧结炉中,以1℃/min的升温速率升温至500℃,保温1h进行排胶;
八、烧结
将步骤七中排胶后的圆片放入刚玉陶瓷坩埚中,以10℃/min的升温速率升温至1140~1160℃,保温2~5h,随炉冷至室温,得到(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO无铅铁电陶瓷;
九、镀电极
将步骤八中得到的(Bi0.5Na0.5)0.65Sr0.35Ti(1-x)O3-xMnO无铅铁电陶瓷表面抛光,在抛光后的陶瓷片上下表面涂一层银电极;然后将带有电极的无铅铁电陶瓷放入烧结炉中在温度为500℃条件下退火,保温30min,即完成。
5.根据权利要求4所述的一种有效降低应变滞后性的BNT基无铅铁电陶瓷的方法,其特征在于步骤二的球磨条件为:球料比为(4~5):1,转速为320~350r/min,球磨时间为8~12h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h。
6.根据权利要求4所述的一种有效降低应变滞后性的BNT基无铅铁电陶瓷的方法,其特征在于步骤四的球磨条件为:转速为320~350r/min,球磨时间为8~10h;球磨后,将球磨所得浆料于80℃下保温烘干10~12h。
7.根据权利要求4所述的一种有效降低应变滞后性的BNT基无铅铁电陶瓷的方法,其特征在于步骤八的烧结条件为:以10℃/min的升温速率升温至1150~1160℃,保温2~4h。
CN201910949705.0A 2019-10-08 2019-10-08 一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法 Pending CN110511019A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910949705.0A CN110511019A (zh) 2019-10-08 2019-10-08 一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910949705.0A CN110511019A (zh) 2019-10-08 2019-10-08 一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN110511019A true CN110511019A (zh) 2019-11-29

Family

ID=68634189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910949705.0A Pending CN110511019A (zh) 2019-10-08 2019-10-08 一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN110511019A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111620690A (zh) * 2020-06-09 2020-09-04 哈尔滨工业大学 一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法
CN113213920A (zh) * 2021-06-07 2021-08-06 同济大学 一种钛酸铋钠基无铅压电薄膜及其制备方法
CN116023132A (zh) * 2022-12-30 2023-04-28 哈尔滨商业大学 利用b-o位缺陷诱导高应变性能的钛酸铋钠基陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793031A (zh) * 2005-12-28 2006-06-28 天津大学 SrTiO3陶瓷电介质材料及其制备方法
JP2010150060A (ja) * 2008-12-24 2010-07-08 Nihon Ceratec Co Ltd 非鉛系圧電セラミックス、積層型圧電デバイスおよび非鉛系圧電セラミックスの製造方法
CN101792312A (zh) * 2010-03-10 2010-08-04 天津大学 SrTiO3陶瓷电介质材料及其电容器的制备方法
CN102351529A (zh) * 2011-06-09 2012-02-15 西北工业大学 一种非铁电体和铁电体复合的钛酸盐温度稳定型高介电陶瓷
CN106064943A (zh) * 2016-05-31 2016-11-02 中国科学院光电技术研究所 铋基无铅压电陶瓷及使用该材料的压电执行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793031A (zh) * 2005-12-28 2006-06-28 天津大学 SrTiO3陶瓷电介质材料及其制备方法
JP2010150060A (ja) * 2008-12-24 2010-07-08 Nihon Ceratec Co Ltd 非鉛系圧電セラミックス、積層型圧電デバイスおよび非鉛系圧電セラミックスの製造方法
CN101792312A (zh) * 2010-03-10 2010-08-04 天津大学 SrTiO3陶瓷电介质材料及其电容器的制备方法
CN102351529A (zh) * 2011-06-09 2012-02-15 西北工业大学 一种非铁电体和铁电体复合的钛酸盐温度稳定型高介电陶瓷
CN106064943A (zh) * 2016-05-31 2016-11-02 中国科学院光电技术研究所 铋基无铅压电陶瓷及使用该材料的压电执行器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
戴祥福: "(1-x)NBT-xST无铅陶瓷的电卡效应和储能性能", 《中国优秀硕士学位论文全文数据库》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111620690A (zh) * 2020-06-09 2020-09-04 哈尔滨工业大学 一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法
CN113213920A (zh) * 2021-06-07 2021-08-06 同济大学 一种钛酸铋钠基无铅压电薄膜及其制备方法
CN116023132A (zh) * 2022-12-30 2023-04-28 哈尔滨商业大学 利用b-o位缺陷诱导高应变性能的钛酸铋钠基陶瓷及其制备方法
CN116023132B (zh) * 2022-12-30 2023-12-01 哈尔滨商业大学 利用b-o位缺陷诱导高应变性能的钛酸铋钠基陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN110511019A (zh) 一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法
CN106220169B (zh) 改性铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
CN103979955B (zh) 锂-铝离子对掺杂改性的钛酸钡基无铅压电陶瓷材料的制备方法
CN114262228B (zh) 铌酸钾钠基无铅压电陶瓷及其制备方法和应用
CN106938929B (zh) 室温高电卡效应的无铅弛豫铁电陶瓷的制备方法
CN108147813A (zh) 一种高压电系数钛酸铋钠基无铅压电陶瓷及其制备方法
CN107032790B (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN113321506A (zh) 一种无铅弛豫铁电体陶瓷材料及制备方法
CN115504784A (zh) 一种无铅弛豫铁电高储能密度陶瓷材料及其制备方法
CN106145941A (zh) 一种富锆锆钛酸铅‑铁酸铋多铁性陶瓷材料
CN116573936A (zh) 一种阴离子改性的压电陶瓷及其制备方法
CN103981573A (zh) 提高钙钛矿结构铁电材料居里温度的方法
CN114085079A (zh) 一种高储能的非等摩尔比高熵钙钛矿氧化物陶瓷材料及其制备方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN111333413B (zh) 铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法
CN113213918A (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
CN111170736B (zh) 一种铅基钙钛矿结构高温压电陶瓷及其制备方法
CN111620690A (zh) 一种利用构建离子对获得大应变小滞后的钛酸铋钠基陶瓷及其制备方法
KR101635988B1 (ko) 복합 비스무스계 무연 압전 세라믹스 및 이를 포함하는 액츄에이터
CN112142466A (zh) 一种铌镱酸铅基反铁电陶瓷材料及其制备方法
CN102432285B (zh) 钛镍酸铋-钛锌酸铋-钛酸铅三元系高温压电陶瓷及其制备方法
CN104402426A (zh) 一种新型铁酸铋-钛酸铅-铌锌酸铅(bf-pt-pzn)三元体系高温压电陶瓷
CN115385675A (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN103435344B (zh) 一种高频陶瓷滤波器用压电陶瓷材料
CN105218092A (zh) 一种同时具备大位移及低滞后的锆钛酸铅基压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191129