CN101041701B - 包括丙烯的聚合物及其应用 - Google Patents
包括丙烯的聚合物及其应用 Download PDFInfo
- Publication number
- CN101041701B CN101041701B CN2007101021024A CN200710102102A CN101041701B CN 101041701 B CN101041701 B CN 101041701B CN 2007101021024 A CN2007101021024 A CN 2007101021024A CN 200710102102 A CN200710102102 A CN 200710102102A CN 101041701 B CN101041701 B CN 101041701B
- Authority
- CN
- China
- Prior art keywords
- indenyl
- phenyl
- butyl
- polymkeric substance
- bases
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/04—Monomers containing three or four carbon atoms
- C08F210/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/943—Polymerization with metallocene catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
本发明涉及一种聚合烯烃的方法,包括在聚合体系中将具有三个或更多个碳原子的烯烃单体与催化剂化合物、活化剂、非必要的共聚单体和非必要的稀释剂或溶剂在温度高于聚合体系的浊点温度和压力不低于聚合体系浊点压力10MPa且低于150MPa的条件下接触,其中聚合体系包括存在的任何共聚存在的任何稀释剂或溶剂、聚合产品,和其中具有三个或更多个碳原子的烯烃单体的存在量为40wt%或更高。本发明还涉及这里生产的聚合物,它包括具有大于5个1,3部位缺陷数/10,000个单体单元、熔点70℃或更高、g′0.97或更高和Mw大于10,000的丙烯聚合物。
Description
本发明是申请日为2003年9月22日、申请号为03822543.3、发明名称为“在超临界条件生产聚合物的方法”的中国专利申请的分案申请。
优先权要求
本申请要求以2002年9月20日申请的USSN 60/412,541和2002年12月5日申请的USSN 60/431,077作为优先权。
技术领域
本申请涉及在超临界条件下聚合具有3或更多个碳原子的烯烃单体。
背景技术
自从1980年代中期,茂金属催化剂已用于高压反应器中-主要用于生产乙烯主链聚合物,包括乙烯与丙烯、丁烯和己烯中的一种或多种单体和其它特定性单体如4-甲基-1,5-己二烯的共聚物。例如授予Langhausen等人的US 5,756,608报道了用桥连茂金属催化剂聚合C2-C10 1-链烯的方法。然而已注意到高压法生产聚丙烯在大大高于丙烯临界点的温度下不实际且不可行。在高压体系中生产商业上有用的聚丙烯的方法可提供很多优点如提高的反应性或催化剂生产率、或较高的生产量或较短的停留时间等。同样地,为制备新的和改进的产品,也一直需要新的聚丙烯聚合物。因此,本领域中需要开发更高效的新方法和生产新的聚丙烯聚合物的新方法。
此外,还需要足以灵活使用其它单体的聚合方法。例如,高压法生产聚丁烯或聚己烯也是需要的。
授予Andtsjo等人的US 6,084,041公开了用承载的齐格勒-纳塔催化剂和茂金属催化剂在相对温和条件(90-100℃和低于6.89MPa压力)下超临界丙烯聚合方法。该专利未涉及在大大高于上述温度或压力下丙烯共聚方法。也未具体公开使用可溶性无载体茂金属催化剂的丙烯本体聚合法。
授予Mole等人的US 5,969,062描述了制备乙烯与α-烯烃的共聚物的方法,其中聚合在压力100-350MPa和温度200-280℃下进行。催化剂基于四甲基环戊二烯基钛配合物。
US 5,408,017公开了一种在聚合温度140-160℃或更高温度下使用的烯烃聚合催化剂。大体上,据说温度超过熔点温度和接近聚合物分解温度产生高生产率。
WO 93/11171公开了一种聚烯烃生产方法,包括将烯烃单体和茂金属催化剂体系连续加入反应器中。将单体进行连续聚合以提供单体-聚合物混合物。反应条件保持该混合物在压力低于体系的浊点压力下。这些条件产生了富聚合物和富单体相并保持混合物的温度高于聚合物熔点。
US 6,355,741公开了一种生产具有双模态分子量分布的聚烯烃的方法。该方法包括在第一个环路反应器中生产第一聚烯烃级份。该方法使该第一环路反应器与生产第二聚烯烃级份的第二环路反应器连接。至少一个环路使用超临界条件。
WO 92/14766描述了一种制备方法,包括如下步骤:(a)将烯烃单体以及具有茂金属组分和助催化剂组分的催化剂体系连续投入反应器中;(b)在聚合段反应器中在升高的压力下连续聚合该单体;(c)从反应器中连续卸出聚合物/单体混合物;(d)从熔化的聚合物中连续分离单体;(e)降压形成富单体和富聚合物相;和(f)从反应器中分离单体。
US 5,326,835描述了一种双模态聚乙烯的生产方法。该发明的第一个反应器阶段是环路反应器,其中聚合在惰性低沸点烃中进行。在环路反应器之后,将反应介质输送入气相反应器中,在该反应器中进行气相乙烯聚合。生产的聚合物显示具有双模态分子量分布。
CA 2,118,711(等同于DE 4,130,299)描述了用(CH3)2C(芴基)(环戊二烯基)二氯化锆配合物、甲基铝氧烷和三甲基铝在149℃和1510巴下聚合丙烯的方法。报道的催化剂活性为8380gPP/gIc′h。报道的Mw为2,000。CA 2,118,711还涉及用(CH3)2C(芴基)(环戊二烯基)二氯化锆配合物、甲基铝氧烷和三甲基铝在190℃和1508巴下聚合丙烯与乙烯的方法。报道的催化剂活性为24358g聚合物/gIc′h。报道的Mw为10,000。
其它感兴趣的参考文献包括:
Olefin Polymerization Using Highly Congested ansa-Metallocenes under High Pressure:Formation of Superhigh Molecular Weight Polyolefins,Suzuki等人,Macromolecules,2000,33,754-759、EP 1 123 226、WO 00 12572、WO 00 37514、EP 1 195 391、US 6,355,741,和Ethylene Bis(Indenyl)Zirconocenes...,Schaverien,C.J.等人,Organometallics,ACS,Columbus Ohio,vol20,no.16,August 2001,pg 3436-3452、WO 96/34023、WO 97/11098、US 5,084,534、US 2,852,501、WO 93/05082、EP129368B1、WO 97/45434、JP 96-208535 199660807、US 5,096,867、WO 96/12744、US 5,408,017、US 5,084,534、US 6,225,432、WO 02/090399、EP 1 195 391、WO02/50145、US2002 013440、WO01/46273,EP1 008 607、JP-1998-110003A、US 6,562,914和JP-1998-341202B2中。
另一些感兴趣的项目是从Borealis网址获得的摘要,它指出:
Barbo Loefgren,E.Kokko,L.Huhtanen,MLahelin,PetriLehmus,Udo Stehling″Metallocene-PP produced undersupercritical conditions.″lst Bluesky Conference on CatalyticOlef in Polymerization,17.-20.6.2002,Sorrrento,Italy.,2002.″在本体条件(100%丙烯),特别是在高温和在超临界条件下生产的mPP显示聚合物中的很小量LCB的流变行为特征。正是该特征可用于在工业有意义的条件下生产具有增强的熔体强度的mPP。″
技术内容概述
本发明涉及一种聚合烯烃的方法,包括在聚合体系中将具有三个或更多个碳原子的烯烃单体与催化剂化合物、活化剂、非必要的共聚单体和非必要的稀释剂或溶剂在温度高于聚合体系的浊点温度和压力不低于聚合体系浊点压力10MPa且低于150MPa的条件下接触,其中聚合体系包括单体、存在的任何共聚单体、存在的任何稀释或溶剂、聚合产品,和其中具有三个或更多个碳原子的烯烃单体的存在量为40wt%或更高。
本发明还涉及这里生产的聚合物,它包括具有大于5个1,3部位缺陷数(regio defect population)/10,000个单体单元、熔点145℃或更高、g′0.97或更低和Mw大于20,000的丙烯聚合物。
本发明还涉及这里生产的聚合物,它包括具有大于5个1,3部位缺陷数/10,000个单体单元、熔点145℃或更高、g′0.97或更高和Mw大于20,000的丙烯聚合物。
附图描述
图1显示转化率随催化剂浓度升高和压力升高而增加。
图2显示聚合物AchieveTM 1635的浊点等温线。
图3显示溶于本体丙烯中的聚合物PP45379的浊点等温线。
图4显示溶于本体丙烯中的聚合物PP4062的浊点等温线。
图5显示溶于本体丙烯中的聚合物AchieveTM 1635的浊点等值线。
图6显示溶于本体丙烯中的聚合物PP 45379的浊点等值线。
图7显示溶于本体丙烯中的聚合物PP4062的浊点等值线。
图8显示溶于本体丙烯中的聚合物45379、AchieveTM1635和PP4062的等值线对比。
图9、10和11显示与描述于J.Vladimir Oliveira,C.Dariva andJ.C.Pinto,Ind.Eng,Chem.Res.29,2000,4627中的文献值对比。
图12为PP1和PP-9的G′与Log Mw图。
定义
在本发明和权利要求中
1.催化剂体系定义为催化剂化合物与活化剂的组合。
2.浊点为一种压力,低于该压力聚合体系在给定温度下变浑浊,例如描述于J.Vladimir Oliveira,C.Dariva and J.C.Pinto,Ind.Eng,Chem.Res.29,2000,4627中。对本发明及其权利要求,浊点通过如下方法测定:将氦激光透射过在光电管上的浊点室中的选取的聚合体系,并对于给定温度记录光散射开始时的压力。
3.高级α-烯烃定义为具有4个或更多个碳原子的烯烃。
4.使用的术语“聚合”包括任何聚合反应如均聚和共聚。
5.共聚包括两种或多种单体的任何聚合反应。
6.使用例如CHEMICAL AND ENGINEERING NEWS,63(5),27(1985)中公开的元素周期表的新编号方案。
7.当涉及包括烯烃的聚合物,聚合物中存在的烯烃为烯烃的聚合形式。
8.低聚物定义为具有2-75个链节单元(mer unit)的组成。
9.聚合物定义为具有76或更多个链节单元的组成。
10.使用如下缩写:Me是甲基,Ph是苯基,Et是乙基,Pr是丙基,iPr是异丙基,n-Pr是正丙基,Bu是丁基,iBu是异丁基,tBu叔丁基,p-tBu是对叔丁基,TMS是三甲基甲硅烷基,TIBA是三异丁基铝,MAO是甲基铝氧烷,pMe是对甲基,flu是芴基,cp是环戊二烯基。
这里使用的术语“淤浆聚合”是指聚合工艺涉及至少两相,例如其中在液态超临界或蒸气聚合介质,或在液体/蒸气聚合介质中形成颗粒状固体聚合物(例如粒料)。
这里使用的术语″本体聚合″是指其中聚合介质主要为单体且包含低于50wt%溶剂或稀释剂的聚合工艺。
技术内容详述
本发明涉及一种聚合烯烃的方法,包括在聚合体系中将具有三个或更多个碳原子的烯烃单体与茂金属催化剂化合物、双酰胺催化剂化合物或双酰亚胺催化剂化合物、活化剂、非必要的共聚单体和非必要的稀释剂或溶剂在温度高于聚合体系的浊点温度和压力不低于聚合体系浊点压力10MPa且低于150MPa的条件下接触,其中聚合体系包括单体、存在的任何共聚单体、存在的任何稀释或溶剂、聚合产品,和其中烯烃单体在聚合体系中的存在量为40wt%或更高。
为进行说明,图2-10中给出了溶于丙烯(以18wt%)的具有不同分子量和结晶度的三种不同聚丙烯样品的浊点曲线。(Achieve 1635 PP为市购的茂金属催化等规立构聚丙烯,具有熔体流动指数(I10/I2-ASTM1238,190℃,2.16kg)32dg/min,购自ExxonMobil Chemical Company,Houston,Texas。ESCORENE PP 4062为市购的等规立构聚丙烯,具有MFI 3.7dg/min,购自ExxonMobil Chemical Company,Houston,Texas。PP 45379为使用负载茂金属在淤浆聚合工艺中生产的等规立构聚丙烯,具有MFI 300dg/min。
对本发明及其权利要求,聚合体系定义为单体+共聚单体+溶剂/稀释剂+聚合物。
在优选的实施方案中,聚合体系包括低于20wt%芳香烃。优选低于20wt%甲苯。
聚合体系的温度优选高于聚合体系的浊点温度3℃或更高,或者5℃或更高,或者10℃或更高,或者15℃或更高,或者20℃或更高,或者25℃或更高,或者30℃或更高。该温度进一步更优选为140至220℃,优选145至200℃,优选150至190℃,优选150至180℃,优选140至170℃。
聚合体系的压力优选不低于聚合体系浊点压力之下10MPa,优选不低于浊点压力之下5MPa,优选在浊点压力之上,优选在浊点压力之上5MPa或更高,优选50MPa或更高,优选100MPa。该压力优选为5MPa或更高,优选10MPa或更高,更优选至多350MPa。该压力进一步更优选为15至200MPa,优选20至150MPa,优选25至100MPa,优选30至75MPa,最优选25至50MPa。
溶剂和/或稀释剂在聚合体系中的存在量优选为0至50wt%,优选0至25wt%,优选0至20,优选0至15,优选0至10,优选0至5,优选0至4,优选0至3,优选0至2,优选0至1wt%。
在优选的实施方案中,烯烃单体在聚合体系中的存在量为45wt%或更多,优选50wt%或更多,优选55wt%或更多,优选60wt%或更多,优选65wt%或更多,优选70wt%或更多,优选75wt%或更多,优选80wt%或更多,优选85wt%或更多
在优选的实施方案中,丙烯在聚合体系中的存在量为45wt%或更多,优选50wt%或更多,优选55wt%或更多,优选60wt%或更多,优选65wt%或更多,优选70wt%或更多,优选75wt%或更多,优选80wt%或更多,优选85wt%或更多。
在优选的实施方案中,丙烯和至多30mol%的一种或多种共聚单体在聚合体系中的存在量为45wt%或更多,优选50wt%或更多,优选55wt%或更多,优选60wt%或更多,优选65wt%或更多,优选70wt%或更多,优选75wt%或更多,优选80wt%或更多,优选85wt%或更多。
[0042]在特别优选的实施方案中,聚合体系的温度为140至170℃,聚合体系的压力为15至60MPa。在另一些特别优选的实施方案中,聚合体系的温度为140至170℃,聚合体系的压力为20至60MPa。在另一些特别优选的实施方案中,聚合体系的温度为140至170℃,聚合体系的压力为25至60MPa。在另一些特别优选的实施方案中,聚合体系的温度为140至170℃,聚合体系的压力为30至60MPa。
本发明方法在超临界聚合介质中,优选在介质浊点之上进行。当物质的温度和压力高于其临界点时,该物质出现超临界状态。当压力或温度超过临界状态时,该流体处于超临界状态。该流体的临界压力和临界温度可通过将该流体与另一流体如稀释剂或另一单体结合而改变。因此,对本发明及其权利要求,超临界聚合介质为这样的状态,即聚合介质在高于介质的临界温度和临界压力的温度下存在。
对本发明及其权利要求,临界温度(Tc)和临界压力(Pc)可在Handbook of Chemistry and Physics,David R.Lide,Editor-in-Chief,82nd edition 2001-2002,CRC Press,LLC.New York,2001中找到。尤其是各种分子的Tc和Pc定义为:
名称 | Tc(°K) | Pc(MPa) | 名称 | Tc(°K) | Pc(MPa) |
己烷 | 507.6 | 3.025 | 丙烷 | 369.8 | 4.248 |
异丁烷 | 407.8 | 3.640 | 甲苯 | 591.8 | 4.11 |
乙烷 | 305.3 | 4.872 | 甲烷 | 190.56 | 4.599 |
环丁烷 | 460.0 | 4.98 | 丁烷 | 425.12 | 3.796 |
环戊烷 | 511.7 | 4.51 | 乙烯 | 282.34 | 5.041 |
1-丁烯 | 419.5 | 4.02 | 丙烯 | 364.9 | 4.60 |
1-戊烯 | 464.8 | 3.56 | 环戊烷 | 506.5 | 4.80 |
戊烷 | 469.7 | 3.370 | 异己烯 | 460.4 | 3.38 |
苯 | 562.05 | 4.895 | 环己烷 | 553.8 | 4.08 |
1-己烯 | 504.0 | 3.21 | 庚烷 | 540.2 | 2.74 |
273.2°k=0℃
在优选的实施方案,单体和溶剂/稀释剂的合并体积包括至少50wt%的净单体,优选至少60vol%的净单体,更优选至少70vol%,更优选至少80vol%,更优选至少90vol%,更优选至少95vol%。
在某些实施方案中,非必要的共聚单体、稀释剂或其它流体与单体一起存在与聚合介质中。稀释剂、共聚单体和其它流体各自改变介质的临界点;并因此改变特定介质处于超临界状的压力-温度范围。稀释剂、共聚单体和其它流体也各自改变聚合介质的相行为;并因此改变特定介质单相化的压力-温度范围。因此,双组分反应介质在高于其临界点下可具有两相。
当本发明中提及净丙烯的两相(其中溶解的聚丙烯在反应混合物浊点以上转化为单相)时,其实质是相行为更复杂,特别是当反应介质比净丙烯更复杂时。这种增加的复杂性可在反应介质含另外的组分如稀释剂时出现。
术语″两相聚合体系″或″两相聚合介质″是指具有两相且优选仅两相的体系。在某些实施方案中,将该两相称为“第一相”和“第二相”。在特定的实施方案中,第一相为或包括″单体相″,其包括单体并且还可包括溶剂和一些或所有聚合产品。然而,单体相优选不包括聚合物产品。换言之,例如在丙烯聚合中,该单体相可被称为″丙烯相″。在某些实施方案中,第二相为或包括固体相,该相可包括聚合产品,例如大单体和聚合物产品,但无单体例如丙烯。催化剂体系的任一部分都认为不是聚合体系的部分,尽管催化剂体系的某些部分可明显为固体,例如负载催化剂。此外,也想到催化剂体系的一些部分可以是在方法的某些实施方案中存在的液体或蒸气或蒸气/液体相的一部分。
一些实施方案按照这样的方式选取温度和压力:反应中生产的聚合物和溶解该产品的反应介质保持单相化,即高于反应介质与该聚合物的浊点。其它实施方案按照这样的方式温度和压力:反应介质保持超临界,但对于特定反应介质处于低于聚合物浊点的压力下。如此导致两相反应介质:富聚合物相和贫聚合物相。低于聚合物浊点的一些实施方案仍然在高于聚合物结晶温度下实施。
用于本发明的优选稀释剂包括一种或多种C1-C24链烷,如乙烷、丙烷、正丁烷、异丁烷、正戊烷、异戊烷、正己烷、甲苯、环己烷、二甲苯、混合己烷和环己烷。一些实施方案从烃稀释剂中选择一种稀释剂。在一些优选的实施方案中,稀释剂包括乙烷、丙烷和异丁烷中一种或多种。在一些优选的实施方案中,稀释剂可回收。
优选的稀释剂还包括C6至C150异链烷烃,优选C6至C100异链烷烃,优选C6至C25异链烷烃,更优选C8至C20异链烷烃。异链烷烃是指沿各链烷烃链的至少一部分具有C1-C10支链烷基的链烷烃链。更具体地,异链烷烃为饱和脂族烃,其分子具有与至少三个其它碳原子或至少一个侧链键合的至少一个碳原子(即具有一个或更多个叔或季碳原子的分子),并且优选其中每分子的碳原子总数为6至50个,在另一实施方案中为10至24个,在再一实施方案中为10至15个。通常将存在各碳原子数的各种异构体。该异链烷烃还可包括具有支化侧链的环烷烃(通常作为异链烷烃的次要组分)。优选这些异链烷烃的密度(ASTM 4052,15.6/15.6℃)为0.70至0.83g/cm3;倾点为-40℃或更低,优选-50℃或更低,粘度(ASTM 445,25℃)为0.5至20cSt(在25℃时);平均分子量为100至300g/mol。合适的异链烷烃可以商品名ISOPAR(ExxonMobil Chemical Company,Houston TX)市购,并描述于例如US6,197,285、3,818,105和3,439,088中,并以ISOPAR异链烷烃系列市购。其它合适的异链烷烃也可以商品名SHELLSOL(由Shell出售)、SOLTROL(由Chevron Phillips出售)和SASOL(由Sasol Limited出售)市购。SHELLSOL是Royal Dutch/Shell Group of Companies的产品,例如Shellsol TM(沸点=215-260℃)。SOLTROL是ChevronPhillips Chemical Co.LP的产品,例如SOLTROL 220(沸点=233-280℃)。SASOL是Sasol Limited(Johannesburg,South Africa)的产品,例如SASOL LPA-210,SASOL-47(沸点=238-274℃)。
在另一实施方案中,优选的稀释剂包括具有低于0.1%、优选低于0.01%芳烃的C5至C25正链烷,优选C5至C20正链烷,优选C5至C15正链烷。合适的正链烷烃可以商品名NORPAR(ExxonMobil ChemicalCompany,Houston TX)市购,并以NORPAR正链烷烃系列出售。在另一实施方案中,优选的稀释剂包括脱芳构化脂族烃,其包含正链烷烃、异链烷烃和环烷烃的混合物。它们通常为C4至C25、优选C5至C18、优选C5至C12正链烷烃、异链烷烃和环烷烃的混合物。它们包含非常低的芳香烃量,优选低于0.1,优选低于0.01的芳香烃。合适的脱芳构化脂族烃可以商品名EXXSOL市购(ExxonMobil Chemical Company,Houston TX),和以EXXSOL脱芳构化脂族烃系列市购。
在另一实施方案中,稀释剂包括至多20wt%C6至C14烯烃的低聚物和/或具有6至14个碳原子、更优选8至12个碳原子、更优选10个碳原子的线性烯烃的低聚物,该低聚物具有动态粘度10或更高(通过ASTMD 445测量);优选具有粘度指数(″VI″)100或更高,通过ASTM D-2270测量。
在另一实施方案中,稀释剂包括至多20wt%C20至C1500链烷烃、优选C40至C1000链烷烃、优选C50至C750链烷烃、优选C50至C500链烷烃的低聚物。在另一实施方案中,稀释剂包括至多20wt%的1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯、1-十一碳烯和1-十二碳烯的低聚物。这些低聚物可以SHF和SuperSyn PAO′s(ExxonMobil ChemicalCompany,Houston TX)市购。其它有用的低聚物包括以商品名SynfluidTM购自ChevronPhillips Chemical Co.in Pasedena Texas、DurasynTM购自BP Amoco Chemicals in London England、以商品名NexbaseTM购自Fortum Oil and Gas in Finland、以商品名SyntoneTM购自CromptonCorporation in Middlebury CN,USA、以商品名EMERYTM购自CognisCorporation in Ohio,USA的那些。
对于丙烯聚合的介质,优选的单体和稀释剂是在聚合温度和压力下可溶于丙烯和任何其它聚合组分并且对这些组分惰性的那些。
如上所述,这里描述的聚合方法在超临界条件下进行。此特征提供了压力和温度下限-反应介质的临界温度和压力。温度和压力还被上限限制。高温范围是聚丙烯的分解或最高温度。下面的温度(℃)是所有发明方法的适宜温度下限:130、140、150、160和170。下面的温度(℃)是所有发明方法的适宜温度上限:190、210、220、230、240和250。
在另一优选实施方案中,聚合温度为92至330℃,优选95至250C,更优选100至200℃,更优选105至150℃,更优选120至160℃,更优选120至140℃,更优选140至160℃。
理论上,压力可高至工业上可获得的高压。更实际地,压力受所得聚丙烯的所需性能限制。下面的压力(MPa)是所有发明方法的压力下限:4.62、5、10、15、30、50、60、80、100、120、140、150、160、180、200、250、260、300、330、350、400、440、500和600。下面的压力(MPa)是所有发明方法的压力上限:10、15,30、50、60、80、100、120、140、150、160、180、200、250、260、300、330、350、400、440、500、600、和1000MPa。
在优选的实施方案中,聚合压力为4.6至1000MPa,优选15至500MPa,更优选15至400MPa,更优选15至300MPa,更优选15至250MPa,更优选15至200MPa,更优选15至400MPa,更优选15至190MPa,更优选154.6至180MPa,更优选15至170MPa。在另一实施方案中,以上所有范围的下限为20MPa,而非15MPa。在另一实施方案中,以上所有范围的下限为25MPa,而非15MPa。在另一实施方案中,以上所有范围的下限为30MPa,而非15MPa。在另一实施方案中,以上所有范围的下限为40MPa,而非15MPa。在另一实施方案中,以上所有范围的下限为50MPa,而非15MPa。
预期任何温度范围可与任何压力范围结合,条件是是选取的温度和压力应使反应介质高于其浊点(或在浊点的10MPa内)。
温度高于140℃和压力100-150MPa是特别有用的。
单体
这里描述的方法可用于聚合具有三个或更更多个碳原子的任何单体。优选的单体包括丙烯、丁烯、己烯、癸烯和辛烯。
在优选的实施方案中,本发明方法用于聚合任何一种或多种不饱和单体。优选的单体包括C3至C100烯烃,优选C3至C60烯烃,优选C3至C40烯烃,优选C3至C20烯烃,优选C3至C12烯烃。在一些实施方案中,优选的单体包括线性、支化或环α-烯烃,优选C3至C100α-烯烃,优选C3至C60α-烯烃,优选C3至C40α-烯烃,优选C3至C20α-烯烃,优选C3至C12α-烯烃。优选的烯烃单体为丙烯、丁烯、戊烯、己烯、庚烯、辛烯、壬烯、癸烯、十二碳烯、4-甲基-戊烯-1、3-甲基戊烯-1、3,5,5-三甲基己烯-1和5-乙基-1-壬烯中的一种或多种。
在另一实施方案中,这里生产的聚合物为能够通过立体有择(stereospecific)和非立体有择催化剂聚合的一种或多种线性或支化C3至C30前手性α-烯烃或含C5至C30环的烯烃或其组合的共聚物。这里使用的前手性是指当使用立体有择催化剂聚合时有利于形成等规立构或间规立构聚合物的单体。
优选的单体还包括含至多30个碳原子的含芳香基单体。合适的含芳香基单体包括至少一个、优选1至3个芳香结构,更优选苯基、茚基、芴基或萘基部分。该含芳香基单体进一步包括至少一个可聚合双键,这样在聚合后芳香基结构将为聚合物主链的侧基。该含芳香基单体可进一步被包括但不限于C1至C10烷基的一个或更多个烃基取代。此外,两个相邻的取代基可连接形成环结构。优选的含芳香基单体包括至少一个附于可聚合烯烃部分上的芳香结构。特别优选的芳香单体包括苯乙烯、α-甲基苯乙烯、对烷基苯乙烯、乙烯基甲苯、乙烯基萘、烯丙基苯和茚,特别优选苯乙烯、对甲基苯乙烯、4-苯基-1-丁烯和烯丙基苯。
含非芳香环基团的单体也是优选的。这些单体可包含至多30个碳原子。合适的含非芳香环基团的单体优选具有悬挂于环结构上或为环结构一部分的至少一个可聚合烯烃基。该环结构还可被一个或更多个烃基例如但不限于C1至C10烷基取代。优选的含非芳香环基团的单体包括乙烯基环己烷、乙烯基环己烯、乙烯基降冰片烯、乙叉基降冰片烯、环戊二烯、环戊烯、环己烯、环丁烯、乙烯基金刚烷、降冰片烯等。
可用于本发明的优选二烯烃单体包括具有至少两个不饱和双键的优选C4至C30的任何烃结构,其中至少两个不饱和键容易通过立体有择或非立体有择催化剂引入聚合物中。进一步优选这些二烯烃选自α,ω-二烯烃单体(即二乙烯基单体)。该二烯烃单体更优选为线性二乙烯基单体,最优选含4至30个碳原子的那些。优选的二烯烃的例子包括丁二烯、戊二烯、己二烯、庚二烯、辛二烯、壬二烯、癸二烯、十一碳二烯、十二碳二烯、十三碳二烯、十四碳二烯、十五碳二烯、十六碳二烯、十七碳二烯、十八碳二烯、十九碳二烯、二十碳二烯、二十一碳二烯、二十二碳二烯、二十三碳二烯、二十四碳二烯、二十五碳二烯、二十六碳二烯、二十七碳二烯、二十八碳二烯、二十九碳二烯、三十碳二烯,特别优选的二烯烃包括1,6-庚二烯、1,7-辛二烯、1,8-壬二烯、1,9-癸二烯、1,10-十一碳二烯、1,11-十二碳二烯、1,12-十三碳二烯、1,13-十四碳二烯和低分子量聚丁二烯(Mw低于1000g/mol)。优选的环二烯烃包括在各个环位置有或无取代基的环戊二烯、乙烯基降冰片烯、降冰片二烯、乙叉基降冰片烯、二乙烯基苯、二环戊二烯或含高级环的二烯烃。
优选的极性不饱和单体的非限制性例子包括6-硝基-1-己烯、N-甲基烯丙基胺、N-烯丙基环戊基胺、N-烯丙基-己胺、甲基乙烯基酮、乙基乙烯基酮、5-己烯-2-酮、2-乙酰基-5-降冰片烯、7-顺甲氧基甲基-5-降冰片烯-2-酮、丙烯醛、2,2-二甲基-4-戊烯醛(pentenal)、十一碳烯醛、2,4-二甲基-2,6-己二烯醛、丙烯酸、乙烯基乙酸、4-戊烯酸、2,2-二甲基-4-戊烯酸、6-庚烯酸、反-2,4-戊二烯酸、2,6-庚二烯酸、九氟-1-己烯、烯丙醇、7-辛烯-1,2二醇、2-甲基-3-丁烯-1-醇。5-降冰片烯-2-腈、5-降冰片烯-2-醛(carboxaldehyde)、5-降冰片烯-2-羧酸、顺-5-降冰片烯-内-2,3-二羧酸、5-降冰片烯-2,2-二甲醇、顺-5-降冰片烯-内-2,3-二羧酸酐、5-降冰片烯-2-内-3-内-二甲醇、5-降冰片烯-2-内-3-外-二甲醇、5-降冰片烯-2-甲醇、5-降冰片烯-2-醇、乙酸5-降冰片烯-2-基酯、1-[2-(5-降冰片烯-2-基)乙基]-3,5,7,9,11,13,15-七环戊基五环[9.5.1.13,9.15,15.17,13]八硅氧烷、2-苯甲酰基5-降冰片烯、烯丙基1,1,2,2-四氟乙基醚、丙烯醛二甲基缩醛、丁二烯一氧化物、1,2-环氧-7-辛烯、1,2-环氧-9-癸烯、1,2-环氧-5-己烯、2-甲基-2-乙烯基环氧乙烷、烯丙基缩水甘油醚、2,5-二氢呋喃、2-环戊烯1-酮亚乙基缩酮、烯丙基二硫化物、丙烯酸乙酯、丙烯酸甲酯。
在优选的实施方案中,这里描述的方法可用于生产均聚物或共聚物(对于本发明和其权利要求,共聚物可包括两种、三种、四种或更多种不同单体单元)。这里生产的优选聚合物包括任何上述单体的均聚物或共聚物。在优选的实施方案中,聚合物为任何C3至C12α-烯烃的均聚物。聚合物优选为丙烯均聚物。在另一实施方案中,该聚合物为包括丙烯和乙烯的共聚物,该共聚物优选包括低于40wt%乙烯、更优选低于30wt%乙烯,优选该共聚物包括低于20wt%乙烯、更优选低于10wt%乙烯。在另一实施方案中,该聚合物为包括丙烯和一种或多种上述任何单体的共聚物。在另一优选实施方案中,该共聚物包括一种或多种二烯烃共聚单体,优选一种或多种C2至C40二烯烃。
在另一优选实施方案中,这里生产的聚合物为丙烯与一种或多种C2或C4至C20线性、支化或环单体,优选一种或多种C2或C4至C12线性、支化或环α-烯烃的共聚物。这里生产的聚合物优选为丙烯与乙烯、丁烯、戊烯、己烯、庚烯、辛烯、壬烯、癸烯、十二碳烯、4-甲基-戊烯-1、3-甲基戊烯-1和3,5,5-三甲基己烯-1中的一种或多种的共聚物。
在优选的实施方案中,这里描述的共聚物包括至少50mol%的第一单体和至多50mol%的其它单体。
在另一实施方案中,该共聚物包括:以40至95mol%、优选50至90mol%、更优选60至80mol%存在的第一单体,和以5至40mol%、优选10至60mol%,更优选20至40mol%存在的共聚单体,和以0至10mol%、更优选0.5至5mol%、更优选1至3mol%存在的第三单体(termonomer)。
在优选的实施方案中,第一单体包括一种或多种任何C3至C8线性、支化或环α-烯烃,包括丙烯、丁烯(和其所有异构体)、戊烯(和其所有异构体)、己烯(和其所有异构体)、庚烯(和其所有异构体)、和辛烯(和其所有异构体)。优选的单体包括丙烯、1-丁烯、1-己烯、1-辛烯、环己烯、环辛烯、己二烯、环己二烯等。
在优选的实施方案中,共聚单体包括一种或多种任何C2至C40线性、支化或环α-烯烃(条件是若存在乙烯,其含量为5mol%或更低),包括乙烯、丙烯、丁烯、戊烯、己烯、庚烯和辛烯、壬烯、癸烯、十一碳烯、十二碳烯、十六碳烯、丁二烯、己二烯、庚二烯、戊二烯、辛二烯、壬二烯、癸二烯、十二碳二烯、苯乙烯、3,5,5-三甲基己烯-1、3-甲基戊烯-1、4-甲基戊烯-1、环戊二烯和环己烯。
在优选的实施方案中,第三单体包括一种或多种任何C2至C40线性、支化或环α-烯烃,(条件是若存在乙烯,其含量为5mol%或更低),包括乙烯、丙烯、丁烯、戊烯、己烯、庚烯和辛烯、壬烯、癸烯、十一碳烯、十二碳烯、十六碳烯、丁二烯、己二烯、庚二烯、戊二烯、辛二烯、壬二烯、癸二烯、十二碳二烯、苯乙烯、3,5,5-三甲基己烯-1、3-甲基戊烯-1、4-甲基戊烯-1、环戊二烯和环己烯。
在优选的实施方案中,上述聚合物进一步包括至多10wt%、优选0.00001至1.0wt%、优选0.002至0.5wt%、进一步更优选0.003至0.2wt%的一种或多种二烯烃,按组成的总重量计。在一些实施方案中,将500ppm或更少、优选400ppm或更少、优选300ppm或更少的二烯烃加入聚合中。在其它实施方案中,将至少50ppm、或100ppm或更多、或150ppm或更多的二烯烃加入聚合中。
在另一实施方案中,这里描述的方法用于生产丙烯与其它单体单元如乙烯、其它α-烯烃、α-烯烃的二烯烃或非共轭二烯烃单体如C4-C20烯烃、C4-C20二烯烃、C4-C20环烯烃、C8-C20苯乙烯烯烃的共聚物。除了上述那些外,可用本发明方法共聚其它不饱和单体如苯乙烯、烷基取代苯乙烯、乙叉基降冰片烯、降冰片二烯、二环戊二烯、乙烯基环己烷、乙烯基环己烯、丙烯酸酯和其它烯属不饱和单体,包括其它环烯烃如环戊烯、降冰片烯和烷基取代的降冰片烯。共聚还可引入现场生产的或自另一来源加入的α-烯属大单体。一些发明实施方案将α-烯烃大单体的共聚限制至具有2000或更少链节单元的大单体。US6,300,451公开了很多有用的共聚单体。该文献将共聚单体称为″第二单体″。
在另一实施方案中,当需要丙烯共聚物时,可将如下单体与丙烯共聚:乙烯,丁-1-烯,己-1-烯,4-甲基戊-1-烯,二环戊二烯,降冰片烯,C4-C2000、C4-C200或C4-C40线性或支化α,ω-二烯烃,C4-C2000、C4-C200或C4-C40环烯烃,和C4-C2000、C4-C200或C4-C40线性或支化α-烯烃。
其它主要单体
一些本发明方法聚合丁-1-烯(Tc=146.5℃;Pc=3.56MPa)、戊-1-烯(Tc=191.8;Pc=3.56MPa)、己-1-烯(Tc=230.8;Pc=3.21MPa)和3-甲基-丁-1-烯(Tc=179.7;Pc=3.53MPa),使用这些单体或包括这些单体的混合物在超临界条件下作为反应介质或溶剂。这些方法可使用丁-1-烯、戊-1-烯或3-甲基-丁-1-烯中的至少一种作为单体。这些方法还可使用包括丁-1-烯、戊-1-烯或3-甲基-丁-1-烯的反应介质。这些方法可使用包含大于50wt%丁-1-烯、戊-1-烯或3-甲基-丁-1-烯的反应介质。当然,这些化合物可相互并与作为单体的丙烯、本体反应介质或这两者任意混合。
催化剂体系
这里描述的方法优选与包括单点型催化剂化合物和活化剂的催化剂体系一起使用。该催化剂体系定义为至少一种催化剂化合物与至少一种活化剂的组合。
催化剂化合物
可用于本发明方法的催化剂化合物包括可在超临界聚合条件下聚合单体的任何催化剂化合物。这些催化剂化合物一般在聚合温度下不分解。
在优选的实施方案中,这里描述的方法可使用能够聚合丙烯的任何烯烃聚合催化剂,若该催化剂在本发明聚合条件下具有足够的活性。因此,3-10族过渡金属可形成合适的聚合催化剂。合适的烯烃聚合催化剂将能够与链烯基不饱和官能团配位或缔合。
可用于实施本发明的特别有用的催化剂化合物包括如下通式I和II表示的茂金属催化剂化合物:
通式I:Lz(Cp)(Q)MmXn
其中Cp为取代或未取代的环戊二烯基环、取代或未取代的茚基环或取代或未取代的芴基环;
Q为含杂原子的基团;
Z为0或1;
L为连接Cp与Q的桥连基团;
M为4、5或6族过渡金属;
m为3、4、5或6;
X为卤素或取代或未取代的烃基、取代或未取代的烃氧基(hydrocarboxy)、或取代或未取代的含杂原子的基团;和
n为m减2。
在优选的实施方案,z为1,L由通式:RqSi-表示,其中各R独立地为取代或未取代的C1至C20烃基,q为1、2、3或4;Q为含氮的基团,优选被氮取代的烃基。
在优选的实施方案,茂金属催化剂化合物由通式II:Lz(Cp)2MmXn表示,其中:
各Cp独立地为取代或未取代的环戊二烯基环、取代或未取代的茚基环或取代或未取代的芴基环;
z为0或1;
L为连接Cp与Cp的桥连基团;
M为4、5或6族过渡金属;
m为3、4、5或6;
X为卤素或取代或未取代的烃基、取代或未取代的烃氧基、或取代或未取代的含杂原子的基团;和
n为m减2。
在优选的实施方案,z为1,L由通式:RqSi-表示,其中各R独立地为取代或未取代的C1至C20烃基,q为1、2、3或4;两个Cp基团为在2和4位被取代的茚基环。
对于本发明和其权利要求:
术语″烃基(hydrocarbyl radical)″在整个文件中有时与″烃基(hydrocarbyl)″互相交换使用。″烃基″包括C1-C50基团。这些基团可为线性、支化或环(包括多环)基团。这些基团可为饱和、部分不饱和或完全不饱和基团,当为环时可为芳香或非芳香环。
取代烃基为其中至少一个氢原子已被杂原子或被至少一个官能团如NR″2、OR″、PR″2,、SR″、BR″2、SiR″3、GeR″3等取代或已在烃基内插入至少一个非烃原子或基团如O、S、NR″、PR″、BR″、SiR″2、GeR″2等的基团,其中R″独立地为烃基或卤代烃基。官能团可为有机准金属基团。
卤代烃基为其中一个或更多个烃氢原子已被至少一个卤素或含卤素基团(如F,Cl,Br,I)取代的基团。
取代的卤代烃基为其中至少一个烃基氢原子或卤原子已被至少一个官能团如NR″2、OR″、PR″2、SR″、BR″2、SiR″3、GeR″3等取代或已在卤代烃基内插入至少一个非碳原子或基团如O、S、NR″、PR″、BR″、SiR″2、GeR″2等的基团,其中R″独立地为烃基或卤代烃基,条件是至少一种卤原子保留在原始卤代烃基上。官能团可为有机准金属基团。
在一些实施方案中,烃基独立地选自甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十烷基、二十一烷基、二十二烷基、二十三烷基、二十四烷基、二十五烷基、二十六烷基、二十七烷基、二十八烷基、二十九烷基、三十烷基、乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基、癸烯基、十一碳烯基、十二碳烯基、十三碳烯基、十四碳烯基、十五碳烯基、十六碳烯基、十七碳烯基、十八碳烯基、十九碳烯基、二十碳烯基、二十一碳烯基、二十二碳烯基、二十三碳烯基、二十四碳烯基、二十五碳烯基、二十六碳烯基、二十七碳烯基、二十八碳烯基、二十九碳烯基、三十碳烯基、丙炔基、丁炔基、戊炔基、己炔基、庚炔基、辛炔基、壬炔基、癸炔基、十一碳炔基、十二碳炔基、十三碳炔基、十四碳炔基、十五碳炔基、十六碳炔基、十七碳炔基、十八碳炔基、十九碳炔基、二十碳炔基、二十一碳炔基、二十二碳炔基、二十三碳炔基、二十四碳炔基、二十五碳炔基、二十六碳炔基、二十七碳炔基、二十八碳炔基、二十九碳炔基或三十碳炔基异构体。对于本发明公开,当列出基团时,表示该基团类型和当该基团进行上面定义的取代时形成的所有其它基团。列出的烷基、链烯基和链炔基包括所有异构体(其中包括合适的环异构体),例如丁基包括正丁基、2-甲基丙基、1-甲基丙基、叔丁基、和环丁基(和类似的取代环丙基);戊基包括正戊基、环戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1-乙基丙基和新戊基(和类似的取代环丁基和环丙基);丁烯基包括E和Z形式的1-丁烯基、2-丁烯基、3-丁烯基、1-甲基-1-丙烯基、1-甲基-2-丙烯基、2-甲基-1-丙烯基和2-甲基-2-丙烯基(并包括环丁烯基和环丙烯基)。具有取代基的环化合物包括所有异构体形式,例如甲基苯基包括邻-甲基苯基、间-甲基苯基和对-甲基苯基;二甲基苯基包括2,3-二甲基苯基、2,4-二甲基苯基、2,5-二甲基苯基、2,6-二苯基甲基、3,4-二甲基苯基和3,5-二甲基苯基。
优选的茂金属化合物包括基于单-或双-环戊二烯的一组合适催化剂。有用的化合物包括US 5,198,401和WO 92/00333中描述的含可夺取配体的过渡金属化合物。合成这些化合物的方法是已公开文献中公知的。
具有至少一个可夺取配体或可被烷基化使其包含至少一个可夺取配体以形成催化活性过渡金属阳离子的茂金属化合物的另一些描述出现在专利文献中。(例如EP-A-0 129 368,US4,871,705、4,937,299、5,324,800、5,470,993、5,491,246、5,512,693,EP-A-0 418 044,EP-A-0 591 756,WO-A-92/00333,WO-A-94/01471和WO 97/22635。)这些茂金属可描述为单-或双-环戊二烯基取代的3、4、5或6族过渡金属。过渡金属配体本身可被一个或更多个基团取代,这些配体可相互桥连或通过杂原子与过渡金属桥连。有用的实施方案是,其中环戊二烯基环(包括取代的环戊二烯基稠合环体系,如茚基、芴基、薁基或其取代类似物),当相互桥连时,在2位被低级烷基(C1-C6)取代(在稠合环中有或无类似的4-位取代基)。环戊二烯基环还可包括烷基、环烷基、芳基、烷芳基和芳烷基取代基,后者作为线性、支化或环结构(包括多环结构),例如US 5,278,264和5,304,614中描述的那些。在一些实施方案中,这些取代基应各自基本上具有烃基特征,并且一般包含至多30个碳原子,和可包含杂原子如1至5个非氢或非碳原子如N、S、O、P、Ge、B和Si。当其至少一个氢原子已被官能团取代或当至少一个非烃原子或基团已插入其内时,该化学实体被称为取代。
下面的文献描述了可用于本发明方法的催化剂体系:US06365763、US06365764、US06369254、US06384144、US06388118、US06391989、US06391991、US06399533、US06403737和US06410661。
可用于本发明的优选茂金属催化剂化合物由如下通式表示:
LALBLCiMDE
其中M为3-10族金属;LA为与M连接的取代或未取代的环戊二烯基或杂环戊二烯基配体;LB为对LA定义的配体或为与M连接的杂原子配体。LA和LB可通过含13-16族元素的桥相互连接。LCi为与M连接的非必要的中性非氧化性配体(i等于0至3);D和E为相同或不同的不稳定配体,非必要地相互桥连或桥连至LA或LB。各D和E连接至M。一些实施方案选取的M为3-6族过渡金属中的元素。其它实施方案选择的M为4族过渡金属。一些实施方案选择的M为Ti、Zr或Hf。LA和LB有时称为辅助配体,因为据信它们有助于使金属中心保持适于烯烃聚合的合适电子和几何结构。
官能团一般以至少两种方式束缚D和E:(1)在活化时,D-M或E-M连接破裂;和(2)单体插入其中,无论D-M或E-M中哪一个保留。一般选取D和E以使这些官能最大化。
环戊二烯基也包括稠合环体系,包括但不限于茚基和芴基。此外,使用的含杂原子的环或稠合环(其中一个非碳13-16族原子取代环碳原子)是在本说明书的术语“环戊二烯基”范围内。例如参见WO 98/37106(以1997年12月29日申请的美国专利申请No.08/999,214作为优先权)和WO 98/41530(以1998年3月13日申请的美国专利申请No.09/042,378作为优先权)的背景和说明。取代环戊二烯基结构可使一个或更多个氢原子被烃基、烃基甲硅烷基取代或具有类似的含杂原子的结构。烃基结构具体包括C1-C30线性、支化和环烷基,及芳香稠合和悬挂环。这些环也可被环结构取代。
优选的茂金属催化剂化合物还包括单-和双环戊二烯基化合物,如US 5,017,714、5,324,800以及WO 92/00333和EP-A-0591 756中列举和描述的。
另一些示例性茂金属型催化剂包括如下通式表示的那些茂金属化合物:
在上面的结构中,M1选自钛、锆、铪、钒、铌、钽、铬、钼或钨。R1和R2为相同或不同的,并选自氢原子、C1-C10烷基、C1-C10烷氧基、C6-C10芳基、C6-C10芳氧基、C2-C10链烯基、C2-C40链烯基、C7-C40芳烷基、C7-C40烷芳基、C8-C40芳基链烯基、OH基或卤原子;或非必要地被一个或更多个烃基、三(烃基)甲硅烷基或烃基、三(烃基)甲硅烷基烃基取代的共轭二烯烃。共轭二烯烃可含至多30个原子(不计算氢)。R3-R12为相同或不同的,并选自氢原子、卤原子、C1-C10卤代或非卤代烷基、C6-C10卤代或非卤代芳基、C2-C10卤代或非卤代链烯基、C7-C40卤代或非卤代芳烷基、C7-C40卤代或非卤代烷芳基、C7-C40卤代或非卤代芳基链烯基、-NR′2、-SR′、-OR′、-OSiR′3或-PR′2基团,其中R′为卤原子、C1-C10烷基或C6-C10芳基之一;或两个或更多个相邻的基团R5至R7与连接它们的原子一起形成一个或更多个环。
R13选自
-B(R14)-、-Al(R14)-、-Ge-、-Sn-、-O-、-S-、-SO-、-SO2-、-N(R14)-、-CO-、-P(R14)-、-P(O)(R14)-、-B(NR14R15)-和-B[N(SiR14R15R16)2]-。R14、R15和R16各自独立地选自氢、卤素、C1-C20烷基、C6-C30芳基、C1-C20烷氧基、C2-C20链烯基、C7-C40芳烷基、C7-C40芳链烯基和C7-C40烷芳基,或R14和R15和连接它们的原子一起形成环;和M3选自碳、硅、锗和锡。
或者,R13由如下通式表示:
其中R17至R24为对R1和R2定义的,或两个或更多个相邻的基团R17至R24(包括R20和R21)与连接它们的原子一起形成一个或更多个环;M2为碳、硅、锗或锡。R8、R9、R10、R11和R12可为相同或不同的,并具有对R3至R7给出的含义。
在优选的实施方案中,二甲基甲硅烷基(四甲基环戊二烯基)(十二烷基酰氨基)二氯化钛用作聚合催化剂。单环戊二烯基取代的茂金属催化剂化合物与过量作为活化剂的MAO形成优选的催化剂体系。通过这些体系生产的一些聚合物与在较低温度和压力下生产的那些聚合物相比可具有不同的立构规整度。
可用于本发明的优选催化剂化合物包括:
二甲基硅烷二基(siladiyl)(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-甲基,4-[3’,5’-二-叔丁基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-仲丁基,4-[3’,5’-二-叔丁基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-甲基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-甲基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-乙基,4-[3’,5’-双-三氟甲苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-甲基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-甲基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-甲基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-甲基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-甲基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-甲基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-乙基,4-[3′,5′-二-异丙苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-乙基,4-[3′,5′-二-异丙苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-异丙基,4-[3′,5′-二-异丙苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲基硅烷二基(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-正丁基,4-[3’,5’-二-苯基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
9-硅杂芴二基(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
二甲基硅烷二基(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-异丁基,4-[3’,5’-二-苯基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲基硅烷二基(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
9-硅杂芴二基(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化铪;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基铪;
二甲基硅烷二基(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-正丙基,4-[3’,5’-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-乙基,4-[3′,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-仲丁基,4-[3′,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-异丙基,4-[3′,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-正丁基,4-[3′,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-异丁基,4-[3′,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-仲丁基,4-[3′,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-异丁基,4-[3′,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲基硅烷二基(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-异丙基,4-[3′,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
9-硅杂芴二基(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二甲酰氨基硼烷(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-乙基,4-[3′,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二甲酰氨基硼烷(2-甲基,4-[3′,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5’-二-叔丁基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二甲酰氨基硼烷(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
二异丙基酰氨基硼烷(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-正丙基,4-[3′,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-乙基,4-[3′,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-异丙基,4-[3′,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-正丁基,4-[3′,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-异丙基,4-[3′,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
二异丙基酰氨基硼烷(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
二异丙基酰氨基硼烷(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-二-异丙基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二氯化锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3′,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3′,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3′,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3′,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2η4-1,4-二苯基-1,3-丁二烯;
双(三甲基甲硅烷基)酰氨基硼烷(2-甲基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-二-叔丁基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-双-三氟甲苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-二-异丙苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-甲基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-乙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丙基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-正丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-异丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;
双(三甲基甲硅烷基)酰氨基硼烷(2-仲丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆;和
双(三甲基甲硅烷基)酰氨基硼烷(2-叔丁基,4-[3’,5′-二-苯基苯基]茚基)2二甲基锆。
在另一实施方案中,钪催化剂配合物也可在有或无活化剂存在下用于本发明方法中,对于这些配合物的更多信息,参见US6403773。
在另一实施方案中,可使用非茂金属催化剂化合物,如双酰胺催化剂化合。双酰胺催化剂化合物定义为双齿双酰胺催化剂化合物、吡啶双酰胺催化剂化合物和胺双酰胺催化剂化合物.
双齿双酰胺催化剂化合物为如下通式表示的那些:
M为Ti、Zr或Hf。R为相同或不同的烷基、芳基、取代烷基、或取代芳基。X为相同或不同的烷基、芳基、或卤化物基团。取代烷基和芳基可为烷基-、芳基-和卤-取代的。当X为卤化物时,一般先将该双酰胺催化剂化合物化学改性以将X转化为可夺取配体。例如这可通过烷基化进行。
这里也可使用吡啶双酰胺催化剂化合物。吡啶双酰胺催化剂化合物是具有如下通式的那些化合物:
M为Ti、Zr或Hf。R为相同或不同的烷基、芳基、取代烷基、或取代芳基。X为相同或不同的烷基、芳基、或卤化物基团。取代烷基和芳基可为烷基-、芳基-和卤-取代的。当X为卤化物时,一般先将该吡啶双酰胺催化剂化合物化学改性以将X转化为可夺取配体。例如这可通过烷基化进行。
这里也可使用胺双酰胺催化剂化合物。胺双酰胺催化剂化合物是具有如下通式的那些化合物:
M为Ti、Zr或Hf。R和R′为相同或不同的烷基、芳基、取代烷基、或取代芳基。X为相同或不同的烷基、芳基、或卤化物基团。取代烷基和芳基可为烷基-、芳基-和卤-取代的。当X为卤化物时,一般先将该胺双酰胺催化剂化合物化学改性以将X转化为可夺取配体。例如这可通过烷基化进行。
另一些化合物适合作为用于本发明的烯烃聚合物催化剂。它们是3-10族化合物中的任何一种,这些化合物可通过配体夺取作用或键断裂作用转化为阳离子型催化剂,并借助非配位或弱配位阴离子稳定在该状态下。该阴离子应足够容易被不饱和单体如丙烯置换。
这里可使用的另外的催化剂化合物包括如下通式表示的双酰亚胺催化剂化合物:
其中M为8、9、10族金属,优选10族金属,优选Pd、Pt或Ni;
n为M的氧化态并可为2、3或4;
各X独立地为卤素或取代或未取代的烃基、取代或未取代的烃氧基(hydrocarboxy)或取代或未取代的含杂原子基团;
y为0或1;z为0或1,其中n=y+z+2;
R1为杂原子、取代的C1至C50烃基或未取代的C1至C50烃基;
R2为杂原子、取代的C1至C50烃基或未取代的C1至C50烃基;
R3为杂原子、取代的C1至C50烃基或未取代的C1至C50烃基,优选苯基;
R4为杂原子、取代的C1至C50烃基或未取代的C1至C50烃基,优选苯基,其中任何相邻的R基团可形成稠合环体系。
示例性的化合物包括专利文献中公开的那些。国际专利申请WO96/23010、WO 97/48735和Gibson等人的Chem.Comm.,pp.849-850(1998),公开了用于实施离子活化和聚合烯烃的8-10族化合物的二亚胺基配体。来自5-10族的金属的聚合催化剂化合物体系,其中活性中心被高度氧化并且通过低配位数多阴离子配体体系稳定,描述于US5,502,124和其分案US5,504,049中。还可参见US5,851,945的5族有机金属催化剂化合物和US6,294,495的含三齿配体的5-10族有机金属催化剂。可用于烯烃和乙烯基极性分子的可用离子化助催化剂活化的11族催化剂前体化合物描述于WO 99/30822中。
US5,318,935描述了能够进行α-烯烃聚合的4族金属桥连和非桥连双酰氨基催化剂化合物。用于烯烃聚合的桥连双(芳酰氨基)4族化合物由D.H.McConville等人描述于Organometallics 1995,14,5478-5480中。该参考文献给出了合成方法和化合物的特征。
进一步的工作出现在D.H.McConville等人,Macromolecules1996,29,5241-5243中,该工作描述用于1-己烯催化剂的桥连双(芳酰氨基)4族化合物。另一适合本发明的过渡金属化合物包括WO96/40805中描述的那些。阳离子型3族或镧系金属烯烃聚合配合物公开于未决US申请09/408,050(申请日1999年9月29日)中。单阴离子双齿配体和两个单阴离子配体稳定这里可使用的这些催化剂化合物。
文献描述了可用于本发明的很多另外的合适的催化剂化合物。例如,参见V.C.Gibson等人,″The Search for New-Generation OlefinPolymerization Catalysts:Life Beyond Metallocenes″,Angew.Chem.Int.Ed.,38,428-447(1999)。
混合物
在优选的实施方案中,本发明方法可同时或顺序使用两种或多种催化剂化合物。特别地,两种不同的催化剂化合物可用相同或不同的活化剂活化并将其同时或在不同的时间投入聚合体系中。
如上所述,本发明方法可使用催化剂化合物的混合物以选择聚合物所需的性质。混合催化剂体系可用于本发明中以改变或选择所需的物理或分子性能。例如,当用于本发明方法或本发明聚合物时,混合催化剂体系可控制等规聚丙烯的分子量分布。
混合催化剂体系可用于本发明聚合方法中以高催化剂生产率调节共聚物的组成分布。这些体系也可非必要地用于二烯烃引入,以用混合催化剂体系促进长链支化和乙烯基封端聚合物高含量。
在优选的实施方案中,可将两种或多种上述催化剂化合物一起使用。
在另一实施方案中,优选的催化剂组合包括任何两种或多种如下催化剂:
μ-二甲基甲硅烷基双(-2-甲基,4-苯基茚基)二氯化锆,
μ-二甲基甲硅烷基双(-2-甲基,4-苯基茚基)二甲基锆,
1,1’-双(4-三乙基甲硅烷基苯基)亚甲基-(环戊二烯基)(2,7-二叔丁基-9-芴基)二氯化铪,
1,1’-双(4-三乙基甲硅烷基苯基)亚甲基-(环戊二烯基)(2,7-二叔丁基-9-芴基)二甲基铪,
二甲基甲硅烷基(四甲基环戊二烯基)(十二烷基酰氨基)二甲基钛,
二甲基甲硅烷基(四甲基环戊二烯基)(十二烷基酰氨基)二氯化钛,
1,1’-双(4-三乙基甲硅烷基苯基)亚甲基-(环戊二烯基)(2,7-二叔丁基-9-芴基)二氯化铪,
1,1’-双(4-三乙基甲硅烷基苯基)亚甲基-(环戊二烯基)(2,7-二叔丁基-9-芴基)二甲基铪,
二甲基甲硅烷基双(茚基)二氯化铪,
二甲基甲硅烷基双(茚基)二甲基铪,
二甲基甲硅烷基双(2-甲基茚基)二氯化锆,
二甲基甲硅烷基双(2-甲基茚基)二甲基锆,
二甲基甲硅烷基双(2-甲基芴基)二氯化锆,
二甲基甲硅烷基双(2-甲基芴基)二甲基锆,
二甲基甲硅烷基双(2-甲基-5,7-丙基茚基)二氯化锆,
二甲基甲硅烷基双(2-甲基-5,7-丙基茚基)二甲基锆,
二甲基甲硅烷基双(2-甲基-5-苯基茚基)二氯化锆,
二甲基甲硅烷基双(2-甲基-5-苯基茚基)二甲基锆,
二甲基甲硅烷基双(2-乙基-5-苯基茚基)二氯化锆,
二甲基甲硅烷基双(2-乙基-5-苯基茚基)二甲基锆,
二甲基甲硅烷基双(2-甲基-5-联苯基茚基)二氯化锆,和
二甲基甲硅烷基双(2-甲基-5-联苯基茚基)二氯化二甲基锆。
特别优选的组合包括二甲基甲硅烷基(四甲基环戊二烯基)(十二烷基酰氨基)二氯化钛和μ-二甲基甲硅烷基双(-2-甲基,4-苯基茚基)二氯化锆。另一特别优选的组合包括二甲基甲硅烷基(四甲基环戊二烯基)(十二烷基酰氨基)甲基钛和μ-二甲基甲硅烷基双(-2-甲基,4-苯基茚基)二甲基锆。另一特别优选的组合包括1,1’-双(4-三乙基甲硅烷基苯基)亚甲基-(环戊二烯基)(2,7-二叔丁基-9-芴基)二氯化铪和μ-二甲基甲硅烷基双(-2-甲基,4-苯基茚基)二氯化锆。另一特别优选的组合包括1,1′-双(4-三乙基甲硅烷基苯基)亚甲基-(环戊二烯基)(2,7-二叔丁基-9-芴基)二甲基铪和μ-二甲基甲硅烷基双(-2-甲基,4-苯基茚基)二甲基锆。
在另一实施方案中,催化剂化合物不为二甲基次甲基(芴基)(环戊二烯基)二氯化锆[Me2C(flu)(cp)ZrCl2]。
催化剂化合物的活化剂和活化方法
将这里描述的催化剂化合物与用于本发明方法的活化剂结合。
活化剂定义为在金属配合物聚合不饱和单体如烯烃时提高速率的试剂的任何组合。活化剂也可影响聚合物的分子量、支化度、共聚单体含量和其它性能。
A:铝氧烷和烷基铝活化剂
在一个实施方案中,将一种或多种铝氧烷在本发明方法中用作活化剂。铝氧烷一般为含-A1(R)-O-亚单元的低聚化合物,其中R为烷基。铝氧烷的例子包括甲基铝氧烷(MAO)、改性甲基铝氧烷(MMAO)、乙基铝氧烷和异丁基铝氧烷。烷基铝氧烷和改性烷基铝氧烷适合作催化剂的活化剂,特别是当可夺取配体为卤化物时。也可使用不同铝氧烷和改性铝氧烷的混合物。对于进一步的描述,参见US4,665,208、4,952,540、5,041,584、5,091,352、5,206,199、5,204,419、4,874,734、4,924,018、4,908,463、4,968,827、5,329,032、5,248,801、5,235,081、5,157,137、5,103,031和EP 0561 476 A1、EP0 279 586 B1、EP0 516 476 A、EP0594 218 A1和WO 94/10180。
当活化剂为铝氧烷(改性或未改性的),一些实施方案相对于催化剂化合物(每金属催化点)选择5000倍摩尔过量A1/M最大活化剂量。最小的活化剂∶催化剂化合物一般为1∶1摩尔比。
铝氧烷可通过水解相应的三烷基铝化合物生产。MMAO可通过水解三甲基铝和高级三烷基铝如三异丁基铝来生产。MMAO一般更容易溶于脂族溶剂中并且在贮存期间更稳定。有很多制备铝氧烷和改性铝氧烷的方法,其非限制性例子描述于US 4,665,208,、4,952,540、5,091,352、5,206,199、5,204,419、4,874,734、4,924,018、4,908,463、4,968,827、5,308,815、5,329,032、5,248,801、5,235,081、5,157,137、5,103,031、5,391,793、5,391,529、5,693,838、5,731,253、5,731,451、5,744,656、5,847,177、5,854,166、5,856,256和5,939,346,和EP-A-0561 476、EP-B1-0 279 586、EP-A-0 594-218和EP-B1-0 586 665,以及WO 94/10180和WO 99/15534中,所有这些专利文献这里引入作为参考。可优选使用肉眼可见清澈的甲基铝氧烷。可将浑浊或胶凝的铝氧烷过滤生产清澈溶液,或可从浑浊溶液中滗出清澈铝氧烷。另一优选的铝氧烷为改性甲基铝氧烷(MMAO)助催化剂型3A(购自Akzo Chemicals,Inc.,商品名为改性甲基铝氧烷型3A,受专利US 5,041,584覆盖)。
可用作活化剂(或清除剂)的烷基铝或有机铝化合物包括三甲基铝、三乙基铝、三异丁基铝、三正己基铝和三正辛基铝;等。
B.离子化活化剂
在本发明范围内可使用离子化或化学计量活化剂(中性或离子的),如四(五氟苯基)硼三(正丁基)铵、三全氟苯基硼准金属前体或三全氟萘基硼准金属前体、多卤化杂硼烷阴离子(WO 98/43983)、硼酸(US5,942,459)或其组合作为本发明方法的活化剂。在本发明范围内中性或离子化合物也可单独使用或与铝氧烷或改性铝氧烷活化剂组合使用。
中性化学计量活化剂的例子包括三取代硼、碲、铝、镓和铟或其混合物。三个取代基各自独立地选自烷基、链烯基、卤素、取代烷基、芳基、芳基卤化物、烷氧基和卤化物。该三个取代基优选独立地选自卤素、单或多环(包括卤取代)芳基、烷基和链烯基化合物及其混合物,优选具有1至20个碳原子的链烯基、具有1至20个碳原子的烷基、具有1至20个碳原子的烷氧基和具有3至20个碳原子的芳基(包括取代芳基),该三个基团更优选为具有1至4个碳原子的烷基、苯基、萘基或其混合物。三个基团进一步更优选为卤化、优选氟化芳基。中性化学计量活化剂最优选为三全氟苯基硼或三全氟萘基硼。
离子化学计量活化剂化合物可包含活性质子,或与离子化合物的剩余离子缔合、但不配位或仅松散配位的一些其它阳离子。这些化合物及其类似物描述于EP-A-0570982、EP-A-0520732、、EP-A-0495375、、EP-B1-0500944、EP-A-0277003和EP-A-0277004,和US 5,153,157、5,198,401、5,066,741、5,206,197、5,241,025、5,384,299和5,502,124,和US专利申请08/285,380(申请日1994年8月3日),所有这些文献这里引入作为参考。
优选的活化剂包括阳离子和阴离子组分,并可由如下通式表示:
(Wf+)g(NCAh-)i
Wf+为具有电荷f+的阳离子组分
NCAh-为具有电荷h-的非配位阴离子
f为1至3的整数。
h为1至3的整数。
g和h通过关系式:(g)x(f)=(h)x(i)约束。
阳离子组分(Wf+)可包括Bronsted酸如质子或质子化路易斯碱或可还原的路易斯酸,其能够自类茂金属或含15族过渡金属催化剂化合物中质子化或夺取一部分基团如烷基或芳基,由此形成阳离子过渡金属物质。
在优选的实施方案,活化剂包括阳离子和阴离子组分,并可由如下通式表示:
(LB-Hf+)g(NCAh-)i
其中LB为中性路易斯碱;
H为氢;
NCAh-为具有电荷h-的非配位阴离子
f为1至3的整数。
h为1至3的整数。
g和h通过关系式:(g)x(f)=(h)x(i)约束。
活化阳离子(Wf+)可为Bronsted酸(LB-Hf+),其能够将质子给予过渡金属催化剂化合物,由此得到过渡金属阳离子,包括铵、氧鎓、鏻、甲硅烷基鎓(silylium)和其混合物,优选甲胺、苯胺、二甲胺、二乙胺、N-甲基苯胺、二苯基胺、三甲胺、三乙胺、N,N-二甲基苯胺、甲基二苯基胺、吡啶、对溴-N,N-二甲基苯胺、对硝基-N,N-二甲基苯胺的铵,源于三乙基膦、三苯基膦和二苯基膦的鏻,和源于醚二甲醚、二乙醚、四氢呋喃和二噁烷的氧鎓,源于硫醚如二乙基硫醚和四氢噻吩的锍,及其混合物。
阴离子组分(NCAh-)包括具有通式[Tj+Qk]h-的那些,其中j为1至3的整数;k为2至6的整数;k-j=h;T为选自元素周期表13或15族的元素,优选硼或铝,Q独立地为氢化物、桥连或非桥连二烷酰氨基、卤化物、烷氧化物、芳氧化物、烃基、取代烃基、卤代烃基、取代卤代烃基和卤取代烃基,所述Q具有至多20个碳原子,条件是出现的Q卤化物不多于1个。优选各Q为具有1至20个碳原子的氟化烃基,更优选各Q为氟化芳基,各Q最优选为五氟芳基。合适的(NCAh-)i的例子还包括例如US 5,447,895中公开的二硼化物,该文献这里全部引入作为参考。
另一些合适的阴离子是本领域已知的,并且将适于与本发明的催化剂一起使用。具体参见US5,278,119,以及综述性文章即S.H.Strauss,″The Search for Larger and More Weakly CoordinatingAnions″,Chem.Rev.,93,927-942(1993)和C.A.Reed,″Carboranes:A New Class of Weakly Coordinating Anions for StrongElectrophiles,Oxidants and Superacids″,Acc.Chem.Res.,31,133-139(1998)。
可在制备本发明改进的催化剂中用作活化助催化剂的硼化合物的说明性但非限制性例子是三取代铵盐如:四苯基硼酸三甲基铵、四苯基硼酸三乙基铵、四苯基硼酸三丙基铵、四苯基硼酸三(正丁基)铵、四苯基硼酸三(叔丁基)铵、四苯基硼酸N,N-二甲基苯胺鎓、四苯基硼酸N,N-二乙基苯胺鎓、四苯基硼酸N,N-二甲基-(2,4,6-三甲基苯胺鎓)、四(五氟苯基)硼酸三甲基铵、四(五氟苯基)硼酸三乙基铵、四(五氟苯基)硼酸三丙基铵、四(五氟苯基)硼酸三(正丁基)铵、四(五氟苯基)硼酸三(仲丁基)铵、四(五氟苯基)硼酸N,N-二甲基苯胺鎓、四(五氟苯基)硼酸N,N-二乙基苯胺鎓、四(五氟苯基)硼酸N,N-二甲基-(2,4,6-三甲基苯胺鎓)、四-(2,3,4,6-四氟苯基)硼酸三甲基铵、四-(2,3,4,6-四氟苯基)硼酸三乙基铵、四-(2,3,4,6-四氟苯基)硼酸三丙基铵、四-(2,3,4,6-四氟苯基)硼酸三(正丁基)铵、四-(2,3,4,6-四氟苯基)硼酸二甲基(叔丁基)铵、四-(2,3,4,6-四氟苯基)硼酸N,N-二甲基苯胺鎓、四-(2,3,4,6-四氟苯基)硼酸N,N-二乙基苯胺鎓和四-(2,3,4,6-四氟苯基)硼酸N,N-二甲基-(2,4,6-三甲基苯胺鎓);二烷基铵盐如:四(五氟苯基)硼酸二-(异丙基)铵和四(五氟苯基)硼酸二环己基铵;和三取代鏻盐如:四(五氟苯基)硼酸三苯基鏻、四(五氟苯基)硼酸三(邻甲苯基)鏻和四(五氟苯基)硼酸三(2,6-二甲苯基)鏻。最优选的离子化学计量活化剂为四(全氟苯基)硼酸N,N-二甲基苯胺鎓和/或四(五氟苯基)硼酸三苯基碳鎓。
在一个实施方案中,还注意到使用不含活性质子但能够产生类似茂金属催化剂阳离子和其非配位阴离子的离子化离子化合物的活化方法,并描述于EP-A-0426637、EP-A-0573403和US5,387,568中,这里全部引入作为参考。
术语″非配位阴离子″(NCA)是指阴离子,该阴离子不与所述阳离子配位,或仅与所述阳离子弱配位,如此保持将被中性路易斯碱置换的足够不稳定性。″相容″的非配位阴离子是在开始形成的配合物分解时不降解为中性的那些。可用于本发明的非配位阴离子是相容的、稳定金属阳离子(就平衡其离子电荷而言)、并且在聚合期间保持允许被烯属或炔属不饱和单体置换的足够的不稳定性的那些阴离子。这些助催化剂类型有时使用三异丁基铝或三辛基铝作为清除剂。
本发明方法还可使用开始时为路易斯酸但在与本发明的化合物反应时形成阳离子金属配合物和非配位阴离子或两性离子配合物的助催化剂化合物或活化剂化合物。例如三(五氟苯基)硼或铝起到夺取烃基或氢化物配体的作用,由此产生本发明阳离子金属配合物稳定性非配位阴离子,例如,为了说明类4族茂金属化合物,参见EP-A-0427697和EP-A-0520732。此外,参见EP-A-0495375的方法和化合物。对于用类4族化合物形成两性离子配合物,参见US 5,624,878、5,486,632和5,527,929。
另外的中性路易斯是本领域已知的并适合夺取形式阴离子配体。具体参见综述性论文:E.Y.-X.Chen and T.J.Marks,″Cocatalystsfor Metal-Catalyzed Olefin Polymerization:Activators,Activation Processes,and Structure-ActivityRelationships″,Chem.Rev.,100,1391-1434(2000)。
当催化剂化合物不含至少一个氢化物或烃基配体、但包含至少一个官能团配体如氯化物、酰氨基或烷氧基配体,并且这些官能团配体不能通过离子化阴离子前体化合物而进行分散的离子化夺取时,这些官能团配体可通过与有机金属化合物如锂或铝氢化物或烷基化物、烷基铝氧烷、Grignard试剂等进行已知的烷基化反应转化。对于描述在加入活化非配位阴离子前体化合物之前或同时烷基铝化物与类二卤化物取代茂金属化合物反应的类似方法,参见EP-A-0500944、EP-A1-0570982和EP-A1-0612768。
当非配位阴离子前体的阳离子为Bronsted酸如质子或质子化路易斯碱(不包括水),或可还原路易斯酸如二茂铁鎓或银阳离子,或碱金属或碱土金属阳离子如钠、镁或锂中的那些时,催化剂化合物与活化剂的摩尔比可为任何比例。上述活化剂化合物的组合物也可用于活化。例如可将三(全氟苯基)硼与甲基铝氧烷一起使用。
C.非离子化活化剂
活化剂通常为可起到离子化或非离子化活化剂的作用的强路易斯酸。上面描述的作为离子化活化剂的活化剂也可用作非离子化活化剂。
夺取形式中性配体(formal neutral ligand)可用对该形式中性配体显示亲合力的路易斯酸实现。这些路易斯酸一般为不饱和或若配位的。非离子化活化剂的例子包括R10(R11)3,其中R10为13族元素,R11为氢、烃基、取代烃基或官能团。通常,R11为芳烃或全氟化芳烃。非离子化活化剂也包括弱配位过渡金属化合物如低价烯烃配合物。
非离子化活化剂的非限制性例子包括BMe3、BEt3、B(iBu)3、BPh3、B(C6F5)3、AlMe3、AlEt3、Al(iBu)3、AlPh3、B(C6F5)3、铝氧烷、CuCl、Ni(1,5-环辛二烯)2。
另一些中性路易斯酸是本领域已知的并适合夺取形式中性配体,具体参见综述性论文:E.Y.-X.Chen and T.J.Marks,″Cocatalystsfor Metal-Catalyzed Olefin Polymerization:Activators,Activation Processes,and Structure-Activity Relationships″,Chem.Rev.,100,1391-1434(2000)。
优选的非离子化活化剂包括R10(R11)3,其中R10为13族元素,R11为氢、烃基、取代烃基或官能团。通常,R11为芳烃或全氟化芳烃。
更优选的非离子化活化剂包括B(R12)3,其中R12为芳烃或全氟化芳烃。进一步更优选的非离子化活化剂包B(C6H5)3和B(C6F5)3。特别优选的非离子化活化剂是B(C6F5)3。更优选的活化剂是基于全氟芳基硼烷和全氟芳基硼酸盐的离子化和非离子化活化剂如PhNMe2H+B(C6F5)4 -、(C6H5)3C+B(C6F5)4 -和B(C6F5)3。
可与这里公开的催化剂化合物一起使用的另外的优选活化剂包括WO 03/064433A1中公开的那些,该文献这里引入作为参考。
通常,催化剂化合物与活化剂按比例约1000∶1至约0.5∶1结合。在优选的实施方案中,催化剂化合物与活化剂按比例300∶1至约1∶1,优选约150∶1至约1∶1结合,对于硼烷、硼酸盐、铝酸盐等,该比例优选为约1∶1至约10∶1,对于烷基铝化合物(例如与水结合的二乙基氯化铝),该比例优选为约0.5∶1至约10∶1。
在优选的实施方案中,第一催化剂与第二或另外的催化剂的比例为5∶95至95∶5,优选25∶75至75∶25,更优选40∶60至60∶40。
通常,结合的催化剂化合物和活化剂按比例约1∶10,000至约1∶1结合,在其它实施方案中,结合的催化剂化合物和活化剂按比例1∶1至100∶1结合。当使用铝氧烷或烷基铝活化剂时,结合的催化剂化合物与活化剂的摩尔比为1∶5000至10∶1、另外1∶1000至10∶1、另外1∶500至2∶1;或1∶300至1∶1。当使用离子化活化剂时,结合的催化剂化合物与活化剂的摩尔比为10∶1至1∶10、5∶1至1∶5、2∶1至1∶2;或1.2∶1至1∶1。可使用多种活化剂,包括使用铝氧烷或烷基铝与离子化活化剂的混合物。
载体
在另一实施方案中,本发明的催化剂组合物包括负载材料或载体。例如可将一种或多种催化剂组分和/或一种或多种活化剂沉积到一种或多种载体上,与一种或多种载体接触、一起蒸发或键合,包括在一种或多种载体内,吸收或吸附入一种或多种载体内或载体上。
载体材料可为任何一种常规载体材料。优选载体材料为多孔载体材料如滑石、无机氧化物和无机氯化物。其它载体材料包括树脂载体材料如聚苯乙烯,官能化或交联有机载体如聚苯乙烯二乙烯基苯聚烯烃或聚合物配料,沸石,粘土,或任何其它有机或无机载体材料等,或其混合物。
优选的载体材料为无机氧化物,包括那些2、3、4、5、13或14族金属氧化物。优选的载体包括二氧化硅(可为脱水或不脱水的)、煅制二氧化硅、氧化铝(WO 99/60033)、硅-铝氧化物和其混合物。其它有用的载体包括氧化镁、二氧化钛、氧化锆、氯化镁(US5,965,477)、蒙脱石(EP-B 10 511 665)、页硅酸盐、沸石、滑石、粘土(US6,034,187)等。此外,可使用这些载体的组合物,如二氧化硅-铬、二氧化硅-氧化铝、二氧化硅-二氧化钛等。另外的载体材料包括EP 0 767 184 B1中描述的那些多孔丙烯酸类聚合物,该专利这里引入作为参考。其它载体包括例如PCT WO 99/47598中描述的纳米复合物、WO 99/48605中描述的气凝胶、US 5,972,510中描述的球晶和WO99/50311中描述的聚合物珠粒,这些专利这里引入作为参考。
优选载体材料、最优选无机氧化物具有表面积约10至约700m2/g、孔体积约0至约4.0cc/g和平均颗粒尺寸约0.02至约50um。载体材料的表面积最优选为约50至约500m2/g、孔体积约0至约3.5cc/g和平均颗粒尺寸约0.02至约20μm。载体材料表面积最优选为约100至约400m2/g、孔体积约0至约3.0cc/g和平均颗粒尺寸约0.02至约10μm。
非多孔载体也可在这里描述的方法中用作载体。例如,在优选的实施方案中,US 6590055中描述的非多孔煅制二氧化硅可用于实施本发明。
用于本发明方法的另外适宜活化剂包括已用酸(例如H2SO4)处理,然后与金属烷基化物(例如三乙基铝)结合的粘土,如US 6,531,552和EP 1 160 261 A1中描述的,该文献这里引入作为参考。
优选的活化剂包括也可为载体的离子交换分层硅酸盐,其具有酸性点至多-8.2pKa,酸性点的量等于用于中和而消耗的至少0.05mmol/g2,6-二甲基吡啶。优选的例子包括化学处理的绿土属硅酸盐、酸处理的绿土属硅酸盐。可用于本发明的离子交换分层硅酸盐的另外的优选例子包括具有1∶1型结构或2∶1型结构的分层硅酸盐,如″Clay Minerals(Nendo Kobutsu Gaku)″中的描述,Haruo Shiramizu著(AsakuraShoten于1995出版)。
包含1∶1层作为主构成层的离子交换分层硅酸盐的例子包括高岭土属硅酸盐如地开石、珍珠石、高岭石、变埃洛石、多水高岭土等,和蛇纹石属硅酸盐如纤蛇纹石、板蛇纹石、叶蛇纹石等。可用于本发明的离子交换分层硅酸盐的另外的优选例子包括含2∶2层作为主构成层的离子交换分层硅酸盐,包括绿土属硅酸盐如蒙脱石、贝得石、囊脱石、滑石粉、锂蒙脱石、stephensite等,蛭石属硅酸盐如蛭石等,云母属硅酸盐如云母、伊利石、绢云母、海绿石等,和绿坡缕石、海泡石、坡缕石、膨润土、叶蜡石、滑石、绿泥石等。将粘土与酸、盐、碱、氧化剂、还原剂或含可插入离子交换分层硅酸盐的层间的化合物的处理剂接触。插层是指在分层材料的层之间引入其它材料。将待引入的材料称为客体化合物。在这些处理中,酸处理或盐处理是特别优选的。然后将处理的粘土与活化剂化合物如TEAL和催化剂化合物接触以聚合烯烃。
在另一实施方案中,聚合体系包括低于5wt%、优选低于4wt%,更优选低于3wt%、更优选低于2wt%、更优选低于1wt%、更优选低于1000ppm、更优选低于750ppm、更优选低于500ppm、更优选低于250ppm、更优选低于100ppm、更优选低于50ppm、更优选低于10ppm的极性物质。极性物质包括含氧的化合物(铝氧烷除外)如醇、氧、酮、醛、酸、酯和醚。
在另一实施方案中,聚合体系包括低于5wt%、优选低于4wt%、更优选低于3wt%、更优选低于2wt%、更优选低于1wt%、更优选低于1000ppm、更优选低于750ppm、更优选低于500ppm、更优选低于250ppm、更优选低于100ppm、更优选低于50ppm、更优选低于10ppm的三甲基铝和/或三乙基铝。
在另一优选实施方案中,聚合体系包括甲基铝氧烷和低于5wt%三甲基铝和/或三乙基铝、优选低于4wt%、更优选低于3wt%、更优选低于2wt%、更优选低于1wt%、更优选低于1000ppm、更优选低于750ppm、更优选低于500ppm、更优选低于250ppm、更优选低于100ppm、更优选低于50ppm、更优选低于10ppm的三甲基铝和/或三乙基铝。
优选的发明方法可使用细分负载催化剂以制备具有大于1.0mol%己-1-烯的丙烯/1-己烯共聚物。除了细分载体外,本发明方法可使用煅制二氧化硅载体,其中载体颗粒直径可为200埃至1500埃,该颗粒尺寸为足以与反应介质形成胶体的小颗粒尺寸。
聚合方法
本发明涉及一种聚合烯烃的方法,包括将具有至少3个碳原子的一种或多种烯烃与催化剂化合物和活化剂在反应器中的超临界聚合介质中接触。本发明中可使用串联或并联的一个或更多个反应器。催化剂化合物和活化剂可以溶液或淤浆形式分别加入反应器中,刚好在反应器之前在线活化,或预活化并以活化的溶液或浆料形式抽入反应器中。优选的操作为在线活化的两种溶液。聚合在单一反应器操作中进行,其中将单体、共聚单体、催化剂/活化剂、清除剂和非必要的改性剂连续加入单一反应器中;或者在串联反应器操作中进行,其中将上述组分加入串联连接的两个或更多个反应器的每个反应器中。催化剂组分可加入串联的第一反应器中。催化剂组分也可加入两个反应器中,其中将一种组分加入第一反应器中并将另一组分加入其它反应器中。
本发明方法还包括在高压反应器中聚合丙烯,其中该反应器优选基本上不与聚合反应组分反应并且能够承受在聚合反应期间出现的高温和压力。在本发明中将这些反应器称为高压反应器。通过经受这些高压和温度,将使反应器保持丙烯在超临界条件下。合适的反应容器包括本领域已知的以维持超临界或其它高压乙烯聚合反应的那些反应容器。其中可例举的合适的反应器选自高压釜、管式反应器和高压釜/管式反应器。
这里描述的聚合方法很好地在高压釜和管式反应器中实施。通常,高压釜反应器具有长径比1∶1至20∶1,并装有高速(高达1500RPM)多桨叶搅拌器。高压釜压力一般大于6MPa、最高通常低于260MPa。当高压釜具有较低长颈比(例如低于4)时,一般将丙烯和其它单体在仅一个位置注入。但在高压釜中的两个或更多个位置注入也是可行的。例如,长径比为约4-20的反应器中,该反应器可包含至多6个不同的注入点。此外,在较大的高压釜中,一个或更多个侧面固定装置支持高速搅拌器。这些固定装置还可将高压釜分为两个或更多个段。在搅拌器上的混合桨叶在段与段之间可以不同,以在分离各段中很独立地形成柱塞流或返混。具有一个或更多个段的两个或更多个高压釜可串联以调节聚合物的结构。
管式反应器、优选能够在高达约350MPa下操作的管式反应器也特别适用于本发明。优选的管式反应器装有沿(管)反应段的外冷却装置和一个或更多个注入点。与在高压釜中类似,这些注入点起到单体(如丙烯)、一种或多种共聚单体、催化剂或其混合物的进入点的作用。在管式反应器中,外冷却装置可提高单体转化率(相对于高压釜),其中低表面:体积比阻碍任何明显除热。管反应器具有可沿管反向发送压力冲击波的专门出口阀。该冲击波有助于驱逐在运行期间在反应器壁上形成的任何聚合物残余物。解决壁沉积物的另一方法是将管加工为具有光滑、未抛光的内表面。优选的管反应器可在压力至多360MPa下操作,并优选具有长度100-2000米、内径通常低于10cm。
高压釜与管式反应器配对的反应器列也可用于本发明方法中。在此情况下,高压釜一般在管反应器之前。这些系统可在高压釜中和更特别地沿管长度的多个点注入另外催化剂和/或原料组分。
在高压釜和管反应器中,注入点的原料优选为室温或更低,以在最高操作温度内提供最大的聚合物生产量。在高压釜操作中,预加热器在开始时运行,但在反应达到稳定状态后,若第一混合段具有一些返混特征,则不运行。在管式反应器中,将带双夹套的管的第一部分加热而非冷却,并连续操作,因为管反应器本性上是柱塞流。在多段高压釜和管式反应器中,催化剂不仅在入口、也非必要地在沿反应器的一个或更多个点注入。在入口和其它注入点注入的催化剂料其含量、密度、浓度等可以相同或不同。选择不同的催化剂料可调节聚合物设计。在反应器出口阀处,压力降至低于出现临界相分离的水平。因此,下游容器包含富聚合物相和贫聚合物相。通常,在此容器中的条件保持超临界,且温度保持高于聚合物产品的结晶温度。在进入高压分离器(HPS)时将高压釜或管式反应器流出物降压。在基于丙烯的聚合中,相对于经典的高压聚乙烯工艺技术,可进行多种设计选择。
在反应器出口阀处,将压力降低以开始聚合物与未反应单体、共聚单体、丙烷等的分离。该容器中的温度将保持高于聚合物产品的结晶点,但压力可以低于临界点。所需的压力仅高至聚丙烯可在标准冷却水下冷凝就足够了。然后可用液体泵送系统(而非聚乙烯单元所需的超压缩机)将液体回收流回收入反应器中。该分离器中的相对低压力将降低液体聚合物相中的单体浓度,如此导致非常低的聚合速率。此聚合速率可低至足以在不加入催化剂毒物或“消灭剂”下操作该系统。若需要催化剂消灭剂(例如防止在高压回收中反应),则必须提供以例如通过使用固定床吸附剂或通过用烷基铝清除的方式从回收的富丙烯单体流中除去任何潜在的催化剂毒物。
此外,HPS可在高于丙烯临界压力但在丙烯/聚丙烯两相区内操作。若聚丙烯用整修的HPPE装置生产,则这是经济上优选的方法。将回收的HPS塔顶馏出物冷却并脱蜡,然后送回第二压缩机的吸入处,这是典型的HPPE装置操作。
来自该中间或高压容器的聚合物然后通过另一压力降低步骤进入低压分离器中。该容器的温度将保持高于聚合物熔点,这样来自容器的聚合物可以液体形式直接加入挤出机或静态混合器中。该容器中的压力将通过使用压缩机保持低压,以将未反应的单体等回收入上面提及的冷凝器和泵送系统中。
除了高压釜反应器、管式反应器或这些反应器组合的反应器外,环路型反应器也是可行的。在此类反应器中,在沿环路的不同点单体连续进入和聚合物连续流出,同时在线泵连续循环内容物(反应液体)。原料/产品离开速率控制总平均停留时间。冷却夹套从环路中除去反应热。工业上的环路反应器通常不在高压釜和管式反应器中遭遇的高压下操作。
工业上的低压环路反应器具有直径16至24英寸(41至61cm)和长度100至200+米。在丙烯溶液相中的单一超临界聚丙烯中的操作优选在压力大于25至30MPa下进行。在这些压力下,需要直径较小壁较厚的环路管,由此导致在泵周围(pump around)效率和最大允许反应器容量方面的潜在困难。
除了高压釜反应器、管式反应器或这些反应器的组合外,环路型反应器也可用于本发明中。在此类反应器中,在沿环路的不同点单体连续进入和聚合物连续流出,同时在线泵连续循环内容物(反应液体)。原料/产品离开速率控制总平均停留时间。冷却夹套从环路中除去反应热。US 6,355,741讨论了可用于实施本发明的具有至少两个环路的反应器,条件是一个或更两个反应器在超临界条件下操作。US5,326,835描述了据说以双模态方式生产聚合物的方法。该方法的第一个反应器阶段是其中聚合在惰性低沸点烃中进行的环路反应器。在环路反应器之后,将反应介质转移入进行气相聚合的气相反应器中。由于两种非常不同的环境形成聚合物,因此它显示双模态分子量分布。可改进此两阶段工艺以用本申请程序工作。例如第一阶段环路反应器可使用丙烯作为单体和丙烯基反应介质作为惰性低沸点烃。
WO 19/14766描述了一种方法,包括步骤:(a)将烯烃单体和具有茂金属组分和助催化剂组分的催化剂体系连续加入反应器中;(b)在高压下在该聚合段反应器中连续聚合单体;(c)从反应器中连续除去聚合物/单体混合物;(d)从熔融聚合物中连续分离单体;(e)降低压力形成富单体和富聚合物相;和(f)从反应器中分离单体。上述方法中描述的聚合分段工艺可用本发明的工艺条件实施。换言之,上述方法适合用于本发明中,条件是至少一个聚合段使丙烯或含丙烯的反应介质处于超临界状态。
通常,原料入口温度处于室温或低于室温下,以对在高于聚合物产品的结晶温度下操作的反应器中的放热反应提供冷却。为使主要含丙烯的原料通过催化剂产生明显的聚合物全同立构规整度,反应器的温度将高于145℃。
这里描述的方法可具有停留时间短至0.5秒和长达数小时。在优选的实施方案中,停留时间为1秒至30分钟,优选5秒至10分钟,更优选10秒至5分钟,更优选10秒至3分钟。在一些实施方案中,停留时间可选自10、30、45、50、60、120和150秒。最长停留时间可选自200、300、400、500或600秒。通常,本发明方法选择停留时间30-600秒;更特别地45-400或60-300秒。通常,本发明方法选择停留时间30秒至1小时;;更特别地30秒至30分钟;45-400或60-300秒。在另一实施方案中,丙烯聚合停留时间至多为5分钟。
在一些实施方案中,本发明方法以速率560-10000LB/w-Ft2生产聚合物。生产速率更特别地可为560-2000或600-1500。
将在反应时间期间收集的聚合物总量除以加入反应的丙烯的量得到转化率。用于该描述方法的单体至聚合物的转化率很高。本发明方法可在转化率60或更低、10-60、20-60、30-60、40-60、10-50、20-50、30-50、40-50、10-40、20-40、或30-40%转化率、优选大于30或大于40%转化率下进行。
催化剂生产率为828至5940kg PP/kg催化剂*hr。这些高催化剂生产率量可在聚合物产品中导致低残余固体含量。残余固体量低于总固体残余物的0.5wt%、特别地低于0.3wt%或更特别地低于0.1wt%是优选的。
共聚单体、双催化剂和聚合物结构
在具有用于催化剂和原料的多个注入点的反应器中,存在调节聚合物设计的可能性。使用一种以上具有不同分子量和结构性能的催化剂,可得到各种产品组成(例如双模态、与支化长链混合的线性组成)。
各种烯烃对于给定催化剂将具有不同的活性比,这样柱塞流型操作将允许组成逐渐变化(例如若无原料在反应器下游注入),或补偿该逐渐变化(若更多的反应单体优选沿管注入)。单段理想返混高压釜反应器将不允许逐渐变化聚合物组成,但使用多种催化剂仍然可行。操作串联或并联的两个这样的反应器,可允许通过改变加入第二个反应器中的新鲜原料的组成而采用设计。
催化剂消灭
将反应器流出物降压至明显低于浊点压力但该组合物仍为超临界状态的中等压力。这样可分离用于进一步纯化的富聚合物相与用于回收压缩返回至反应器中的富丙烯相。
此分离可在称为高压分离器(HPS)的容器中进行。由于该容器具有显著的停留时间,因此通过加入极性物质如水、醇或硬脂酸钠/钙消灭催化剂活性。消灭剂的选择和用量将取决于清除回收丙烯和共聚单体的需要以及产品的性能(若消灭剂具有低挥发性)。
此外,中间分离可在压力远低于临界点下进行,这样单体浓度和因此在高压分离器中的活性相对低。在该容器中相当小量的继续聚合不成为问题,这样可避免如在PE工艺中的加入催化剂减活化化合物,假定在高或中等压力回收系统中不出现不希望的反应。如不加入消灭化合物,则可排除消灭剂除去步骤。
丙烯原料的纯度选择
丙烯可以聚合物等级99.5%和化学等级约93至95%两个纯度水平购买。原料的选择确定自回收所需的冲洗程度,以避免原料被惰性丙烷过度稀释。反应器和HPS中存在的丙烷在给定温度下将升高浊点曲线压力,但因反应器中丙烯(或其它烯烃)浓度降低而降低聚合效率。因丙烷导致的浊点压力升高将使HPS的操作窗加宽。在丙烯与有限量的乙烯共聚中将注意到,因在HPS中存在低含量的乙烯而对升高浊点压力的类似影响。
低压分离器操作
LPS在刚好高于大气压下运行时,是轻组分、反应剂和其低聚物的简单的次要临界闪蒸(sub critical flash),唯一目的是生产进入最终挤出机或静态混合器的含低挥发性物质的聚合物。
聚合物产品
本发明还涉及具有大于5个1,3部位缺陷数/10,000个单体单元、熔点145℃或更高、g′0.97或更低和Mw大于20,000的丙烯聚合物。
本发明还涉及具有大于5个1,3部位缺陷数/10,000个单体单元、熔点70℃或更高(优选145℃或更高)、g′0.97或更高和Mw大于20,000的丙烯聚合物。
本发明还涉及具有大于5个1,3部位缺陷数/10,000个单体单元、熔点70℃或更高(优选145℃或更高)、g′0.97或更低和Mw大于10,000的包括丙烯和共聚单体的共聚物。
本发明方法生产的聚合物可为任何结构,包括嵌段、线性、辐射状、星型、支化或其组合。
一些发明实施方案生产具有独特微结构的聚丙烯聚合物和共聚物。可实施本发明方法以制备新颖的等规和间规立构组合物。在其它实施方案中,本发明方法制备结晶聚合物。
本发明方法生产具有熔点70至165℃和重均分子量2,000至1,000,000、10,000至1,000,000、15,000至500,000、25,000至250,000或35,000至150,000的丙烯聚合物。
本发明方法生产具有熔化热ΔHf 1-30J/g、2-20J/g或3-10J/g的聚合物。在另一实施方案中,本发明方法生产具有Hf至多110J/g、优选50至110J/g,更优选70至100J/g的聚合物。
这里描述的方法可生产具有很少或无来自催化剂或载体的灰份或残余物的聚合物。在优选的实施方案中,这里生产的聚合物包括低于1wt%二氧化硅、优选低于0.1wt%二氧化硅、优选低于100ppm二氧化硅、优选低于10ppm。
二烯烃可用作提高所得聚合物分子量并形成长支化链的的共聚单体。氯乙烯可用作提高聚合物中的乙烯基封端度的共聚单体。
本发明方法可生产长支化链聚丙烯。长支化链可使用本发明方法获得,无论是否使用另外的α,ω-二烯烃或其它二烯烃如乙烯基降冰片烯。在优选的实施方案,使用低于0.5wt%的二烯烃。此外,具有使用低于0.4wt%、0.3wt%、0.2wt%、1000ppm、500ppm、200ppm或100ppm的二烯烃的实施方案。
在一些实施方案中,本发明涉及使用α,ω-二烯烃作为共聚单体,并由使用该共聚单体获得烯烃/α,ω-二烯烃共聚物。此外,本发明涉及烯烃单体的共聚反应,其中该反应包括丙烯和乙烯与α,ω-二烯烃共聚和由该反应获得的共聚物。这些共聚物可用于各种制品包括例如薄膜、纤维如纺粘纤维和熔吹纤维、织物如无纺织物及其模塑制品中。更具体地,这些制品包括例如流延薄膜、取向薄膜、注塑制品、吹塑制品、发泡制品、泡沫层压制品和热成形制品。
应注意尽管线性α,ω-二烯烃是优选的,但也可使用其它二烯烃制备本发明的聚合物。这些二烯烃包括支化、取代的α,ω-二烯烃如2-甲基-1,9-癸二烯;环二烯烃如乙烯基降冰片烯;或芳香烃类如二乙烯基苯。
本发明的实施方案包括具有98至99.999wt%烯烃单元和0.001至2.000wt%α,ω-二烯烃单元的共聚物。共聚物实施方案可具有重均分子量50,000至2,000,000、结晶温度50℃至140℃、熔体流动速率(MFR)0.1dg/min至1500dg/min。注意到这些实施方案显示固有的高结晶温度;不需要另外加入成核剂。
在其它实施方案中,共聚物包括90至99.999wt%丙烯单元、0.000至8wt%除丙烯单元外的烯烃单元和0.001至2wt%α,ω-二烯烃单元。共聚物实施方案可具有重均分子量20,000至2,000,000、结晶温度(不加入外成核剂)115℃至135℃和MFR 0.1dg/min至100dg/min。伴随的烯烃可为C2-C20α-烯烃、二烯烃(和一种内烯烃)和其混合物中的任何一种。更具体地,烯烃包括乙烯、丁烯-1、戊烯-1、己烯-1、庚烯-1、4-甲基-1-戊烯、3-甲基-1-戊烯、4-甲基-1-己烯、5-甲基-1-己烯、1-辛烯、1-癸烯、1-十一碳烯和1-十二碳烯。
在超临界条件下制备的等规立构聚丙烯共聚物包括乙烯和C4-C12共聚单体如丁-1-烯、3-甲基戊-1-烯、己-1-烯、4-甲基戊-1-烯和辛-1-烯。本发明方法可在不使用溶剂下或在具有低溶剂浓度的环境中制备这些共聚物。
在优选的实施方案中,聚合物具有残余固含量低于0.5wt%、特别地低于0.3wt%,或更特别地低于0.1wt%总固体残余物是优选的。
生产的优选丙烯聚合物一般包括0至50wt%、优选1至40wt%、优选2至30wt%、优选4至20wt%、优选5至15wt%、优选5至10wt%的共聚单体,并具有如下一种或多种性能:
1.熔化热30J/g或更大,优选50J/g或更大,优选60或更大,优选70或更大,优选80或更大,优选90或更大,优选95或更大,优选100或更大,优选105或更大,或Hf为30J/g或更低,更优选20J/g或更低,优选0;
2.支化指数(g′avg)1.0或更低,优选0.98或更低,优选0.97或更低,优选0.96或更低,优选0.95或更低,优选0.94或更低,优选0.93或更低,更优选0.92或更低,更优选0.91或更低,更优选0.90或更低;
3.重均分子量(通过GPC DRI测定)20,000或更大,优选50,000至2,000,000,优选100,000至1,000,000,优选150,000至900,000,优选200,000至800,000;
4.熔体流速0.5dg/min或更大,优选0.7dg/min或更大,优选1.0dg/min或更大,优选0.1至1500dg/min;
5.百分结晶度(%X)30%或更大,优选40至50%;
6.熔点温度145℃或更高,优选150℃或更高,优选155℃或更高,优选145至160℃;
7.结晶温度25℃或更高,优选45℃或更高,优选65℃或更高,优选100℃;和
8.Mw/Mn(通过GPC DRI测定)约1至20,优选约1.5至8,优选2至4。
在另一实施方案中,这里生产的聚合物具有大于10个1,3-部位缺陷数/10,000个单体单元,优选大于15个,更优选大于20个,更优选大于25个1,3-部位缺陷数/10,000个单体单元。
在另一实施方案中,这里生产的聚合物具有熔体粘度低于10,000cp(在180℃下在Brookfield粘度仪上测量),对于一些实施方案(如包装物和粘结剂)优选1000至3000cp,对于其它应用优选5000至10,000。
配方
在一些实施方案中,本发明方法生产的聚合物可与一种或多种其它聚合物,包括但不限于热塑性聚合物和/或弹性体共混。
″热塑性聚合物″是可加热熔化、接着冷却而不感觉到性能变化的聚合物。热塑性聚合物一般包括但不限于聚烯烃、聚酰胺、聚酯、聚碳酸酯、聚砜、聚缩醛、聚内酯、丙烯腈-丁二烯-苯乙烯树脂、聚苯醚、聚苯硫醚、苯乙烯-丙烯腈树脂、苯乙烯马来酸酐、聚酰亚胺、芳香聚酮、或上述两种或多种的混合物。优选的聚烯烃包括但不限于含一种或多种线性、支化或环C2-C40烯烃的聚合物,优选含与一种或多种C2或C4-C40烯烃、优选C3至C20α-烯烃、更优选C3-C10α-烯烃共聚的丙烯的聚合物。更优选的聚烯烃包括但不限于含乙烯,包括但不限于与C3-C40烯烃、优选C3至C20α-烯烃、更优选丙烯和/或丁烯共聚的乙烯的聚合物。
″弹性体″包括所有天然和合成的橡胶,包括ASTM D1566)中定义的那些。优选的弹性体的例子包括、但不限于乙烯丙烯橡胶、乙烯丙烯二烯烃单体橡胶、苯乙烯类嵌段共聚物橡胶(包括SI、SIS、SB、SBS、SEBS等,其中S=苯乙烯,I=异丁烯,和B=丁二烯)、丁基橡胶、卤代丁基橡胶、异丁烯与对烷基苯乙烯的共聚物、异丁烯与对烷基苯乙烯的卤化共聚物、天然橡胶、聚异戊二烯、丁二烯与丙烯腈的共聚物、聚氯丁二烯、丙烯酸烷基酯橡胶、氯化异戊二烯橡胶、丙烯腈氯化异戊二烯橡胶、聚丁二烯橡胶(顺式和反式)。
在另一实施方案中,将本发明生产的聚合物与如下聚合物中的一种或多种组合:等规立构聚丙烯、高等规立构聚丙烯、间规立构聚丙烯、丙烯与乙烯和/或丁烯和/或己烯的无规共聚物、聚丁烯、乙烯乙酸乙烯酯、低密度聚乙烯(密度0.915至低于0.935g/cm3)、线性低密度聚乙烯、超低密度聚乙烯(密度0.86至低于0.90g/cm3)、极低密度聚乙烯(密度0.90至低于0.915g/cm3)、中密度聚乙烯(密度0.935至低于0.945g/cm3)、高密度聚乙烯(密度0.945至0.98g/cm3)、乙烯乙酸乙烯酯、乙烯丙烯酸甲酯、丙烯酸共聚物、聚甲基丙烯酸甲酯或可通过高压自由基法聚合的任何其它聚合物、聚氯乙烯、聚丁烯-1、等规立构聚丁烯、ABS树脂、乙烯-丙烯橡胶(EPR)、硫化EPR,EPDM,嵌段共聚物、苯乙烯类嵌段共聚物、聚酰胺、聚碳酸酯、PET树脂、交联聚乙烯、为EVA水解产品的聚合物(等同于乙烯乙烯醇共聚物)、芳香单体聚合物如聚苯乙烯、聚-1酯、聚缩醛、聚偏二氟乙烯、聚乙二醇和/或聚异丁烯。
在另一实施方案中,将弹性体与本发明生产的聚合物共混形成橡胶增韧组合物。在一些特别优选的实施方案中,橡胶增韧组合物为两(或多)相体系,其中弹性体为不连续相,本发明生产的聚合物为连续相。该共混物可与增粘剂和/或这里描述的其它添加剂组合。
在另一实施方案中,本发明生产的聚合物可与弹性体或其它软质聚合物共混形成抗冲击共聚物。在一些实施方案中,该共混物为两(或多)相体系,其中弹性体或软质聚合物为不连续相,本发明生产的聚合物为连续相。该共混物可与增粘剂和/或这里描述的其它添加剂组合。
在一些实施方案中,将上述本发明聚合物与茂金属聚乙烯(mPEs)或茂金属聚丙烯(mPPs)结合。该mPE和mPP均聚物或共聚物一般用与铝氧烷活化剂和/或非配位阴离子结合的单-或双环戊二烯基过渡金属催化剂在溶液、淤浆、高压或气相中生产。催化剂和活化剂可以被负载或不负载,环戊二烯基环可被取代或非取代。用此类催化剂/活化剂组合物生产的多种市购产品可以商品名EXCEEDTM、ACHIEVETM和EXACTSTM从ExxonMobil Chemical Company in Baytown,Texas购买。对于生产此类均聚物和共聚物的方法和催化剂/活化剂的更多信息,参见WO 94/26816;WO 94/03506;EPA 277,003;EPA 277,004;US5,153,157;US 5,198,401;US 5,240,894;US 5,017,714;CA 1,268,753;US 5,324,800;EPA 129,368;US 5,264,405;EPA 520,732;WO 92 00333;US 5,096,867;US5,507,475;EPA 426 637;EPA 573403;EPA520 732;EPA495 375;EPA500 944;EPA570 982;WO91/09882;WO94/03506和US 5,055,438。
在一些实施方案中,本发明的聚合物在上述共混物中的存在量,按共混物中聚合物的重量计,为10至99wt%,优选20至95wt%,进一步更优选至少30至90wt%,进一步更优选至少40至90wt%,进一步更优选至少50至90wt%,进一步更优选至少60至90wt%,进一步更优选至少70至90wt%。
上述共混物可通过如下方法生产:(a)将本发明的聚合物与一种或多种聚合物(如上所述的)混合,(b)将反应器串联连接以在现场制备反应器共混物,或(c)在相同的反应器中使用一种以上的催化剂生产多种聚合物。这些聚合物可在投入挤出机中之前混合在一起或可在挤出机中混合。
可将上述任一聚合物官能化。官能化是指聚合物已与不饱和酸或酸酐接触。优选的不饱和酸或酸酐包括含至少一个双键和至少一个羰基的任何不饱和有机化合物。代表性的酸包括羧酸、酸酐、酯和其金属和非金属盐。有机化合物优选包含与羰基(-C=O)共轭的烯属不饱和键。例子包括马来酸、富马酸、丙烯酸、甲基丙烯酸、衣康酸、巴豆酸、α-甲基巴豆酸和肉桂酸、及其酸酐、酯和盐衍生物。特别优选马来酸酐。不饱和酸或酸酐的存在量为优选约0.1wt%至约5wt%、优选约0.5wt%至约4wt%、进一步更优选约1至约3wt%,按烃树脂和不饱和羧酸或酸酐的重量计。
增粘剂可与本发明的聚合物共混和/或与通过本发明方法生产的聚合物的共混物(如上所述)共混。合适的增粘剂的例子包括但不限于脂族烃树脂、芳烃改性脂族烃树脂、氢化聚环戊二烯树脂、聚环戊二烯树脂、松香、脂松香、木松香、木松香酯、妥尔油松香、妥尔油松香酯、多萜烯、芳香改性多萜烯、萜烯酚醛、芳烃改性氢化聚环戊二烯树脂、氢化脂族树脂、氢化脂族芳烃树脂、氢化萜烯和改性萜烯,以及氢化松香酯。在一些实施方案中,增粘剂为氢化的。在其它实施方案中,增粘剂为非极性的。(非极性增粘剂基本上无带有极性基团的单体)。优选不存在极性基团;然而,若存在,其存在量优选至多5wt%,优选不超过2wt%,进一步更优选不超过0.5wt%。)。在一些实施方案中,增粘剂具有软化点(Ring and Ball,通过ASTM E-28测定)80℃至140℃,优选100℃至130℃。在一些实施方案中,将增粘剂官能化。官能化是指烃树脂已与不饱和酸或酸酐接触。优选的不饱和酸或酸酐包括含至少一个双键和至少一个羰基的任何不饱和有机化合物。代表性的酸包括羧酸、酸酐、酯和其金属和非金属盐。有机化合物优选包含与羰基(-C=O)共轭的烯属不饱和键。例子包括马来酸、富马酸、丙烯酸、甲基丙烯酸、衣康酸、巴豆酸、α-甲基巴豆酸和肉桂酸、及其酸酐、酯和盐衍生物。特别优选马来酸酐。不饱和酸或酸酐的存在量优选为约0.1wt%至约10wt%、优选约0.5wt%至约7wt%、进一步更优选约1至约4wt%,按烃树脂和不饱和酸或酸酐的重量计。
增粘剂,若存在,其存在量按共混物的重量计,通常为约1wt%至约50wt%,更优选10wt%至40wt%,进一步更优选20wt%至40wt%。然而,优选不存在增粘剂,或若存在,其存在量低于10wt%,优选低于5wt%,更优选低于1wt%。
在另一实施方案中,本发明的聚合物和/或其共混物进一步包括交联剂。优选的交联剂包括具有可与酸或酸酐反应的官能团的那些。优选的交联剂包括醇、多醇、胺、二胺和/或三胺。可用于本发明的交联剂的例子包括多胺如乙二胺和二亚乙基三胺、己二胺、二乙基aniino丙胺和/或薄荷烷二胺。
在另一实施方案中,本发明的聚合物和/或其共混物进一步包括本领域已知的典型添加剂如填料、空化剂(cavitating agents)、抗氧剂、表面活性剂、助剂、增塑剂、结块剂、抗结块剂、有色母料、颜料、染料、加工助剂、UV稳定剂、中和剂、润滑剂、蜡和/或成核剂。这些添加剂通常可以本领域公知的有效量,如0.001wt%至10wt%存在。
优选的填料、空化剂和/或成核剂包括二氧化钛、碳酸钙、硫酸钡、硅石、二氧化硅、炭黑、砂子、玻璃珠、矿物聚集体、滑石、粘土等。
优选的抗氧剂包括酚类抗氧剂如Irganox 1010、Irganox 1076,都购自Ciba-Geigy。优选的油包括链烷或环烷油如Primol 352或Primol 876,购自ExxonMobil Chemical France,S.A.in Paris,France。
更优选的油包括脂族环烷油、白油等。
优选的增塑剂和/或助剂包括矿物油、聚丁烯、邻苯二甲酸酯等。特别优选的增塑剂包括邻苯二甲酸酯如二异十一烷基邻苯二甲酸酯(DIUP)、二异壬基邻苯二甲酸酯(DINP)、二辛基邻苯二甲酸酯(DOP)和聚丁烯,如Parapol 950和Parapol 1300,购自ExxonMobil ChemicalCompany in Houston Texas。另外优选的增塑剂包括WO0118109A1和USSN10/640,435中公开的那些,该文献这里引入作为参考。
优选的加工助剂、润滑剂、蜡和/或油包括低分子量产品如蜡、油或低Mn聚合物(低是指Mn低于5000,优选低于4000,更优选低于3000,进一步更优选低于2500)。优选的蜡包括极性或非极性蜡、官能化蜡、聚丙烯蜡、聚乙烯蜡和蜡改性剂。优选的蜡包括ESCOMERTM 101。
优选的官能化蜡包括用醇、酸或酮改性的那些。官能化是指聚合物已与不饱和酸或酸酐接触。优选的不饱和酸或酸酐包括含至少一个双键和至少一个羰基的任何不饱和有机化合物。代表性的酸包括羧酸、酸酐、酯和其金属和非金属盐。有机化合物优选包含与羰基(-C=O)共轭的烯属不饱和键。例子包括马来酸、富马酸、丙烯酸、甲基丙烯酸、衣康酸、巴豆酸、α-甲基巴豆酸和肉桂酸、及其酸酐、酯和盐衍生物。特别优选马来酸酐。不饱和酸或酸酐的存在量为优选约0.1wt%至约10wt%、优选约0.5wt%至约7wt%、进一步更优选约1至约4wt%,按烃树脂和不饱和羧酸或酸酐的重量计。优选的例子包括被甲基酮、马来酸酐或马来酸改性的蜡。优选的低Mn聚合物包括低级α-烯烃如丙烯、丁烯、戊烯、己烯等的聚合物。特别优选的聚合物包括Mn低于1000的聚丁烯。该聚合物的例子可以商品名PARAPOLTM 950购自ExxonMobil ChemicalCompany。PARAPOLTM 950为具有Mn 950和动力粘度220cSt(在100℃下通过ASTM D 445测量)的液体聚丁烯聚合物。
优选的UV稳定剂或抗氧剂包括Irganox 1010等
应用
本发明的聚合物(和及其如上所述的共混物),无论是否在现场或通过物理共混形成,优选用于任何已知的热塑性或弹性体应用中。例子包括在模塑部件、薄膜、条带、片材、管材、软管、压片材、电线电缆涂层、粘结剂、鞋底、保险杠、垫圈、波纹管(bellow)、薄膜、纤维、弹性纤维、无纺布、纺粘纤维、密封剂、外科手术外衣和医用器件中的用途。
粘结剂
本发明的聚合物或其共混物可单独或与增粘剂结合用作粘结剂。增粘剂的存在量,按共混物的重量计,通常为约1wt%至约50wt%,,更优选10wt%至40wt%,进一步更优选20wt%至40wt%。也可加入如上所述的其它添加剂。
本发明的粘结剂可用于任何粘结剂应用中,包括但不限于一次性产品、包装物、叠层制品、压敏胶、胶带标签、木材粘结、纸张粘结、无纺布、路标、反射涂料等。在一些实施方案中,本发明的粘结剂可用于一次性尿布和卫生巾底层结构,在一次性物品加工、包装、贴标签、装订、木材加工或其它组装应用中的弹性粘结。特别优选的应用包括:婴儿尿布腿松紧带、尿布前胶带、尿布站立腿翻边、尿布底层结构、尿布芯稳定化、尿布液体转移层、尿布外覆盖叠层、尿布松紧带翻边叠层、妇女卫生巾芯稳定化、妇女卫生巾粘结条、工业过滤粘合、工业滤材叠层、过滤器掩蔽叠层、外科手术外衣叠层、外科帷帘叠层和易腐产品包装。
上面描述的粘结剂可用于任何基材。优选的基材包括木材、纸张、卡纸板、塑料、热塑性材料、橡胶、金属、金属箔(如铝箔和锡箔)、金属化表面、布、无纺布(特别是聚丙烯纺粘纤维或无纺布)、纺粘纤维、卡纸板、石头、石膏、玻璃(包括通过将氧化硅蒸发到薄膜表面上而涂布的氧化硅(SiO.x)涂层)、泡沫、岩石、陶瓷、薄膜、聚合物泡沫(如聚氨酯泡沫,涂布油墨、染料、颜料、PVDC等的基材或其组合。另外优选的基材包括但不限于聚乙烯、聚丙烯、聚丙烯酸酯、丙烯酸类、聚对苯二甲酸乙二醇酯、或上面列举的适合于共混物的任何聚合物。电晕处理、电子束辐射、γ辐射、微波或硅烷化可改进任一上述基材。
薄膜
如上所述的本发明生产的聚合物和其共混物可成型为单层或多层。这些薄膜可通过本领域已知的任一常规工艺包括挤出、共挤出、挤出涂装、层压、吹塑、拉幅和流延成型。该薄膜可通过平膜或管材法获得,接着进行单轴或在薄膜平面的两个相互垂直的方向取向。薄膜的一层或多层可在纵向和/或横向以相同或不同程度取向。该取向可在各层集结在一起之前或之后进行。例如,可将聚乙烯层挤出涂装或层压到取向聚丙烯层上,或可将聚乙烯和聚丙烯一起挤出成膜,然后取向。此外,可将取向聚丙烯层压至取向聚乙烯上,或将取向聚乙烯涂装到聚丙烯上,然后非必要地将该组合进一步取向,通常该薄膜在纵向(MD)以比例至多15、优选5至7,在横向(TD)以比例至多15、优选7至9取向。然而,在另一实施方案中,将该薄膜在MD和TD方向以相同程度取向。在另一实施方案中,包括本发明的聚合物组合物(和/或其共混物)的层可与一层或多层其它层组合。其它层可为通常包括在多层薄膜结构中的任何层。其它层或多层可为:
1.聚烯烃。优选的聚烯烃包括C2至C40烯烃、优选C2至C20烯烃的均聚物或共聚物,优选α-烯烃与另一烯烃或α-烯烃(乙烯定义为用于本发明的α-烯烃)的共聚物。优选均聚乙烯、均聚丙烯、丙烯与乙烯和/或丁烯的共聚物、乙烯与丙烯、丁烯或己烯中的一种或多种和非必要的二烯烃的共聚物。优选的例子包括热塑性聚合物如超低密度聚乙烯、极低密度聚乙烯、线性低密度聚乙烯、低密度聚乙烯、中密度聚乙烯、高密度聚乙烯、聚丙烯、等规立构聚丙烯、高等规立构聚丙烯、间规立构聚丙烯、丙烯与乙烯和/或丁烯和/或己烯的无规共聚物、弹性体如乙烯丙烯橡胶、乙烯丙烯二烯烃单体橡胶、氯丁二烯橡胶、热塑性聚合物与弹性体的共混物如热塑性弹性体和橡胶增韧塑料。
2.极性聚合物。优选的极性聚合物包括酯、酰胺、丙烯酸酯、酸酐的均聚物和共聚物,C2至C20烯烃的共聚物如乙烯和/或丙烯和/或丁烯与一种或多种极性单体如乙酸酯、酸酐、酯、醇和/或丙烯酸类的共聚物。优选的例子包括聚酯、聚酰胺、乙烯乙酸乙烯酯共聚物和聚氯乙烯。
3.阳离子聚合物。优选的阳离子聚合物包括偕二取代的烯烃、α-杂原子烯烃和/或苯乙烯类单体的聚合物或共聚物。优选的偕二取代的烯烃包括异丁烯、异戊烯、异庚烯、异己烯、异辛烯、异癸烯和异十二碳烯。优选的α-杂原子烯烃包括乙烯基醚和乙烯基咔唑,优选的苯乙烯类单体包括苯乙烯、烷基苯乙烯、对烷基苯乙烯、α-甲基苯乙烯、氯苯乙烯和溴对甲基苯乙烯。阳离子聚合物的优选例子包括丁基橡胶、异丁烯与对甲基苯乙烯的共聚物、聚苯乙烯和聚-α-甲基苯乙烯。
4.其它。其它优选的层可为纸张、木材、卡纸板、金属、金属箔(如铝箔和锡箔)、金属化表面、玻璃(包括通过将氧化硅蒸发到薄膜表面上而涂布的氧化硅(SiO.x)涂层)、织物、纺粘纤维、和无纺布(特别是聚丙烯纺粘纤维或无纺布),和涂布油墨、染料、颜料、PVDC等的基材。该薄膜的厚度可根据预定应用而变化,然而,薄膜厚度1至250微米通常是合适的。用于包装物的薄膜的厚度通常为10至60微米。密封层的厚度通常为0.2至50微米。在薄膜的内和外表面上都可具有密封层,或密封层可仅存在于内或外表面上。添加剂如结块剂、抗结块剂、抗氧剂、颜料、填料、加工助剂、UV稳定剂、中和剂、润滑剂、表面活性剂和/或成核剂也可存在于薄膜中的一层或多层中。优选的添加剂包括二氧化硅、二氧化钛、聚二甲基硅氧烷、滑石、染料、蜡、硬脂酸钙、炭黑、低分子量树脂和玻璃珠。在另一实施方案中,一层或多层可通过电晕处理、电子束辐射、γ辐射、微波改性。在一些实施方案中,表面层的一面或双面可通过电晕处理改性。这里描述的薄膜还可包括5至60wt%的烃树脂,按聚合物和树脂的重量计。可将该树脂与密封层的聚合物组合或可与芯层的聚合物组合。该树脂优选具有软化点高于100℃、进一步更优选130至180℃。优选的烃树脂包括上面描述的那些。包括烃树脂的薄膜可以相同或不同程度单轴或双轴取向。
上述薄膜可用作拉伸和/或粘连(cling)薄膜。拉伸/粘连薄膜用于各种包扎、包装和码垛堆积操作中。为赋予特定薄膜的粘连性能或改进其粘连性能,已使用多种公知的增粘添加剂。常用的增粘添加剂包括聚丁烯、萜烯树脂、碱金属硬脂酸盐和氢化松香和松香酯。称为电晕放电的公知物理方法也可用于改进薄膜的粘连性能。有些聚合物(如乙烯丙烯酸甲酯共聚物)不需要粘连添加剂并可在无增粘剂下用作粘连层。拉伸/粘连薄膜可包括滑爽层,该层包含任何合适的聚烯烃或聚烯烃的组合物,如聚乙烯、聚丙烯、乙烯丙烯共聚物、由乙烯和/或丙烯与少量其它烯烃特别是C4-C12烯烃共聚获得的聚合物。特别优选聚丙烯和线性低密度聚乙烯(LLDPE)。合适的聚丙烯一般为固体和等规立构的,即大于90%的热庚烷不溶物,具有约0.1至约300g/10min的宽范围熔体流动速率。此外,滑爽层可包括一种或多种抗粘连(滑爽和/或抗结块)添加剂,该添加剂可在生产聚烯烃期间加入或随后共混以改进该层的滑爽性能。这些添加剂是本领域公知的,包括例如二氧化硅、硅酸盐、硅藻土、滑石和各种润滑剂。这些添加剂的用量优选为约100ppm至约20,000ppm,更优选约500ppm至约10,000ppm,按滑爽层的重量计。若需要,该滑石层还包括一种或多种上述其它添加剂。
这里生产的聚合物可用于无纺布、密封层、取向聚丙烯和高透明成型。
熔吹和纺粘织物
这里在超临界条件下制备的聚合物可用于熔吹和纺粘织物。本发明方法可用于制备用于纺粘(SB)和熔吹(MB)纤维的PP。典型的发明聚合物具有灰分低于1000、900、700、500、400、300、200、100、50、10、1、0.5或0.1ppm。一些实施方案具有灰分含量1-500ppb。所有这些特征组合以降低聚合物在模头出口上的堆积。这些产品具有适用于纤维应用的300-5000的高MFR。
蜡
操作条件和单体和共聚单体料的合适选择产生来自本发明聚合物和方法的聚丙烯蜡。一些本发明实施方案是等规立构聚丙烯蜡。这样,这些物质特别适合在粘结剂中的粘度改性,作为油墨的载体和其它应用。一些聚丙烯蜡实施方案选择在180℃的熔体粘度3-2000cP。一些本发明实施方案生产等规立构聚丙烯蜡。
本发明方法可在高单体转化率(35+%,特别是45+%)下制备长支化链等规立构聚丙烯。一些实施方案使用较高量的稀释剂以促进长支化链。
通过在超临界条件下操作聚合是有利于长链支化,但存在富聚合物相和贫聚合物相。按照这种方式使富聚合物相具有较低单体浓度和乙烯基封端聚合物的较高局部浓度。
合适选取操作条件、单体和共聚单体料、180-200℃和20-150MPa,由本发明聚合物和方法获得聚丙烯蜡。一些发明实施方案为等规立构聚丙烯蜡。这样,这些物质特别适合粘结剂、薄膜的粘度改性和其它应用中的粘度改性。一些发明实施方案生产间规立构聚丙烯蜡。
最终用途制品
包括本发明聚合物的叠层制品可用作可热成型片材,其中基材喷涂或注塑以使其与离聚体/束缚层层压片材连接。将该复合材料成型为所需的形状以制备制品或复合制品。各种类型的基材形成特别需要的制品。该叠层制品可与塑料基材如均聚物、共聚物、泡沫、抗冲击共聚物、无规共聚物和其它应用一起使用。具体地,可引入本发明的一些制品包括车辆部件,特别是外部部件如保险杠和格栅、嵌板、挡泥板、门、防护罩、汽车内装饰物和其它部件可由本发明的叠层制品、复合材料和方法制备。
其它制品还可列举例如:计算器盖(counter tops)、叠层表面计算器盖、水池衬里/外壳/船外壳、船帆、电缆护套、摩托车/雪上机动车/户外车辆、海船壳体/独木舟内外部件、行李箱、衣服/织物(与无纺布结合)、帐篷材料、GORETEXTM、耐γ照射应用、电子外壳(TV、VCR和计算机)、甲板和其它户外建筑材料的木材替代物、活动建筑物、用于建筑的合成大理石板、壁纸、料斗车、地板涂层、聚合物/木材复合物、乙烯基瓦、浴缸/淋浴/厕所应用和半透明玻璃替代物、披迭板、草坪/户外家具、家用电器如电冰箱、洗衣机等,儿童玩具、反射信号物和及道路和衣服上的其它反射制品、运动装备如滑雪板、冲浪板、滑雪橇、踏板车、线型冰刀上的轮子、抗擦伤CD、露天座椅、航天返回防护屏、塑料纸物品、运动安全帽、塑料微波炉用炊具、和用于其中需要高光泽和抗擦伤表面、同时不遭受藻类/褪色作用的涂布塑料和金属的其它应用。
这里描述的聚丙烯共聚物适用于例如如下应用:模塑制品,包括注塑和吹塑瓶,和用于汽车制品中的模塑件如汽车内外装饰。用于制备聚丙烯聚合物的其它方法和其中可使用聚丙烯聚合物的其它应用的例子描述于Encyclopedia of Chemical Technology,by Kirk-Othmer,Fourth Edition,vol.17,at pages 748-819中,该文献这里引入作为参考。在其中应用为用于模制品的那些情况下,模制品可包括各种模制部件,特别是涉及和用于汽车工业的模塑部件,如保险杠、侧板、地板垫、挡泥板和仪表板。发泡制品为另一用途,其中可使用泡沫塑料如发泡聚丙烯的例子可在Encyclopedia of Chemical Technology,byKirk-Othmer,Fourth Edition,vol.11,at pages 730-783中找到,这里引入作为参考。泡沫制品特别适用于结构和汽车应用。结构应用的例子包括隔热隔音、工业和家用电器、和包装。汽车应用的例子包括汽车内外部件如保险杠、挡泥板和内部衬里。
本发明的聚烯烃组合物适用于制品如汽车部件、电线电缆护套、管子、农膜、地膜、玩具、运动装备、医用器具、流延和吹塑包装膜、挤出管材、管子和成型件、运动装备、户外家具(例如花园用家具)和运动场设施、轮船和水上器械部件,和其它此类制品。这些组合物特别适合汽车部件如保险杠、格栅、装饰部件、挡泥板和仪表盘、外门和防护罩部件、扰流器、风挡、轴端盖、镜子外壳、车身嵌板、防护侧板模塑件,和与汽车、卡车、轮船和其它车辆相关的其它内外部件。
其它有用的制品和物品可通过实施本发明经济地形成,它们包括:板条箱、集装箱、包装物、实验室器皿如用于培养物生长的滚瓶和培养基瓶、办公室地板垫、器具样品支架和样品窗;液体贮存容器如袋、小包以及用于血液或溶液的贮存和IV输液的瓶;包装材料,包括用于任何医用器具或药物(包括单位剂量或其它发疱药或泡膜包装(bubblepack)的包装物,以及用于包裹或包含通过辐射防腐的食品的包装物。其它有用的制品包括医用管材和用于任何医用器具(包括输液套盒、导管和呼吸治疗器具)的阀门,以及用于进行辐射的医用器具或食品(包括托盘)的包装物材料;以及贮存液体,特别是水、牛奶或果汁的包装物;包括单位服务量的容器和散装贮存容器,以及传输装置如管材、管子等。
模塑产品
上述聚合物也可通过任何模塑方法制备本发明的模塑产品,这些方法包括但不限于注塑、气体辅助注塑、挤坯吹塑、注坯吹塑、注塑拉伸吹塑、压塑、旋转模塑、发泡模塑、热成型、片材挤出和型材挤出。这些模塑方法是本领域熟练技术人员公知的。
这里描述的组合物可通过本领域任何合适方式成型为所需最终用途制品。热成型、真空成型、吹塑、旋转模塑、搪塑、压铸、湿铺料或触压成型、浇铸模塑、冷成型对模成型、注塑、喷涂工艺、型材共挤出或其结合是通常使用的方法。
热成型为将至少一种柔顺塑料片材成型为所需形状的方法。描述了热成型工序的一个实施方案,然而,这应不认为是限制适合本发明组合物使用的成型方法。首先,将本发明组合物的挤出膜(和任何其它层或材料)置于梭子架(shuttle rack)上以将其在加热期间夹持。将该梭子架牵引入烘箱内,该烘箱将薄膜在成型前预热。薄膜加热后,将该梭子架牵引回成型器械上。然后将该薄膜真空吸至成型器械上使其保持在适当位置并将成型器械关闭。该成型器械可为“阳”或“阴”型器械。将器械保持关闭以使薄膜冷却,然后将器械打开。然后从器械中取出成型的叠层制品。
一旦材料片材达到热成型温度,通常为140℃至185℃或更高时,通过真空、正空气压力、模塞助压真空成型或它们的组合和变化完成热成型。使用预拉伸膜泡步骤尤其在大部件上以改进材料分布。在一个实施方案中,咬合支架(articulating rack)举起加热的叠层制品至阳成型器械(通过自阳成型器械中的孔口施加的真空辅助)。当叠层制品在阳成型器械上牢固形成后,通常通过吹风机将热成型叠层制品冷却。模塞助压成型一般用于很小的深拉部件。模塞材料、设计和用时对于优化方法是重要的。由绝缘泡沫制备的填塞避免塑料过早骤冷。模塞的形状通常与模腔类似,但很小且无部件的细节。圆形模塞底通常促进材料均匀分布和均匀侧壁厚度。对于半结晶聚合物如聚丙烯,快速模塞速度一般提供在部件中的最佳材料分布。
然后将成型层压材在模具中冷却。充分冷却以保持模具温30℃至65℃是适宜的。在一个实施方案中,将部件取出前的温度低于90℃至100℃。为获得良好的热成型行为,最低熔体流动速率的聚合物是适宜的。然后将该成型叠层制品修剪除去过量的叠层材料。
吹塑是另一合适的成型方式,它包括注坯吹塑、多层吹塑、挤坯吹塑和拉伸吹塑,且特别适合基本上封闭或中空物体,如气体罐和其它流体容器。吹塑更详细地描述于例如CONCISE ENCYCLOPEDIA OF POLYMERSCIENCE AND ENGINEERING 90-92(Jacqueline 1.Kroschwitz,ed.,John Wiley & Sons 1990)中。
在成形和成型方法的另一实施方案中,可使用型材共挤出。型材共挤出方法的参数与如上对吹塑方法的相同,只是模头温度(双段顶和底)为150-235℃,料块为90-250℃,水冷却罐温度为10-40℃。
下面描述注塑方法的一个实施方案。将成型叠层制品置于注塑模具内。将模具关闭,将基材注入模具内。该基材具有熔化温度200℃至300℃(在一个实施方案中),和215至250℃,并以注射速度2至10秒注入模具中。注射后,将材料堆叠并在预定时间和压力下保持,以使部件尺寸和美观合适。典型的时间期间为5至25秒,压力为1,380kPa至10,400kPa。将模具在10℃至70℃下冷却以使基材冷却。温度取决于所需的光泽和外观。典型的冷却时间为10至30秒,取决于部件的厚度。最后,将模具打开并排出成型复合制品。
同样地,可通过如下方法加工模塑制品:将熔融聚合物注入模具中,在该模具中熔融聚合物成型并固化为模塑制品的所需几何形状和厚度。片材可通过从模头挤出基本上平坦型材到冷却辊上,或另外通过压延制备。片材一般认为具有厚度10密耳至100密耳(254μm至2540μm),尽管片材实质上可更厚。可通过型材挤出获得用于医学、饮用水、陆地排水应用等的管材或管。型材挤出方法涉及熔融聚合物经模头挤出。然后将挤出的管材或管通过冷却水或冷却空气固化为连续的挤出制品。该管材外径一般为0.31cm至2.54cm并具有壁厚254μm至0.5cm。管一般有2.54cm至254cm的外径和0.5cm至15cm的壁厚。由本发明变化的实施方案的产品制备的片材可用于形成容器。这些容器可通过热成型、固相压力成型、冲压和其它成型工艺形成。还可成型覆盖地板或墙壁或其它表面的片材。
在热成型方法的实施方案中,烘箱温度为160℃至195℃,在烘箱中的时间为10至20秒,模头温度(一般为阳模头)为10℃至71℃。(室温)冷却成型叠层制品的最终厚度为10μm至6000μm(在一个实施方案中),200μm至6000μm(在另一实施方案中),250μm至3000μm(在另一实施方案中),和500μm至1550μm(在再一实施方案中)。所需厚度是任何厚度上限和任何厚度下限的任何组合。
在其中注入器械中的基材包括成型叠层制品的注塑方法的一个实施方案中,基材的熔化温度为230℃至255℃(在一个实施方案中),和235℃至250℃(在另一实施方案中),填充时间为2至10秒(在一个实施方案中),2至8秒(在另一实施方案中),和器械温度25℃至65℃(在一个实施方案中),和27℃至60℃(在另一实施方案中)。在适宜的实施方案中,基材处于热至足以熔化任何束缚层(tie-layer)材料或背衬层以使层间实现粘结的温度。
在本发明另一实施方案中,本发明的组合物可用吹塑操作与基材固定。吹塑特别适合制备封闭制品如燃料罐和其它流体容器、运动场设施、户外家具和很小的封闭结构这样的应用中。在该方法的一个实施方案中,将本发明组合物通过多层模头挤出、接着将未冷却的叠层制品置于模具中的型坯内。然后将其内部具有阳或阴模型状的模具关闭,并将空气吹入模具中形成部件。
本领域熟练技术人员将知道,上面列出的步骤可根据所需结果而变化。例如,本发明组合物的挤出片材可在不冷却下直接热成型或吹塑,如此跳过冷却步骤。为获得具有所需特点的最终复合制品,其它参数也可变化。
无纺布和纤维
上述聚合物也可在任何无纺织物和纤维制备方法中用于制备本发明的无纺织物和纤维,这些方法包括但不限于熔吹、纺粘、薄膜成孔(aperturing)和定长短纤维梳理。也可使用连续长丝法。优选使用纺粘法。纺粘法是本领域公知的,该方法一般涉及纤维通过喷丝头挤出。然后将这些纤维用高速空气拉伸并辅设到环形带上。一般用压延辊加热纤维网并使纤维相互粘结,尽管其它技术如声波粘结和粘结剂粘结也可使用。该织物可用混合茂金属聚丙烯单独地、与其它混合茂金属聚丙烯物理共混或与单一茂金属聚丙烯物理共混制备。类似地,本发明的织物可用与常规Ziegler-Natta法生产的聚合物物理共混的混合茂金属聚丙烯制备。若共混,本发明的织物优选包括至少50%的混合茂金属聚丙烯。对于这些无纺织物,制造商可保持用茂金属生产的聚丙烯制备的织物的所需性能,同时与用常规聚合物制备的织物相比提高织物强度和潜在提高线速度。
实施例
聚合物的尺寸排阻色谱法
分子量分布用尺寸排阻色谱(SEC)表征。分子量(重均分子量Mw和数均分子量Mn)用装有示差折光率检测器(DRI)、连机光散射检测器和粘度计的高温尺寸排阻色谱(购自Waters Corporation或PolymerLaboratories)测定。下面未描述的实验细节(包括如何校正检测器),描述于T.Sun,P.Brant,R.R.Chance,and W.W.Graessley,Macromolecules,Volume 34,Number 19,6812-6820,(2001)中。
使用三根Polymer Laboratories PLgel 10mm Mixed-B柱子。标称流速为0.5cm3/min,标称注射体积为300微升。各种传输管线、柱子和示差折射计(DRI检测器)包含在保持135℃的烘箱中。
用于SEC实验的溶剂通过将作为抗氧剂的6g丁基化羟甲苯溶于4升Aldrich试剂级1,2,4-三氯苯(TCB)中制备。然后将该TCB混合物经0.7μm玻璃预过滤器、随后经0.1μm Teflon过滤器过滤。然后将该TCB用联机脱气器脱气,然后进入SEC。
聚合物溶液通过如下制备:将干燥的聚合物投入玻璃容器中,加入所需量的TCB,然后将该混合物在连续搅拌下在160℃下加热约2小时。通过重量分析测量所有量。用于表示聚合物浓度(质量/体积单位)的TCB密度在室温下为1.463g/ml,在135℃下为1.324g/ml。注射浓度为1.0至2.0mg/ml,更低的浓度用于高分子量样品。
在加入各样品之前,将DRI检测器和注射器清洗。然后将仪器中的流速增加至0.5ml/min.,在注射第一个样品之前将DRI稳定8-9小时。将LS激光器开启1至1.5小时,然后流入样品(通过将激光器以空转模式运转20-30分钟,然后以光调节模式转换至全功率)。
在色谱图中各点的浓度c由减去基线的DRI信号IDRI,用如下方程计算:
c=KDRIIDRI/(dn/dc)
其中KDRI为通过校正DRI测定的常数,(dn/dc)与下面对LS分析描述的相同,在整个SEC方法的此描述中参数的单位应使:浓度表示为g/cm3,分子量表示为g/mol,特性粘度表示为dL/g。
使用的光散射检测器为Wyatt Technology High Temperaturemini-DAWN或Precision Detector 2040 LALLS。数据用用于静态(static)光散射的标准公式分析:
这里,ΔR(θ,c)为在散射角度θ下的过量Rayleigh散射强度,c为聚合物浓度,M为聚合物的分子量,A2为溶液的第二维里系数,P(θ)为形式因子,Ko为体系的光学常数:
其中NA为阿伏伽德罗数,dn/dc为体系的折射指数增量。对于LALLS检测器,我们测量在15°下的散射强度并假定P(θ)=1。用于分析的浓度为由DRI输出量获得的值。TCB在135℃时的折射率n对于690nm波长为1.500。此外,A2=0.0006(对于丙烯聚合物),和0.0015(对于丁烯聚合物),(dn/dc)=0.104(对于丙烯聚合物),和0.098(对于丁烯聚合物)。
使用的粘度计为Viscotek Corporation高温粘度计,它具有以惠斯通电桥构型排列的四个毛细管和两个压力传感器。一个传感器测量通过检测器的总压降,另一个位于桥两侧之间的传感器测量压力差。流经粘度计的溶液的比粘度ηs由其输出量计算。在色谱图中各点的特性粘度[η]由如下方程计算:
ηs=c[η]+0.3(c[η])2
其中c由DRI输出量测定。
支化指数(g′)用如下SEC-DRI-LS-VIS方法的输出量计算。平均特性粘度[η]avg由如下方程计算:
其中总和为对积分极限之间的色谱切片I总和,支化指数g′定义如下:
其中k=0.0002288,α=0.705(对于丙烯聚合物),和k=0.00018,和α=0.7(对于丁烯聚合物),Mv为基于LS分析测定的分子量的粘均分子量。
差式扫描量热法
熔点(Tm)、熔化热(ΔHf)、多个熔化峰和涉及检测晶体熔化或结晶的任何测量值通过差式扫描量热法(DSC)测量。使用的典型的程序如下:优选将已在室温下老化至少24小时的约5mg至约9mg聚合物投入差式扫描量热器中。将该样品以约10℃/min加热使最终温度达到约200℃。然后,将样品以约10℃/min冷却至室温,在此期间热输出量记录结晶热。记录结晶放热峰时的温度作为结晶温度(Tcax)。然后将样品加热回到200℃。记录样品熔化单峰或多峰下的面积(通常为约160℃的最大峰下的面积)作为热输出量。记录在样品熔化范围内的最大热吸收处的温度作为熔点。在一些情况下,在热循环之后,将样品冷却至低于室温,然后进行第二次热循环。
反应温度为150℃±3℃至190℃±3℃。停留时间恒定保持300秒。催化剂浓度选自0.03至0.07mol ppm金属料,基于10至20%的估计转化率。在所有试验中铝/锆金属摩尔比为约10,000。99.8%纯度的丙烯从Linde AG,Wiesbade按33kg弹形储气瓶购得。该丙烯具有密度1.91kg/m3(0℃1013毫巴)、Mw 42.08g/mol、熔化温度-185.25℃、熔化焓69.9kJ/kg、沸点-47.75℃(在1013毫巴)、临界温度91.85℃、临界压力46.2巴(4.62MPa)和其它CnHm低于1000ppm。甲基铝氧烷(Mw58.01,密度0.93g/ml(在20℃下),30wt%(在甲苯中),13.0至14.5%铝)购自Crompton GmbH。三异丁基铝(TIBAL)(Mw 198.33,密度0.789g/ml(在20℃下),13.0至13.4%铝)购自Crompton GmbH,Bergkamen。95%纯己烷购自Sigma-Aldrich,Deisenhofen。将己烷通过在钠-钾合金上回流3小时、接着在惰性气氛下蒸馏而纯化。该己烷具有Mw 86.18g/mol、熔化温度-95.53℃、熔化焓147.8kJ/kg、沸点(在1013毫巴)68.75℃、临界温度234.25℃、临界压力,29.7巴(2.97MPa)、蒸发焓3335kJ/kg、非挥发物含量低于0.0015%、低于0.02%水和低于0.001%酸(CH3COOH)。
13C NMR在125℃下在Varian NMR光谱仪上收集。样品浓度为在全氘四氯乙烷中约10wt%(wt/vol)。10-mm NMR管包含这些样品。获值条件为90-度脉冲,无门宽谱带解耦(ungated broadbanddecoupling),连续数据获得之间有约15秒、扫描宽度8000Hz,数字分辨率<0.2Hz,其中最终光谱由至少1000次平均数据获得值组成。
1H NMR在125℃下在Varian NMR光谱仪上收集。样品浓度为在全氘四氯乙烷中约1.5wt%(wt/vol)。5-mm NMR管包含这些样品。获值条件为<45-度脉冲,连续数据获得之间有约8秒、扫描宽度至少10ppm,其中最终光谱由至少120次平均数据获得值组成。
聚合装置
装置的核心为聚合高压釜(体积100mL),设计最大压力200MPa(2000Bar)和最高温度300℃,并装有磁驱动搅拌器、电加热器(通过热电偶TIC-504控制)和自裂片(ruptur eisc)。压力用压力传感器(PIRC)和测压计测量。热电偶测量高压釜内部温度。将高压釜与单体和催化剂计量系统连接并与取样器连接。丙烯在各自具有体积6L的两个罐中制备。将其通过膜式泵经搅拌器轴加入高压釜中。测量丙烯进料管线中的压力并由测压计显示。己烷用第二个膜式泵自具有体积3L的罐经进料管线计量。将30mL催化剂溶液投入注射器型泵中。由于催化剂溶液自注射器分配,因此将其用己烷稀释,然后进入反应器。催化剂进料管线中的压力用测压计测量。
经过高压釜后,通过自动操作的出口阀将压力释放至环境压力。在出口阀下面的接受容器中收集聚合物样品。各接受容器一个接一个与出口阀连接。未反应的丙烯释放至火舌管中。在另一接受容器中收集在达到稳定态之前形成的聚合物。
聚合试验流程
流程I
为除去不纯物,将丙烯用作为清除剂的三异丁基铝(TIBA)处理约1天。为此,将己烷和TIBA的混合物计量加入罐中。然后将丙烯从弹形储气瓶中取出并冷凝入罐中。为进一步纯化,将丙烯蒸发入第二个罐中并冷凝。将茂金属催化剂溶于甲苯和甲基铝氧烷(MAO)的混合物中。将该溶液在2.5MPa的氮气下贮存。对各试验,将10ml溶液投入注射器型泵中,将其连续计量加入高压釜中。
将该催化剂料用己烷进一步稀释。在处理之前,将己烷本身也用TIBA在2.5MPa氮气下处理。将催化剂、己烷和可以忽略量的TIBA的混合物通过泵进料以调节比例为90mol丙烯:10mol己烷和预设定的进料中的催化剂浓度。由在600秒期间收集的聚合物的总量和加入反应中的丙烯量确定转化率。在开始时的典型进料温度为150-158℃。一旦聚合开始,将高压釜的温度升至150至190℃的稳定聚合温度,表A给出用于使用(μ-二甲基甲硅烷基)双(2-甲基-4-苯基茚基)二氯化锆(MW 628.82g/mol)的均聚的条件。
表A.丙烯均聚的条件
茂金属浓度(Mol ppm) | 生产率(kg PP/g Zr),300秒 | 反应压力(MPa) | 温度(℃) | |
PP1PP2PP3PP4PP5PP6PP7PP8PP9PP10 | 0.050290.085650.085650.085650.085650.04410.07360.04410.06020.05250 | 704.41521.01791.81864.71724.7690.82352.1737.82915.33420.6 | 60606060608080100100150 | 163167167167167162.5168162.5168165 |
数据显示转化率随催化剂浓度升高和压力升高而升高(图1)。转化率大约与压力成正比。转化率由获得的聚合物量和在取样期间加入反应器中的丙烯量确定。获得转化率大于40%。还注意到500至3400kgPP/kg Zr或95至495kg PP/g μ-二甲基甲硅烷基)双(2-甲基-4-苯基茚基)二氯化锆催化剂的高催化剂生产率。该催化剂生产率由聚合物样品的量和在收集样品期间加入的催化剂金属量估算。
表B.PP1至PP10的性能数据
IPP样品 | %转化率 | Mw(k) | Mz(k) | 熔点℃ | 熔化热J/g | g’(a) |
PP1PP2PP3PP4PP5PP6PP7PP8PP9PP10 | 8.5031.3036.9038.4035.507.3041.607.8042.2043.20 | 27.220.421.420.820.930.024.424.729.535.425.525.526.931.831.229.7 | 46.133.536.434.234.245.441.544.143.354.343.944.447.055.756.152.3 | 145142146 | 81.987.887.2 | 1.001.000.960.960.970.970.970.960.811.000.950.960.890.960.970.99 |
(a)样品与线性iPP标准物(Achieve 1635)的特性粘度之比。
表C:由1H NMR测定的不饱和度数
表D:重复单元和端基结构-13C NMR
丙烯/己-1-烯共聚
丙烯与己烯的共聚按照上面描述的工艺用(μ-二甲基甲硅烷基)双(2-甲基-4-苯基茚基)二氯化锆和甲基铝氧烷作为催化剂化合物和活化剂进行。各实施例和两个比较例(PP-7和PP-9)的反应条件在表E中给出。
表E.丙烯-/己烯共聚物的聚合条件
+加入反应中的己-1-烯和丙烯单体的重量比。
表F.分子量(GPC-MALLS)
表G.丙烯/己-1-烯共聚物中的不饱和度(1H NMR)
*括号中的数值为总乙烯叉基信号%(单峰)。
表H.
熔化峰(℃)DSC(第2次熔融) | Tg(℃)DSC | Mol%己烯13C NMR | |
PH-1PH-2PH-4PH-5PH-6PH-7PH-10 | 84.790.084.382.9 | -21.2-15.2-17.0-18.5 | 7.77.57.49.39.7 |
评估PH-1的机械性能。模量为8.9±2.1kpsi,峰应力为1043±121psi,断裂应变为508±55%,韧性为2634±298 in-1b/in3。
聚丙烯蜡
蜡生产的聚合在上述高压釜中进行。在各试验中,聚合温度为190℃,停留时间为4分钟。用于这些聚合反应的催化剂为(μ-二甲基甲硅烷基)双(2-甲基-4-苯基茚基)二氯化锆(MW 628.82g/mol)。该反应使用甲基铝氧烷作为活化剂。
表I:聚丙烯蜡聚合
压力,MPa | %C3转化率 | kgPP/g Zr | Tm(℃) | Mn(k)GPC-DRI | Mw(k)GPC-DRI | Mz(K)GPC-DRI | |
PW-1PW-2PW-3PW-4PW-5PW-6PW-7PW-8PW-9 | 606080100120120140140160 | 27.525.433.63536.236.842.145.2 | 839777102710691106112412851381 | 131.9131.0132.0133.8127.4133.9142 | 2.42.72.93.12.52.1 | 10.311.712.513.712.517.0 | 20.123.124.126.225.247.6 |
尽管已给出用于说明本发明的某些代表性实施方案和细节,但是本领域熟练技术人员显而易见的是,在不离开由所附权利要求定义的本发明范围下可由本申请公开的那些内容进行各种方法和产品变化。
所有引用的专利、试验流程、优先权文件和其它引用的文献这里全部引入作为参考,参考程度是该材料与本说明书一致,并且就所有司法权而言允许此引入。
本发明的某些特征以按照一组数值上限和一组数值下限进行了描述。本发明说明书公开了由这些限定值的任何组合形成的所有范围。这些限定值的所有组合在本发明范围内,除非另有说明。
Claims (22)
1.一种包括丙烯和从大于0wt%至小于35wt%的一种或多种独立地选自乙烯、丁-1-烯、己-1-烯、4-甲基戊-1-烯、二环戊二烯、降冰片烯、C4-C2000α-烯烃、C4-C2000α-内二烯烃和C4-C2000α,ω-二烯烃的共聚单体的聚合物,所述聚合物具有:
a)大于20个1,3部位缺陷数/10,000个单体单元;
b)熔点140-165℃;
c)支化指数g′0.97或更低;
d)重均分子量20,000-1,000,000;和
e)低于300ppm的残余物。
2.权利要求1的聚合物,其中重均分子量为25,000-250,000。
3.权利要求1的聚合物,其中1,3部位缺陷数大于25个/10,000个单体单元。
4.权利要求1的聚合物,其中聚合物具有低于300ppm的二氧化硅。
5.权利要求1的聚合物,其中聚合物内消旋五单元组摩尔分数为0.60-0.96。
6.权利要求1的聚合物,其中聚合物内消旋五单元组摩尔分数为0.70-0.96。
7.权利要求1的聚合物,其中聚合物内消旋五单元组摩尔分数为0.80-0.94。
8.权利要求1的聚合物,其中总聚合物共聚单体含量为大于0wt%至低于30wt%。
9.权利要求1的聚合物,其中总聚合物共聚单体含量为0.5wt%至30wt%。
10.权利要求1的聚合物,其中支化指数g′为0.75至0.97。
11.权利要求1的聚合物,其中聚合物具有熔化热50至110J/g和熔点145至165℃。
12.权利要求1的聚合物,其中聚合物具有熔化热0至30J/g和支化指数g′为0.95或更低。
13.权利要求1的聚合物,其中聚合物具有熔化热0至30J/g和在180℃时的熔体粘度低于10,000cps。
14.权利要求1的聚合物,其中聚合物具有熔化热20至50J/g和在180℃时的熔体粘度为1000至3000cps。
15.一种薄膜,包括权利要求1至14任何一项的聚合物。
16.一种吹塑制品,包括权利要求1至14任何一项的聚合物。
17.一种模塑制品,包括权利要求1至14任何一项的聚合物。
18.一种片材,包括权利要求1至14任何一项的聚合物。
19.一种纤维,包括权利要求1至14任何一项的聚合物。
20.一种无纺布,包括权利要求1至14任何一项的聚合物。
21.一种织物,包括权利要求1至14任何一项的聚合物。
22.一种粘结剂,包括权利要求1至14任何一项的聚合物。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41254102P | 2002-09-20 | 2002-09-20 | |
US60/412,541 | 2002-09-20 | ||
US43107702P | 2002-12-05 | 2002-12-05 | |
US60/431,077 | 2002-12-05 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB038225433A Division CN1326888C (zh) | 2002-09-20 | 2003-09-22 | 在超临界条件生产聚合物的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101041701A CN101041701A (zh) | 2007-09-26 |
CN101041701B true CN101041701B (zh) | 2013-02-27 |
Family
ID=32033608
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101021024A Expired - Fee Related CN101041701B (zh) | 2002-09-20 | 2003-09-22 | 包括丙烯的聚合物及其应用 |
CNA038223449A Pending CN1681858A (zh) | 2002-09-20 | 2003-09-22 | 超临界聚合方法和由其生产的聚合物 |
CNB038225433A Expired - Fee Related CN1326888C (zh) | 2002-09-20 | 2003-09-22 | 在超临界条件生产聚合物的方法 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA038223449A Pending CN1681858A (zh) | 2002-09-20 | 2003-09-22 | 超临界聚合方法和由其生产的聚合物 |
CNB038225433A Expired - Fee Related CN1326888C (zh) | 2002-09-20 | 2003-09-22 | 在超临界条件生产聚合物的方法 |
Country Status (7)
Country | Link |
---|---|
US (3) | US7354979B2 (zh) |
EP (2) | EP1539841B1 (zh) |
JP (2) | JP2006500470A (zh) |
CN (3) | CN101041701B (zh) |
AU (2) | AU2003291627A1 (zh) |
ES (1) | ES2391766T3 (zh) |
WO (2) | WO2004026921A1 (zh) |
Families Citing this family (156)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6900321B2 (en) | 2000-11-07 | 2005-05-31 | Symyx Technologies, Inc. | Substituted pyridyl amine complexes, and catalysts |
US8008412B2 (en) * | 2002-09-20 | 2011-08-30 | Exxonmobil Chemical Patents Inc. | Polymer production at supersolution conditions |
WO2004026921A1 (en) * | 2002-09-20 | 2004-04-01 | Exxonmobil Chemical Patents Inc. | Polymer production at supercritical conditions |
US20080153997A1 (en) * | 2006-12-20 | 2008-06-26 | Exxonmobil Research And Engineering | Polymer production at supercritical conditions |
US7807769B2 (en) * | 2002-09-20 | 2010-10-05 | Exxonmobil Chemical Patents Inc. | Isotactic polypropylene produced from supercritical polymerization process |
US20050137368A1 (en) * | 2003-12-17 | 2005-06-23 | Weqing Weng | Radiation tolerant copolymers |
US7803307B2 (en) * | 2004-06-07 | 2010-09-28 | Interplex Qlp, Inc. | Ultra high-temperature plastic package and method of manufacture |
WO2006025917A2 (en) * | 2004-06-21 | 2006-03-09 | Exxonmobil Chemical Patents Inc. | Polymerization process |
WO2006028549A1 (en) | 2004-06-21 | 2006-03-16 | Exxonmobil Chemical Patents Inc. | Polymerization process |
JP5268087B2 (ja) * | 2004-07-08 | 2013-08-21 | エクソンモービル・ケミカル・パテンツ・インク | 超臨界条件におけるポリマー製造 |
WO2006019494A1 (en) * | 2004-07-14 | 2006-02-23 | Exxonmobil Chemical Patents Inc. | Polymer production at supercritical conditions |
KR20070087670A (ko) * | 2004-12-21 | 2007-08-28 | 다우 글로벌 테크놀로지스 인크. | 폴리프로필렌-기재의 접착제 조성물 |
EP1674504A1 (en) * | 2004-12-22 | 2006-06-28 | Total Petrochemicals Research Feluy | Geo-membrane applications |
US7147634B2 (en) | 2005-05-12 | 2006-12-12 | Orion Industries, Ltd. | Electrosurgical electrode and method of manufacturing same |
US8814861B2 (en) | 2005-05-12 | 2014-08-26 | Innovatech, Llc | Electrosurgical electrode and method of manufacturing same |
US8022142B2 (en) * | 2008-12-15 | 2011-09-20 | Exxonmobil Chemical Patents Inc. | Thermoplastic olefin compositions |
US7297653B2 (en) * | 2005-07-21 | 2007-11-20 | Exxonmobil Chemical Patents Inc. | Fluorophenylborates and their use as activators in catalyst systems for olefin polymerization |
US20070031653A1 (en) * | 2005-08-02 | 2007-02-08 | Toray Plastics (America), Inc. | Multi-layer barrier film structure |
US7709577B2 (en) | 2005-12-07 | 2010-05-04 | Exxonmobil Chemical Patents Inc. | Process of making polymer blends |
JP5280865B2 (ja) * | 2006-02-02 | 2013-09-04 | バーゼル・ポリオレフィン・ゲーエムベーハー | プロピレンメルトブローン樹脂、プロピレンメルトブローン樹脂繊維及びそれから製造される不織布、並びにその製造方法 |
EP1881011B1 (en) * | 2006-06-02 | 2018-12-19 | Agilent Technologies, Inc. | Method of preparing spheroid polymer particles having a narrow size distribution by dispersion polymerization, particles obtainable by said method and use of said particles |
ATE421760T1 (de) | 2006-07-10 | 2009-02-15 | Borealis Tech Oy | Elektrischer isolierfilm |
EP1886806B1 (en) | 2006-07-10 | 2010-11-10 | Borealis Technology Oy | Biaxially oriented polypropylene film |
EP1892264A1 (en) | 2006-08-25 | 2008-02-27 | Borealis Technology Oy | Extrusion coated substrate |
EP1900764B1 (en) | 2006-08-25 | 2009-04-01 | Borealis Technology Oy | Polypropylene foam |
DE602006013137D1 (de) | 2006-09-25 | 2010-05-06 | Borealis Tech Oy | Koaxiales Kabel |
US8143352B2 (en) * | 2006-12-20 | 2012-03-27 | Exxonmobil Research And Engineering Company | Process for fluid phase in-line blending of polymers |
CN101563374B (zh) * | 2006-12-20 | 2012-09-05 | 埃克森美孚化学专利公司 | 用于超临界聚合方法的相分离器和单体再循环 |
US8242237B2 (en) * | 2006-12-20 | 2012-08-14 | Exxonmobil Chemical Patents Inc. | Phase separator and monomer recycle for supercritical polymerization process |
US7256240B1 (en) | 2006-12-22 | 2007-08-14 | Exxonmobil Chemical Patents Inc. | Process of making polymer blends |
EP1939230B1 (en) | 2006-12-28 | 2009-03-04 | Borealis Technology Oy | Process for the manufacture of branched polypropylene |
US7872086B2 (en) | 2008-01-17 | 2011-01-18 | Tonen Chemical Corporation | Polymeric material and its manufacture and use |
JP5060791B2 (ja) * | 2007-01-26 | 2012-10-31 | 独立行政法人森林総合研究所 | 木材の乾燥方法、木材への薬剤浸透方法及び乾燥装置 |
US20080205800A1 (en) * | 2007-02-28 | 2008-08-28 | Toray Plastics (America), Inc. | Transparent biaxially oriented polypropylene film with low moisture vapor and oxygen transmission rate |
US8080610B2 (en) * | 2007-03-06 | 2011-12-20 | Exxonmobil Research And Engineering Company | Monomer recycle process for fluid phase in-line blending of polymers |
CN101600742B (zh) * | 2007-03-06 | 2014-07-09 | 埃克森美孚化学专利公司 | 在超溶液条件下的聚合物制备 |
US20080287614A1 (en) * | 2007-05-15 | 2008-11-20 | Sonoco Development, Inc. | Polypropylene-Based Polymer Blend of Enhanced Melt Strength |
CN101679556B (zh) * | 2007-06-04 | 2012-06-06 | 埃克森美孚化学专利公司 | 超溶液均相丙烯聚合 |
US7745552B2 (en) * | 2007-06-29 | 2010-06-29 | Exxonmobil Research And Engineering Company | Fouling prevention in polymerization reactors |
US7928162B2 (en) * | 2007-09-13 | 2011-04-19 | Exxonmobil Research And Engineering Company | In-line process for producing plasticized polymers and plasticized polymer blends |
CN101855250B (zh) * | 2007-09-13 | 2013-01-02 | 埃克森美孚研究工程公司 | 增塑剂与基础聚合物的在线共混 |
US8507628B2 (en) * | 2007-10-02 | 2013-08-13 | Fina Technology, Inc. | Propylene based polymers for injection stretch blow molding |
TW200932770A (en) | 2007-10-22 | 2009-08-01 | Univation Tech Llc | Metallocene catalysts and their use in polymerization processes |
TW200936619A (en) | 2007-11-15 | 2009-09-01 | Univation Tech Llc | Polymerization catalysts, methods of making, methods of using, and polyolefin products made therefrom |
EP2070953A1 (en) * | 2007-12-11 | 2009-06-17 | Total Petrochemicals Research Feluy | Activating supports based on phosphonium complexes |
EP2231779B1 (en) * | 2007-12-20 | 2012-06-06 | ExxonMobil Research and Engineering Company | In-line process to produce pellet-stable polyolefins |
CN103254514B (zh) * | 2007-12-20 | 2015-11-18 | 埃克森美孚研究工程公司 | 全同立构聚丙烯和乙烯-丙烯共聚物的共混物 |
US7910679B2 (en) * | 2007-12-20 | 2011-03-22 | Exxonmobil Research And Engineering Company | Bulk homogeneous polymerization process for ethylene propylene copolymers |
US7528222B1 (en) | 2008-01-15 | 2009-05-05 | Exxonmobil Chemical Patents Inc. | Olefin polymerization process |
US8318875B2 (en) * | 2008-01-18 | 2012-11-27 | Exxonmobil Chemical Patents Inc. | Super-solution homogeneous propylene polymerization and polypropylenes made therefrom |
US8067512B2 (en) * | 2008-04-10 | 2011-11-29 | Exxonmobil Research And Engineering Company | Monomer/solvent separation and recycle process for propylene containing polymers |
US7939610B2 (en) * | 2008-05-22 | 2011-05-10 | Exxonmobil Research And Engineering Company | Polymerization processes for broadened molecular weight distribution |
US8283419B2 (en) * | 2008-06-20 | 2012-10-09 | Exxonmobil Chemical Patents Inc. | Olefin functionalization by metathesis reaction |
US8399725B2 (en) * | 2008-06-20 | 2013-03-19 | Exxonmobil Chemical Patents Inc. | Functionalized high vinyl terminated propylene based oligomers |
US8802797B2 (en) | 2008-06-20 | 2014-08-12 | Exxonmobil Chemical Patents Inc. | Vinyl-terminated macromonomer oligomerization |
US8283428B2 (en) * | 2008-06-20 | 2012-10-09 | Exxonmobil Chemical Patents Inc. | Polymacromonomer and process for production thereof |
US8372930B2 (en) | 2008-06-20 | 2013-02-12 | Exxonmobil Chemical Patents Inc. | High vinyl terminated propylene based oligomers |
US8580902B2 (en) * | 2008-08-01 | 2013-11-12 | Exxonmobil Chemical Patents Inc. | Catalyst system, process for olefin polymerization, and polymer compositions produced therefrom |
SG195587A1 (en) | 2008-08-01 | 2013-12-30 | Exxonmobil Chem Patents Inc | Catalyst system and process for olefin polymerization |
US8399586B2 (en) | 2008-09-05 | 2013-03-19 | Exxonmobil Research And Engineering Company | Process for feeding ethylene to polymerization reactors |
CN102300883B (zh) * | 2009-01-29 | 2014-08-20 | 埃克森美孚化学专利公司 | 聚丙烯非织造纤维和织物及其制造方法 |
US9090000B2 (en) | 2009-03-26 | 2015-07-28 | Fina Technology, Inc. | Injection stretch blow molded articles and random copolymers for use therein |
EP2738182A1 (en) | 2009-07-16 | 2014-06-04 | Dow Global Technologies LLC | Polymerization process for olefin-based polymers |
WO2011014714A2 (en) | 2009-07-31 | 2011-02-03 | Henkel Corporation | Low application temperature hot melt adhesive |
JP5707404B2 (ja) * | 2009-08-20 | 2015-04-30 | アイキューエルピー,リミティッドライアビリティ カンパニー | 超高温プラスチック・チップパッケージ及びその製造方法 |
CN102712701A (zh) | 2009-12-07 | 2012-10-03 | 尤尼威蒂恩技术有限责任公司 | 减少催化剂的静电荷的方法和使用该催化剂生产聚烯烃的方法 |
CN102803308B (zh) | 2010-02-18 | 2015-04-01 | 尤尼威蒂恩技术有限公司 | 用于操作聚合反应器的方法 |
KR102009103B1 (ko) | 2010-02-22 | 2019-08-08 | 유니베이션 테크놀로지즈, 엘엘씨 | 폴리올레핀 생산물을 생산하기 위한 촉매 시스템 및 이의 사용 방법 |
US8058461B2 (en) | 2010-03-01 | 2011-11-15 | Exxonmobil Chemical Patents Inc. | Mono-indenyl transition metal compounds and polymerization therewith |
KR20130016285A (ko) * | 2010-03-17 | 2013-02-14 | 보레알리스 아게 | 유리한 전기적 특성을 갖는 와이어 및 케이블 용도의 중합체 조성물 |
WO2011129956A1 (en) | 2010-04-13 | 2011-10-20 | Univation Technologies, Llc | Polymer blends and films made therefrom |
JP5606144B2 (ja) * | 2010-05-12 | 2014-10-15 | 出光興産株式会社 | ポリオレフィンの製造方法 |
CN103097015B (zh) | 2010-07-16 | 2015-11-25 | 尤尼威蒂恩技术有限责任公司 | 测量反应器表面上颗粒积聚的系统与方法 |
WO2012009215A1 (en) | 2010-07-16 | 2012-01-19 | Univation Technologies, Llc | Systems and methods for measuring static charge on particulates |
WO2012015898A1 (en) | 2010-07-28 | 2012-02-02 | Univation Technologies, Llc | Systems and methods for measuring velocity of a particle/fluid mixture |
CN102464748B (zh) * | 2010-11-16 | 2013-07-03 | 中国石油化工股份有限公司 | 一种丙烯共聚物大分子单体及其制备方法 |
RU2587080C2 (ru) | 2010-11-30 | 2016-06-10 | Юнивейшн Текнолоджиз, Ллк | Способы полимеризации олефинов с использованием экстрагированных карбоксилатов металлов |
CN103298843B (zh) | 2010-11-30 | 2015-08-19 | 尤尼威蒂恩技术有限责任公司 | 具有改进的流动特征的催化剂组合物及其制造和使用方法 |
MX337727B (es) | 2010-12-17 | 2016-03-16 | Univation Tech Llc | Sistemas y metodos para recuperar hidrocarburos a partir de un producto de gas de purga de poliolefinas. |
JP2014503659A (ja) | 2010-12-21 | 2014-02-13 | ダウ グローバル テクノロジーズ エルエルシー | オレフィン系ポリマーおよび分散重合 |
ES2640318T3 (es) | 2010-12-22 | 2017-11-02 | Univation Technologies, Llc | Aditivo para procedimientos de polimerización de olefinas |
WO2012097146A1 (en) | 2011-01-14 | 2012-07-19 | W. R. Grace & Co.-Conn. | Process of making modified metallocene catalyst, catalyst produced and use thereof |
US9868680B2 (en) | 2011-01-19 | 2018-01-16 | Exxonmobil Chemical Patents Inc. | Method and apparatus for converting hydrocarbons into olefins |
WO2012099676A2 (en) | 2011-01-19 | 2012-07-26 | Exxonmobil Chemical Patents Inc. | Process and apparatus for converting hydrocarbons |
WO2012099680A2 (en) | 2011-01-19 | 2012-07-26 | Exxonmobil Chemical Patents Inc. | Method and apparatus for converting hydrocarbons into olefins |
WO2012099671A1 (en) | 2011-01-19 | 2012-07-26 | Exxonmobil Chemical Patent Inc. | Method and apparatus for converting hydrocarbons into olefins using hydroprocessing and thermal pyrolysis |
WO2012099675A1 (en) | 2011-01-19 | 2012-07-26 | Exxonmobal Chemical Patents Inc. | Method and apparatus for managing the conversion of hydrocarbons into olefins |
WO2012099678A1 (en) | 2011-01-19 | 2012-07-26 | Exxonmobil Chemical Patents Inc. | Method and apparatus for managing for hydrogen content through the conversion of hydrocarbons into olefins |
WO2012099677A2 (en) | 2011-01-19 | 2012-07-26 | Exxonmobil Chemical Patents Inc. | Method and apparatus for converting hydrocarbons into olefins |
CN103314080B (zh) | 2011-01-19 | 2015-10-14 | 埃克森美孚化学专利公司 | 将烃转化成烯烃的方法与装置 |
BR112013029135B1 (pt) | 2011-05-13 | 2020-12-15 | Univation Technologies, Llc | Composição e processo de polimerização |
WO2013028283A1 (en) | 2011-08-19 | 2013-02-28 | Univation Technologies, Llc | Catalyst systems and methods for using same to produce polyolefin products |
ES2729280T3 (es) | 2011-11-08 | 2019-10-31 | Univation Tech Llc | Métodos para producir poliolefinas con sistemas catalíticos |
EP2750797B1 (en) | 2011-11-08 | 2020-04-01 | Univation Technologies, LLC | Methods of preparing a catalyst system |
BR112014014853A8 (pt) | 2011-12-19 | 2017-06-13 | Dow Global Technologies Llc | composição e artigo |
CN104812779B (zh) | 2012-12-03 | 2017-08-25 | 埃克森美孚化学专利公司 | 丙烯聚合物 |
US9322114B2 (en) | 2012-12-03 | 2016-04-26 | Exxonmobil Chemical Patents Inc. | Polypropylene fibers and fabrics |
CA2798036C (en) | 2012-12-05 | 2020-01-21 | Nova Chemicals Corporation | Reduction of fouling in high pressure reactors |
US10280283B2 (en) | 2012-12-28 | 2019-05-07 | Univation Technologies, Llc | Supported catalyst with improved flowability |
BR112015018250B1 (pt) | 2013-01-30 | 2021-02-23 | Univation Technologies, Llc | processo para produzir uma composição catalisadora e processo de polimerização |
RU2654061C2 (ru) | 2013-02-07 | 2018-05-16 | ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи | Получение полиолефина |
WO2014143421A1 (en) | 2013-03-15 | 2014-09-18 | Univation Technologies, Llc | Tridentate nitrogen based ligands for olefin polymerisation catalysts |
EP2970526B1 (en) | 2013-03-15 | 2017-08-09 | Univation Technologies, LLC | Ligands for catalysts |
EP3004032B1 (en) | 2013-06-05 | 2017-12-13 | Univation Technologies, LLC | Protecting phenol groups |
ES2568615T3 (es) | 2013-10-11 | 2016-05-03 | Borealis Ag | Película para etiquetas orientada en la dirección de la máquina |
US10519259B2 (en) | 2013-10-24 | 2019-12-31 | Borealis Ag | Low melting PP homopolymer with high content of regioerrors and high molecular weight |
EA031527B1 (ru) | 2013-11-22 | 2019-01-31 | Бореалис Аг | Гомополимер пропилена с низкой эмиссией и с высокой скоростью течения расплава |
BR112016011829B1 (pt) | 2013-12-04 | 2022-01-18 | Borealis Ag | Composição de polipropileno, fibra e trama soprada em fusão, artigo e uso da composição de polipropileno |
EP3094660B1 (en) | 2014-01-17 | 2018-12-19 | Borealis AG | Process for preparing propylene/1-butene copolymers |
CN112225997B (zh) | 2014-02-06 | 2023-09-22 | 北欧化工公司 | 高冲击强度的柔性共聚物 |
BR112016017227B1 (pt) | 2014-02-06 | 2021-06-29 | Borealis Ag | Copolímero de propileno heterofásico, película não orientada, recipiente, e uso de um copolímero de propileno heterofásico |
JP6618891B2 (ja) | 2014-03-28 | 2019-12-11 | 三井化学株式会社 | エチレン/α−オレフィン共重合体および潤滑油 |
EP3747913B1 (en) | 2014-04-02 | 2024-04-17 | Univation Technologies, LLC | Continuity compositions and olefin polymerisation method using the same |
EP2947118B1 (en) | 2014-05-20 | 2017-11-29 | Borealis AG | Polypropylene composition for automotive interior applications |
CN107148316B (zh) | 2014-08-19 | 2020-10-09 | 尤尼威蒂恩技术有限责任公司 | 氟化催化剂载体和催化剂系统 |
EP3183059A1 (en) | 2014-08-19 | 2017-06-28 | Univation Technologies, LLC | Fluorinated catalyst supports and catalyst systems |
CN106714967B (zh) | 2014-08-19 | 2020-07-17 | 尤尼威蒂恩技术有限责任公司 | 氟化催化剂载体和催化剂系统 |
CN107107433B (zh) | 2015-01-21 | 2019-09-13 | 尤尼威蒂恩技术有限责任公司 | 用于聚烯烃中的凝胶减少的方法 |
SG11201705607QA (en) | 2015-01-21 | 2017-08-30 | Univation Tech Llc | Methods for controlling polymer chain scission |
CN107428875B (zh) | 2015-03-10 | 2021-02-26 | 尤尼威蒂恩技术有限责任公司 | 喷雾干燥催化剂组合物、制备方法以及在烯烃聚合工艺中的用途 |
SG11201708069UA (en) | 2015-04-08 | 2017-10-30 | Univation Tech Llc | Closed reactor transitions between metallocene catalysts |
WO2016171810A1 (en) | 2015-04-20 | 2016-10-27 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and processes for use thereof |
US10519256B2 (en) | 2015-04-27 | 2019-12-31 | Univation Technologies, Llc | Supported catalyst compositions having improved flow properties and preparation thereof |
JP6749941B2 (ja) | 2015-05-11 | 2020-09-02 | ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット | 改質粘土を生成するプロセス、生成された改質粘土及びその使用 |
WO2016183006A1 (en) | 2015-05-11 | 2016-11-17 | W.R. Grace & Co.-Conn. | Process to produce modified clay, supported metallocene polymerization catalyst, catalyst produced and use thereof |
KR102514750B1 (ko) * | 2015-10-26 | 2023-03-27 | 도요보 가부시키가이샤 | 접착제 조성물 및 핫멜트 접착제 |
JP7296691B2 (ja) * | 2016-02-16 | 2023-06-23 | 三井化学株式会社 | 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法 |
KR101810317B1 (ko) * | 2016-04-06 | 2017-12-19 | 롯데케미칼 주식회사 | 용융 장력이 우수한 폴리프로필렌 수지 |
WO2018022263A1 (en) | 2016-07-29 | 2018-02-01 | Exxonmobil Chemical Patents Inc. | Polymerization processes using high molecular weight polyhydric quenching agents |
CN107125062A (zh) * | 2016-12-05 | 2017-09-05 | 广东乐将生物科技有限公司 | 一种新型可降解地膜及其使用方法 |
WO2018151903A1 (en) | 2017-02-20 | 2018-08-23 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and processes for use thereof |
CN111094366B (zh) | 2017-08-04 | 2022-06-24 | 埃克森美孚化学专利公司 | 聚乙烯组合物和由其制备的膜 |
WO2019162760A1 (en) | 2018-02-05 | 2019-08-29 | Exxonmobil Chemical Patents Inc. A Corporation Of State Of Delaware | Enhanced processability of lldpe by addition of ultra-high molecular weight high density polyethylene |
WO2019210030A1 (en) | 2018-04-26 | 2019-10-31 | Exxonmobil Chemical Patents Inc. | Non-coordinating anion type activators containing cation having branched alkyl groups |
CN112313254B (zh) | 2018-06-19 | 2023-04-18 | 埃克森美孚化学专利公司 | 聚乙烯组合物和由其制备的膜 |
CN109913078B (zh) * | 2019-03-15 | 2021-03-30 | 广东工业大学 | 一种生物纤维道路封层材料及其制备方法 |
US20220267580A1 (en) * | 2019-08-05 | 2022-08-25 | Exxonmobil Chemical Patents Inc. | Propylene-Alpha-Olefin-Diene Terpolymer Additive for Improving Rubber Tack |
WO2021119089A1 (en) | 2019-12-11 | 2021-06-17 | Exxonmobil Chemical Patents Inc. | Processes for introduction of liquid activators in olefin polymerization reactions |
WO2021126523A1 (en) | 2019-12-19 | 2021-06-24 | Exxonmobil Chemical Patents Inc. | Production of impact copolymer polypropylene using metallocene and ziegler-natta catalysts in parallel reactors |
WO2021188361A1 (en) | 2020-03-20 | 2021-09-23 | Exxonmobil Chemical Patents Inc. | Linear alpha-olefin copolymers and impact copolymers thereof |
US20230141606A1 (en) | 2020-03-25 | 2023-05-11 | Exxonmobil Chemical Patents Inc. | Alkylation of Transition Metal Coordination Catalyst Complexes |
CN115380073A (zh) | 2020-03-30 | 2022-11-22 | 埃克森美孚化学专利公司 | 梳型嵌段共聚物及其方法 |
US20230174757A1 (en) | 2020-05-01 | 2023-06-08 | Exxonmobil Chemical Patents Inc. | Linear Low Density Polyethylene for Film Applications |
WO2021222016A2 (en) | 2020-05-01 | 2021-11-04 | Exxonmobil Chemical Patents Inc. | Linear low density polyethylene for film applications |
CN111560091A (zh) * | 2020-05-29 | 2020-08-21 | 南京金陵塑胶化工有限公司 | 一种无规共聚聚丙烯生产工艺 |
WO2021257264A1 (en) | 2020-06-16 | 2021-12-23 | Exxonmobil Chemical Patents Inc. | Metallocene catalysts for producing vinyl-terminated polyalphaolefins and methods associated therewith |
WO2021262838A1 (en) | 2020-06-26 | 2021-12-30 | Exxonmobil Chemical Patents Inc. | Copolymers composed of ethylene, a-olefin, non-conjugated diene, and substituted styrene and articles therefrom |
WO2021262842A1 (en) | 2020-06-26 | 2021-12-30 | Exxonmobil Chemical Patents Inc. | COPOLYMERS OF ETHYLENE, α-OLEFIN, NON-CONJUGATED DIENE, AND ARYL-SUBSTITUTED CYCLOALKENE, METHODS TO PRODUCE, BLENDS, AND ARTICLES THEREFROM |
US20230357454A1 (en) | 2020-08-10 | 2023-11-09 | Exxonmobil Chemical Patents Inc. | Methods for Delivery of Non-Aromatic Solutions to Polymerization Reactors |
CN116490528A (zh) | 2020-08-13 | 2023-07-25 | 埃克森美孚化学专利公司 | 使用过渡金属双(酚盐)催化剂配合物得到的含有环状物的聚合物组合物及其制备方法 |
WO2022076216A1 (en) | 2020-10-08 | 2022-04-14 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and processes for use thereof |
EP4232484A1 (en) | 2020-10-22 | 2023-08-30 | ExxonMobil Chemical Patents Inc. | Multidentate lewis base catalysts and methods for use thereof |
WO2022093814A1 (en) | 2020-10-28 | 2022-05-05 | Exxonmobil Chemical Patents Inc. | Non-aromatic hydrocarbon soluble olefin polymerization catalysts and use thereof |
US20240239929A1 (en) | 2021-05-24 | 2024-07-18 | Exxonmobil Chemical Patents Inc. | Biphasic Polymerization Processes |
CN113484102B (zh) * | 2021-07-12 | 2022-12-06 | 吉林化工学院 | 一种碳纤维复合材料的石油炼化气体取样器及取样方法 |
FR3126402A1 (fr) * | 2021-08-31 | 2023-03-03 | Airbus Operations | Support de barre-bus ameliore, en deux parties, comprenant une attache entre les deux parties. |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6160072A (en) * | 1997-05-02 | 2000-12-12 | Ewen; John A. | Process for polymerizing tactioselective polyolefins in condensed phase using titanocenes |
CN1309669A (zh) * | 1998-08-26 | 2001-08-22 | 埃克森美孚化学专利公司 | 支化聚丙烯组合物 |
Family Cites Families (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US540817A (en) * | 1895-06-11 | Garment-supporter | ||
BE420895A (zh) | 1936-02-04 | 1900-01-01 | ||
US2852501A (en) | 1954-10-05 | 1958-09-16 | Monsanto Chemicals | Polymerization of ethylene |
US3725378A (en) | 1958-12-17 | 1973-04-03 | Monsanto Co | Polymerization of ethylene |
US3294772A (en) | 1963-06-17 | 1966-12-27 | Phillips Petroleum Co | Supercritical polymerization |
US4153774A (en) | 1976-02-17 | 1979-05-08 | Basf Aktiengesellschaft | Manufacture of high pressure polyethylene |
US4135044A (en) | 1977-08-08 | 1979-01-16 | Exxon Research & Engineering Co. | Process for achieving high conversions in the production of polyethylene |
US5324800A (en) | 1983-06-06 | 1994-06-28 | Exxon Chemical Patents Inc. | Process and catalyst for polyolefin density and molecular weight control |
US4530914A (en) | 1983-06-06 | 1985-07-23 | Exxon Research & Engineering Co. | Process and catalyst for producing polyethylene having a broad molecular weight distribution |
ZA844157B (en) | 1983-06-06 | 1986-01-29 | Exxon Research Engineering Co | Process and catalyst for polyolefin density and molecular weight control |
IN172494B (zh) | 1986-12-19 | 1993-09-04 | Exxon Chemical Patents Inc | |
DE3615563A1 (de) | 1986-05-09 | 1987-11-12 | Basf Ag | Verfahren zur herstellung von copolymerisaten des ethylens mit vinylestern in einem roehrenreaktor bei druecken oberhalb 500 bar |
US5084534A (en) | 1987-06-04 | 1992-01-28 | Exxon Chemical Patents, Inc. | High pressure, high temperature polymerization of ethylene |
US5408017A (en) | 1987-01-30 | 1995-04-18 | Exxon Chemical Patents Inc. | High temperature polymerization process using ionic catalysts to produce polyolefins |
DE3743321A1 (de) | 1987-12-21 | 1989-06-29 | Hoechst Ag | 1-olefinpolymerwachs und verfahren zu seiner herstellung |
US5382631A (en) | 1988-09-30 | 1995-01-17 | Exxon Chemical Patents Inc. | Linear ethylene interpolymer blends of interpolymers having narrow molecular weight and composition distributions |
US5382630A (en) | 1988-09-30 | 1995-01-17 | Exxon Chemical Patents Inc. | Linear ethylene interpolymer blends of interpolymers having narrow molecular weight and composition distribution |
DE3904468A1 (de) | 1989-02-15 | 1990-08-16 | Hoechst Ag | Polypropylenwachs und verfahren zu seiner herstellung |
DE3929693A1 (de) | 1989-09-07 | 1991-03-14 | Hoechst Ag | Verfahren zur herstellung eines polyolefinwachses |
US5504169A (en) | 1989-09-13 | 1996-04-02 | Exxon Chemical Patents Inc. | Process for producing amorphous poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
US5026798A (en) | 1989-09-13 | 1991-06-25 | Exxon Chemical Patents Inc. | Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system |
US5324799A (en) | 1990-03-06 | 1994-06-28 | Akihiro Yano | Polyethylene and process of production thereof |
PL166690B1 (pl) | 1990-06-04 | 1995-06-30 | Exxon Chemical Patents Inc | Sposób wytwarzania polimerów olefin PL |
US5272236A (en) | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
DE4030379A1 (de) | 1990-09-26 | 1992-04-02 | Basf Ag | Polymerwachse des propylens mit hoher haerte und kristallinitaet |
FI89929C (fi) | 1990-12-28 | 1993-12-10 | Neste Oy | Foerfarande foer homo- eller sampolymerisering av eten |
FI86867C (fi) | 1990-12-28 | 1992-10-26 | Neste Oy | Flerstegsprocess foer framstaellning av polyeten |
GB9103527D0 (en) | 1991-02-20 | 1991-04-10 | Exxon Chemical Patents Inc | Hp catalyst killer |
DE4130299A1 (de) | 1991-09-12 | 1993-03-18 | Basf Ag | Verfahren zur herstellung von polypropylen unter hochdruck |
GB9125934D0 (en) * | 1991-12-05 | 1992-02-05 | Exxon Chemical Patents Inc | Process for polymerising olefinic feeds under pressure |
TW285680B (zh) | 1992-03-31 | 1996-09-11 | Hoechst Ag | |
DE59305691D1 (de) | 1992-05-26 | 1997-04-17 | Hoechst Ag | Verfahren zur Herstellung von Polyolefinwachsen |
TW294669B (zh) | 1992-06-27 | 1997-01-01 | Hoechst Ag | |
TW303368B (zh) | 1992-08-08 | 1997-04-21 | Hoechst Ag | |
US5332706A (en) | 1992-12-28 | 1994-07-26 | Mobil Oil Corporation | Process and a catalyst for preventing reactor fouling |
CA2125247C (en) | 1993-06-07 | 2001-02-20 | Daisuke Fukuoka | Transition metal compound, olefin polymerization catalyst component comprising said compound, olefin polymerization catalyst containing said catalyst component, process for olefinpolymerization using said catalyst , propylene homopolymer, propylene copolymer and propylene elastomer |
ES2154664T3 (es) | 1993-11-24 | 2001-04-16 | Targor Gmbh | Metalocenos, procedimientos para su obtencion, y su empleo como catalizadores. |
NO178790C (no) * | 1993-12-13 | 1996-06-05 | Borealis Holding As | Fremgangsmåte ved fremstilling av olefinpolymerer i en autoklavrektor |
DE4406963A1 (de) | 1994-03-03 | 1995-09-07 | Basf Ag | Metallocenkomplexe mit heterofunktionellen Gruppen am Cyclopentadienylsystem |
EP0766704B1 (en) | 1994-06-24 | 1998-12-23 | Exxon Chemical Patents Inc. | Polymerization process and catalyst systems useful therein |
US5552489A (en) | 1994-07-22 | 1996-09-03 | Exxon Chemical Patents Inc. | Tackifiers and a process to obtain tackifiers |
US6300451B1 (en) | 1994-10-24 | 2001-10-09 | Exxon Chemical Patents Inc. | Long-chain branched polymers and their production |
US5880241A (en) | 1995-01-24 | 1999-03-09 | E. I. Du Pont De Nemours And Company | Olefin polymers |
JPH08208535A (ja) | 1995-02-03 | 1996-08-13 | Mitsui Toatsu Chem Inc | アルキルベンゼンの製造方法 |
FI951970A (fi) | 1995-04-25 | 1996-10-26 | Borealis As | Olefiinipolymeerit, jotka sisältävät polaarisia ryhmiä, ja menetelmä niiden valmistamiseksi |
GB2300425A (en) * | 1995-05-01 | 1996-11-06 | Kobe Steel Europ Ltd | Nucleation of diamond films using an electrode |
US6143682A (en) | 1995-06-07 | 2000-11-07 | Exxon Chemical Patents Inc. | Bimetallocyclic transition metal catalyst systems |
US5882750A (en) | 1995-07-03 | 1999-03-16 | Mobil Oil Corporation | Single reactor bimodal HMW-HDPE film resin with improved bubble stability |
FI954475A (fi) | 1995-09-21 | 1997-03-22 | Borealis As | Olefiinipolymeerit, jotka sisältävät polaarisia ryhmiä, ja menetelmä niiden valmistamiseksi |
AU704614B2 (en) | 1995-10-10 | 1999-04-29 | Borealis As | Process for making propylene homo or copolymers |
FI105820B (fi) * | 1995-10-10 | 2000-10-13 | Borealis Tech Oy | Prosessi propeenin homo- tai kopolymeerien valmistamiseksi |
EP0868440B1 (de) * | 1995-10-14 | 2001-12-12 | Basell Polyolefine GmbH | Verfahren zur herstellung von ethylen-copolymerisaten unter hochdruck |
JPH09176235A (ja) * | 1995-12-25 | 1997-07-08 | Mitsui Toatsu Chem Inc | プロピレンの重合方法 |
JPH09216916A (ja) | 1996-02-13 | 1997-08-19 | Tosoh Corp | エチレン/α−オレフィン共重合体の製造方法 |
FI102476B1 (fi) | 1996-05-31 | 1998-12-15 | Borealis As | Uudet siirtymämetallikompleksit ja menetelmä niiden valmistamiseksi |
EP0906343B1 (en) * | 1996-06-17 | 2001-04-18 | Exxon Chemical Patents Inc. | Mixed transition metal catalyst systems for olefin polymerization |
DE69702978T3 (de) | 1996-06-17 | 2009-08-13 | Exxonmobil Chemical Patents Inc., Baytown | Polymerisationsverfahren unter erhöhtem druck mit spätübergangsmetallkatalysatorsystemen |
JPH1045834A (ja) | 1996-08-07 | 1998-02-17 | Mitsubishi Chem Corp | プロピレンの重合方法 |
DE59703850D1 (de) * | 1996-08-13 | 2001-07-26 | Basell Polyolefine Gmbh | Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen |
US6583227B2 (en) * | 1996-09-04 | 2003-06-24 | Exxonmobil Chemical Patents Inc. | Propylene polymers for films |
JP3421202B2 (ja) | 1996-10-09 | 2003-06-30 | 三菱化学株式会社 | プロピレンの重合方法及びそれを用いて得られるプロピレン系重合体 |
DE19648895A1 (de) | 1996-11-26 | 1998-05-28 | Clariant Gmbh | Polar modifizierte Polypropylen-Wachse |
EP1312619B1 (en) * | 1996-12-09 | 2007-11-14 | Mitsubishi Chemical Corporation | Catalyst for the polymerisation of alpha olefins |
JP3883243B2 (ja) | 1997-01-22 | 2007-02-21 | 矢崎総業株式会社 | 簡易交換型照明装置 |
US6303717B1 (en) | 1997-02-05 | 2001-10-16 | The Penn State Research Foundation University Park Pa | Metal catalyzed synthesis of hyperbranched ethylene and/or α-olefin polymers |
EP0987279B1 (en) | 1997-06-06 | 2006-08-30 | Idemitsu Kosan Co., Ltd. | Branched polypropylene |
FI111847B (fi) | 1997-06-24 | 2003-09-30 | Borealis Tech Oy | Menetelmä propeenin kopolymeerien valmistamiseksi |
FI972946A (fi) | 1997-07-11 | 1999-01-12 | Borealis As | Uudet metalloseeniyhdisteet etyleenisesti tyydyttämätt"mien monomeerien polymeroimiseksi |
AU8997098A (en) | 1997-09-04 | 1999-03-22 | Chisso Corporation | Propylene copolymer and process for the production thereof |
US6184327B1 (en) | 1997-12-10 | 2001-02-06 | Exxon Chemical Patents, Inc. | Elastomeric propylene polymers |
EP1056539A4 (en) | 1997-12-19 | 2005-01-26 | Conocophillips Co | NICKEL-DIIMINE CATALYST USING METHYLALUMOXANE AS CO CATALYST, METHOD FOR POLYMERIZING OLEFINES USING THE CATALYST AND POLYMERS PRODUCED THEREOF |
DE19804970A1 (de) | 1998-02-07 | 1999-08-12 | Aventis Res & Tech Gmbh & Co | Katalysatorsystem |
WO1999045041A1 (en) * | 1998-03-04 | 1999-09-10 | Exxon Chemical Patents Inc. | High temperature olefin polymerization process |
KR100653018B1 (ko) | 1998-12-21 | 2006-11-30 | 엑손모빌 케미칼 패턴츠 인코포레이티드 | 분지형 반결정질 에틸렌-프로필렌 조성물 |
JP2002534538A (ja) | 1999-01-08 | 2002-10-15 | ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ | 狭い組成分布と高融点を有するエチレンコポリマーおよびその製法 |
US6620896B1 (en) | 1999-02-23 | 2003-09-16 | Eastman Chemical Company | Mixed olefin polymerization catalysts, processes employing such catalysts, and polymers obtained therefrom |
FI990948A0 (fi) | 1999-04-27 | 1999-04-27 | Borealis As | Ei-ristisilloitettu polyeteeni |
EP1083183A1 (en) | 1999-09-10 | 2001-03-14 | Fina Research S.A. | Process for producing polyolefins |
WO2001025299A1 (fr) | 1999-10-06 | 2001-04-12 | Idemitsu Petrochemical Co., Ltd. | Polypropylene lamine et polypropylene moule par injection |
JP2001163924A (ja) * | 1999-12-03 | 2001-06-19 | Japan Polychem Corp | 分岐を有するプロピレン重合体及びその製造方法 |
US20020013440A1 (en) * | 1999-12-10 | 2002-01-31 | Agarwal Pawan Kumar | Propylene diene copolymers |
US6444833B1 (en) * | 1999-12-15 | 2002-09-03 | Basell Technology Company Bv | Metallocene compounds, process for their preparation and their use in catalytic systems for the polymerization of olefins |
KR20020063242A (ko) | 1999-12-20 | 2002-08-01 | 엑손 케미칼 패턴츠 인코포레이티드 | 지지된 이온 촉매를 이용한 폴리올레핀 수지의 제조 방법 |
GB0013571D0 (en) | 2000-06-06 | 2000-07-26 | Power X Limited | Switching system |
EP1191042A1 (fr) * | 2000-09-26 | 2002-03-27 | Atofina | Procédé de polymérisation du 1,1-difluoroéthylène sous haute pression |
EP1195391A1 (en) | 2000-10-05 | 2002-04-10 | ATOFINA Research | Production of polypropylene |
AU2002222904A1 (en) | 2000-10-25 | 2002-05-06 | Exxonmobil Chemical Company Inc | Processes and apparatus for continuous solution polymerization |
DE60131019T2 (de) * | 2000-12-04 | 2008-07-17 | Univaton Technologies, LLC, Houston | Polymerisationsverfahren |
CN1500100A (zh) | 2000-12-20 | 2004-05-26 | ����ɭ���ڻ�ѧר����˾ | 生产支链聚合物组合物的烯烃聚合方法 |
GB0111020D0 (en) * | 2001-05-04 | 2001-06-27 | Borealis Tech Oy | Process |
US8008412B2 (en) | 2002-09-20 | 2011-08-30 | Exxonmobil Chemical Patents Inc. | Polymer production at supersolution conditions |
WO2004026921A1 (en) * | 2002-09-20 | 2004-04-01 | Exxonmobil Chemical Patents Inc. | Polymer production at supercritical conditions |
US20060025545A1 (en) | 2002-09-20 | 2006-02-02 | Patrick Brant | Polymer production at supercritical conditions |
JP5268087B2 (ja) | 2004-07-08 | 2013-08-21 | エクソンモービル・ケミカル・パテンツ・インク | 超臨界条件におけるポリマー製造 |
WO2006019494A1 (en) | 2004-07-14 | 2006-02-23 | Exxonmobil Chemical Patents Inc. | Polymer production at supercritical conditions |
-
2003
- 2003-09-22 WO PCT/US2003/029480 patent/WO2004026921A1/en active Application Filing
- 2003-09-22 CN CN2007101021024A patent/CN101041701B/zh not_active Expired - Fee Related
- 2003-09-22 JP JP2004568939A patent/JP2006500470A/ja not_active Withdrawn
- 2003-09-22 JP JP2004568943A patent/JP4664080B2/ja not_active Expired - Fee Related
- 2003-09-22 ES ES03752492T patent/ES2391766T3/es not_active Expired - Lifetime
- 2003-09-22 US US10/667,585 patent/US7354979B2/en not_active Expired - Lifetime
- 2003-09-22 CN CNA038223449A patent/CN1681858A/zh active Pending
- 2003-09-22 EP EP03752492A patent/EP1539841B1/en not_active Expired - Lifetime
- 2003-09-22 EP EP03768513A patent/EP1546223A2/en not_active Withdrawn
- 2003-09-22 AU AU2003291627A patent/AU2003291627A1/en not_active Abandoned
- 2003-09-22 AU AU2003270780A patent/AU2003270780A1/en not_active Abandoned
- 2003-09-22 CN CNB038225433A patent/CN1326888C/zh not_active Expired - Fee Related
- 2003-09-22 WO PCT/US2003/029310 patent/WO2004026923A2/en active Application Filing
- 2003-09-22 US US10/667,586 patent/US7319125B2/en not_active Expired - Lifetime
-
2006
- 2006-05-12 US US11/433,889 patent/US7429634B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6160072A (en) * | 1997-05-02 | 2000-12-12 | Ewen; John A. | Process for polymerizing tactioselective polyolefins in condensed phase using titanocenes |
CN1309669A (zh) * | 1998-08-26 | 2001-08-22 | 埃克森美孚化学专利公司 | 支化聚丙烯组合物 |
Non-Patent Citations (2)
Title |
---|
Mika Lahelin, et al.Propylene Polymerization with rac-SiMe2(2-Me-4-PhInd)2ZrMe2/MAO: Polymer Characterization and Kinetic Models.Macromol. Chem. Phys.204 10.2003,204(10),1323-337. |
Mika Lahelin, et al.Propylene Polymerization with rac-SiMe2(2-Me-4-PhInd)2ZrMe2/MAO: Polymer Characterization and Kinetic Models.Macromol. Chem. Phys.204 10.2003,204(10),1323-337. * |
Also Published As
Publication number | Publication date |
---|---|
US20040122191A1 (en) | 2004-06-24 |
WO2004026923A3 (en) | 2004-07-08 |
WO2004026923A2 (en) | 2004-04-01 |
JP2006500470A (ja) | 2006-01-05 |
JP2006510796A (ja) | 2006-03-30 |
US20060211832A1 (en) | 2006-09-21 |
EP1539841B1 (en) | 2012-08-01 |
CN1684988A (zh) | 2005-10-19 |
US20040127654A1 (en) | 2004-07-01 |
CN1326888C (zh) | 2007-07-18 |
JP4664080B2 (ja) | 2011-04-06 |
AU2003270780A1 (en) | 2004-04-08 |
US7354979B2 (en) | 2008-04-08 |
EP1539841A1 (en) | 2005-06-15 |
AU2003291627A8 (en) | 2004-04-08 |
CN1681858A (zh) | 2005-10-12 |
EP1546223A2 (en) | 2005-06-29 |
ES2391766T3 (es) | 2012-11-29 |
WO2004026923A9 (en) | 2004-09-10 |
WO2004026921A1 (en) | 2004-04-01 |
CN101041701A (zh) | 2007-09-26 |
US7319125B2 (en) | 2008-01-15 |
AU2003291627A1 (en) | 2004-04-08 |
US7429634B2 (en) | 2008-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101041701B (zh) | 包括丙烯的聚合物及其应用 | |
CN101010705B (zh) | 在超临界条件下生产聚合物 | |
CN101595137B (zh) | 在超临界条件下的聚合物制备 | |
CN101511879B (zh) | 采用吲哚改性的二氧化硅载体制备聚合催化剂活化剂 | |
EP0758355B1 (en) | Applications of isotactic polypropylene, processes and products thereof | |
EP2195349B1 (en) | In-line process for producing plasticized polymers and plasticized polymer blends | |
EP2099829B1 (en) | Process for fluid phase in-line blending of polymers | |
AU782996B2 (en) | Transition metal compound, ligand system, catalyst system and the use of the latter for the polymerisation and copolymerisation of olefins | |
US20060025545A1 (en) | Polymer production at supercritical conditions | |
CN104755511B (zh) | 丙烯共聚物组合物及其制备方法 | |
US20080153997A1 (en) | Polymer production at supercritical conditions | |
US6809168B2 (en) | Articles formed from propylene diene copolymers | |
CN101679556A (zh) | 超溶液均相丙烯聚合 | |
US20040110909A1 (en) | Branched diene-modified crystalline polypropylene terpolymers | |
WO2001025300A1 (fr) | Polymeres de propylene, composition de resine et objet moule contenant ces polymeres | |
CN105408112B (zh) | 可热封聚烯烃薄膜及片材 | |
JP2005220235A (ja) | プロピレン−α−オレフィンブロック共重合体の製造方法 | |
JP5450917B2 (ja) | 押出成形用プロピレン重合体組成物およびそのフィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130227 Termination date: 20200922 |
|
CF01 | Termination of patent right due to non-payment of annual fee |