WO2020077771A1 - 一种超细高熵固熔体粉末及其制备方法和应用 - Google Patents

一种超细高熵固熔体粉末及其制备方法和应用 Download PDF

Info

Publication number
WO2020077771A1
WO2020077771A1 PCT/CN2018/120035 CN2018120035W WO2020077771A1 WO 2020077771 A1 WO2020077771 A1 WO 2020077771A1 CN 2018120035 W CN2018120035 W CN 2018120035W WO 2020077771 A1 WO2020077771 A1 WO 2020077771A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
amorphous boron
solid melt
entropy
molar ratio
Prior art date
Application number
PCT/CN2018/120035
Other languages
English (en)
French (fr)
Inventor
郭伟明
张岩
吴利翔
谭大旺
林华泰
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2020077771A1 publication Critical patent/WO2020077771A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Definitions

  • the invention belongs to the technical field of ceramic materials, and more particularly, relates to an ultra-fine high-entropy solid melt powder and a preparation method and application thereof.
  • HSAs metal high-entropy alloys
  • structural materials HEAs are widely used in high temperature applications, hydrogen storage materials, radiation resistant materials, electronics, precision resistance electromagnetic shielding materials, soft magnetic materials, thermoelectric material functional coatings, antibacterial materials, etc.
  • five or more elements can be mixed in the same concentration of metal high-entropy alloy to produce the maximum molar coordination entropy.
  • the composition increases, the combined space for exploring and discovering new materials is greatly increased.
  • most components do not form a uniform single phase.
  • High-entropy ceramics have high strength, hardness, excellent wear resistance, excellent high temperature resistance, good structural stability, and good corrosion resistance and oxidation resistance.
  • there are only a few reports on the successful preparation of high-entropy ceramics so there is still much to be studied about these materials and their characteristics.
  • Boron compounds of refractory metals ZrB 2 , HfB 2 , NbB 2 , TaB 2 , CrB 2 , TiB 2 and MoB 2 have received much attention because of their excellent physical, chemical and mechanical properties.
  • the only reported synthesis of high-entropy boride ceramics uses a variety of commercially-available boride compounds. After high-energy ball milling and sintering, the powder size is relatively large. Therefore, the synthesis of raw material fine powders and the preparation of single-phase high-entropy ceramics still exist. difficult.
  • an ultrafine high-entropy ceramic powder is provided.
  • the ceramic powder has a uniform solid solution phase, and has the advantages of small particle size and uniform and stable composition.
  • Another object of the present invention is to provide a method for preparing the above ultrafine high-entropy ceramic powder.
  • Another object of the present invention is to provide the application of the above-mentioned ultrafine high-entropy ceramic powder.
  • An ultra-fine high-entropy solid melt powder is a mixture of metal oxide and amorphous boron powder as a raw material powder, adding a solvent and a ball milling medium to mix, after drying to obtain a mixed powder, the mixed powder
  • the mixed powder green body produced by phantom pressing is heat-treated under vacuum conditions, firstly heated to 800-1200 ° C for heat preservation I, and then heated to 1400-1600 ° C for heat preservation II, and obtained by grinding and sieving.
  • the oxide is one or more of HfO 2 , ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , Cr 2 O 3 , TiO 2 or MoO 3 , and among the metal atoms in the metal oxide
  • the molar value is 0.1 to 0.9.
  • the purity of the metal oxide is 99.0-99.9 wt%
  • the particle size of the metal oxide is 0.1-10 ⁇ m
  • the purity of the amorphous boron powder is 95-99 wt%
  • the particles of the amorphous boron powder The diameter is 0.1 to 10 ⁇ m
  • the particle size of the solid melt powder is 0.1 to 1 ⁇ m
  • the oxygen content of the solid melt powder is 0.1 to 0.5 wt%
  • the carbon content of the solid melt powder is 0.1 to 0.5wt%.
  • the molar ratio of the amorphous boron powder to HfO 2 , ZrO 2 and TiO 2 is (2 to 4): 1, and the molar ratio of the amorphous boron powder to Nb 2 O 5 and Ta 2 O 5 Both are (7-9): 1, the molar ratio of the amorphous boron powder to Cr 2 O 3 is (8-9): 1, the molar ratio of the amorphous boron powder to MoO 3 is (4-5 ): 1.
  • the molar ratio of the amorphous boron powder to HfO 2 , ZrO 2 and TiO 2 is 3.67: 1, and the molar ratio of the amorphous boron powder to Nb 2 O 5 and Ta 2 O 5 are all 8.07: 1, the molar ratio of the amorphous boron powder to Cr 2 O 3 is 8.8: 1, and the molar ratio of the amorphous boron powder to MoO 3 is 4.4: 1.
  • the solvent is one or more of ethanol, acetone, methanol or butanol; the ball milling medium is Si 3 N 4 , WC or ZrO 2 .
  • the mixing time is 10 to 48 hours
  • the molding pressure is 1 to 10 MPa
  • the molding time is 1 to 10 min
  • the heating rate is 5 to 20 ° C./min.
  • the time for holding I is 0.5 to 10 hours
  • the time for holding II is 0.5 to 2 hours.
  • the mixing time is 24 hours
  • the molding pressure is 2 MPa
  • the molding time is 2 minutes
  • the heating rate is 5-20 ° C./min
  • the time for holding I It is 2h
  • the time of the heat preservation II is 1h.
  • the preparation method of the ultrafine high-entropy solid melt powder includes the following specific steps:
  • the ultrafine high-entropy solid melt powder of the present invention uses five kinds of metal oxides and amorphous boron powder as raw material powders, and the five-component metal oxide undergoes heat treatment to obtain single-phase ultrafine high-entropy solid melt powder.
  • Me1, Me2, Me3, Me4, and Me5 are solid solutions.
  • the single-phase solid solution with a molar value of 0.1 to 0.9 between metal atoms has a uniform composition and stable composition, and a powder has the properties of multiple metals.
  • the present invention has the following beneficial effects:
  • the present invention uses the boron thermal reduction method to prepare single-phase ultrafine high-entropy solid melt powder.
  • the solid melt powder is a uniform boride solid melt powder with small particle size and better particle size distribution. The advantages of uniform and stable components.
  • single-phase ultrafine high-entropy solid melt powder can be prepared by ordinary roller ball milling. This method does not have high-energy ball milling because the energy is too high to cause the powder to stick, so that high-quality powder can be obtained.
  • the oxide raw material in the present invention has a smaller size and a better particle size distribution.
  • FIG. 1 is an XRD pattern of the original powder and the heat-treated (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 solid melt powder obtained in Example 4.
  • FIG. 1 is an XRD pattern of the original powder and the heat-treated (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 solid melt powder obtained in Example 4.
  • FIG. 1 is an XRD pattern of the original powder and the heat-treated (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 solid melt powder obtained in Example 4.
  • the molar ratio of amorphous boron powder to HfO 2 , ZrO 2 and TiO 2 is 3.67: 1
  • the molar ratio of amorphous boron powder to Nb 2 O 5 is 8.067: 1
  • the molar ratio of amorphous boron powder to MoO 3 The ratio is 4.4: 1.
  • ethanol as the solvent and Si 3 N 4 balls as the ball milling medium, mix on the roller ball mill for 24 hours, and obtain the mixed powder after mixing and drying.
  • the (Hf 0.2 Zr 0.2 Nb 0.2 Ti 0.2 Mo 0.2 ) B 2 solid melt powder obtained in this example is an ultrafine high-entropy ceramic powder.
  • the average particle size of the solid melt powder is 0.34 ⁇ m.
  • the oxygen content is 0.06 wt%, and the carbon content in the powder is 0.05 wt%.
  • the molar ratio of amorphous boron powder to HfO 2 , ZrO 2 and TiO 2 is 3.67: 1
  • the molar ratio of amorphous boron powder to Ta 2 O 5 and Nb 2 O 5 is 8.067: 1.
  • the molar ratio of amorphous boron powder to HfO 2 , ZrO 2 and TiO 2 is 3.67: 1
  • the molar ratio of amorphous boron powder to Ta 2 O 5 is 8.067: 1
  • amorphous boron powder to Cr 2 O 3 The molar ratio is 8.8: 1.
  • HfO 2 (powder purity 99%, particle size 2 ⁇ m), Ta 2 O 5 (powder purity 99%, particle size 2 ⁇ m), Nb 2 O 5 (powder purity 99%, particle size 2 ⁇ m), TiO 2 (powder purity 99%, particle size 2 ⁇ m) and MoO 3 (powder purity 99%, particle size 2 ⁇ m) powder are mixed in equal atomic ratio with amorphous boron powder (purity 96%, particle size 2 ⁇ m) according to the metering ratio The 10% by weight excess of the total amount of the above oxides is mixed.
  • the molar ratio of amorphous boron powder to HfO 2 and TiO 2 is 3.67: 1
  • the molar ratio of amorphous boron powder to Nb 2 O 5 and Ta 2 O 5 is 8.067: 1
  • the ratio of amorphous boron powder to MoO 3 The molar ratio is 4.4: 1. Using ethanol as the solvent and Si 3 N 4 balls as the ball milling medium, mix on the roller ball mill for 24 hours, and obtain the mixed powder after mixing and drying.
  • FIG. 1 is an XRD diagram of the original powder and the heat-treated (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 solid melt powder prepared in this example.
  • (a) is the original powder
  • (b) is (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 solid melt powder; from (a) in the figure, we can see that there are HfO 2 , Ta 2 O 5 , Nb 2 O 5 , TiO 2 and MoO 3 phases, the amorphous boron powder is amorphous, so XRD cannot be detected.
  • the ultrafine high-entropy ceramic powder obtained in this example is (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 solid melt powder, the average particle size of the powder is 0.51 ⁇ m, and the oxygen content in the powder is 0.21 wt% The carbon content in the powder is 0.07wt%.
  • HfO 2 (powder purity 99%, particle size 1 ⁇ m), Ta 2 O 5 (powder purity 99%, particle size 1 ⁇ m), Nb 2 O 5 (powder purity 99%, particle size 1 ⁇ m), Cr 2 O 3 (powder purity 99%, particle size 1 ⁇ m) and MoO 3 (powder purity 99%, particle size 1 ⁇ m) powders are blended in equal atomic ratio with amorphous boron powder (purity 96%, particle size 1 ⁇ m) as measured Mixing is carried out in an excess of 10% by weight relative to the total amount of oxide mixed.
  • the molar ratio of amorphous boron powder to HfO 2 is 3.67: 1
  • the molar ratio of amorphous boron powder to Nb 2 O 5 and Ta 2 O 5 is 8.067: 1
  • the molar ratio of amorphous boron powder to Cr 2 O 3 The molar ratio is 8.8: 1
  • the molar ratio of amorphous boron powder to MoO 3 is 4.4: 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

公开了一种超细高熵固熔体粉末及其制备方法和应用。所述固熔体粉末是将金属氧化物和无定型硼粉为原料粉体,加入溶剂和球磨介质进行混合,干燥后得到混合粉体,将混合粉体模压制成的混合粉末坯体,在真空条件下进行热处理,先升温至800~1200℃保温I,再升温至1400~1600℃保温II,经研磨过筛制得,所述氧化物为HfO 2、ZrO 2、Nb 2O 5、Ta 2O 5、Cr 2O 3、TiO 2或MoO 3中的一种以上,所述金属氧化物中金属原子间的摩尔比相同。该固熔体粉末存在均一固熔体相,具有颗粒尺寸小,组分均匀稳定的优点。

Description

一种超细高熵固熔体粉末及其制备方法和应用 技术领域
本发明属于陶瓷材料技术领域,更具体地,涉及一种超细高熵固熔体粉末及其制备方法和应用。
背景技术
近年来,对于金属高熵合金(HEAs)的制造与其性能的研究已引起了很多研究者的兴趣。HEAs作为结构材料,在高温应用、氢储存材料抗辐射材料,电子、精密电阻电磁屏蔽材料、软磁材料、热电材料功能涂料、抗菌材料等的应用很广泛。通常,在同等浓度的金属高熵合金中可以混入五种或更多的元素,以产生最大的摩尔配位熵。由于组分的增加,用于探索和发现新材料的组合空间大大增加。但是大多数成分不会形成均一的单相。高熵陶瓷具有高强度、硬度、优异的耐磨性、优异的耐高温强度、良好的结构稳定性和良好的耐蚀性和抗氧化性。但是只有少量的报道成功制备出高熵陶瓷,因此关于这些材料及其特性还有很多需要研究的地方。
难熔金属的硼化物,ZrB 2、HfB 2、NbB 2、TaB 2、CrB 2、TiB 2和MoB 2因其优异的物理、化学和机械性能而备受关注。仅报道的合成出高熵硼化物陶瓷均采用商业购买的多种硼化物,高能球磨后进行烧结,其粉末粒径较大,因此,原料细粉末的合成与单相高熵陶瓷的制备还存在困难。专利CN201611021565.3虽然也制备出了较细的硼化物粉末,但该专利只是固溶少量硼化物实现单一过渡金属硼化物细粉的合成,并不属于高熵陶瓷领域。
发明内容
为了解决上述现有技术存在的不足和缺点,提供一种超细高熵陶瓷粉末。该陶瓷粉末存在均一固溶体相,具有颗粒尺寸小,组分均匀稳定的优点。
本发明另一目的在于提供上述超细高熵陶瓷粉末的制备方法。
本发明再一目的在于提供上述超细高熵陶瓷粉末的应用。
本发明的目的通过下述技术方案来实现:
一种超细高熵固熔体粉末,所述固熔体粉末是将金属氧化物和无定型硼粉为原料粉体,加入溶剂和球磨介质进行混合,干燥后得到混合粉体,将混合粉体模 压制成的混合粉末坯体,在真空条件下进行热处理,先升温至800~1200℃保温I,再升温至1400~1600℃保温II,经研磨过筛制得。
优选地,所述氧化物为HfO 2、ZrO 2、Nb 2O 5、Ta 2O 5、Cr 2O 3、TiO 2或MoO 3中的一种以上,所述金属氧化物中金属原子间的摩尔值为0.1~0.9。
优选地,所述金属氧化物的纯度为99.0~99.9wt%,金属氧化物的粒径为0.1~10μm,所述无定型硼粉的纯度为95~99wt%,所述无定型硼粉的粒径为0.1~10μm;所述固熔体粉末的粒径为0.1~1μm,所述固熔体粉末中的氧含量为0.1~0.5wt%,所述固熔体粉末中的碳含量为0.1~0.5wt%。
优选地,所述无定型硼粉与HfO 2、ZrO 2和TiO 2的摩尔比均为(2~4)∶1,所述无定型硼粉与Nb 2O 5和Ta 2O 5的摩尔比均为(7~9)∶1,所述无定型硼粉与Cr 2O 3的摩尔比为(8~9)∶1,所述无定型硼粉与MoO 3的摩尔比为(4~5)∶1。
更为优选地,所述无定型硼粉与HfO 2、ZrO 2和TiO 2的摩尔比均为3.67∶1,所述无定型硼粉与Nb 2O 5和Ta 2O 5的摩尔比均为8.07∶1,所述无定型硼粉与Cr 2O 3的摩尔比为8.8∶1,所述无定型硼粉与MoO 3的摩尔比为4.4∶1。
优选地,所述溶剂为乙醇、丙酮、甲醇或丁醇中的一种以上;所述球磨介质为Si 3N 4、WC或ZrO 2
优选地,所述混合的时间为10~48h,所述模压的压力为1~10MPa,所述模压的时间为1~10min,所述升温的速率均为为5~20℃/min,所述保温I的时间为0.5~10h,所述保温II的时间为0.5~2h。
更为优选地,所述混合的时间为24h,所述模压的压力为2MPa,所述模压的时间为2min,所述升温的速率均为为5~20℃/min,所述保温I的时间为2h,所述保温II的时间1h。
所述的超细高熵固熔体粉末的制备方法,包括如下具体步骤:
S1.将金属氧化物与无定型硼粉分别按等比例,加入溶剂和球磨介质进行混合,干燥后得到混合粉体;
S2.将混合粉体模压成坯体,在真空条件下热处理,先升温至800~1200℃保温I,再升温至1400~1600℃保温II,经研磨过筛,制得超细高熵固熔体粉末。
所述超细高熵固熔体粉末在超高温抗氧化领域中的应用。
本发明的一种超细高熵固熔体粉是将五种金属氧化物和无定型硼粉为原料粉体,五元金属氧化物经过热处理后获得单相超细高熵固熔体粉末,Me1,Me2, Me3,Me4,Me5之间固溶,金属原子间的摩尔值为0.1~0.9的单相固溶体,组分均一,成分稳定,且一种粉末具有多元金属的性质。
与现有技术相比,本发明具有以下有益效果:
1.本发明采用硼热还原法制备了单相的超细高熵固熔体粉末,该固熔体粉末为均一的硼化物固熔体粉末,具有颗粒尺寸小,更好的粒径分布、组分均匀稳定的优点。
2.本发明只需普通辊式球磨就可制备出单相超细高熵固熔体粉末,该方法不存在高能球磨因能量过高使得粉体发生粘结,从而可以得到高品质粉体。
3.相对于传统的以硼化物为原料粉体,本发明中的氧化物原料具有更小的尺寸以及更好的粒径分布。
附图说明
图1为实施例4中原始粉末与热处理后制得(Hf 0.2Mo 0.2Ta 0.2Nb 0.2Ti 0.2)B 2固熔体粉末的XRD图。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以HfO 2(粉末的纯度99.9%,粒径1μm)、ZrO 2(粉末的纯度99.9%,粒径1μm)、Nb 2O 5(粉末的纯度99.9%,粒径2μm)、TiO 2(粉末的纯度99.9%,粒径1μm)和MoO 3(粉末的纯度99.9%,粒径1μm)粉末按等原子比例配料,与无定型硼粉(纯度95.6%,粒径1μm)按照计量比相对于上述氧化物混合总量的过量10wt%进行混合。
2.无定型硼粉与HfO 2、ZrO 2和TiO 2的摩尔比分别为3.67∶1,无定型硼粉与Nb 2O 5的摩尔比为8.067∶1,无定型硼粉与MoO 3的摩尔比为4.4∶1。以乙醇为溶剂,以Si 3N 4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后获得混合粉体。
3.将混合粉体模压后的末坯体放入石墨坩埚中,以10℃/min的速率升温至900℃保温5h后,再以10℃/min升温至1500℃保温1h,整个烧结过程为真空,压力为0.1Pa,获得的粉末再研磨过筛,获得超细高熵陶瓷粉末,即为(Hf 0.2Zr 0.2Nb 0.2Ti 0.2Mo 0.2)B 2固熔体粉体。
本实施例得到的(Hf 0.2Zr 0.2Nb 0.2Ti 0.2Mo 0.2)B 2固熔体粉体是超细高熵陶瓷粉末,该固熔体粉体的平均粒径为0.34μm,粉体中的氧含量为0.06wt%,粉体中的碳含量为0.05wt%。
实施例2
1.以HfO 2(粉末的纯度99.9%,粒径2μm)、ZrO 2(粉末的纯度99.9%,粒径2μm)、Nb 2O 5(粉末的纯度99.9%,粒径2μm)、TiO 2(粉末的纯度99.9%,粒径2μm)和Ta 2O 5(粉末的纯度99%,粒径2μm)粉末粉末按等原子比例配料与无定型硼粉(纯度96%,粒径2μm)按照计量比相对于上述氧化物混合总量的过量10wt%进行混合。
2.无定型硼粉与HfO 2、ZrO 2和TiO 2的摩尔比为3.67∶1,无定型硼粉与Ta 2O 5和Nb 2O 5的摩尔比为8.067∶1。以乙醇为溶剂,以Si 3N 4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后获得混合粉体。
3.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min升温速率将温度升至1200℃保温1h后,再以10℃/min升温至1600℃,保温1h,整个烧结过程为真空,压力为0.1Pa,获得的粉末再研磨过筛,获得超细高熵陶瓷粉末,即为(Hf 0.2Zr 0.2Nb 0.2Ti 0.2Ta 0.2)B 2固熔体粉体。
本实施例得到的(Hf 0.2Zr 0.2Nb 0.2Ti 0.2Ta 0.2)B 2固熔体粉末,该固熔体粉体的平均粒径为0.30μm,粉体中的氧含量为0.02wt%,粉体中的碳含量为0.03wt%。
实施例3
1.以HfO 2(粉末的纯度99%,粒径8μm)、ZrO 2(粉末的纯度99%,粒径8μm)、Cr 2O 3(粉末的纯度99%,粒径8μm)、TiO 2(粉末的纯度99%,粒径5μm)和Ta 2O 5(粉末的纯度99%,粒径8μm)粉末粉末粉末按等原子比例配料与无定型硼粉(纯度96%,粒径8μm)按照计量比相对于上述氧化物混合总量的过量10wt%进行混合。
2.无定型硼粉与HfO 2、ZrO 2和TiO 2的摩尔比为3.67∶1,无定型硼粉与Ta 2O 5 的摩尔比均为8.067∶1,无定型硼粉与Cr 2O 3的摩尔比均为8.8∶1。以乙醇为溶剂,以Si 3N 4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后获得混合粉体。
3.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min升温速率将温度升至1000℃保温10h后再以10℃/min升温至1600℃,保温1h,整个烧结过程为真空,压力为0.1Pa,获得的粉末再研磨过筛,获得超细高熵陶瓷粉末,(Hf 0.2Zr 0.2Cr 0.2Ti 0.2Ta 0.2)B 2固熔体粉末。
经测本实施例得到的(Hf 0.2Zr 0.2Cr 0.2Ti 0.2Ta 0.2)B 2固熔体粉末,该粉体的平均粒径为0.40μm,粉体中的氧含量0.01wt%,粉体中的碳含量0.01wt%。
实施例4
1.以HfO 2(粉末的纯度99%,粒径2μm)、Ta 2O 5(粉末的纯度99%,粒径2μm)、Nb 2O 5(粉末的纯度99%,粒径2μm)、TiO 2(粉末的纯度99%,粒径2μm)和MoO 3(粉末的纯度99%,粒径2μm)粉末按等原子比例配料与无定型硼粉(纯度96%,粒径2μm)按照计量比相对于上述氧化物混合总量的过量10wt%进行混合。
2.无定型硼粉与HfO 2和TiO 2的摩尔比为3.67∶1,无定型硼粉与Nb 2O 5和Ta 2O 5的摩尔比为8.067∶1,无定型硼粉与MoO 3的摩尔比为4.4∶1。以乙醇为溶剂,以Si 3N 4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后获得混合粉体。
3.将混合粉体模压后,将获得的混合粉末坯体放入石墨坩埚中,以10℃/min升温速率将温度升至1000℃保温0.5h后再以10℃/min升温至1400℃,保温1h,整个烧结过程为真空,压力为0.1Pa,获得的粉末再研磨过筛,获得超细高熵陶瓷粉末,即为(Hf 0.2Mo 0.2Ta 0.2Nb 0.2Ti 0.2)B 2固熔体粉末。
图1为本实施例中原始粉末与热处理后制得(Hf 0.2Mo 0.2Ta 0.2Nb 0.2Ti 0.2)B 2固熔体粉末的XRD图。其中,(a)为原始粉末,(b)为(Hf 0.2Mo 0.2Ta 0.2Nb 0.2Ti 0.2)B 2固熔体粉末;从图中(a)可知,有HfO 2、Ta 2O 5、Nb 2O 5、TiO 2的和MoO 3相,无定型硼粉为非晶态,故XRD检测不出。图(b)中(Hf 0.2Mo 0.2Ta 0.2Nb 0.2Ti 0.2)B 2固熔体粉末只有一相,与HfB 2标准PDF卡片65-86778对比可知,其峰向高角度偏移,原始粉末经过热处理后获得均一的固溶体相。
经测本实施例得到的超细高熵陶瓷粉末为(Hf 0.2Mo 0.2Ta 0.2Nb 0.2Ti 0.2)B 2固熔体粉末,粉体平均粒径0.51μm,粉体中的氧含量0.21wt%,粉体中的碳含量0.07wt%。
实施例5
1.以HfO 2(粉末的纯度99%,粒径1μm)、Ta 2O 5(粉末的纯度99%,粒径1μm)、Nb 2O 5(粉末的纯度99%,粒径1μm)、Cr 2O 3(粉末的纯度99%,粒径1μm)和MoO 3(粉末的纯度99%,粒径1μm)粉末按等原子比例配料与无定型硼粉(纯度96%,粒径1μm)按照计量比相对于上述氧化物混合总量的过量10wt%进行混合。
2.无定型硼粉与HfO 2的摩尔配比为3.67∶1,无定型硼粉与Nb 2O 5和Ta 2O 5的摩尔比为8.067∶1,无定型硼粉与Cr 2O 3的摩尔比为8.8∶1,无定型硼粉与MoO 3的摩尔比为4.4∶1。以乙醇为溶剂,以Si 3N 4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后获得混合粉体。
3.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min升温速率将温度升至1000℃保温2h后再以10℃/min升温至1600℃,保温0.5h,整个烧结过程为真空,压力为0.1Pa,获得的粉末再研磨过筛获得超细高熵陶瓷粉末,(Hf 0.2Mo 0.2Nb 0.2Cr 0.2Ta 0.2)B 2固熔体粉末。
经测本实施例得到的(Hf 0.2Mo 0.2Nb 0.2Cr 0.2Ta 0.2)B 2固熔体粉末,该粉体平均粒径为0.37μm,粉体中的氧含量为0.02wt%,粉体中的碳含量为0.05wt%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种超细高熵固熔体粉末,其特征在于,所述固熔体粉末是将金属氧化物和无定型硼粉为原料粉体,加入溶剂和球磨介质进行混合,干燥后得到混合粉体,将混合粉体模压制成的混合粉末坯体,在真空条件下进行热处理,先升温至800~1200℃保温I,再升温至1400~1600℃保温II,经研磨过筛制得。
  2. 根据权利要求1所述的超细高熵固熔体粉末,其特征在于,所述氧化物为HfO 2、ZrO 2、Nb 2O 5、Ta 2O 5、Cr 2O 3、TiO 2或MoO 3中的一种以上,所述金属氧化物中金属原子间的摩尔值为0.1~0.9。
  3. 根据权利要求1所述的超细高熵固熔体粉末,其特征在于,所述金属氧化物的纯度为99.0~99.9wt%,金属氧化物的粒径为0.1~10μm,所述无定型硼粉的纯度为95~99wt%,所述无定型硼粉的粒径为0.1~10μm;所述固熔体粉末的粒径为0.1~1μm,所述固熔体粉末中的氧含量为0.1~0.5wt%,所述固熔体粉末中的碳含量为0.1~0.5wt%。
  4. 根据权利要求1所述的超细高熵固熔体粉末,其特征在于,所述无定型硼粉与HfO 2、ZrO 2和TiO 2的摩尔比均为(2~4)∶1,所述无定型硼粉与Nb 2O 5和Ta 2O 5的摩尔比均为(7~9)∶1,所述无定型硼粉与Cr 2O 3的摩尔比为(8~9)∶1,所述无定型硼粉与MoO 3的摩尔比为(4~5)∶1。
  5. 根据权利要求4所述的超细高熵固熔体粉末,其特征在于,所述无定型硼粉与HfO 2、ZrO 2和TiO 2的摩尔比均为3.67∶1,所述无定型硼粉与Nb 2O 5和Ta 2O 5的摩尔比均为8.07∶1,所述无定型硼粉与Cr 2O 3的摩尔比为8.8∶1,所述无定型硼粉与MoO 3的摩尔比为4.4∶1。
  6. 根据权利要求1所述的超细高熵固熔体粉末,其特征在于,所述溶剂为乙醇、丙酮、甲醇或丁醇中的一种以上;所述球磨介质为Si 3N 4、WC或ZrO 2
  7. 根据权利要求1所述的超细高熵固熔体粉末,其特征在于,所述混合的时间为10~48h,所述模压的压力为1~10MPa,所述模压的时间为1~10min,所述升温的速率均为5~20℃/min,所述保温I的时间为0.5~10h,所述保温II的时间为0.5~2h。
  8. 根据权利要求7所述的超细高熵固熔体粉末,其特征在于,所述混合的时间为24h,所述模压的压力为2MPa,所述模压的时间为2min,所述升温的速率均为为5~20℃/min,所述保温I的时间为2h,所述保温II的时间1h。
  9. 根据权利要求1-8任一项所述的超细高熵固熔体粉末的制备方法,其特征 在于,包括如下具体步骤:
    S1.将金属氧化物与无定型硼粉分别按等比例,加入溶剂和球磨介质进行混合,干燥后得到混合粉体;
    S2.将混合粉体模压成坯体,在真空条件下热处理,先升温至800~1200℃保温I,再升温至1400~1600℃保温II,经研磨过筛,制得超细高熵固熔体粉末。
  10. 权利1~8任一项所述超细高熵固熔体粉末在超高温抗氧化领域中的应用。
PCT/CN2018/120035 2018-10-15 2018-12-10 一种超细高熵固熔体粉末及其制备方法和应用 WO2020077771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811196875.8 2018-10-15
CN201811196875.8A CN109516812B (zh) 2018-10-15 2018-10-15 一种超细高熵固熔体粉末及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020077771A1 true WO2020077771A1 (zh) 2020-04-23

Family

ID=65772643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120035 WO2020077771A1 (zh) 2018-10-15 2018-12-10 一种超细高熵固熔体粉末及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109516812B (zh)
WO (1) WO2020077771A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943682A (zh) * 2020-07-24 2020-11-17 广东工业大学 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用
CN112341199A (zh) * 2020-10-22 2021-02-09 航天材料及工艺研究所 一种高熵吸波碳化物陶瓷粉体材料、制备方法及其应用
CN112521911A (zh) * 2020-10-29 2021-03-19 航天材料及工艺研究所 一种超高温吸波复合材料及其制备方法和应用
CN112743080A (zh) * 2020-12-04 2021-05-04 台州学院 一种高耐热性原位一体化制备Ti(C,N)基金属陶瓷刀具材料的方法
CN112981320A (zh) * 2021-01-18 2021-06-18 南京航空航天大学 一种钛合金表面复合涂层及其制备方法
CN113353946A (zh) * 2021-06-30 2021-09-07 江苏智仁景行新材料研究院有限公司 一种无定形硼粉细化和除杂提纯的方法
CN113816392A (zh) * 2021-10-14 2021-12-21 北京华威锐科化工有限公司 一种硼化铪粉体的制备方法
CN113996780A (zh) * 2021-11-02 2022-02-01 南京国重新金属材料研究院有限公司 一种含超低原子比元素的高熵合金粉末的混合方法
CN114105672A (zh) * 2020-08-31 2022-03-01 厦门稀土材料研究所 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法
CN114736010A (zh) * 2022-04-02 2022-07-12 郑州航空工业管理学院 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用
CN114988881A (zh) * 2021-03-02 2022-09-02 中国科学院化学研究所 一种硼化物高熵陶瓷前驱体及高熵陶瓷及制备方法
CN115286389A (zh) * 2022-07-07 2022-11-04 华南理工大学 一种高熵碳化物陶瓷粉体及其制备方法和应用
CN115557793A (zh) * 2022-09-19 2023-01-03 广东工业大学 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN115595025A (zh) * 2021-07-08 2023-01-13 武汉苏泊尔炊具有限公司(Cn) 不粘材料及其制备方法、不粘涂料与烹饪器具
CN115872749A (zh) * 2022-11-30 2023-03-31 武汉科技大学 一种高熵硼化物增强b4c复合陶瓷及其原位合成方法
CN116354730A (zh) * 2023-03-31 2023-06-30 中国科学院上海硅酸盐研究所 一种(Ti,Zr,Hf)B2中熵陶瓷基复相材料及其制备方法
CN116864253A (zh) * 2023-08-04 2023-10-10 朗峰新材料(菏泽)有限公司 一种纳米晶软磁材料及其制备方法
RU2808748C1 (ru) * 2022-12-28 2023-12-04 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ получения сферического порошка борида высокоэнтропийного сплава

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109796209B (zh) * 2019-03-11 2022-03-29 华南理工大学 一种(Ti, Zr, Hf, Ta, Nb)B2高熵陶瓷粉体及其制备方法
CN110078512A (zh) * 2019-05-17 2019-08-02 淄博星澳新材料研究院有限公司 超高温高熵碳化物粉体及其制备方法
CN110511035A (zh) * 2019-08-05 2019-11-29 广东工业大学 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用
CN110526716A (zh) * 2019-08-07 2019-12-03 广东工业大学 一种具有高韧性和高导热的硼化物陶瓷及其制备方法和应用
CN110818432B (zh) * 2019-11-19 2024-05-17 华南理工大学 一种超细高熵硼化物纳米粉体及其制备方法
CN112830782B (zh) * 2021-01-25 2021-10-26 山东大学 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法
CN113264769B (zh) * 2021-07-08 2022-07-22 昆明理工大学 一种高熵稳定稀土钽酸盐/铌酸盐陶瓷及其制备方法
CN114340371B (zh) * 2022-01-21 2022-10-04 中星(广州)纳米材料有限公司 一种用于电磁波屏蔽的氧化石墨烯-高熵合金纳米复合材料及其制备方法和应用
CN114715907B (zh) * 2022-03-18 2023-06-23 北京理工大学 一种单相高熵金属二硼化物及其制备方法
CN114605154B (zh) * 2022-03-31 2023-03-03 大连理工大学 一种基于金属预合金化的高熵陶瓷材料及其制备方法
CN117303908A (zh) * 2022-08-23 2023-12-29 北京理工大学 一种四元高熵金属二硼化物及其制备方法和应用
CN115894042B (zh) * 2022-11-01 2024-03-19 桂林理工大学 一种超高硬度高熵金属硼化物陶瓷及其低温无压制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888166A (en) * 1986-09-03 1989-12-19 Georgia Tech Research Corporation Process for making highly reactive sub-micron amorphous titanium diboride powder
WO1996014268A1 (en) * 1994-11-08 1996-05-17 The Australian National University Production of metal boride powders
CN105645985A (zh) * 2015-12-31 2016-06-08 广东工业大学 一种表硬心韧的TiB2梯度陶瓷的制备方法
CN106517225A (zh) * 2016-11-15 2017-03-22 广东工业大学 一种超细M1‑xTixB2粉体的制备方法
CN107056314A (zh) * 2017-04-20 2017-08-18 哈尔滨工业大学 一种多元碳化物固溶体增韧TiB2陶瓷及其制备方法
CN107746281A (zh) * 2017-11-10 2018-03-02 中国矿业大学 一种超高温陶瓷硼化物固溶体粉体的制备方法
CN108455623A (zh) * 2018-05-29 2018-08-28 广东工业大学 一种超细过渡金属硼化物粉体及其制备方法和应用
CN108546130A (zh) * 2018-07-19 2018-09-18 广东工业大学 一种超高温陶瓷及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102977B (zh) * 2005-01-14 2010-10-27 李根法 生产陶瓷或陶瓷焊接用的共晶粉末添加剂及其制备方法
DE102006013729A1 (de) * 2006-03-24 2007-10-04 Esk Ceramics Gmbh & Co. Kg Gesinterter Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
CN103130508B (zh) * 2011-12-02 2015-03-25 中国科学院上海硅酸盐研究所 一种制备织构化硼化物基超高温陶瓷的方法
CN103011827A (zh) * 2012-12-20 2013-04-03 复旦大学 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法
CN107282937B (zh) * 2016-04-12 2020-08-11 海南大学 一种超细多元复合陶瓷粉体及其制备方法
CN108439986A (zh) * 2018-05-09 2018-08-24 西北工业大学 (HfTaZrTiNb)C高熵陶瓷粉体及高熵陶瓷粉体和高熵陶瓷块体的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888166A (en) * 1986-09-03 1989-12-19 Georgia Tech Research Corporation Process for making highly reactive sub-micron amorphous titanium diboride powder
WO1996014268A1 (en) * 1994-11-08 1996-05-17 The Australian National University Production of metal boride powders
CN105645985A (zh) * 2015-12-31 2016-06-08 广东工业大学 一种表硬心韧的TiB2梯度陶瓷的制备方法
CN106517225A (zh) * 2016-11-15 2017-03-22 广东工业大学 一种超细M1‑xTixB2粉体的制备方法
CN107056314A (zh) * 2017-04-20 2017-08-18 哈尔滨工业大学 一种多元碳化物固溶体增韧TiB2陶瓷及其制备方法
CN107746281A (zh) * 2017-11-10 2018-03-02 中国矿业大学 一种超高温陶瓷硼化物固溶体粉体的制备方法
CN108455623A (zh) * 2018-05-29 2018-08-28 广东工业大学 一种超细过渡金属硼化物粉体及其制备方法和应用
CN108546130A (zh) * 2018-07-19 2018-09-18 广东工业大学 一种超高温陶瓷及其制备方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943682A (zh) * 2020-07-24 2020-11-17 广东工业大学 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用
CN114105672B (zh) * 2020-08-31 2023-04-18 厦门稀土材料研究所 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法
CN114105672A (zh) * 2020-08-31 2022-03-01 厦门稀土材料研究所 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法
CN112341199A (zh) * 2020-10-22 2021-02-09 航天材料及工艺研究所 一种高熵吸波碳化物陶瓷粉体材料、制备方法及其应用
CN112521911A (zh) * 2020-10-29 2021-03-19 航天材料及工艺研究所 一种超高温吸波复合材料及其制备方法和应用
CN112743080A (zh) * 2020-12-04 2021-05-04 台州学院 一种高耐热性原位一体化制备Ti(C,N)基金属陶瓷刀具材料的方法
CN112981320B (zh) * 2021-01-18 2022-04-19 南京航空航天大学 一种钛合金表面复合涂层及其制备方法
CN112981320A (zh) * 2021-01-18 2021-06-18 南京航空航天大学 一种钛合金表面复合涂层及其制备方法
CN114988881A (zh) * 2021-03-02 2022-09-02 中国科学院化学研究所 一种硼化物高熵陶瓷前驱体及高熵陶瓷及制备方法
CN114988881B (zh) * 2021-03-02 2023-04-07 中国科学院化学研究所 一种硼化物高熵陶瓷前驱体及高熵陶瓷及制备方法
CN113353946A (zh) * 2021-06-30 2021-09-07 江苏智仁景行新材料研究院有限公司 一种无定形硼粉细化和除杂提纯的方法
CN115595025A (zh) * 2021-07-08 2023-01-13 武汉苏泊尔炊具有限公司(Cn) 不粘材料及其制备方法、不粘涂料与烹饪器具
CN115595025B (zh) * 2021-07-08 2023-09-08 武汉苏泊尔炊具有限公司 不粘材料及其制备方法、不粘涂料与烹饪器具
CN113816392A (zh) * 2021-10-14 2021-12-21 北京华威锐科化工有限公司 一种硼化铪粉体的制备方法
CN113996780A (zh) * 2021-11-02 2022-02-01 南京国重新金属材料研究院有限公司 一种含超低原子比元素的高熵合金粉末的混合方法
CN113996780B (zh) * 2021-11-02 2023-08-22 南京国重新金属材料研究院有限公司 一种含超低原子比元素的高熵合金粉末的混合方法
CN114736010B (zh) * 2022-04-02 2023-05-23 郑州航空工业管理学院 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用
CN114736010A (zh) * 2022-04-02 2022-07-12 郑州航空工业管理学院 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用
CN115286389B (zh) * 2022-07-07 2023-08-18 华南理工大学 一种高熵碳化物陶瓷粉体及其制备方法和应用
CN115286389A (zh) * 2022-07-07 2022-11-04 华南理工大学 一种高熵碳化物陶瓷粉体及其制备方法和应用
CN115557793B (zh) * 2022-09-19 2023-06-02 广东工业大学 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN115557793A (zh) * 2022-09-19 2023-01-03 广东工业大学 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN115872749A (zh) * 2022-11-30 2023-03-31 武汉科技大学 一种高熵硼化物增强b4c复合陶瓷及其原位合成方法
CN115872749B (zh) * 2022-11-30 2023-12-19 武汉科技大学 一种高熵硼化物增强b4c复合陶瓷及其原位合成方法
RU2808748C1 (ru) * 2022-12-28 2023-12-04 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ получения сферического порошка борида высокоэнтропийного сплава
CN116354730A (zh) * 2023-03-31 2023-06-30 中国科学院上海硅酸盐研究所 一种(Ti,Zr,Hf)B2中熵陶瓷基复相材料及其制备方法
CN116864253A (zh) * 2023-08-04 2023-10-10 朗峰新材料(菏泽)有限公司 一种纳米晶软磁材料及其制备方法
CN116864253B (zh) * 2023-08-04 2024-01-12 朗峰新材料(菏泽)有限公司 一种纳米晶软磁材料及其制备方法

Also Published As

Publication number Publication date
CN109516812B (zh) 2022-01-28
CN109516812A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2020077771A1 (zh) 一种超细高熵固熔体粉末及其制备方法和应用
WO2020077770A1 (zh) 一种具有多元高熵的陶瓷及其制备方法和应用
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN109180189A (zh) 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN108439986A (zh) (HfTaZrTiNb)C高熵陶瓷粉体及高熵陶瓷粉体和高熵陶瓷块体的制备方法
Sonber et al. Investigations on synthesis of HfB2 and development of a new composite with TiSi2
CN107604186B (zh) 一种复合稀土氧化物强化钨基高比重合金复合材料及其制备方法
CN111170755B (zh) 一种二硼化钛基纳米复合刀具材料及制备方法
CN110204341B (zh) 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法
KR101229124B1 (ko) 고용체 탄화물 및 탄질화물 분말의 고온 제조 방법
CN111499381B (zh) 一种磁控溅射用高致密性导电氧化锆陶瓷靶材的制备方法
CN112830791A (zh) 一种高熵陶瓷及其制备方法和应用
CN104046828A (zh) 含高能球磨工艺的纳米多元复合晶粒长大抑制剂制备方法
WO2019227811A1 (zh) 一种超细过渡金属硼化物粉体及其制备方法和应用
WO2015066953A1 (zh) 一种高性能17-4ph不锈钢及其制备方法
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN108546130A (zh) 一种超高温陶瓷及其制备方法
CN106116586A (zh) 一种钼合金MoSi2‑ZrO2‑Y2O3涂层及其制备方法和应用
CN113716964B (zh) 一种核-壳结构的中熵陶瓷粉体、高温超高强度高韧性中熵陶瓷材料及其制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
KR102084452B1 (ko) Mo-Si-B 합금의 제조 방법
KR101113489B1 (ko) 고용체 탄화물 및 탄질화물 분말 제조방법
CN116283251A (zh) 一种氧化铝陶瓷及其制备方法与应用
JP5618364B2 (ja) 超微粒かつ均質なチタン系炭窒化物固溶体粉末の製造方法
CN115073183A (zh) 一种高熵硼化物纳米粉体及其溶胶-凝胶制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937212

Country of ref document: EP

Kind code of ref document: A1