WO2021189836A1 - Materiau d'électrode négative de graphite pour batterie au lithium-ion à haute performance et sa méthode de préparation - Google Patents

Materiau d'électrode négative de graphite pour batterie au lithium-ion à haute performance et sa méthode de préparation Download PDF

Info

Publication number
WO2021189836A1
WO2021189836A1 PCT/CN2020/123705 CN2020123705W WO2021189836A1 WO 2021189836 A1 WO2021189836 A1 WO 2021189836A1 CN 2020123705 W CN2020123705 W CN 2020123705W WO 2021189836 A1 WO2021189836 A1 WO 2021189836A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
graphite anode
temperature
ion batteries
anode material
Prior art date
Application number
PCT/CN2020/123705
Other languages
English (en)
Chinese (zh)
Inventor
张小广
褚相礼
黄雨生
Original Assignee
江西正拓新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西正拓新能源科技股份有限公司 filed Critical 江西正拓新能源科技股份有限公司
Publication of WO2021189836A1 publication Critical patent/WO2021189836A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a graphite negative electrode material for lithium ion batteries and a preparation method thereof, in particular to a high-performance graphite negative electrode material for lithium ion batteries and a preparation method thereof.
  • Lithium-ion batteries are mainly composed of transition metal oxides with lithium intercalation in the positive electrode material, highly graphitized carbon as the negative electrode material, separator polyolefin microporous membrane, and electrolyte materials.
  • lithium-ion batteries Compared with traditional lead-acid, nickel-cadmium, nickel-metal hydride and other secondary batteries, lithium-ion batteries have high working voltage, small size, light weight, high capacity density, no memory effect, no pollution, and self-discharge. The advantages of small size and long cycle life. Since the successful commercialization of lithium-ion batteries by a Japanese company in the last century, lithium-ion batteries have become the dominant power source for mobile phones, notebook computers and digital products, and their applications in the fields of electric vehicles and energy storage have become more and more extensive. At present, the large-scale commercial use of lithium-ion battery anode materials is mainly carbon materials, mainly including natural graphite, artificial graphite, etc. Natural graphite is inherently high-capacity, high-pressure and compact. With the continuous improvement of artificial graphite technology, It has a significant increase in capacity density, almost reaching the level of natural graphite
  • lithium-ion battery anode materials is mainly carbon materials, including natural graphite, artificial graphite, etc., but in fact, its theoretical specific capacity is low, about 300mAh/g, which cannot meet the requirements of high-capacity and high-power lithium-ion batteries. Demand.
  • the Chinese Patent Publication No. CN109616639A published a hard carbon-coated expanded microcrystalline graphite material and its preparation method and application in sodium ion batteries.
  • This technology uses microcrystalline graphite as the substrate and is coated by hard carbon after oxidation.
  • the resulting composite material has good conductivity and high sodium storage capacity.
  • its hard carbon has a large number of micropores, and the electrolyte is easy to enter the material through the coating layer and cause side reactions, which will inevitably affect the material Cycle performance.
  • the Chinese Patent Publication No. CN109755581A discloses "a flexible carbon material coating structure and its coating process".
  • This technology is to disperse the low-residue carbon precursor in a solvent through a surfactant, and then spray-dry the low-residue carbon precursor in a solvent.
  • the carbon precursor is deposited on the surface of the coated object, and then a layer of high residual carbon precursor is uniformly coated on the outer layer, and then the coated product is heated and cooled in an inert atmosphere, and finally dispersed and sieved , Demagnetization to obtain an elastic carbon material coating structure.
  • the elastic carbon material coating structure prepared by the coating process of the present invention has strong elasticity, and can avoid rupture due to drastic changes in the volume of the coated object.
  • the process uses one-time carbonization, and the hard carbon and soft carbon precursors have defects such as difficult-to-control process methods during the simultaneous carbonization process, which affects the performance of the carbonized graphite anode material.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a high-performance lithium ion battery graphite negative electrode material and a preparation method thereof; it uses natural graphite as a raw material, increases the capacity through oxidation treatment, and improves its rate performance through hard carbon coating , Improve its cycle performance through impregnation treatment, increase capacity through surface oxidation treatment of natural graphite, hard carbon coating makes it have high rate charging ability, and use impregnation treatment to repair defects left after oxidation and hard carbon coating to improve its cycle performance .
  • the present invention is to provide a method for preparing a high-performance lithium ion battery graphite negative electrode material. Natural graphite is used as a raw material, the capacity is increased through oxidation treatment, the rate performance is improved through hard carbon coating, and the cycle performance is improved through immersion treatment. Including the following steps:
  • Oxidation treatment is to fully stir and mix the natural graphite and the oxidant mixed solution, filter, dry, and perform high-temperature oxidation treatment under inert atmosphere conditions to obtain oxidized natural graphite;
  • step 3 low-temperature carbonization treatment, the graphite anode material precursor obtained in step 2) is subjected to low-temperature carbonization treatment in an inert atmosphere to obtain a carbonized graphite anode material precursor;
  • Pitch impregnation treatment place the precursor of carbonized graphite anode material in a pitch solvent under pressure, perform mixing and dissolution treatment, take out, filter, and dry, and become the precursor of pitch carbonized graphite anode material;
  • the oxidant is a mixture of peroxide and organic acid or a mixture of peroxide and inorganic acid to control natural graphite and peroxide and organic
  • the mass ratio of acid or natural graphite to peroxide salt and inorganic acid is 80-95:5-20:1-10; the temperature of high-temperature oxidation treatment is controlled at 500-600°C; the time is 2-4h.
  • the coating agent is any one or more of sucrose, phenolic resin, epoxy resin, and polyvinyl alcohol; controlling the The mass ratio of oxidized natural graphite to coating agent is 100:3-40.
  • the step 3) controls the low-temperature carbonization treatment temperature at 500-650°C, the time is 6-20h, and controls the low-temperature carbonization treatment heating rate at 5-8°C/min .
  • the step 4) pitch impregnation treatment the pitch is low-temperature pitch or medium-temperature pitch; the pressure is controlled to 0.2-1.5Mp, and the pressure is maintained under the condition of this pressure.
  • the pressing time is 0.2-3h.
  • the step 5) controls the pitch carbonized graphite anode material precursor material to pulverize the particle size of the material to be 1um-50um, and the high-temperature carbonization temperature is controlled to be 1200-1400°C ,
  • the carbonization time is 5-24h; the heating rate of high-temperature carbonization is controlled at 4-10°C/min.
  • the oxidant is a mixture of sodium peroxide and oxalic acid or a mixture of sodium peroxide and concentrated sulfuric acid.
  • the graphite negative electrode material for high-performance lithium ion battery prepared by the method for preparing graphite negative electrode material for high-performance lithium ion battery, wherein the graphite negative electrode material for high-performance lithium ion battery is coated with oxidized natural graphite and soft carbon by hard carbon Composition, control the quality ratio of natural graphite quality: hard carbon quality: soft carbon quality is 80-98:1-10:1-10.
  • the high-performance lithium ion battery graphite negative electrode material controls the particle size of the high-performance lithium ion battery graphite negative electrode material to be 2um-45um, and the specific surface area is 3-20m 2 /g.
  • the solvent is any one of toluene, xylene, quinoline or water.
  • the soft carbon in the present invention refers to amorphous carbon that can be graphitized at high temperature; while hard carbon refers to the pyrolysis carbon of high molecular polymer.
  • the inert atmosphere in the present invention refers to the atmospheric conditions in the presence of nitrogen and/or helium.
  • the invention discloses a method for preparing high-performance lithium ion battery graphite negative electrode material.
  • the surface oxidation treatment of natural graphite is used to increase the capacity, the hard carbon coating makes it have a high-rate charging ability, the immersion treatment repairs oxidation and the hard carbon coating is left behind.
  • the following defects improve the cycle performance of graphite anode materials for lithium-ion batteries; when used as anode materials for lithium-ion batteries, this material has high capacity, high pressure, excellent rate performance and cycle life.
  • the combination of natural graphite and hard carbon coating not only ensures the capacity density of graphite anode materials for lithium-ion batteries, but also greatly improves the rate performance of the materials;
  • the secondary carbonization process is adopted to make the prepared graphite anode material for lithium ion batteries have better cycle performance. Constant current charge and discharge at a rate of 0.2C, the lower limit voltage is 0.001V, the upper limit voltage is 2.0V, and the charge and discharge capacity The first efficiency is over 94%, and its cycle capacity retention rate is over 650mAh/g.
  • Figure 1 The SEM profile of a high-performance lithium ion battery graphite anode material prepared by the preparation method of the present invention, that is, the SEM profile of the composite material prepared in one embodiment; the figure shows the SEM profiles of two products;
  • Figure 2 Graphite half-cell test spectrum of the graphite negative electrode material for lithium ion batteries prepared by the method of the present invention, that is, composite material;
  • Fig. 3 Comparison of charge and discharge curves of graphite anode material for lithium ion batteries prepared by the method of the present invention and ordinary artificial graphite 5C charge and 1C discharge cycle test.
  • the present invention is a high-capacity and high-power graphite negative electrode material for lithium-ion batteries and a preparation method thereof, or high-performance lithium-ion battery graphite negative electrode material and a preparation method thereof.
  • Carbon composition, the method steps are as follows:
  • Oxidation treatment is to fully stir and mix natural graphite and oxidant, aqueous solutions of oxalic acid and sodium persulfate or a mixed solution of sodium peroxide and concentrated sulfuric acid, filter, dry, and perform high-temperature oxidation treatment under inert atmosphere conditions.
  • step 2) Preparing the precursor of the graphite anode material, placing step 1) oxidized natural graphite in the coating agent and corresponding solvent, and thoroughly stir and mix into a mixture of oxidized natural graphite and the coating agent, the coating agent is sucrose, phenolic aldehyde One or more of resin, epoxy resin, and polyvinyl alcohol are dissolved and mixed in the corresponding solvent, and the mass ratio of the oxidized natural graphite to the coating agent is controlled to be 100:3-40; the oxidized natural graphite is mixed with the coating After the coating agent mixture is spray-dried, the graphite anode material precursor is obtained;
  • low-temperature carbonization treatment the graphite anode material precursor obtained in step 2) is subjected to low-temperature carbonization treatment in an inert atmosphere to obtain a carbonized graphite anode material precursor;
  • the low-temperature carbonization treatment temperature is controlled to 500-650°C, and the time is 6 -20h, control the heating rate of low-temperature carbonization to 5-8°C/min.
  • Pitch impregnation treatment place the precursor of carbonized graphite anode material in a pitch solvent under pressure, perform mixing and dissolution treatment, take out, filter, and dry, and become the precursor of pitch carbonized graphite anode material; control the pitch to be Low-temperature asphalt or medium-temperature asphalt; control the pressure to 0.2-1.5Mp, and hold the pressure for 0.2-3h under the condition of the pressure;
  • the quality of natural graphite in step 1) oxalic acid: sodium persulfate is 80-95:5-20:1-10, the treatment temperature is 500-600°C, and the holding time is 1-5h;
  • the graphite quality in step 2) the quality of the coating agent is 100:3-40;
  • the high-temperature carbonization temperature curve in step 3) is: the heating rate is 1-10°C/min, the sintering temperature is 500-900°C, and the sintering time is 5-24h;
  • the solvent is any one of toluene, xylene, quinoline or water;
  • the method of the present invention prepares the final product a high-capacity and high-power graphite anode material for lithium-ion batteries.
  • the graphite anode material has a particle size of 2um-45um and a specific surface area of 3-20m 2 /g.
  • the quality of natural graphite is: Hard carbon quality: The soft carbon quality is 80-98:1-10:1-10.
  • the graphite anode material for high-performance lithium ion batteries prepared by the method of the present invention has surface oxidation treatment of natural graphite to increase capacity, hard carbon coating to make it have high-rate charging ability, and impregnation treatment to repair defects left after oxidation and hard carbon coating , To improve its cycle performance.
  • the material is used as a negative electrode material of a lithium ion battery, it has high capacity, high compactness, excellent rate performance and cycle life.
  • the present invention is a high-capacity and high-power graphite negative electrode material for lithium ion batteries and a preparation method thereof, which is composed of hard carbon coated on oxidized natural graphite and surface-modified soft carbon.
  • the method steps are as follows:
  • Oxidation treatment is to fully stir and mix natural graphite and oxidant, oxalic acid and sodium persulfate aqueous solution mixed solution, filter, dry, and perform high-temperature oxidation treatment under inert atmosphere conditions to oxidize natural graphite; make natural graphite
  • the mass ratio of peroxide and organic acid or natural graphite to peroxide salt and inorganic acid is 80-95:5-20:1-10; the temperature of high-temperature oxidation treatment is controlled at 500-600°C; the time is 2-4h ;
  • the oxidant is a mixture of sodium persulfate and oxalic acid;
  • step 2) Preparing the precursor of the graphite anode material, placing step 1) oxidized natural graphite in the coating agent and corresponding solvent, and thoroughly stir and mix into a mixture of oxidized natural graphite and the coating agent, the coating agent is sucrose, phenolic aldehyde One or more of resin, epoxy resin, and polyvinyl alcohol are dissolved and mixed in the corresponding solvent, and the mass ratio of the oxidized natural graphite to the coating agent is controlled to be 100:3-40; the oxidized natural graphite is mixed with the coating After the coating agent mixture is spray-dried, the graphite anode material precursor is obtained;
  • low-temperature carbonization treatment the graphite anode material precursor obtained in step 2) is subjected to low-temperature carbonization treatment in an inert atmosphere to obtain a carbonized graphite anode material precursor;
  • the low-temperature carbonization treatment temperature is controlled to 500-650°C, and the time is 6 -20h, control the heating rate of low-temperature carbonization to 5-8°C/min.
  • Pitch dipping treatment place the precursor of carbonized graphite anode material in a pitch solvent or organic solution called pitch, mix and dissolve it under pressure, take it out, filter, and dry, and become the precursor of pitch carbonized graphite anode material;
  • the pitch is controlled to be low-temperature pitch or medium-temperature pitch;
  • the organic solvent is any one of toluene, xylene, and quinoline;
  • the pressure is controlled to be 0.2-1.5Mp, and the pressure holding time is 0.2- in the presence of pressure. 3h;
  • Oxidation treatment Add 1000g of natural graphite to 1000ml of water, add 10g of sodium persulfate and 50g of oxalic acid to form a mixed aqueous solution, stir for 1-2h at a temperature of 60°C, filter and dry in vacuum for 18-24h, and protect in a nitrogen atmosphere.
  • the pressure of the reactor is increased to 1.5Mp. Under this pressure condition, the pressure is maintained for 1 hour, and the material is taken out and filtered and dried.
  • the precursor of the pitch carbonized graphite anode material is marked as material C;
  • the active material is the lithium ion battery graphite anode material, conductive agent, super P carbon black, and carboxymethyl prepared by the present invention.
  • the lithium piece is used as the counter electrode to make a half-cell.
  • the battery model is still the existing CR2032 button cell, and the electrolyte is the same Use commonly used lithium ion battery electrolyte: such as 1.2-1.6mol/L lithium hexafluorophosphate (LiPF6)/ethylene carbonate (EC): dimethyl carbonate (DMC): ethyl methyl carbonate (EMC) is 12:12:76 The mixture.
  • a charge-discharge test was performed on the battery prepared by the present invention, the constant current charge-discharge at a rate of 0.2C, the lower limit voltage is 0.001V, and the upper limit voltage is 2.0V. See Figure 2 for charge and discharge curves. Its charge and discharge capacity is the first efficiency respectively.
  • the battery is subjected to a rate charge-discharge cycle test, and its cycle capacity retention rate is shown in Figure 3 of the curve.
  • the following embodiments are the same as Embodiment 1 except for the description in the embodiments.
  • the material C is crushed to a D50 particle size of 18um, it is placed in a box furnace, under the protection of a nitrogen atmosphere, the heating rate is increased to 1200°C at 2°C/min, and the temperature is kept for 5 hours.
  • the target product obtained by cooling and taking out is a graphite anode material for high-performance lithium-ion batteries.
  • the button cell assembly and testing are the same as in Example 1.
  • the present invention is a high-capacity and high-power graphite negative electrode material for lithium ion batteries and a preparation method thereof, which is composed of hard carbon coated on oxidized natural graphite and surface-modified soft carbon.
  • the method steps are as follows:
  • Oxidation treatment add 1000g of natural graphite to 1000ml of water, add 10g of sodium persulfate and corresponding sulfuric acid to form a mixed aqueous solution, stir for 1-2h at a temperature of 70°C, filter and dry in vacuum for 18-24h, and protect in a nitrogen atmosphere. Place it in the box furnace of the heating device, heat it up to 500°C, keep it for 2h, take it out naturally, and record it as material A, which is oxidized natural graphite.
  • the oxidized natural graphite to the coating agent 50g epoxy resin is dissolved in 2000L deionized water, 1000g material A is added to control the mass ratio of the oxidized natural graphite to the coating agent to be 100:3-40; it is a mixture of oxidized natural graphite and the coating agent, which will oxidize the natural stone
  • the ink and coating agent mixture is spray-dried to obtain the precursor, which is the precursor of the graphite anode material. 3), low-temperature carbonization, and the precursor of the carbonized graphite anode material in step 2) is placed in a box furnace, and protected in a nitrogen atmosphere.
  • the temperature rise rate of 6°C/min was increased to 500°C, and the temperature was kept for 6 hours.
  • the precursor of the carbonized graphite anode material was obtained, which was recorded as material B; 4).
  • the pitch impregnation treatment was prepared with a 10% mass concentration of medium temperature pitch toluene solution.
  • the pressure of the reactor is increased to 1.0Mp, the pressure is maintained for 2h, and the material is taken out and filtered and dried to obtain the precursor of the pitch carbonized graphite anode material, which is marked as material C;
  • the high-performance graphite negative electrode material for lithium ion batteries prepared by the method of the present invention is surface oxidation treatment of natural graphite to increase the capacity, hard carbon coating to make it have a high-rate charging ability, asphalt impregnation treatment to repair oxidation and hard carbon coating to leave behind Under the defect, improve its cycle performance.
  • the material is used as a negative electrode material for lithium-ion batteries, it has high capacity, high compactness, excellent rate performance and cycle life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un matériau d'électrode négative de graphite pour une batterie au lithium-ion à haute performance, ainsi que sa méthode de préparation. Le procédé de préparation comprend les étapes suivantes : 1) soumettre du graphite naturel à un traitement d'oxydation de surface; 2) revêtir le graphite naturel, qui a subi le traitement d'oxydation, avec du carbone dur pour obtenir un précurseur; 3) soumettre le précurseur obtenu à l'étape 2) à un traitement de carbonisation; 4) soumettre le précurseur, qui a subi le traitement de carbonisation, à un traitement d'imprégnation; et 5) broyer le matériau imprégné, puis le carboniser pour obtenir un matériau d'électrode négative de graphite haute puissance à haute capacité. Le traitement d'oxydation de surface augmente la capacité du graphite naturel, le revêtement avec le carbone dur lui confère une grande capacité de charge, et le traitement d'imprégnation peut réparer tout défaut restant après l'oxydation et le revêtement de carbone dur, ce qui permet d'améliorer les performances de cycle de celui-ci.
PCT/CN2020/123705 2020-03-25 2020-10-26 Materiau d'électrode négative de graphite pour batterie au lithium-ion à haute performance et sa méthode de préparation WO2021189836A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010218327.1 2020-03-25
CN202010218327.1A CN111333064B (zh) 2020-03-25 2020-03-25 高性能锂离子电池石墨负极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021189836A1 true WO2021189836A1 (fr) 2021-09-30

Family

ID=71179215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123705 WO2021189836A1 (fr) 2020-03-25 2020-10-26 Materiau d'électrode négative de graphite pour batterie au lithium-ion à haute performance et sa méthode de préparation

Country Status (2)

Country Link
CN (1) CN111333064B (fr)
WO (1) WO2021189836A1 (fr)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044508A (zh) * 2021-12-20 2022-02-15 张家港博威新能源材料研究所有限公司 一种硬碳微球及其制备方法及应用
CN114195123A (zh) * 2021-12-30 2022-03-18 上海杉杉新材料有限公司 一种改性硬炭材料、制备方法及其应用
CN114213126A (zh) * 2021-12-22 2022-03-22 格龙新材料科技(常州)有限公司 一种高容量高压实密度石墨复合材料的制备方法
CN114291814A (zh) * 2021-12-24 2022-04-08 东北师范大学 一种石墨负极材料及其制备方法和应用
CN114300685A (zh) * 2021-12-31 2022-04-08 中创新航科技股份有限公司 负极材料、制备方法及包含该负极材料的电化学装置
CN114335504A (zh) * 2021-12-29 2022-04-12 江苏天鹏电源有限公司 一种改性预锂化硅氧材料及其制备方法、电极和锂离子电池
CN114368735A (zh) * 2022-01-25 2022-04-19 内蒙古圣钒科技新能源有限责任公司 一种生产高压实高容量磷酸铁锂的方法
CN114497508A (zh) * 2022-01-29 2022-05-13 辽宁中宏能源新材料股份有限公司 一种功率型人造石墨复合材料及其制备方法
CN114497506A (zh) * 2022-01-29 2022-05-13 辽宁中宏能源新材料股份有限公司 一种硬碳-无机锂盐复合电极材料及其制备方法和应用
CN114597404A (zh) * 2022-03-02 2022-06-07 江西正拓新能源科技股份有限公司 锂离子电池长循环硬碳负极材料及其制备方法
CN114875430A (zh) * 2022-04-19 2022-08-09 中国科学院过程工程研究所 一种石墨基双功能电合成双氧水催化材料及其制备方法
CN115000375A (zh) * 2022-06-14 2022-09-02 湛江市聚鑫新能源有限公司 一种天然石墨/SnSb复合负极材料及其制备方法与应用
CN115010127A (zh) * 2022-07-20 2022-09-06 晖阳(贵州)新能源材料有限公司 一种高倍率锂离子电池负极材料的制备方法
CN115172643A (zh) * 2022-07-29 2022-10-11 陕西科技大学 一种石墨烯量子点/硬碳异质结材料及其制备方法及负极材料和钾离子扣式电池
CN115259135A (zh) * 2022-08-30 2022-11-01 山东零壹肆先进材料有限公司 沥青基氧化法制备的硬碳负极材料及其制备方法和应用
CN115353394A (zh) * 2022-08-30 2022-11-18 三一集团有限公司 高强高密热场石墨材料及其制备方法
CN115425225A (zh) * 2022-08-31 2022-12-02 广东凯金新能源科技股份有限公司 一种锂离子电池用微晶石墨负极材料的纯化方法
CN115448307A (zh) * 2022-09-13 2022-12-09 季华实验室 一种膨胀石墨基碳复合材料及其制备方法和应用
CN115849366A (zh) * 2022-09-30 2023-03-28 深圳市金牌新能源科技有限责任公司 一种动力电池所用高能快充石墨材料及其制备方法
CN116043531A (zh) * 2023-03-06 2023-05-02 杭州德海艾科能源科技有限公司 一种钒电池高电密用改性石墨毡及其制备方法与应用
CN116282001A (zh) * 2023-03-22 2023-06-23 广西宸宇新材料有限公司 一种提质石墨及其制备和应用
CN116477620A (zh) * 2023-03-24 2023-07-25 中国地质大学(武汉) 一种高可逆容量钠离子电池负极材料和利用大鳞片石墨制备其的方法及其应用
CN116845222A (zh) * 2023-08-16 2023-10-03 湖南金阳烯碳新材料股份有限公司 一种用于钠离子电池的硬碳/石墨烯复合负极材料及其制备方法
CN117945391A (zh) * 2024-03-27 2024-04-30 太原理工大学 一种沥青基碳材料及其制备方法和应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333064B (zh) * 2020-03-25 2021-08-10 江西正拓新能源科技股份有限公司 高性能锂离子电池石墨负极材料及其制备方法
CN112573923A (zh) * 2020-12-10 2021-03-30 广东凯金新能源科技股份有限公司 一种高倍率锂离子电池人造石墨负极材料及其制备方法
CN114843508B (zh) * 2021-02-02 2024-07-02 贝特瑞新材料集团股份有限公司 改性天然石墨材料及其制备方法、负极极片和锂离子电池
CN113161521B (zh) * 2021-03-10 2022-11-01 广东海洋大学 一种天然石墨基硅碳复合负极材料及其制备方法与应用
CN113410449B (zh) * 2021-06-25 2022-08-02 广东凯金新能源科技股份有限公司 一种多相可调控碳包覆的人造石墨负极材料及其制备方法
CN113651322A (zh) * 2021-07-27 2021-11-16 黑龙江省宝泉岭农垦溢祥石墨有限公司 一种高性能天然石墨锂离子电池负极材料的制备工艺
CN114309452B (zh) * 2021-11-15 2023-07-25 北京仁创砂业铸造材料有限公司 覆膜砂添加剂、覆膜砂及其制备方法
CN114464805A (zh) * 2022-01-24 2022-05-10 中钢集团鞍山热能研究院有限公司 一种高倍率锂离子电池硬炭负极材料的制备方法
CN114620707A (zh) * 2022-03-24 2022-06-14 江西正拓新能源科技股份有限公司 一种长循环锂离子电池负极材料的制备方法
CN115000373A (zh) * 2022-06-08 2022-09-02 万向一二三股份公司 一种钛酸锂/石墨复合负极材料的制备方法
CN115490227B (zh) * 2022-09-21 2024-02-09 湖南宸宇富基新能源科技有限公司 中高硫石油焦的脱硫-改性及其制备石墨负极的方法和应用
CN116102000A (zh) * 2023-02-24 2023-05-12 四川兴储能源科技有限公司 一种高性能片层状硬碳及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008100002A1 (fr) * 2007-02-16 2008-08-21 Ls Mtron, Ltd. Matériau actif pour anode pour batterie ion-lithium rechargeable, procédé de fabrication et batterie ion-lithium fabriquée au moyen dudit matériau actif
CN102030326A (zh) * 2010-11-22 2011-04-27 中科恒达石墨股份有限公司 一种石墨负极材料制备方法
CN102255077A (zh) * 2010-05-21 2011-11-23 深圳市比克电池有限公司 锂离子电池负极材料及制备方法
CN102832378A (zh) * 2012-08-28 2012-12-19 浙江瓦力新能源科技有限公司 一种锂离子电池碳负极材料及其制备方法
CN104733705A (zh) * 2013-12-20 2015-06-24 上海杉杉科技有限公司 锂离子动力电池用负极材料及其制备方法
CN106252596A (zh) * 2016-08-05 2016-12-21 深圳市贝特瑞新能源材料股份有限公司 软碳石墨复合负极材料、制备方法及锂离子电池
CN109449420A (zh) * 2018-11-08 2019-03-08 安徽科达洁能新材料有限公司 一种表面微氧化以及液相包覆改性石墨负极材料及其制备方法
CN110775971A (zh) * 2019-10-15 2020-02-11 合肥国轩高科动力能源有限公司 一种天然石墨的改性方法、改性天然石墨及应用
CN111333064A (zh) * 2020-03-25 2020-06-26 江西正拓新能源科技股份有限公司 高性能锂离子电池石墨负极材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008100002A1 (fr) * 2007-02-16 2008-08-21 Ls Mtron, Ltd. Matériau actif pour anode pour batterie ion-lithium rechargeable, procédé de fabrication et batterie ion-lithium fabriquée au moyen dudit matériau actif
CN102255077A (zh) * 2010-05-21 2011-11-23 深圳市比克电池有限公司 锂离子电池负极材料及制备方法
CN102030326A (zh) * 2010-11-22 2011-04-27 中科恒达石墨股份有限公司 一种石墨负极材料制备方法
CN102832378A (zh) * 2012-08-28 2012-12-19 浙江瓦力新能源科技有限公司 一种锂离子电池碳负极材料及其制备方法
CN104733705A (zh) * 2013-12-20 2015-06-24 上海杉杉科技有限公司 锂离子动力电池用负极材料及其制备方法
CN106252596A (zh) * 2016-08-05 2016-12-21 深圳市贝特瑞新能源材料股份有限公司 软碳石墨复合负极材料、制备方法及锂离子电池
CN109449420A (zh) * 2018-11-08 2019-03-08 安徽科达洁能新材料有限公司 一种表面微氧化以及液相包覆改性石墨负极材料及其制备方法
CN110775971A (zh) * 2019-10-15 2020-02-11 合肥国轩高科动力能源有限公司 一种天然石墨的改性方法、改性天然石墨及应用
CN111333064A (zh) * 2020-03-25 2020-06-26 江西正拓新能源科技股份有限公司 高性能锂离子电池石墨负极材料及其制备方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044508A (zh) * 2021-12-20 2022-02-15 张家港博威新能源材料研究所有限公司 一种硬碳微球及其制备方法及应用
CN114044508B (zh) * 2021-12-20 2023-06-23 张家港博威新能源材料研究所有限公司 一种硬碳微球及其制备方法及应用
CN114213126B (zh) * 2021-12-22 2022-12-02 格龙新材料科技(常州)有限公司 一种高容量高压实密度石墨复合材料的制备方法
CN114213126A (zh) * 2021-12-22 2022-03-22 格龙新材料科技(常州)有限公司 一种高容量高压实密度石墨复合材料的制备方法
CN114291814A (zh) * 2021-12-24 2022-04-08 东北师范大学 一种石墨负极材料及其制备方法和应用
CN114291814B (zh) * 2021-12-24 2024-04-16 东北师范大学 一种石墨负极材料及其制备方法和应用
CN114335504A (zh) * 2021-12-29 2022-04-12 江苏天鹏电源有限公司 一种改性预锂化硅氧材料及其制备方法、电极和锂离子电池
CN114335504B (zh) * 2021-12-29 2024-05-03 江苏天鹏电源有限公司 一种改性预锂化硅氧材料及其制备方法、电极和锂离子电池
CN114195123A (zh) * 2021-12-30 2022-03-18 上海杉杉新材料有限公司 一种改性硬炭材料、制备方法及其应用
CN114300685A (zh) * 2021-12-31 2022-04-08 中创新航科技股份有限公司 负极材料、制备方法及包含该负极材料的电化学装置
CN114300685B (zh) * 2021-12-31 2024-03-12 中创新航科技股份有限公司 负极材料、制备方法及包含该负极材料的电化学装置
CN114368735A (zh) * 2022-01-25 2022-04-19 内蒙古圣钒科技新能源有限责任公司 一种生产高压实高容量磷酸铁锂的方法
CN114497506A (zh) * 2022-01-29 2022-05-13 辽宁中宏能源新材料股份有限公司 一种硬碳-无机锂盐复合电极材料及其制备方法和应用
CN114497508A (zh) * 2022-01-29 2022-05-13 辽宁中宏能源新材料股份有限公司 一种功率型人造石墨复合材料及其制备方法
CN114597404A (zh) * 2022-03-02 2022-06-07 江西正拓新能源科技股份有限公司 锂离子电池长循环硬碳负极材料及其制备方法
CN114875430A (zh) * 2022-04-19 2022-08-09 中国科学院过程工程研究所 一种石墨基双功能电合成双氧水催化材料及其制备方法
CN114875430B (zh) * 2022-04-19 2024-05-03 中国科学院过程工程研究所 一种石墨基双功能电合成双氧水催化材料及其制备方法
CN115000375A (zh) * 2022-06-14 2022-09-02 湛江市聚鑫新能源有限公司 一种天然石墨/SnSb复合负极材料及其制备方法与应用
CN115010127A (zh) * 2022-07-20 2022-09-06 晖阳(贵州)新能源材料有限公司 一种高倍率锂离子电池负极材料的制备方法
CN115172643A (zh) * 2022-07-29 2022-10-11 陕西科技大学 一种石墨烯量子点/硬碳异质结材料及其制备方法及负极材料和钾离子扣式电池
CN115259135A (zh) * 2022-08-30 2022-11-01 山东零壹肆先进材料有限公司 沥青基氧化法制备的硬碳负极材料及其制备方法和应用
CN115353394A (zh) * 2022-08-30 2022-11-18 三一集团有限公司 高强高密热场石墨材料及其制备方法
CN115425225A (zh) * 2022-08-31 2022-12-02 广东凯金新能源科技股份有限公司 一种锂离子电池用微晶石墨负极材料的纯化方法
CN115448307A (zh) * 2022-09-13 2022-12-09 季华实验室 一种膨胀石墨基碳复合材料及其制备方法和应用
CN115849366B (zh) * 2022-09-30 2024-03-26 深圳市金牌新能源科技有限责任公司 一种动力电池所用高能快充石墨材料及其制备方法
CN115849366A (zh) * 2022-09-30 2023-03-28 深圳市金牌新能源科技有限责任公司 一种动力电池所用高能快充石墨材料及其制备方法
CN116043531A (zh) * 2023-03-06 2023-05-02 杭州德海艾科能源科技有限公司 一种钒电池高电密用改性石墨毡及其制备方法与应用
CN116282001A (zh) * 2023-03-22 2023-06-23 广西宸宇新材料有限公司 一种提质石墨及其制备和应用
CN116477620A (zh) * 2023-03-24 2023-07-25 中国地质大学(武汉) 一种高可逆容量钠离子电池负极材料和利用大鳞片石墨制备其的方法及其应用
CN116477620B (zh) * 2023-03-24 2024-06-04 中国地质大学(武汉) 一种高可逆容量钠离子电池负极材料和利用大鳞片石墨制备其的方法及其应用
CN116845222A (zh) * 2023-08-16 2023-10-03 湖南金阳烯碳新材料股份有限公司 一种用于钠离子电池的硬碳/石墨烯复合负极材料及其制备方法
CN116845222B (zh) * 2023-08-16 2024-02-20 湖南金阳烯碳新材料股份有限公司 一种用于钠离子电池的硬碳/石墨烯复合负极材料及其制备方法
CN117945391A (zh) * 2024-03-27 2024-04-30 太原理工大学 一种沥青基碳材料及其制备方法和应用

Also Published As

Publication number Publication date
CN111333064B (zh) 2021-08-10
CN111333064A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021189836A1 (fr) Materiau d'électrode négative de graphite pour batterie au lithium-ion à haute performance et sa méthode de préparation
CN106941167B (zh) 一种锂离子电池多孔复合负极材料及其制备方法
CN109599546B (zh) 一种沥青碳包覆天然混合石墨材料及其制备锂离子电池负极的方法
CN106816595B (zh) 一种锂离子电池用氮掺杂碳包覆三氧化二铁负极材料及其制备方法
CN108321369B (zh) 一种可用于锂硫电池的大孔碳/氧化锌/硫复合材料及其制备方法与应用
CN104518209A (zh) 一种锂离子电池硅复合材料及其制备方法
CN111689500A (zh) 一种低膨胀性的SiO/石墨复合电极材料的制备方法
CN113555539A (zh) 一种高能量密度快充石墨复合负极材料及其制备方法、锂离子电池
CN108682830B (zh) 一种锂离子电池硅碳复合负极材料及其制备方法
CN114388738B (zh) 一种硅基负极材料及其制备方法和应用
CN115566170A (zh) 一种高能量密度快充锂离子电池负极材料的制备方法
CN117658107A (zh) 一种竹基硬碳负极材料及其制备方法和钠离子电池负极
CN111017903A (zh) 一种高性能碳阳极pan硬碳材料及其制备方法
CN111313012A (zh) 多壁碳纳米管石墨锂离子电池负极材料及其制备方法
CN113161521B (zh) 一种天然石墨基硅碳复合负极材料及其制备方法与应用
CN113644243A (zh) 氮掺杂中空结构石墨微球、复合负极材料及其制备方法
CN113998700A (zh) 一种以微硅粉为原料制备Si/SiC@C负极材料的方法
CN107425181B (zh) 一种氧化锰/淀粉基硬碳复合负极材料的制备方法
CN112397701A (zh) 一种稻壳基硅氧化物/碳复合负极材料及其制备方法与应用
CN115626637B (zh) 一种碳/石墨烯/钛酸锂复合负极材料的制备方法
CN109256547A (zh) 一种多孔石墨烯-磷酸铁锂正极材料的制备方法
CN108666551A (zh) 一种石墨烯/LiTi2(PO4)3锂电池负极材料及制备方法
CN114122356A (zh) 一种性能改善的改性硬碳负极材料及其制备方法
CN110600738B (zh) 一种制备低温锂离子电池硬碳负极材料的方法
CN114122392A (zh) 一种高容量快充石墨复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927765

Country of ref document: EP

Kind code of ref document: A1