CN117326866B - 一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法 - Google Patents

一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN117326866B
CN117326866B CN202311629620.7A CN202311629620A CN117326866B CN 117326866 B CN117326866 B CN 117326866B CN 202311629620 A CN202311629620 A CN 202311629620A CN 117326866 B CN117326866 B CN 117326866B
Authority
CN
China
Prior art keywords
ball milling
ceo
mnco
powder
plztn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311629620.7A
Other languages
English (en)
Other versions
CN117326866A (zh
Inventor
郇正利
费璇
曹光利
黎超逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Lians Intelligent Technology Co ltd
Original Assignee
Shandong Lians Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Lians Intelligent Technology Co ltd filed Critical Shandong Lians Intelligent Technology Co ltd
Priority to CN202311629620.7A priority Critical patent/CN117326866B/zh
Publication of CN117326866A publication Critical patent/CN117326866A/zh
Application granted granted Critical
Publication of CN117326866B publication Critical patent/CN117326866B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法。所述压电陶瓷的化学组成为Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3+xwt%CeO2+ywt%MnCO3,0.15≤x≤0.45,0<y≤0.1,其中Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3为基体陶瓷粉体,x表示CeO2占基体陶瓷粉体的质量百分比,y表示MnCO3占基体陶瓷粉体的质量百分比,可简写为PLZTN+xwt%Ce+ywt%Mn。本发明还提供了该压电陶瓷的制备方法。本发明提供的铈锰共掺的锆钛酸铅基压电陶瓷通过铈锰复合掺杂使该PZT基陶瓷的压电系数和机械品质因数均得到了改善,同时具有优异的压电性能、较低的损耗和良好的应变温度稳定性,以及良好的机械品质,在高性能压电器件的制备上具有十分广阔的应用前景,是大功率压电器件领域在优良候选材料。

Description

一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法
技术领域
本发明属于压电陶瓷技术领域,具体涉及一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法。
背景技术
压电材料作为一类不可缺少的功能材料,已经成为许多机电设备的核心部件,广泛应用于民用电子产品、生物医学工程、国防工程、光电信息等各个领域。锆钛酸铅(PZT)陶瓷因其自身优异的压电性能和机电性能在压电材料领域占据着重要的地位。然而随着现代科技的快速发展,压电器件不断向着高精度和小型化方向发展,因而对压电陶瓷提出了更高的性能要求,如更高的压电系数和机械品质因数、优良的温度稳定性等,而这些性能往往是相互制约的,制备兼具高水平压电性能和低损耗的PZT陶瓷仍然相对困难,从而限制了进一步应用。
掺杂改性是一种调控压电陶瓷性能的有效方法,主要分为软性掺杂和硬性掺杂。软性掺杂可以提高PZT陶瓷的压电系数(d 33可达500~800pC/N),主要掺杂元素有A位掺杂的Ba2+、Sr2+和镧系稀土元素以及B位掺杂的Nb5+和Ta5+等,但是软性掺杂会引起机械品质因数和电学品质因数的降低;而硬性掺杂则可以降低PZT陶瓷的介电损耗和机械损耗,从而满足一些大功率发射传感器的应用要求,通常用低价元素取代B位的Ti4+或Zr4+,主要掺杂元素为Fe2+/3+和Mn2+/3+等。
面对当前压电器件对高性能压电陶瓷的迫切需求,亟需研发一种压电性能和机械品质因数兼优的压电陶瓷材料。
发明内容
针对现有技术的不足,本发明提供了一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法。本发明有效解决现有压电陶瓷材料难以兼具高压电性能、低损耗以及良好温度稳定性的技术问题。
为了达到上述目的,本发明采用以下技术方案予以实现:
一种铈锰共掺的锆钛酸铅基压电陶瓷材料,其化学组成为Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3+xwt%CeO2+ywt%MnCO3,0.15≤x≤0.45,0<y≤0.1,其中Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3为基体陶瓷粉体,x表示CeO2占基体陶瓷粉体的质量百分比,y表示MnCO3占基体陶瓷粉体的质量百分比,可简写为PLZTN+xwt%Ce+ywt%Mn。
根据本发明优选的,当0.15≤x≤0.45,y=0.1时,所述铈锰共掺的锆钛酸铅基压电陶瓷材料PLZTN+xwt%Ce+0.1wt%Mn的室温介电常数为1396~1976,室温介电损耗为0.24%~0.42%;最大极化强度为38.7~41.4μC/cm2,在3.5kV/mm电场下的最大应变值为0.219%~0.294%,压电系数为498~638 pC/N,平面机电耦合系数为0.560~0.671,机械品质因数为325.42~568.18;当x=0.3,y=0.1时,所述铈锰共掺的锆钛酸铅基压电陶瓷材料PLZTN+0.30wt%CeO2+0.1wt%MnCO3在20~200℃温度范围内的应变变化率为10.4%。
根据本发明,上述铈锰共掺的锆钛酸铅基压电陶瓷材料的制备方法,包括以下步骤:
(1)按照Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3+xwt%CeO2+ywt%MnCO3,0.15≤x≤0.45,0<y≤0.1的化学计量比准确称量原料Pb3O4、La2O3、ZrO2、TiO2、Nb2O5、CeO2、MnCO3,进行一次球磨处理,得到混合原料,将混合原料干燥、过筛、预烧处理,得到PLZTN+xwt%Ce+ywt%Mn粉末;
(2)将PLZTN+xwt%Ce+ywt%Mn粉末进行二次球磨、干燥、过筛,得到PLZTN+xwt%Ce+ywt%Mn二次球磨粉末;
(3)向PLZTN+xwt%Ce+ywt%Mn二次球磨粉末中加入聚乙烯醇水溶液进行造粒、过筛、压制成生坯片;
(4)将生坯片进行排胶和烧结处理,烧结所得陶瓷进行烧银、极化,得到铈锰共掺的锆钛酸铅基压电陶瓷材料。
根据本发明优选的,步骤(1)中,所述Pb3O4的质量过量1wt%。
根据本发明优选的,步骤(1)中,所述一次球磨步骤为:将Pb3O4、La2O3、ZrO2、TiO2、Nb2O5、CeO2、MnCO3原料按照化学计量比混合后加入至放有氧化锆和乙醇的球磨罐中进行球磨;所述一次球磨的时间为20~30小时;球磨过程中氧化锆、原料与乙醇的质量比为2:1:1,球磨机转速为350~450转/分钟。
根据本发明优选的,步骤(1)中,所述干燥的温度为60~80℃,干燥的时间为4~6小时;过筛所用筛网的孔径为60~80目;所述预烧的温度为850~950℃,预烧的保温时间为2~4小时。
根据本发明优选的,步骤(2)中,所述二次球磨步骤为:将PLZTN+xwt%Ce+ywt%Mn粉末中加入至放有氧化锆和乙醇的球磨罐中进行球磨;所述二次球磨的球磨时间为20~30小时,球磨过程中氧化锆、PLZTN+xwt%Ce+ywt%Mn粉末与乙醇的质量比为2:1:1,球磨机转速为350~450转/分钟;所述干燥的温度为60~80℃,干燥的时间为4~6小时;过筛所用筛网的孔径为60~80目。
根据本发明优选的,步骤(3)中,所述聚乙烯醇水溶液的质量分数为5~8wt%,所述聚乙烯醇水溶液的质量为PLZTN+xwt%Ce+ywt%Mn二次球磨粉末质量的1~5%;过筛所用筛网的孔径为60~80目;所述生坯片的直径为10mm,厚度为1mm,压片的压力为6~8 MPa。
根据本发明优选的,步骤(4)中,所述排胶处理的温度为800~850℃,排胶处理的保温时间为1~3小时;烧结处理温度为1200~1250℃,升温速率为2℃/min,烧结处理的保温时间为1~3小时;烧银温度为600~650℃,烧银的保温时间为30分钟;极化温度为120~140℃,极化场强为3~4kV/mm,极化时间为30分钟。
与现有技术相比,本发明具有以下有益效果:
1、本发明提供的铈锰共掺的锆钛酸铅基压电陶瓷通过铈锰复合掺杂使该PZT基陶瓷的压电系数和机械品质因数均得到了改善,获得了高水平的d 33Q m值,克服了二者的相互制约,同时具有优异的压电性能、较低的损耗和良好的应变温度稳定性,以及良好的机械品质。其居里温度为162~205℃,室温介电常数为1396~1669,室温介电损耗为0.24%~0.65%;最大极化强度约为33.7~41.4μC/cm2,矫顽场约为0.70~0.78kV/mm,在3.5 kV/mm的电场下的应变值约为0.219~0.288%,应变值在20~200℃温度范围内的应变变化率为10.4%;压电系数约为498~598pC/N,平面机电耦合系数为498~598,机械品质因数为78.87~368.18。可见,PLZTN+xwt%Ce+ywt%Mn陶瓷的整体性能优于目前已报道铅基压电陶瓷,在高性能压电器件的制备上具有十分广阔的应用前景,是大功率压电器件领域的优良候选材料。
2、本发明提供的铈锰共掺的高性能锆钛酸铅基压电陶瓷材料的制备方法,采用传统固相反应法制备而成,该方法操作简单,成本较低,碳酸锰作为硬性掺杂剂,有利于陶瓷介电损耗和机械损耗的降低;氧化铈作为两性掺杂剂,促进了晶粒的生长和致密化,有效改善了陶瓷的介电性能,降低了损耗,同时获得了相对较高的压电系数和机电耦合系数,改善了压电系数和机械品质因数相互制约的关系。
3、与之前CeO2掺杂改性的研究相比,本发明中CeO2主要起到了两性掺杂剂的作用,介电损耗和机械损耗降低的同时,介电系数提高;此外,本发明基体为二元系锆钛酸铅体系,成分简单,性能易于在很宽的范围内进行调控,在保证高压电系数的同时,具有相对较低的介电损耗和较高的居里温度,同时获得了优异的温度稳定性。
附图说明
图1为对比例2和实施例1~3制备得到的压电陶瓷的断面SEM图;
图中,(a)为对比例2,(b)为实施例1,(c)为实施例2,(d)为实施例3。
图2为对比例2和实施例1~3制备得到的压电陶瓷的介电温谱。
图3为对比例2和实施例1~3 制备得到的压电陶瓷的电滞回线。
图4为对比例2和实施例1~3制备得到的压电陶瓷的应变曲线。
图5为对比例2和实施例1~3制备得到的压电陶瓷压电性能的变化曲线。
图6为实施例2制备得到的压电陶瓷单极应变曲线随温度的变化曲线。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。
实施例1
一种Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3+0.15wt%CeO2+0.1wt%MnCO3压电陶瓷(x=0.15,y=0.1)的制备方法,按如下步骤进行:
(1)以Pb3O4、La2O3、ZrO2、TiO2、Nb2O5、CeO2、MnCO3粉体为原料,按照化学计量比称量混合后加入至球磨罐中,采用湿式球磨法进行球磨,以氧化锆:原料:乙醇为2:1:1的质量比球磨25小时,球磨机转速为400转/分钟;将球磨后的原料于70℃烘干5h之后,过70目筛,以2℃/min的升温速率升温至900℃,预烧保温处理3小时,合成PLZTN+0.15wt%Ce+0.1wt%Mn粉末;
(2)将步骤(1)合成的PLZTN+0.15wt%Ce+0.1wt%Mn粉末采用湿式球磨法进行二次球磨,以氧化锆:PLZTN+0.15wt%Ce+0.1wt%Mn粉末:乙醇为2:1:1的质量比球磨25小时,球磨机转速为400转/分钟;将球磨后的PLZTN+0.15wt%Ce+0.1wt%Mn粉末于70℃烘干5h之后,过70目筛,得到PLZTN+0.15wt%Ce+0.1wt%Mn二次球磨粉末;
(3)向步骤(2)所得PLZTN+0.15wt%Ce+0.1wt%Mn二次球磨粉末中加入质量浓度为6wt%的聚乙烯醇水溶液进行造粒,所述聚乙烯醇水溶液的质量为PLZTN+0.15wt%Ce+0.1wt%Mn二次球磨粉末质量的3%;造粒后过70目筛,在7MPa压力下压制成直径为10mm、厚度为1mm的生坯片;
(4)对生坯片进行排胶处理,以5℃/min的升温速率升温至825℃并保温2小时;然后将所获得的素坯进行高温烧结,以2℃/min的升温速率继续升温至1225℃并保温2小时,随炉冷却至室温后取出,得到压电陶瓷片;将压电陶瓷片丝网双面刷银,以5℃/min的升温速率升至625℃并保温30分钟,进行烧银;然后进行极化处理,在130℃硅油中以3.5kV/mm的极化场强极化30分钟,得到PLZTN+0.15wt%Ce+0.1wt%Mn压电陶瓷。
本实施例制备的PLZTN+0.15wt%Ce+0.1wt%Mn压电陶瓷断面SEM图如图1 (b)所示。
实施例2
一种Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3+0.30wt%CeO2+0.1wt%MnCO3压电陶瓷(x=0.3,y=0.1)的制备方法,按如下步骤进行:
(1)以Pb3O4、La2O3、ZrO2、TiO2、Nb2O5、CeO2、MnCO3粉体为原料,按照化学计量比称量混合后加入至球磨罐中,采用湿式球磨法进行球磨,以氧化锆:原料:乙醇为2:1:1的质量比球磨20小时,球磨机转速为450转/分钟;将球磨后的原料于60℃烘干6h之后,过60目筛,以2℃/min的升温速率升温至850℃,预烧保温处理4小时,合成PLZTN+0.30wt%Ce+0.1wt%Mn粉末;
(2)将步骤(1)合成的PLZTN+0.30wt%Ce+0.1wt%Mn粉末采用湿式球磨法进行二次球磨,以氧化锆:PLZTN+0.30wt%Ce+0.1wt%Mn粉末:乙醇为2:1:1的质量比球磨20小时,球磨机转速为450转/分钟;将球磨后的PLZTN+0.30wt%Ce+0.1wt%Mn粉末于60℃烘干6h之后,过60目筛,得到PLZTN+0.30wt%Ce+0.1wt%Mn二次球磨粉末;
(3)向步骤(2)所得PLZTN+0.30wt%Ce+0.1wt%Mn二次球磨粉末中加入质量浓度为5wt%的聚乙烯醇水溶液进行造粒,所述聚乙烯醇水溶液的质量为PLZTN+0.15wt%Ce+0.1wt%Mn二次球磨粉末质量的1%;造粒后过60目筛,在7MPa压力下压制成直径为10mm、厚度为1mm的生坯片;
(4)对生坯片进行排胶处理,以5℃/min的升温速率升温至800℃并保温4小时;然后将所获得的素坯进行高温烧结,以2℃/min的升温速率继续升温至1200℃并保温3小时,随炉冷却至室温后取出,得到压电陶瓷片;将压电陶瓷片丝网双面刷银,以5℃/min的升温速率升至600℃并保温30分钟,进行烧银;然后进行极化处理,在120℃硅油中以3kV/mm的极化场强极化30分钟,得到PLZTN+0.3wt%Ce+0.1wt%Mn压电陶瓷。
本实施例制备的PLZTN+0.30wt%Ce+0.1wt%Mn压电陶瓷断面SEM图如图1 (c)所示。
实施例3
一种Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3+0.45wt%CeO2+0.1wt%MnCO3压电陶瓷(x=0.45,y=0.1)的制备方法,按如下步骤进行:
(1)以Pb3O4、La2O3、ZrO2、TiO2、Nb2O5、CeO2、MnCO3粉体为原料,按照化学计量比称量混合后加入至球磨罐中,采用湿式球磨法进行球磨,以氧化锆:原料:乙醇为2:1:1的质量比球磨30小时,球磨机转速为350转/分钟;将球磨后的原料于80℃烘干4h之后,过80目筛,以2℃/min的升温速率升温至950℃,预烧保温处理2小时,合成PLZTN+0.45wt%Ce+0.1wt%Mn粉末;
(2)将步骤(1)合成的PLZTN+0.45wt%Ce+0.1wt%Mn粉末采用湿式球磨法进行二次球磨,以氧化锆:PLZTN+0.45wt%Ce+0.1wt%Mn粉末:乙醇为2:1:1的质量比球磨20小时,球磨机转速为450转/分钟;将球磨后的PLZTN+0.45wt%Ce+0.1wt%Mn粉末于80℃烘干4h之后,过80目筛,得到PLZTN+0.45wt%Ce+0.1wt%Mn二次球磨粉末;
(3)向步骤(2)所得PLZTN+0.45wt%Ce+0.1wt%Mn二次球磨粉末中加入质量浓度为8wt%的聚乙烯醇水溶液进行造粒,所述聚乙烯醇水溶液的质量为PLZTN+0.45wt%Ce+0.1wt%Mn二次球磨粉末质量的5%;造粒后过80目筛,在6MPa压力下压制成直径为10mm、厚度为1mm的生坯片;
(4)对生坯片进行排胶处理,以5℃/min的升温速率升温至850℃并保温3小时;然后将所获得的素坯进行高温烧结,以2℃/min的升温速率继续升温至1250℃并保温1小时,随炉冷却至室温后取出,得到压电陶瓷片;将压电陶瓷片丝网双面刷银,以5℃/min的升温速率升至600℃并保温30分钟,进行烧银;然后进行极化处理,在140℃硅油中以4kV/mm的极化场强极化30分钟,得到PLZTN+0.45wt%Ce+0.1wt%Mn压电陶瓷。
本实施例制备的PLZTN+0.45wt%Ce+0.1wt%Mn压电陶瓷断面SEM图如图1 (d)所示。
对比例1
一种Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3压电陶瓷(x=0,y=0)的制备方法,按如下步骤进行:
(1)以Pb3O4、La2O3、ZrO2、TiO2、Nb2O5粉体为原料,按照化学计量比称量混合后加入至球磨罐中,采用湿式球磨法进行球磨,以氧化锆:原料:乙醇为2:1:1的质量比球磨25小时,球磨机转速为400转/分钟;将球磨后的原料于70℃烘干5h之后,过70目筛,以2℃/min的升温速率升温至900℃,预烧保温处理3小时,合成PLZTN粉末;
(2)将步骤(1)合成的PLZTN粉末采用湿式球磨法进行二次球磨,以氧化锆:PLZTN粉末:乙醇为2:1:1的质量比球磨25小时,球磨机转速为400转/分钟;将球磨后的PLZTN+0.45wt%Ce+0.1wt%Mn粉末于70℃烘干5h之后,过70目筛,得到PLZTN二次球磨粉末;
(3)向步骤(2)所得PLZTN二次球磨粉末中加入质量浓度为6wt%的聚乙烯醇水溶液进行造粒,所述聚乙烯醇水溶液的质量为PLZTN二次球磨粉末质量的3%;造粒后过70目筛,在6MPa压力下压制成直径为10mm、厚度为1mm的生坯片;
(4)对陶瓷生坯片进行排胶处理,以5℃/min的升温速率升温至850℃并保温3小时;然后将所获得的素坯进行高温烧结,以2℃/min的升温速率继续升温至1250℃并保温1小时,随炉冷却至室温后取出,得到压电陶瓷片;将压电陶瓷片丝网双面刷银,以5℃/min的升温速率升至625℃并保温30分钟,进行烧银;然后进行极化处理,在130℃硅油中以3.5kV/mm的极化场强极化30分钟,得到Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3压电陶瓷。
对比例2
一种Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3+0.1wt%MnCO3压电陶瓷(x=0,y=0.1)的制备方法,按如下步骤进行:
(1)以Pb3O4、La2O3、ZrO2、TiO2、Nb2O5、MnCO3粉体为原料,按照化学计量比称量混合后加入至球磨罐中,采用湿式球磨法进行球磨,以氧化锆:原料:乙醇为2:1:1的质量比球磨25小时,球磨机转速为400转/分钟;将球磨后的原料于70℃烘干5h之后,过70目筛,以2℃/min的升温速率升温至900℃,预烧保温处理3小时,合成PLZTN+0.1wt%Mn粉末;
(2)将步骤(1)合成的PLZTN+0.1wt%Mn粉末采用湿式球磨法进行二次球磨,以氧化锆:PLZTN+0.1wt%Mn粉末:乙醇为2:1:1的质量比球磨25小时,球磨机转速为400转/分钟;将球磨后的PLZTN+0.1wt%Mn粉末于70℃烘干5h之后,过70目筛,得到PLZTN+0.1wt%Mn二次球磨粉末;
(3)向步骤(2)所得PLZTN+0.1wt%Mn二次球磨粉末中加入质量浓度为6wt%的聚乙烯醇水溶液进行造粒,所述聚乙烯醇水溶液的质量为PLZTN+0.1wt%Mn二次球磨粉末质量的3%;造粒后过70目筛,在7MPa压力下压制成直径为10mm、厚度为1mm的生坯片;
(4)对生坯片进行排胶处理,以5℃/min的升温速率升温至825℃并保温2小时;然后将所获得的素坯进行高温烧结,以2℃/min的升温速率继续升温至1225℃并保温2小时,随炉冷却至室温后取出,得到压电陶瓷片;将压电陶瓷片丝网双面刷银,以5℃/min的升温速率升至625℃并保温30分钟,进行烧银;然后进行极化处理,在130℃硅油中以3.5kV/mm的极化场强极化30分钟,得到PLZTN+0.1wt%Mn压电陶瓷。
本对比例制备的PLZTN+0.1wt%Mn压电陶瓷断面SEM图如图1 (c)所示。
由图1可知,本发明通过加入CeO2能够有效促进烧结,使晶粒尺寸增大,而当CeO2掺杂量为0.45wt%时,晶粒尺寸减小,这是由于过量的CeO2难以晶格而聚集在晶界,抑制了晶粒的进一步生长;同时,当CeO2掺杂量为0.30wt%时,陶瓷具有最为致密的微观形貌,缺陷较少。
实验例
采用铁电测试仪测试了实施例1~3和对比例1~2制备的陶瓷材料的电滞回线和应变曲线,采用准静态d 33测试仪测试了实施例1~3和对比例1~2制备的陶瓷材料的压电系数,采用阻抗分析仪测试了实施例1~3和对比例1~2制备的陶瓷材料的介电性能和谐振频率,并计算了其机械品质因数和机电耦合系数,结果分别如表1和图2~6所示,从对比实施例和对比例可以看出,MnCO3起到了典型的受体掺杂剂的作用,即降低了陶瓷基体的压电性能和介电性能,提高了陶瓷基体的机械品质因数,改善了损耗;实施例则表明了CeO2掺杂剂对陶瓷基的硬性掺杂和软性掺杂的复合作用。
表1、实施例1~3和对比例1~2的PLZTN+xwt%Ce+ywt%Mn压电陶瓷材料的各项性能
由表1可知,实施例1~3制备的压电陶瓷材料的ε r,RTP maxQ m均明显高于对比例1制备的压电陶瓷材料,说明本发明提供的铈锰共掺的锆钛酸铅基压电陶瓷通过铈锰复合掺杂使该PZT基陶瓷的压电系数和机械品质因数均得到了改善,具有优异的压电性能、较低的损耗和良好的应变温度稳定性,以及良好的机械品质。
由表1和图2可知,随着CeO2掺杂量的增加,对比例2和实施例1~3制备的压电陶瓷材料的居里温度从307.1℃逐渐降低至267.3℃,这是由于CeO2的加入破坏了晶格结构,氧八面体中心的阳离子具有较低的自由能,处于较深能量阱中,因此对应居里温度较高,CeO2掺杂使陶瓷内部产生了铅离子空位,氧八面体稳定性降低,因此居里温度逐渐降低。说明压电陶瓷材料的介电常数随CeO2掺杂量的增加先增加后降低,当CeO2掺杂量为0.30wt%时,介电常数最高,为1976;介电损耗则随着CeO2掺杂量的增加先降低后增加,当CeO2掺杂量为0.30wt%时,获得了同时最优异的介电性能,即ε r,RT值为1976,tanδ值为0.24%。Ce通常以Ce3+(1.07pm)和Ce4+(0.94pm)两种离子形式存在于固溶体中,既可以取代A位离子产生铅离子空位,又可以取代B位离子产生氧离子空位,因此可同时表现出硬性掺杂和软性掺杂的作用。
由表1和图3可知,CeO2掺杂后,对比例2和实施例1~3制备的压电陶瓷材料的极化率明显提高,CeO2掺杂量为0.30wt%时,最大极化率为41.4μC/cm2。这与CeO2掺杂对陶瓷物相结构的影响有关,即从自发极化方向少的四方向向自发极化方向较多的菱方相的转变。
由表1和图4可知,随着CeO2掺杂量的增加,对比例2和实施例1~3制备的压电陶瓷材料的最大正应变先增加后减小,在CeO2掺杂量为0.30wt%时取得最大值0.294%,反映了压电陶瓷的逆压电性能。
由表1和图5可知,对比例2和实施例1~3制备的压电陶瓷材料的d 33k p均随CeO2掺杂量的增加先增加后减小,这与应变值的变化趋势相一致,分别从598pC/N和0.660逐渐增加至638 pC/N和0.671,而后又逐渐降低。Q m也在CeO2掺杂量为0.30wt%时达到最大值568.18。这表明CeO2在对压电性能的调控方面主要起到了两性掺杂剂的作用。一方面,Ce4+取代B位离子产生氧离子空位,使晶胞收缩,阻碍畴壁运动,使损耗减小,Ce3+则可以使晶格内产生少量铅离子空位,改善陶瓷的压电性能;另一方面,CeO2在该发明中表现出良好的烧结助剂作用,当CeO2掺杂量为0.30wt%时,陶瓷样品具有最大的晶粒尺寸,微观形貌致密且均一,这有利于各项性能的同时改善。
由图6可知,在20~200℃温度范围内实施例2制备的压电陶瓷材料的应变变化率仅为10.4%,由此计算出的逆压电系数d 33 *在865~955pm/V范围内,表明实施例2制备的压电陶瓷材料具有优异的温度稳定性。

Claims (8)

1.一种铈锰共掺的锆钛酸铅基压电陶瓷材料,其特征在于,其化学组成为Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3+xwt%CeO2+ywt%MnCO3x=0.3,y=0.1,其中Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3为基体陶瓷粉体,x表示CeO2占基体陶瓷粉体的质量百分比,y表示MnCO3占基体陶瓷粉体的质量百分比,可简写为PLZTN+0.30wt%CeO2+0.1wt%MnCO3
2.权利要求1所述的铈锰共掺的锆钛酸铅基压电陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)按照Pb0.98La0.02(Zr0.54Ti0.43Nb0.03)O3+xwt%CeO2+ywt%MnCO3x=0.3,y=0.1的化学计量比准确称量原料Pb3O4、La2O3、ZrO2、TiO2、Nb2O5、CeO2、MnCO3,进行一次球磨处理,得到混合原料,将混合原料干燥、过筛、预烧处理,得到PLZTN+0.30wt%CeO2+0.1wt%MnCO3粉末;
(2)将PLZTN+0.30wt%CeO2+0.1wt%MnCO3粉末进行二次球磨、干燥、过筛,得到PLZTN+0.30wt%CeO2+0.1wt%MnCO3二次球磨粉末;
(3)向PLZTN+0.30wt%CeO2+0.1wt%MnCO3二次球磨粉末中加入聚乙烯醇水溶液进行造粒、过筛、压制成生坯片;
(4)将生坯片进行排胶和烧结处理,烧结所得陶瓷进行烧银、极化,得到铈锰共掺的锆钛酸铅基压电陶瓷材料。
3.如权利要求2所述的铈锰共掺的锆钛酸铅基压电陶瓷材料的制备方法,其特征在于,步骤(1)中,所述Pb3O4的质量过量1wt%。
4.如权利要求2所述的铈锰共掺的锆钛酸铅基压电陶瓷材料的制备方法,其特征在于,步骤(1)中,所述一次球磨步骤为:将Pb3O4、La2O3、ZrO2、TiO2、Nb2O5、CeO2、MnCO3原料按照化学计量比混合后加入至放有氧化锆和乙醇的球磨罐中进行球磨;所述一次球磨的时间为20~30小时;球磨过程中氧化锆、原料与乙醇的质量比为2:1:1,球磨机转速为350~450转/分钟。
5.如权利要求2所述的铈锰共掺的锆钛酸铅基压电陶瓷材料的制备方法,其特征在于,步骤(1)中,所述干燥的温度为60~80℃,干燥的时间为4~6小时;过筛所用筛网的孔径为60~80目;所述预烧的温度为850~950℃,预烧的保温时间为2~4小时。
6.如权利要求2所述的铈锰共掺的锆钛酸铅基压电陶瓷材料的制备方法,其特征在于,步骤(2)中,所述二次球磨步骤为:将PLZTN+0.30wt%CeO2+0.1wt%MnCO3粉末中加入至放有氧化锆和乙醇的球磨罐中进行球磨;所述二次球磨的球磨时间为20~30小时,球磨过程中氧化锆、PLZTN+0.30wt%CeO2+0.1wt%MnCO3粉末与乙醇的质量比为2:1:1,球磨机转速为350~450转/分钟;所述干燥的温度为60~80℃,干燥的时间为4~6小时;过筛所用筛网的孔径为60~80目。
7.如权利要求2所述的铈锰共掺的锆钛酸铅基压电陶瓷材料的制备方法,其特征在于,步骤(3)中,所述聚乙烯醇水溶液的质量分数为5~8wt%,所述聚乙烯醇水溶液的质量为PLZTN+0.30wt%CeO2+0.1wt%MnCO3二次球磨粉末质量的1~5%;过筛所用筛网的孔径为60~80目;所述生坯片的直径为10mm,厚度为1mm,压片的压力为6~8 MPa。
8.如权利要求2所述的铈锰共掺的锆钛酸铅基压电陶瓷材料的制备方法,其特征在于,步骤(4)中,所述排胶处理的温度为800~850℃,排胶处理的保温时间为1~3小时;烧结处理温度为1200~1250℃,升温速率为2℃/min,烧结处理的保温时间为1~3小时;烧银温度为600~650℃,烧银的保温时间为30分钟;极化温度为120~140℃,极化场强为3~4kV/mm,极化时间为30分钟。
CN202311629620.7A 2023-12-01 2023-12-01 一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法 Active CN117326866B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311629620.7A CN117326866B (zh) 2023-12-01 2023-12-01 一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311629620.7A CN117326866B (zh) 2023-12-01 2023-12-01 一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN117326866A CN117326866A (zh) 2024-01-02
CN117326866B true CN117326866B (zh) 2024-02-23

Family

ID=89293872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311629620.7A Active CN117326866B (zh) 2023-12-01 2023-12-01 一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117326866B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607632A (en) * 1995-05-30 1997-03-04 Rockwell International Corporation Method of fabricating PLZT piezoelectric ceramics
JP2005219992A (ja) * 2004-02-09 2005-08-18 Murata Mfg Co Ltd 圧電磁器組成物および圧電素子
CN102432290A (zh) * 2011-09-21 2012-05-02 天津大学 一种镧掺杂锆钛酸铅反铁电陶瓷及其制备方法
CN103308259A (zh) * 2012-03-07 2013-09-18 哈尔滨盛仕瑞达科技发展有限公司 一种叠层复合结构超声波探头
CN110143817A (zh) * 2019-05-29 2019-08-20 常州大学 一种硬脂酸铋包覆锆钛酸铅镧的粉末注射成型专用料及制备方法
CN113045313A (zh) * 2021-03-03 2021-06-29 常州大学 一种热固化粉末注射成型的锆钛酸铅镧压电陶瓷的制备方法
CN115321979A (zh) * 2022-08-01 2022-11-11 苏州思若梅克电子科技有限公司 一种多元素掺杂的铅基压电陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607632A (en) * 1995-05-30 1997-03-04 Rockwell International Corporation Method of fabricating PLZT piezoelectric ceramics
JP2005219992A (ja) * 2004-02-09 2005-08-18 Murata Mfg Co Ltd 圧電磁器組成物および圧電素子
CN102432290A (zh) * 2011-09-21 2012-05-02 天津大学 一种镧掺杂锆钛酸铅反铁电陶瓷及其制备方法
CN103308259A (zh) * 2012-03-07 2013-09-18 哈尔滨盛仕瑞达科技发展有限公司 一种叠层复合结构超声波探头
CN110143817A (zh) * 2019-05-29 2019-08-20 常州大学 一种硬脂酸铋包覆锆钛酸铅镧的粉末注射成型专用料及制备方法
CN113045313A (zh) * 2021-03-03 2021-06-29 常州大学 一种热固化粉末注射成型的锆钛酸铅镧压电陶瓷的制备方法
CN115321979A (zh) * 2022-08-01 2022-11-11 苏州思若梅克电子科技有限公司 一种多元素掺杂的铅基压电陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Electrical Properties of PSZT Doped with Mn and Ce Elements";XuejieWang et.al;《Applied Mechanics and Materials》;第2125-2128页 *
"Nb掺杂PLZT压电陶瓷性能研究";李红元等;《稀有金属材料与工程》;第37卷(第S1期);第273-276页 *

Also Published As

Publication number Publication date
CN117326866A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
JP3406611B2 (ja) 低い焼結温度で銀とともに焼成し得る低損失pztセラミック組成物およびそれを製造するための方法
US20130162108A1 (en) Piezoelectric ceramic and piezoelectric device
CN107117965B (zh) 掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
Hao et al. Relaxor behavior and dielectric properties of (La, Ta)-modified (K0. 5Na0. 5) NbO3 lead-free ceramics
CN103771855A (zh) 铌酸钾钠基无铅压电陶瓷材料
Kang et al. Enhanced electric field induced strain in B-site Sb doped BiFeO3-BaTiO3 lead free ceramics
CN101215168B (zh) 镁钽酸锆钛酸铅陶瓷的掺杂改性方法
Berksoy-Yavuz et al. Enhanced Soft Character of Crystallographically Textured Mn-Doped Binary 0.675 [Pb (Mg 1/3 Nb 2/3) O 3]–0.325 [PbTiO 3] Ceramics
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN107226698A (zh) 一种应用于水声换能器的压电陶瓷材料及制备方法
KR20130086093A (ko) 무연 압전 세라믹스 조성물
CN117326866B (zh) 一种铈锰共掺的锆钛酸铅基压电陶瓷材料及其制备方法
CN115286386B (zh) 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法
US5595677A (en) Nb-doped PLZT piezoelectric ceramics
KR100801477B1 (ko) 무연 세라믹스 및 그의 제조방법
CN103524129B (zh) 一种超声发射型换能器用压电陶瓷材料及其制备方法
US5607632A (en) Method of fabricating PLZT piezoelectric ceramics
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN115385675A (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN114292102A (zh) 一种铁酸铋-钛酸钡基无铅压电陶瓷材料及其制备方法
CN103435346B (zh) 一种超声接收型换能器用压电陶瓷材料
Yoon et al. Electromechanical Properties of Pb (Yb1/2Nb1/2) O3‐PbZrO3‐PbTiO3 Ceramics
Chae et al. Influence of the sintering temperature and Ag2O dopants on microstructure and piezoelectric properties of 0.94 (K0. 5Na0. 5) NbO3–0.06 LiNbO3 lead-free ceramics
KR100933718B1 (ko) Bnbt계 압전세라믹스 및 그의 제조방법
JP2000178068A (ja) 圧電磁器組成物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant