CN114044508A - 一种硬碳微球及其制备方法及应用 - Google Patents

一种硬碳微球及其制备方法及应用 Download PDF

Info

Publication number
CN114044508A
CN114044508A CN202111560482.2A CN202111560482A CN114044508A CN 114044508 A CN114044508 A CN 114044508A CN 202111560482 A CN202111560482 A CN 202111560482A CN 114044508 A CN114044508 A CN 114044508A
Authority
CN
China
Prior art keywords
hard carbon
microspheres
water
lignin
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111560482.2A
Other languages
English (en)
Other versions
CN114044508B (zh
Inventor
杨裕生
张慧敏
余荣彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhangjiagang Bowei New Energy Material Research Institute Co ltd
Original Assignee
Zhangjiagang Bowei New Energy Material Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhangjiagang Bowei New Energy Material Research Institute Co ltd filed Critical Zhangjiagang Bowei New Energy Material Research Institute Co ltd
Priority to CN202111560482.2A priority Critical patent/CN114044508B/zh
Publication of CN114044508A publication Critical patent/CN114044508A/zh
Application granted granted Critical
Publication of CN114044508B publication Critical patent/CN114044508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种硬碳微球及其制备方法及应用。为了解决现有用于二次电池的硬碳负极材料存在首次库伦效率低以及倍率性能差的问题,本发明提供一种新的硬碳微球,其由至少两种硬碳前驱体共炭化所得,所述的硬碳前驱体为水溶性酚醛树脂、葡萄糖、蔗糖、淀粉、木质素中的两种或两种以上。本发明的硬碳微球具有较好的球形度、较大的层间距、极低的比表面积和优异的导电性,该材料用于钠离子电池,具有高可逆容量,高首次库伦效率以及良好的倍率性能,其制备方法简单,成本低廉,微球直径范围可控,并可实现大规模工业生产。

Description

一种硬碳微球及其制备方法及应用
技术领域
本发明属于钠离子电池负极材料技术领域,具体涉及一种硬碳微球及其制备方法及应用。
背景技术
目前,化石燃料仍然是主要的供电资源,然而由于化石能源日趋紧张,环境污染日益严重,开发清洁能源如太阳能、风能、潮汐能等尤为重要,但是受天气、地点时间等因素的制约,极大地限制了其大规模的应用和普及。为了解决该问题,大规模储能技术成为了一个重要的研究领域。其中,二次电池由于具有较高的能量密度和转化效率,成为了大规模储电的优先选择。锂离子电池具有高能量密度、长循环寿命被认为是极具有前途的二次电池。然而有限的锂资源及不断攀升的原料价格势必会严重限制锂离子电池的大规模发展及应用。因此开发一种价格低廉、可持续发展的电池体系迫在眉睫。
钠和锂位于同一主族,具有相似的物理和化学性质,且钠资源储量丰富,成本低廉,使得钠离子电池成为非常有发展潜力的储能体系。由于钠的离子半径比锂离子的约大30%,使得常规石墨作为钠离子电池负极材料的优势并不大。相较于石墨,硬碳的层间距较大且结构无序,可逆比容量较高,也已广泛应用于钠离子电池研究。然而硬碳材料作为钠离子电池负极材料依然存在首次库伦效率低,倍率性能差等问题。
碳微球有利于实现紧密堆积,提高电极的体积能量密度,同时可以使钠离子从各个方向嵌入,提高材料的结构稳定性和倍率性能,从而引起科技工作者广泛关注。目前,碳微球主要是通过直接热解球形碳前驱体(如葡萄糖、蔗糖、高分子树脂等)得到。合成球形碳前驱体主要有五种方法:水热反应、微乳聚合、分子自组装、球形模板的表面包覆聚合及喷雾干燥等。前四种方法制备工艺繁琐,设备要求高,污染较大,能耗和成本较高,难以实现大规模的工业化生产。而喷雾干燥法由于喷雾过程中特殊的物理机制,不仅可使得到的粉体粒均匀分布,还能形成特殊的形貌。省去了长时间干燥与后续粉碎的材料加工过程。
另外,为了解决硬碳存在的首次库伦效率低、倍率性能差等问题,许多研究尝试用软碳对硬碳进行包覆来提高硬碳的首次库伦效率,然而软碳的引入往往会影响硬碳的可逆容量和循环稳定性。胡勇胜等通过水热蔗糖及高温包覆软碳的方法制备了形状规则的球形硬碳材料,其可逆容量为300mA h/g,首次库伦效率达到83%以上【Journal of MaterialsChemistry A,2014,DOI:10.1039/C4TA05451B】,但是该方法的制备过程复杂、成本较高,不适用于大规模生产应用。在申请公布号为CN 105098186 A的专利申请中报道了一种将硬碳前驱体与软碳前驱体进行高温共裂解来制备硬碳的方法,所得硬碳材料作为钠离子电池的负极材料使用时,可逆容量仅有250mAh/g。
发明内容
本发明的目的是提供一种具有低比表面积,用于钠离子电池负极材料时具有高首次库伦效率和优异的倍率性能的硬碳微球。
本发明的另一目的是提供一种制备低比表面积且直径范围可控的硬碳微球的方法。
本发明的另一目的是提供所述的硬碳微球在钠离子电池中的应用。
为解决上述技术问题,本发明采用如下技术方案:
一种硬碳微球,所述的硬碳微球由至少两种硬碳前驱体共炭化所得,所述的硬碳前驱体为水溶性酚醛树脂、葡萄糖、蔗糖、淀粉、木质素中的两种或两种以上。
优选地,所述的硬碳微球的比表面积为0.5~50m2/g。
进一步优选地,所述的硬碳微球的比表面积为0.5~30m2/g。
优选地,所述的硬碳微球的碳层间距为0.38~0.41nm。
进一步优选地,所述的硬碳微球的碳层间距小于0.4nm。
和/或,所述的硬碳微球的粒径范围为0.5~10μm。
优选地,所述的硬碳前驱体为木质素和水溶性酚醛树脂,所述的木质素和所述的水溶性酚醛树脂的质量比为1:(0.1~10)。
具体地,所述的木质素可以是脱碱木质素、碱木质素或酶解木质素。
具体地,所述的木质素可以是玉米秸秆和玉米芯制低聚糖后的废弃物等,不仅来源广、成本低,还实现了废弃资源再利用。
进一步优选地,所述的木质素和所述的水溶性酚醛树脂的混合物与水配置成质量分数为1~40%的前驱体水溶液后,经喷雾干燥和炭化得到所述的硬碳微球。
本发明提供的硬碳微球的制备方法包括以下步骤:
(1)将含有至少两种硬碳前驱体的混合物与水配置成前驱体水溶液;
(2)步骤(1)制备得到的前驱体水溶液经喷雾干燥得到前驱体纳米微球;
(3)将步骤(2)制备得到的前驱体纳米微球于惰性气氛中经高温炭化得到所述的硬碳微球,
其中,所述的硬碳前驱体为水溶性酚醛树脂、葡萄糖、蔗糖、淀粉、木质素中的两种或两种以上。
优选地,步骤(1)中所述的前驱体水溶液的质量分数为1~40%。
优选地,步骤(1)中所述混合物为木质素和水溶性酚醛树脂的混合物,所述的木质素和所述的水溶性酚醛树脂的质量比为1:(0.1~10)。
优选地,步骤(2)中所述的惰性气体为氮气和/或氩气。
优选地,步骤(2)中采用离心式喷雾干燥或压力式喷雾干燥进行喷雾干燥。
优选地,步骤(2)中,控制喷雾干燥过程中进风温度为100~180℃,出风口温度为50~120℃,环风量100~350mL/min,进液量为100~300mL/h。
进一步优选地,步骤(2)中,控制喷雾干燥过程中进风温度为120~170℃,出风口温度为60~100℃,环风量100~350mL/min,进液量为200~300mL/h。
优选地,步骤(3)中所述的碳化过程的升温速率为0.5~20℃/min。
进一步优选地,步骤(3)中所述的碳化过程的升温速率为0.5~15℃/min。
再进一步优选地,步骤(3)中所述的碳化过程的升温速率为0.5~10℃/min。
更进一步优选地,步骤(3)中所述的碳化过程的升温速率为0.5~5℃/min。
优选地,步骤(3)中所述的碳化的温度为900~1600℃。
进一步优选地,步骤(3)中所述的碳化的温度为1000~1600℃。
优选地,步骤(3)中所述的碳化的时间为0.5~10h。
进一步优选地,步骤(3)中所述的碳化的时间为0.5~8h。
再进一步优选地,步骤(3)中所述的碳化的时间为0.5~5h。
更进一步优选地,步骤(3)中所述的碳化的时间为1~5h。
优选地,炭化结束后,使用酸溶液洗去热解产生的无机物,再经水洗至中性,得到纯化后的硬碳微球。
优选地,所述的酸溶液为浓度为1.0~6.0mol/L的盐酸溶液、硫酸溶液、硝酸溶液、磷酸溶液或醋酸溶液中的一种或多种。
进一步优选地,所述的酸溶液为浓度为1.0~5.0mol/L。
再进一步优选地,所述的酸溶液为浓度为1.0~4.0mol/L。
所述的制备方法具体包括以下步骤:
(1)将至少两种硬碳前驱体的混合物与水配置成质量分数为1~40%的前驱体水溶液,并在室温下搅拌0.5~10h;
(2)将步骤(1)制备得到的前驱体水溶液经喷雾干燥得到前驱体纳米微球,控制喷雾干燥过程中进风温度为100~180℃,出风温度为50~120℃,环风量100~350mL/min,进液量为100~300mL/h;
(3)将步骤(2)制备得到的前驱体纳米微球置于惰性气氛中,以0.5~20℃/min的升温速率从室温升至900~1600℃,并于900~1600℃恒温碳化0.5~10h,然后自然冷却至室温,使用1.0~6.0mol/L的酸溶液洗去热解产生的无机物,再经水洗至中性,即可得到所述的硬碳微球。
本发明提供一种所述的硬碳微球或采用所述的制备方法制备的硬碳微球在钠离子电池中的应用。
优选地,所述的硬碳微球作为钠离子电池的负极材料。
本发明与现有技术相比具有如下优势:
本发明通过将至少两种硬碳前驱体共炭化制备硬碳微球,获得的硬碳微球的比表面积在0.5~50m2/g范围内,硬碳层间距在0.38~0.41nm范围内,硬碳微球具有良好的球形形貌,粒径在0.5~10μm范围内,用于钠离子二次电池硬碳负极材料时,钠离子二次电池首次库伦效率可达88%,可逆容量可达350mAh/g。
附图说明
图1为实施例1所得硬碳微球的扫描电子显微镜照片。
图2为实施例1所得硬碳微球的X射线衍射图谱。
图3为实施例1所得硬碳微球的拉曼图谱。
图4为实施例1提供的一种钠离子电池的恒流充放电曲线和循环图。
图5为硬碳微球的扫描电子显微镜照片(a)实施例2;(b)实施例3;(c)实施例4。
具体实施方式
下面结合实施例对本发明作进一步描述。但本发明并不限于以下实施例。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为本行业中的常规条件。本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
为了提供一种制备方法工艺简单,能耗与成本低廉的低比表面积的硬碳微球,提升钠离子电池的可逆容量、循环稳定性能、首次库伦效率以及倍率性能,发明人进行了大量的研究和实验验证,最终开发出一种新的硬碳微球。
根据本发明,所述的硬碳微球由至少两种硬碳前驱体共炭化所得,所述的硬碳前驱体为水溶性酚醛树脂、葡萄糖、蔗糖、淀粉、木质素中的两种或两种以上。
根据本发明,所述的硬碳微球的比表面积为0.5~50m2/g,所述的硬碳微球的碳层间距为0.38~0.41nm,所述的硬碳微球的粒径范围为0.5~10μm。
根据本发明,所述的硬碳前驱体为木质素和水溶性酚醛树脂,所述的木质素和所述的水溶性酚醛树脂的质量比为1:(0.1~10),例如1:0.1、1:0.5、1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10。
通过木质素和水溶性酚醛树脂的复配,可降低硬碳微球的比表面积。研发中发现若使用木质素磺酸钠或使用热固性酚醛树脂,获得的硬碳微球的比表面积比较高,原因是木质素磺酸钠或热固性酚醛树脂不可避免存在一定的钠离子,在硬碳前驱体炭化形成硬碳微球的时候导致硬碳微球的比表面积增大,而硬碳微球作为钠离子电池的负极材料时,钠离子电池的首次库伦效率和可逆容量与比表面积有一定的关系,随着比表面积的增大,钠离子电池的首次库伦效率和可逆容量下降。
根据本发明,所述的木质素和所述的水溶性酚醛树脂的混合物与水配置成质量分数为1~40%的前驱体水溶液后,经喷雾干燥和炭化得到所述的硬碳微球。
例如,所述的前驱体水溶液的质量分数可以为1%、5%、10%、15%、20%、25%、30%、35%、40%。进一步优选为10%~20%,在此范围内,形成的硬碳微球的粒径可以控制在0.38-0.41nm范围内,比表面积控制在0.5-50m2/g范围内。实验中发现,若质量分数低于1%,由于水的含量过高,在喷雾烦躁时,有部分水分子残留在前驱体内,炭化时导致比表面积增大。
根据本发明,硬碳微球的制备方法为:
(1)将至少两种硬碳前驱体的混合物与水配置成质量分数为1~40%的前驱体水溶液,并在室温下搅拌0.5~10h;
(2)将步骤(1)制备得到的前驱体水溶液经喷雾干燥得到前驱体纳米微球,控制喷雾干燥过程中进风温度为100~180℃,出风口温度为50~120℃,环风量100~350mL/min,进液量为100~300mL/h;
(3)将步骤(2)制备得到的前驱体纳米微球置于惰性气氛中,以0.5~20℃/min的升温速率从室温升至900~1600℃,并于900~1600℃恒温碳化0.5~10h,然后自然冷却至室温,使用1.0~6.0mol/L的酸溶液洗去热解产生的无机物,再经水洗至中性,即可得到所述的硬碳微球。
上述方法中,所述的酸溶液为浓度为1.0~6.0mol/L的盐酸溶液、硫酸溶液、硝酸溶液、磷酸溶液或醋酸溶液中的一种或多种。
将本发明的硬碳微球用于钠离子电池负极材料时,高可逆容量,高首次库伦效率明显提高。
本发明具有以下优点:
(1)本发明的硬碳微球具有极低的比表面积(0.5~50m2/g),较高的硬碳层间距(0.38~0.41nm)。
(2)本发明的硬碳微球具有良好的球形形貌,粒径范围为0.5-10μm,并且材料的粒径调控简单,只需调控喷雾干燥条件即可实现。
(3)本发明所提供的钠离子二次电池硬碳负极材料制备方法简单、原料易得且成本低廉、生产效率高,适用于产业化生产。
(4)应用本发明材料作为负极材料的钠离子二次电池,具有较高的可逆容量、循环稳定、首次库伦效率高、倍率性能良好。尤其是,应用本发明方法制备得到的硬碳微球应用于钠离子二次电池首次库伦效率可达88%,可逆容量高达350mAh/g。
下面通过实施例进一步阐述本发明的技术方案和技术效果。
本发明中具体实施例中,如无特殊说明的,所使用的原料均可通过市售获得。
本发明中具体实施例中,使用的木质素为酶解玉米秸秆和玉米芯制备低聚糖后的废弃物。
实施例1
(1)称取5g木质素,10g质量分数为50%的酚醛树脂水溶液,配制成质量分数为15%的水溶液(木质素和酚醛树脂的总质量占水溶液总质量的15%),并在室温下搅拌1h;
(2)将步骤(1)的水溶液转移到喷雾干燥设备中,在进风温度为150℃,出风口温度为90度,环风量100mL min-1,进液量为200ml h-1的条件下进行喷雾干燥,得到前驱体纳米微球;
(3)将前驱体纳米微球置于惰性气氛中,转移至氧化铝坩埚中,并将其放置在管式电阻炉中央,持续通入氩气进行保护。然后以2℃/min的升温速率从室温升至1400℃,并在1400℃恒温碳化1h,之后自然冷却至室温,用1.0mol/L的硫酸溶液洗去热解产生的无机物,再经水洗至中性,即可得到钠离子电池用硬碳微球。
图1为所得硬碳微球扫描电子显微镜照片,证实该材料拥有良好的球形形貌,粒径小于10μm。图2为所得硬碳微球的X射线衍射图谱,在22°和43°附近存在两个比较宽的衍射峰,对应碳材料的(002)和(100)晶面,表明该材料具有典型的无定形碳特征,以此计算得到的碳层间距为0.39nm。图3为所得硬碳微球的拉曼图谱,在1590cm-1和1355cm-1左右出现了两个谱峰,对于非晶碳材料,1590cm-1处的谱峰一般对应于碳材料中石墨晶体振动模式称为G线,而1355cm-1处的谱峰对应着石墨边缘的缺陷振动模式称为D线,ID/IG=1.77,是典型的无定型碳的特征。采用本实施例制备的硬碳微球为工作电极,钠为对电极,电解液为六氟磷酸钠溶液(六氟磷酸钠的浓度为0.8M,溶剂为体积比为1:1的EC和DMC混合溶液),组装成扣式电池,在30mA/g的电流密度下,测试循环性能。图3为本实施例制得的碳负极材料在30mA/g电流密度下的恒流充放电曲线和循环图。由图4测试结果可知,本实施例制备的钠离子电池负极材料具有良好的电化学性能,在30mA/g的电流密度下,首次库伦效率为83%,循环100周后,仍能保持350mAh/g的比容量。
实施例2
(1)称取3g木质素,14g质量分数是50%的酚醛树脂水溶液,配制成质量分数为15%的水溶液(木质素和酚醛树脂的总质量占水溶液总质量的15%),并在室温下搅拌3h;
(2)将步骤(1)的水溶液转移到喷雾干燥设备中,在进风温度为140℃,出风口温度为90度,环风量150mL min-1,进液量为300ml h-1的条件下进行喷雾干燥,得到前驱体纳米微球;
(3)将前驱体纳米微球置于惰性气氛中,转移至氧化铝坩埚中,并将其放置在管式电阻炉中央,持续通入氩气进行保护。然后以2℃/min的升温速率从室温升至1400℃,并在1400℃恒温碳化2h,之后自然冷却至室温,用2.0mol/L的盐酸溶液洗去热解产生的无机物,再经水洗至中性,即可得到钠离子电池用硬碳微球。
本实施例得到的硬碳微球的比表面积为10m2/g,碳层间距为0.38nm。采用本实施例制备的硬碳微球为工作电极,钠为对电极,电解液为六氟磷酸钠溶液(六氟磷酸钠的浓度为0.8M,溶剂为体积比为1:1的EC和DMC混合溶液),组装成扣式电池,在30mA/g的电流密度下,首次库伦效率为87%,循环100周后,仍能保持360mAh/g的比容量。
实施例3
(1)称取7g木质素,6g质量分数是50%的酚醛树脂水溶液,配制成质量分数为15%的水溶液(木质素和酚醛树脂的总质量占水溶液总质量的15%),并在室温下搅拌1h;
(2)将步骤(1)的水溶液转移到喷雾干燥设备中,在进风温度为130℃,出风口温度为80度,环风量200mL min-1,进液量为250ml h-1的条件下进行喷雾干燥,得到前驱体纳米微球;
(3)将前驱体纳米微球置于惰性气氛中,转移至氧化铝坩埚中,并将其放置在管式电阻炉中央,持续通入氩气进行保护。然后以2℃/min的升温速率从室温升至1400℃,并在1400℃恒温碳化3h,之后自然冷却至室温,用1.5mol/L的盐酸溶液洗去热解产生的无机物,再经水洗至中性,即可得到钠离子电池用硬碳微球。
本实施例得到的硬碳微球的比表面积为20m2/g,碳层间距为0.38nm。采用本实施例制备的硬碳微球为工作电极,钠为对电极,电解液为六氟磷酸钠溶液(六氟磷酸钠的浓度为0.8M,溶剂为体积比为1:1的EC和DMC混合溶液),组装成扣式电池,在30mA/g的电流密度下,首次库伦效率为84%,循环100周后,仍能保持330mAh/g的比容量。
实施例4
(1)称取3g木质素,14g质量分数是50%的酚醛树脂水溶液,配制成质量分数为0.5%的水溶液(木质素和酚醛树脂的总质量占水溶液总质量的0.5%),并在室温下搅拌1h;
(2)将步骤(1)的水溶液转移到喷雾干燥设备中,在进风温度为160℃,出风口温度为90度,环风量300mL min-1,进液量为200ml h-1的条件下进行喷雾干燥,得到前驱体纳米微球;
(3)将前驱体纳米微球置于惰性气氛中,转移至氧化铝坩埚中,并将其放置在管式电阻炉中央,持续通入氩气进行保护。然后以2℃/min的升温速率从室温升至1000℃,并在1000℃恒温碳化2h,之后自然冷却至室温,用1.0mol/L的盐酸溶液洗去热解产生的无机物,再经水洗至中性,即可得到钠离子电池用硬碳微球。
本实施例得到的硬碳微球的比表面积为35m2/g,碳层间距为0.4nm。采用本实施例制备的硬碳微球为工作电极,钠为对电极,电解液为六氟磷酸钠溶液(六氟磷酸钠的浓度为0.8M,溶剂为体积比为1:1的EC和DMC混合溶液),组装成扣式电池,在30mA/g的电流密度下,首次库伦效率为54%,循环100周后,仍能保持250mAh/g的比容量。
以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (13)

1.一种硬碳微球,其特征在于,所述的硬碳微球由至少两种硬碳前驱体共炭化所得,所述的硬碳前驱体为水溶性酚醛树脂、葡萄糖、蔗糖、淀粉、木质素中的两种或两种以上。
2.根据权利要求1所述的硬碳微球,其特征在于,所述的硬碳微球的比表面积为0.5~50m2/g,
和/或,所述的硬碳微球的碳层间距为0.38~0.41nm,
和/或,所述的硬碳微球的粒径范围为0.5~10μm。
3.根据权利要求1所述的硬碳微球,其特征在于,所述的硬碳前驱体为木质素和水溶性酚醛树脂,所述的木质素和所述的水溶性酚醛树脂的质量比为1:(0.1~10)。
4.根据权利要求2所述的硬碳微球,其特征在于,所述的木质素和所述的水溶性酚醛树脂的混合物与水配置成质量分数为1~40%的前驱体水溶液后,经喷雾干燥和炭化得到所述的硬碳微球。
5.一种硬碳微球的制备方法,其特征在于,所述的制备方法包括以下步骤:
(1)将含有至少两种硬碳前驱体的混合物与水配置成前驱体水溶液;
(2)步骤(1)制备得到的前驱体水溶液经喷雾干燥得到前驱体纳米微球;
(3)步骤(2)制备得到的前驱体纳米微球于惰性气氛中经高温炭化得到所述的硬碳微球,
其中,所述的硬碳前驱体为水溶性酚醛树脂、葡萄糖、蔗糖、淀粉、木质素中的两种或两种以上。
6.根据权利要求5所述的制备方法,其特征在于:步骤(1)中所述的前驱体水溶液的质量分数为1~40%。
7.根据权利要求5所述的制备方法,其特征在于:步骤(1)中所述的混合物为木质素和水溶性酚醛树脂的混合物,所述的木质素和所述的水溶性酚醛树脂的质量比为1:(0.1~10)。
8.根据权利要求5所述的制备方法,其特征在于:步骤(2)中所述的惰性气体为氮气和/或氩气;
和/或,步骤(2)中采用离心式喷雾干燥或压力式喷雾干燥进行喷雾干燥;
和/或,步骤(2)中,控制喷雾干燥过程中进风温度为100~180℃,出风口温度为50~120℃,环风量100~350mL/min,进液量为100~300mL/h。
9.根据权利要求5所述的制备方法,其特征在于:步骤(3)中所述的碳化过程的升温速率为0.5~20℃/min;
和/或,步骤(3)中所述的碳化的温度为900~1600℃;
和/或,步骤(3)中所述的碳化的时间为0.5~10h。
10.根据权利要求5所述的制备方法,其特征在于:炭化结束后,使用酸溶液洗去热解产生的无机物,再经水洗至中性,得到纯化后的硬碳微球。
11.根据权利要求5所述的制备方法,其特征在于:所述的酸溶液为浓度为1.0~6.0mol/L的盐酸溶液、硫酸溶液、硝酸溶液、磷酸溶液或醋酸溶液中的一种或多种。
12.根据权利要求5所述的制备方法,其特征在于:所述的制备方法具体包括以下步骤:
(1)将至少两种硬碳前驱体的混合物与水配置成质量分数为1~40%的前驱体水溶液,并在室温下搅拌0.5~10h;
(2)将步骤(1)制备得到的前驱体水溶液经喷雾干燥得到前驱体纳米微球,控制喷雾干燥过程中进风温度为100~180℃,出风口温度为50~120℃,环风量100~350mL/min,进液量为100~300mL/h;
(3)将步骤(2)制备得到的前驱体纳米微球置于惰性气氛中,以0.5~20℃/min的升温速率从室温升至900~1600℃,并于900~1600℃恒温碳化0.5~10h,然后自然冷却至室温,使用1.0~6.0mol/L的酸溶液洗去热解产生的无机物,再经水洗至中性,即可得到所述的硬碳微球。
13.一种如权利要求1至4中任一项所述的硬碳微球或采用权利要求5至12中任一项所述的制备方法制备的硬碳微球在钠离子电池中的应用。
CN202111560482.2A 2021-12-20 2021-12-20 一种硬碳微球及其制备方法及应用 Active CN114044508B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111560482.2A CN114044508B (zh) 2021-12-20 2021-12-20 一种硬碳微球及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111560482.2A CN114044508B (zh) 2021-12-20 2021-12-20 一种硬碳微球及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN114044508A true CN114044508A (zh) 2022-02-15
CN114044508B CN114044508B (zh) 2023-06-23

Family

ID=80212990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111560482.2A Active CN114044508B (zh) 2021-12-20 2021-12-20 一种硬碳微球及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN114044508B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116062735A (zh) * 2023-03-20 2023-05-05 四川兴储能源科技有限公司 一种非烧结脱水碳化方法制备硬碳及其应用
CN116395668A (zh) * 2023-04-18 2023-07-07 四川兴储能源科技有限公司 一种硬碳材料、使用该硬碳材料制备的碳负极材料及其制备方法
CN116666581A (zh) * 2023-05-05 2023-08-29 贵州创德新能源科技有限公司 钠离子电池阳极材料及其制备方法
CN117326546A (zh) * 2023-11-24 2024-01-02 成都锂能科技有限公司 木质素-酚醛树脂基硬炭材料及其制备方法、应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010224A (ja) * 2006-06-28 2008-01-17 Sumitomo Bakelite Co Ltd 炭素材の製造方法、二次電池用負極材料及び二次電池
CN108217623A (zh) * 2017-12-07 2018-06-29 深圳市比克动力电池有限公司 木质素基硬碳微球及其制备方法和应用
US20190022623A1 (en) * 2015-07-16 2019-01-24 Neoteryx, Llc Shaped nanoporous bodies
CN109354018A (zh) * 2018-12-04 2019-02-19 中国人民解放军军事科学院防化研究院 一种高比表面积活性炭微球的制备方法
CN110668418A (zh) * 2019-10-16 2020-01-10 张家港博威新能源材料研究所有限公司 一种高比电容量硬碳微球的制备方法
CN112397715A (zh) * 2020-10-10 2021-02-23 北京化工大学 一种硬碳材料及其制备方法和钠离子电池
CN112624083A (zh) * 2019-10-08 2021-04-09 天津工业大学 一种改性的木质素基硬炭微球的制备方法及应用
WO2021189836A1 (zh) * 2020-03-25 2021-09-30 江西正拓新能源科技股份有限公司 高性能锂离子电池石墨负极材料及其制备方法
CN113526489A (zh) * 2021-07-15 2021-10-22 上海大学 一种钠离子电池碳基负极材料的性能改进方法和应用
CN113800496A (zh) * 2021-08-06 2021-12-17 深圳市德方纳米科技股份有限公司 一种硬碳材料及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010224A (ja) * 2006-06-28 2008-01-17 Sumitomo Bakelite Co Ltd 炭素材の製造方法、二次電池用負極材料及び二次電池
US20190022623A1 (en) * 2015-07-16 2019-01-24 Neoteryx, Llc Shaped nanoporous bodies
CN108217623A (zh) * 2017-12-07 2018-06-29 深圳市比克动力电池有限公司 木质素基硬碳微球及其制备方法和应用
CN109354018A (zh) * 2018-12-04 2019-02-19 中国人民解放军军事科学院防化研究院 一种高比表面积活性炭微球的制备方法
CN112624083A (zh) * 2019-10-08 2021-04-09 天津工业大学 一种改性的木质素基硬炭微球的制备方法及应用
CN110668418A (zh) * 2019-10-16 2020-01-10 张家港博威新能源材料研究所有限公司 一种高比电容量硬碳微球的制备方法
WO2021189836A1 (zh) * 2020-03-25 2021-09-30 江西正拓新能源科技股份有限公司 高性能锂离子电池石墨负极材料及其制备方法
CN112397715A (zh) * 2020-10-10 2021-02-23 北京化工大学 一种硬碳材料及其制备方法和钠离子电池
CN113526489A (zh) * 2021-07-15 2021-10-22 上海大学 一种钠离子电池碳基负极材料的性能改进方法和应用
CN113800496A (zh) * 2021-08-06 2021-12-17 深圳市德方纳米科技股份有限公司 一种硬碳材料及其制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116062735A (zh) * 2023-03-20 2023-05-05 四川兴储能源科技有限公司 一种非烧结脱水碳化方法制备硬碳及其应用
CN116395668A (zh) * 2023-04-18 2023-07-07 四川兴储能源科技有限公司 一种硬碳材料、使用该硬碳材料制备的碳负极材料及其制备方法
CN116666581A (zh) * 2023-05-05 2023-08-29 贵州创德新能源科技有限公司 钠离子电池阳极材料及其制备方法
CN117326546A (zh) * 2023-11-24 2024-01-02 成都锂能科技有限公司 木质素-酚醛树脂基硬炭材料及其制备方法、应用
CN117326546B (zh) * 2023-11-24 2024-02-06 成都锂能科技有限公司 木质素-酚醛树脂基硬炭材料及其制备方法、应用

Also Published As

Publication number Publication date
CN114044508B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN114044508B (zh) 一种硬碳微球及其制备方法及应用
CN108511719B (zh) 一种双壳层结构复合材料、其制备方法及包含该复合材料的锂离子电池
CN108511204B (zh) 一种氧氮共掺杂多孔中空碳微球的制备方法
CN103107319B (zh) 一种锂离子电池碳微球负极材料及其制备方法
CN105098186A (zh) 一种热解无定型碳材料及其制备方法和用途
CN110668418B (zh) 一种高比电容量硬碳微球的制备方法
CN111244438B (zh) 一种石墨烯/碳包覆钛酸锂复合材料及其制备方法
CN103078087B (zh) 一种钛酸锂/碳纳米管复合负极材料的制备方法
CN102969489A (zh) 一种硅碳复合材料及其制备方法、含该材料的锂离子电池
CN110797533A (zh) 一种木质素硬炭微球及水热制备方法及其用于碱金属离子电池负极
CN114122397B (zh) 一种碳纳米管连接的双碳层包覆介孔氧化亚硅复合材料及其制备方法和应用
CN108598394B (zh) 碳包覆磷酸钛锰钠微米球及其制备方法和应用
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
CN112624083A (zh) 一种改性的木质素基硬炭微球的制备方法及应用
WO2022151860A1 (zh) 一种空心球状二氧化铈纳米材料及制备方法与应用
CN115215321B (zh) 一种硬炭微球材料的制备方法及应用
CN110395728B (zh) 一种锂电池用多孔碳球负极材料的制备方法
CN116936771A (zh) 一种中空球壳结构硫酸铁钠复合正极材料、制备方法及钠离子电池
CN111313012A (zh) 多壁碳纳米管石墨锂离子电池负极材料及其制备方法
CN111082040A (zh) 核壳结构T-Nb2O5@C复合材料的制备方法及应用
CN108807903A (zh) 一种锂电池用复合修饰锂电池负极材料的制备方法
CN108281620A (zh) 一种钠离子电池负极材料二氧化钛的制备方法
CN108448082B (zh) 电极材料和其花瓣状多孔结构铁基复合氧化物及其制备方法
CN114195198B (zh) Co2SnO4/C/S复合材料及其二氧化钛诱导生长方法、应用
CN115440982A (zh) 一种锂电池用高性能硅碳负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Yang Yusheng

Inventor after: Yu Rongbin

Inventor after: Shi Wenjun

Inventor before: Yang Yusheng

Inventor before: Zhang Huimin

Inventor before: Yu Rongbin

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant