CN110511035A - 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用 - Google Patents
一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用 Download PDFInfo
- Publication number
- CN110511035A CN110511035A CN201910717542.3A CN201910717542A CN110511035A CN 110511035 A CN110511035 A CN 110511035A CN 201910717542 A CN201910717542 A CN 201910717542A CN 110511035 A CN110511035 A CN 110511035A
- Authority
- CN
- China
- Prior art keywords
- oxide
- powder
- high entropy
- ceramics
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58071—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58078—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6265—Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3256—Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/421—Boron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Ceramic Products (AREA)
Abstract
本发明属于陶瓷加工技术领域,公开了一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用。高熵陶瓷的分子式为(Me1aMe2bMe3cMe4dMe5e)B2,其中,0.1≤a,b,c,d和e≤0.9;Me1和Me5为Hf、Zr或Ti;Me2为Nb或Ta;Me3为Cr、Me4为Mo;高熵陶瓷是将Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物和无定型硼粉球磨混合,压成坯体升温至800~1200℃煅烧,经洗涤,抽滤和干燥,采用放电等离子烧结将所得高熵硼化物粉体升温至1600~1700℃时保护气氛加压,升温至1700~1900℃烧结制得。高熵陶瓷的相对密度95~100%,断裂韧性8~20MPa·m1/2,晶粒尺寸为1~3μm。
Description
技术领域
本发明属于陶瓷加工技术领域,更具体地,涉及一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用。
背景技术
陶瓷材料具有优异的耐高温、耐磨损、耐腐蚀性等金属材料难以匹敌的特殊性能。其除了应用于耐高温、耐腐蚀的零部件外,还广泛用作机械零部件和陶瓷粉体加工磨介等要求耐磨的粉碎、球磨、切削工具、变形模具等许多恶劣环境下使用的制品中。要求材料具有高耐磨性,因此陶瓷材料的耐磨性开始引起人们的注视。高熵陶瓷具有五种或五种以上的组元,若其固溶成为单相固熔体陶瓷,因具有较高的熵值,易获得热稳定性高的固溶相和纳米结构,不同的高熵陶瓷具有不同的特性,其表现优于传统陶瓷材料。而对于其耐磨性的研究还未有人报道。
对于难熔金属的硼化物ZrB2、HfB2、NbB2、TaB2、CrB2、TiB2和MoB2因其优异的物理、化学和机械性能而备受关注。但是正是由于性能优异,导致其烧结温度高。其高熵硼化物陶瓷虽然也具有高强度、硬度、优异的耐磨性、优异的耐高温强度、良好的结构稳定性和良好的耐蚀性和抗氧化性等优异的性质,但是已报道的高熵硼化物陶瓷的烧结温度均高于2000℃,对于改善其烧结性能方法还需要进一步探究。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明首要目的在于提供一种高韧性高耐磨性的高熵陶瓷。该陶瓷具有均一固溶体相的、组元稳定的、断裂韧性及耐磨性能优异的低温烧结的特点。
本发明另一目的在于提供上述一种高韧性高耐磨性的高熵陶瓷的制备方法。
本发明再一目的在于提供上述一种高韧性高耐磨性的高熵陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种高韧性高耐磨性的高熵陶瓷,所述高熵陶瓷的分子式为(Me1aMe2bMe3cMe4dMe5e)B2,其中,0.1≤a≤0.9,0.1≤b≤0.9,0.1≤c≤0.9,0.1≤d≤0.9,0.1≤e≤0.9;所述Me1和Me5为Hf、Zr或Ti;Me2为Nb或Ta;Me3为Cr、Me4为Mo;所述高熵陶瓷是以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物和无定型硼粉为原料,加入溶剂A经球磨混合得混合粉体,经模压后所得坯体放入石墨坩埚中,升温至800~1200℃煅烧后,获得高熵硼化物粉体,经溶剂B洗涤,抽滤和干燥后,采用放电等离子烧结将高熵硼化物粉体升温至1600~1700℃时充入保护气氛并加压,然后升温至1700~1900℃烧结制得高熵陶瓷。
优选地,所述的a=0.2,b=0.2,c=0.2,d=0.2,e=0.2。
优选地,所述高熵陶瓷的相对密度为95~100%,断裂韧性为8~20MPa·m1/2,晶粒尺寸为1~3μm,所述高熵陶瓷在B4C为磨损介质,10~100N的载荷下磨损1~10min,机转速500~720r/min,磨损质量减少了0.1~2g。
优选地,所述高熵硼化物粉末的粒径为0.01~0.45μm。
优选地,所述无定型硼粉与Me1的氧化物和Me5的氧化物摩尔比均为(2~4):1,所述无定型硼粉与Me2的氧化物摩尔比为(7~9):1,所述无定型硼粉与Me3的氧化物摩尔比为(8~9):1,所述无定型硼粉与Me4的氧化物摩尔比为(4~5):1。
优选地,所述以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物的纯度均为99.0~99.9wt%,所述以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物的粒径均为0.1~10μm,所述无定型硼粉的纯度为95~99wt%,所述无定型硼粉的粒径为0.1~10μm。
优选地,所述溶剂A为乙醇、丙醇、甲醇或丙酮;所述溶剂B为水、无水乙醇或丙酮。
优选地,所述保护气氛为N2或Ar。
优选地,所述升温至800~1200℃和升温至时的速率均为5~20℃/min,所述煅烧的时间为1~3h;升温至1700~1900℃的升温的速率为100~400℃/min,所述烧结的时间为5~20min,所述加压的压力为10~50MPa。
所述的高韧性高耐磨性的高熵陶瓷的方法,包括如下具体步骤:
S1.以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物和无定型硼粉为原料,加入溶剂A和球磨介质,在球磨机上混合10~48h,干燥后获得混合粉体;
S2.将混合粉体模压后的坯体放入石墨坩埚中,以5~20℃/min的速率升温至800~1200℃保温1~3h,经水洗0~4次后,抽滤干燥后,获得高熵硼化物粉体;
S3.将高熵硼化物粉体经溶剂B洗涤,抽滤和干燥后,放入石墨模具中,采用放电等离子烧结以100~400℃/min速率升温至1600~1700℃时充保护气氛,加压10~50MPa,再以100~400℃/min速率升温至1700~1900℃烧结,保温5~20min,制得(Me1aMe2bMe3cMe4dMe5e)B2高熵陶瓷。
所述的高韧性高耐磨性的高熵陶瓷在加工耐磨领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明的低温烧结制备高韧性高耐磨性的高熵陶瓷,所述陶瓷是以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物和无定型硼粉为原料,经低温煅烧后水洗获得超细高熵硼化物粉体,之后经放电等离子烧结制得(Me1aMe2bMe3cMe4dMe5e)B2高熵陶瓷,该陶瓷具有均一固溶体相的、组元稳定的、断裂韧性及耐磨性能优异的低温烧结的特点。
2.本发明通过将金属氧化物和无定型硼粉为原料混合后,低温(<1200℃)煅烧后水洗,去除硼热反应中会使得颗粒长大的B2O3副产物,制备超细高熵硼化物粉体,该粉末为纳米级粉体,可在低温下实现烧结致密,改善烧结性能,提高材料性能。
3.本发明的方法采用SPS实现高熵陶瓷材料的快速制备,极大缩短了晶粒长大时间,可获得晶粒细小的陶瓷,在磨损实验中较小晶粒以是塑性变形和部分的穿晶断裂为主,磨损较少;较大晶粒则以材料内部沿晶断裂,甚至大晶粒从材料内部拔出的方式发生较大的磨损,故本发明的高熵陶瓷材料具有更好的耐磨性能。
4.本发明烧结出陶瓷的晶粒尺寸小,在材料发生断裂时,会增加陶瓷材料断裂的路径,增加裂纹偏转,比较粗晶粒尺寸的高熵陶瓷提高材料韧性大于50%。
5.本发明的烧结温度低于1900℃,低温烧结进一步促进了细晶陶瓷的制备,且温度明显低于文献报道的温度,在节约能源的同时制备出性能优异的陶瓷材料。
说明附图
图1为实施例中5制得的高熵硼化物粉末的XRD图。
图2为实施例中5制得的高熵硼化物粉末的SEM照片。
图3为实施例5制得经SPS烧结后的(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷的XRD图。
图4为实施例5制得经SPS烧结后的(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷抛光表面的腐蚀的SEM照片。
图5为对比例1制得的高熵硼化物粉末的SEM照片。
图6为对比例1制得经SPS烧结后的(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷抛光表面的腐蚀的SEM照片。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以HfO2(粉末的纯度99.9%,粒径1μm)、ZrO2(粉末的纯度99.9%,粒径1μm)、Ta2O5(粉末的纯度99.9%,粒径2μm)、TiO2(粉末的纯度99.9%,粒径1μm)和Nb2O5(粉末的纯度99.9%,粒径1μm)粉末按等原子比配料,与无定型硼粉(纯度95.6%,粒径1μm)混合,无定型硼粉与HfO2、ZrO2和TiO2的摩尔比均为3.67:1,无定型硼粉与Ta2O5和Nb2O5的摩尔比均为8.067:1。以乙醇为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至900℃保温2h后,水洗1次后抽滤干燥,整个烧结过程为真空,压力为0.1Pa,获得的高熵硼化物粉体。
3.将高熵硼化物粉体,将其放入石墨模具中,以300℃/min升温速率将温度升至1900℃,保温5min,加压20MPa,在1600℃时充Ar气,通过放电等离子(SPS)烧结,制得具有(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵陶瓷。
通过激光粒度分析测得本实施例高熵硼化物固熔体粉末的粒径为0.05μm,(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2高熵陶瓷的相对密度98%,断裂韧性12MPa·m1/2,晶粒尺寸为2μm,所述陶瓷在B4C为磨损介质,15N的载荷下磨损2min,试验机转速720r/min,磨损质量减少0.7g。
实施例2
1.以HfO2(粉末的纯度99.9%,粒径1μm)、ZrO2(粉末的纯度99.9%,粒径1μm)、MoO3(粉末的纯度99.9%,粒径2μm)、TiO2(粉末的纯度99.9%,粒径1μm)和Nb2O5(粉末的纯度99.9%,粒径2μm)粉末按等原子比配料,与无定型硼粉(纯度95.6%,粒径4μm)混合,无定型硼粉与HfO2、ZrO2和TiO2的摩尔比均为3.67:1,无定型硼粉与Nb2O5的摩尔比均为8.067:1,无定型硼粉与MoO3的摩尔比为4.4:1以乙醇为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以15℃/min的速率升温至1000℃保温3h后,水洗1次后抽滤干燥,整个烧结过程为真空,压力为0.1Pa,获得的高熵硼化物粉体。
3.将高熵硼化物粉体,将其放入石墨模具中,以250℃/min升温速率将温度升至1800℃,保温10min,加压30MPa,在1600℃时充Ar气,通过放电等离子(SPS)烧结,制得具有(Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2高熵陶瓷。
通过激光粒度分析测得本实施例高熵硼化物固熔体粉末的粒径为0.06μm,(Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2高熵陶瓷的相对密度99%,断裂韧性13.4MPa·m1/2,晶粒尺寸为2.3μm,所述陶瓷在B4C为磨损介质,20N的载荷下磨损2min,试验机转速720r/min,磨损质量减少0.5g。
实施例3
1.以HfO2(粉末的纯度99.9%,粒径2μm)、Ta2O5(粉末的纯度99.9%,粒径1μm)、MoO3(粉末的纯度99.9%,粒径2μm)、TiO2(粉末的纯度99.9%,粒径3μm)和Nb2O5(粉末的纯度99.9%,粒径4μm)粉末按等原子比例配料,与无定型硼粉(纯度95.6%,粒径1μm)混合,无定型硼粉与HfO2和TiO2的摩尔比均为3.8:1,无定型硼粉与Ta2O5和Nb2O5的摩尔比均为8.8:1,无定型硼粉与MoO3的摩尔比为4.5:1以乙醇为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以20℃/min的速率升温至1100℃保温3h后,水洗4次后抽滤干燥,整个烧结过程为真空,压力为0.1Pa,获得的高熵硼化物粉体。
3.将高熵硼化物粉体,将其放入石墨模具中,以250℃/min升温速率将温度升至1850℃,保温15min,加压30MPa,在1700℃时充Ar气,通过放电等离子(SPS)烧结,制得具有(Hf0.2Ta0.2Mo0.2Nb0.2Ti0.2)B2高熵陶瓷。
通过激光粒度分析测得本实施例固熔体粉末的粒径为0.04μm,(Hf0.2Ta0.2Mo0.2Nb0.2Ti0.2)B2高熵陶瓷的相对密度99.1%,断裂韧性14.2MPa·m1/2,晶粒尺寸为2.2μm,所述陶瓷在B4C为磨损介质,40N的载荷下磨损2min,试验机转速650r/min,磨损质量减少0.8g。
实施例4
1.以HfO2(粉末的纯度99.9%,粒径3μm)、Ta2O5(粉末的纯度99.9%,粒径1μm)、MoO3(粉末的纯度99.9%,粒径2μm)、ZrO2(粉末的纯度99.9%,粒径1μm)和Nb2O5(粉末的纯度99.9%,粒径1μm)粉末按等原子比例配料,与无定型硼粉(纯度95.6%,粒径2μm)混合,无定型硼粉与HfO2和ZrO2的摩尔比分别为3.9:1,无定型硼粉与Ta2O5和Nb2O5的摩尔比为9:1,无定型硼粉与MoO3的摩尔比为4.5:1以乙醇为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1150℃保温1h后,水洗3次后抽滤干燥,整个烧结过程为真空,压力为0.1Pa,获得的高熵硼化物粉体。
3.将高熵硼化物粉体,将其放入石墨模具中,以350℃/min升温速率将温度升至1750℃,保温15min,加压30MPa,在1700℃时充Ar气,通过放电等离子(SPS)烧结,制得具有(Hf0.2Ta0.2Mo0.2Nb0.2Zr0.2)B2高熵陶瓷。
通过激光粒度分析测得本实施例高熵硼化物固熔体粉末的粒径为0.03μm,(Hf0.2Ta0.2Mo0.2Nb0.2Zr0.2)B2高熵陶瓷的相对密度99.3%,断裂韧性16.8MPa·m1/2,晶粒尺寸为2.1μm,所述陶瓷在B4C为磨损介质,100N的载荷下磨损8min,试验机转速650r/min,磨损质量减少0.9g。
实施例5
1.以HfO2(粉末的纯度99.9%,粒径1μm)、Ta2O5(粉末的纯度99.9%,粒径1μm)、Cr2O3(粉末的纯度99.9%,粒径1μm)、ZrO2(粉末的纯度99.9%,粒径1μm)和TiO2(粉末的纯度99.9%,粒径1μm)粉末按等原子比例配料,与无定型硼粉(纯度95.6%,粒径1μm)混合,无定型硼粉与HfO2、TiO2和ZrO2的摩尔比分别为4:1,无定型硼粉与Ta2O5的摩尔比为9:1,无定型硼粉与Cr2O3的摩尔比为8.8:1以乙醇为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1100℃保温2h后,水洗2次后抽滤干燥,整个烧结过程为真空,压力为0.1Pa,获得的高熵硼化物粉体。
3.将高熵硼化物粉体,将其放入石墨模具中,以150℃/min升温速率将温度升至1900℃,保温10min,加压30MPa,在1600℃时充Ar气,通过放电等离子(SPS)烧结,制得具有(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷。
通过激光粒度分析测得本实施例高熵硼化物固熔体粉末的粒径为0.01μm,(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷的相对密度99.7%,断裂韧性20MPa·m1/2,晶粒尺寸为1μm,所述陶瓷在B4C为磨损介质,100N的载荷下磨损2min,试验机转速720r/min,磨损质量减少0.1g。
图1为该实施案例制得的高熵硼化物粉末的XRD图。从图中可以看出经过1100℃/2h热处理后,粉末中有(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵相、HfB2相、m-HfO2相和CrB相。图2为该实施案例制得的高熵硼化物粉末的SEM照片,从图中可以看出经1100℃/2h热处理后水洗2次后的粉末粒径细小,分布均匀,粒径为0.01μm。图3为该实施案例制得经SPS烧结后的(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷的XRD图。从图中可以看出,经过1900℃的SPS烧结后,(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷只有单一的固溶体相,成功制备出单相固溶体陶瓷。图4为该实施案例制得经SPS烧结后的(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷抛光表面的腐蚀(HF:HNO3:H2O=1:1:3),2min后的SEM照片。从图中可以看出经SPS烧结后的(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷晶粒细小,约1μm,陶瓷烧结后仍保持细晶结构,性能优异。
对比例1
1.以HfO2(粉末的纯度99.9%,粒径1μm)、Ta2O5(粉末的纯度99.9%,粒径1μm)、Cr2O3(粉末的纯度99.9%,粒径1μm)、ZrO2(粉末的纯度99.9%,粒径1μm)和TiO2(粉末的纯度99.9%,粒径1μm)粉末按等原子比例配料,与无定型硼粉(纯度95.6%,粒径1μm)混合,无定型硼粉与HfO2、TiO2和ZrO2的摩尔比分别为4:1,无定型硼粉与Ta2O5的摩尔比为9:1,无定型硼粉与Cr2O3的摩尔比为8.8:1以乙醇为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,经混料、干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1100℃保温2h后,不水洗,整个烧结过程为真空,压力为0.1Pa,获得的高熵硼化物粉体。
3.将高熵硼化物粉体,将其放入石墨模具中,以150℃/min升温速率将温度升至1900℃,保温10min,加压30MPa,在1600℃时充Ar气,通过放电等离子(SPS)烧结,制得具有(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷。
通过激光粒度分析测得本实施例高熵硼化物固熔体粉末的粒径为0.45μm,(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷的相对密度95%,断裂韧性8MPa·m1/2,晶粒尺寸为3μm,所述陶瓷在B4C为磨损介质,100N的载荷下磨损2min,试验机转速720r/min,磨损质量减少2g。
图5为该实施案例经1100℃/2h热处理后不水洗制得的高熵硼化物粉末的SEM照片,从图中可以看出高熵硼化物粉末为不规则形状,粉末粒径为0.45μm,分布均匀。粉末未水洗,不能去除硼热反应B2O3副产物,B2O3的蒸发凝聚作用使得粉末粒径长大。图6为该实施案例得经SPS烧结后的(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷抛光表面的腐蚀(HF:HNO3:H2O=1:1:3),2min后的SEM照片,从图中可以看出经SPS烧结后的(Hf0.2Ta0.2Cr0.2Ti0.2Zr0.2)B2高熵陶瓷晶粒尺寸为3μm,腐蚀后有较深的沟壑,材料的韧性、耐磨性和抗腐蚀性能均降低。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
1.一种高韧性高耐磨性的高熵陶瓷,其特征在于,所述高熵陶瓷的分子式为(Me1aMe2bMe3cMe4dMe5e)B2,其中,0.1≤a≤0.9,0.1≤b≤0.9,0.1≤c≤0.9,0.1≤d≤0.9,0.1≤e≤0.9;所述Me1和Me5为Hf、Zr或Ti;Me2为Nb或Ta;Me3为Cr、Me4为Mo;所述高熵陶瓷是以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物和无定型硼粉为原料,加入溶剂A经球磨得混合粉体,经模压后将所得坯体放入石墨坩埚中,升温至800~1200℃煅烧,获得高熵硼化物粉体,经溶剂B洗涤,抽滤和干燥后,采用放电等离子烧结将高熵硼化物粉体升温至1600~1700℃时充入保护气氛并加压,然后升温至1700~1900℃烧结制得。
2.根据权利要求1所述的高韧性高耐磨性的高熵陶瓷,其特征在于,所述的a=0.2,b=0.2,c=0.2,d=0.2,e=0.2。
3.根据权利要求1所述的高韧性高耐磨性的高熵陶瓷,其特征在于,所述高熵陶瓷的相对密度为95~100%,断裂韧性为8~20MPa·m1/2,晶粒尺寸为1~3μm,所述高熵陶瓷在B4C为磨损介质,10~100N的载荷下磨损1~10min,机转速500~720r/min,磨损质量减少了0.1~2g;所述高熵硼化物粉末的粒径为0.01~0.45μm。
4.根据权利要求1所述的高韧性高耐磨性的高熵陶瓷,其特征在于,所述无定型硼粉与Me1的氧化物和Me5的氧化物摩尔比均为(2~4):1,所述无定型硼粉与Me2的氧化物摩尔比为(7~9):1,所述无定型硼粉与Me3的氧化物摩尔比为(8~9):1,所述无定型硼粉与Me4的氧化物摩尔比为(4~5):1。
5.根据权利要求1所述的高韧性高耐磨性的高熵陶瓷,其特征在于,所述以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物的纯度均为99.0~99.9wt%,所述以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物的粒径均为0.1~10μm,所述无定型硼粉的纯度为95~99wt%,所述无定型硼粉的粒径为0.1~10μm。
6.根据权利要求1所述的高韧性高耐磨性的高熵陶瓷,其特征在于,所述溶剂A为乙醇、丙醇、甲醇或丙酮;所述溶剂B为水、无水乙醇或丙酮。
7.根据权利要求1所述的高韧性高耐磨性的高熵陶瓷,其特征在于,所述保护气氛为N2或Ar。
8.根据权利要求1所述的高韧性高耐磨性的高熵陶瓷,其特征在于,所述升温至800~1200℃和升温至时的速率均为5~20℃/min,所述煅烧的时间为1~3h;升温至1700~1900℃的升温的速率为100~400℃/min,所述烧结的时间为5~20min,所述加压的压力为10~50MPa。
9.根据权利要求1-8任一项所述的高韧性高耐磨性的高熵陶瓷的方法,其特征在于,包括如下具体步骤:
S1.以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物和无定型硼粉为原料,加入溶剂A和球磨介质,在球磨机上混合10~48h,干燥后,获得混合粉体;
S2.将混合粉体模压后的坯体放入石墨坩埚中,以5~20℃/min的速率升温至800~1200℃保温1~3h,经水洗0~4次后,抽滤干燥后,获得高熵硼化物粉体;
S3.将高熵硼化物粉体经溶剂B洗涤,抽滤和干燥后,放入石墨模具中,采用放电等离子烧结以100~400℃/min速率升温至1600~1700℃时充保护气氛,加压10~50MPa,再以100~400℃/min速率升温至1700~1900℃烧结,保温5~20min,制得(Me1aMe2bMe3cMe4dMe5e)B2高熵陶瓷。
10.权利要求1-8任一项所述的高韧性高耐磨性的高熵陶瓷在加工耐磨领域中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910717542.3A CN110511035A (zh) | 2019-08-05 | 2019-08-05 | 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910717542.3A CN110511035A (zh) | 2019-08-05 | 2019-08-05 | 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110511035A true CN110511035A (zh) | 2019-11-29 |
Family
ID=68625076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910717542.3A Pending CN110511035A (zh) | 2019-08-05 | 2019-08-05 | 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110511035A (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111943682A (zh) * | 2020-07-24 | 2020-11-17 | 广东工业大学 | 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用 |
CN112159234A (zh) * | 2020-08-31 | 2021-01-01 | 广东工业大学 | 一种高熵陶瓷粉体及其制备方法和应用 |
CN113651619A (zh) * | 2021-09-14 | 2021-11-16 | 河海大学 | 一种船舶柴油机用高熵陶瓷粉体、应用及应用方法 |
CN113666754A (zh) * | 2021-07-26 | 2021-11-19 | 华南理工大学 | 一种高熵硼化物纳米粉体及其制备方法和应用 |
CN114276147A (zh) * | 2021-11-24 | 2022-04-05 | 东华大学 | 一种弥散强化高熵十二硼化物基复合材料及其制备方法 |
CN114715907A (zh) * | 2022-03-18 | 2022-07-08 | 北京理工大学 | 一种单相高熵金属二硼化物及其制备方法 |
CN115057709A (zh) * | 2022-06-21 | 2022-09-16 | 山东大学 | 一种高熵过渡金属二硼化物及其制备方法 |
CN115159990A (zh) * | 2022-08-23 | 2022-10-11 | 北京理工大学 | 一种高韧性高熵金属二硼化物及其制备方法 |
CN115403379A (zh) * | 2022-08-25 | 2022-11-29 | 昆明理工大学 | 一种细晶高熵稀土钽酸盐陶瓷的制备方法 |
CN115872749A (zh) * | 2022-11-30 | 2023-03-31 | 武汉科技大学 | 一种高熵硼化物增强b4c复合陶瓷及其原位合成方法 |
CN115894042A (zh) * | 2022-11-01 | 2023-04-04 | 桂林理工大学 | 一种超高硬度高熵金属硼化物陶瓷及其低温无压制备方法 |
CN116178027A (zh) * | 2022-11-23 | 2023-05-30 | 广东工业大学 | 一种高硬度、高韧性和强抗氧化性的高熵硼化物基陶瓷及其制备方法和应用 |
CN116375477A (zh) * | 2023-03-22 | 2023-07-04 | 湘潭大学 | 一种高硬度、抗氧化的高熵陶瓷及其制备方法 |
CN117142864A (zh) * | 2023-09-01 | 2023-12-01 | 高安常莹新型材料有限公司 | 一种耐加工陶瓷及其制备方法 |
CN117466649A (zh) * | 2023-11-13 | 2024-01-30 | 中国科学院兰州化学物理研究所 | 一种多功能高熵硼化物的制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101668716A (zh) * | 2007-04-26 | 2010-03-10 | 六号元素(产品)(控股)公司 | 低氧化硼复合材料 |
CN103588216A (zh) * | 2013-10-23 | 2014-02-19 | 航天材料及工艺研究所 | 一种硼/碳热还原法低温制备硼化锆粉体的方法 |
CN103754891A (zh) * | 2014-01-09 | 2014-04-30 | 航天材料及工艺研究所 | 一种硼/碳热还原法低温制备硼化铪粉体的方法 |
CN109516812A (zh) * | 2018-10-15 | 2019-03-26 | 广东工业大学 | 一种超细高熵固熔体粉末及其制备方法和应用 |
CN109516811A (zh) * | 2018-10-15 | 2019-03-26 | 广东工业大学 | 一种具有多元高熵的陶瓷及其制备方法和应用 |
CN109534824A (zh) * | 2018-12-27 | 2019-03-29 | 广东工业大学 | 一种过渡金属硼化物硬质材料及其制备方法 |
CN109678523A (zh) * | 2019-01-16 | 2019-04-26 | 广东工业大学 | 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用 |
CN109851367A (zh) * | 2019-03-11 | 2019-06-07 | 华南理工大学 | 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法 |
CN109867525A (zh) * | 2019-01-28 | 2019-06-11 | 广东工业大学 | 一种高熵合金硼化物陶瓷及其制备方法和应用 |
CN110002879A (zh) * | 2019-03-22 | 2019-07-12 | 广东工业大学 | 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用 |
-
2019
- 2019-08-05 CN CN201910717542.3A patent/CN110511035A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101668716A (zh) * | 2007-04-26 | 2010-03-10 | 六号元素(产品)(控股)公司 | 低氧化硼复合材料 |
CN103588216A (zh) * | 2013-10-23 | 2014-02-19 | 航天材料及工艺研究所 | 一种硼/碳热还原法低温制备硼化锆粉体的方法 |
CN103754891A (zh) * | 2014-01-09 | 2014-04-30 | 航天材料及工艺研究所 | 一种硼/碳热还原法低温制备硼化铪粉体的方法 |
CN109516812A (zh) * | 2018-10-15 | 2019-03-26 | 广东工业大学 | 一种超细高熵固熔体粉末及其制备方法和应用 |
CN109516811A (zh) * | 2018-10-15 | 2019-03-26 | 广东工业大学 | 一种具有多元高熵的陶瓷及其制备方法和应用 |
CN109534824A (zh) * | 2018-12-27 | 2019-03-29 | 广东工业大学 | 一种过渡金属硼化物硬质材料及其制备方法 |
CN109678523A (zh) * | 2019-01-16 | 2019-04-26 | 广东工业大学 | 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用 |
CN109867525A (zh) * | 2019-01-28 | 2019-06-11 | 广东工业大学 | 一种高熵合金硼化物陶瓷及其制备方法和应用 |
CN109851367A (zh) * | 2019-03-11 | 2019-06-07 | 华南理工大学 | 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法 |
CN110002879A (zh) * | 2019-03-22 | 2019-07-12 | 广东工业大学 | 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用 |
Non-Patent Citations (4)
Title |
---|
周张健等: "《无机非金属材料工艺学》", 31 January 2010, 中国轻工业出版社 * |
徐樑华等: "《聚丙烯腈基碳纤维》", 31 August 2018, 国防工业出版社 * |
范瑞明等: "《无机材料科学理论及其性能研究》", 31 July 2019, 中国原子出版社 * |
郭伟明等: "硼热还原法合成MeB2(Me=Zr,Hf,Ti,Ta)粉体研究进展", 《现代技术陶瓷》 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111943682A (zh) * | 2020-07-24 | 2020-11-17 | 广东工业大学 | 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用 |
CN111943682B (zh) * | 2020-07-24 | 2022-07-05 | 广东工业大学 | 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用 |
CN112159234A (zh) * | 2020-08-31 | 2021-01-01 | 广东工业大学 | 一种高熵陶瓷粉体及其制备方法和应用 |
CN113666754A (zh) * | 2021-07-26 | 2021-11-19 | 华南理工大学 | 一种高熵硼化物纳米粉体及其制备方法和应用 |
CN113651619A (zh) * | 2021-09-14 | 2021-11-16 | 河海大学 | 一种船舶柴油机用高熵陶瓷粉体、应用及应用方法 |
CN114276147A (zh) * | 2021-11-24 | 2022-04-05 | 东华大学 | 一种弥散强化高熵十二硼化物基复合材料及其制备方法 |
CN114715907A (zh) * | 2022-03-18 | 2022-07-08 | 北京理工大学 | 一种单相高熵金属二硼化物及其制备方法 |
CN115057709A (zh) * | 2022-06-21 | 2022-09-16 | 山东大学 | 一种高熵过渡金属二硼化物及其制备方法 |
CN115057709B (zh) * | 2022-06-21 | 2023-07-18 | 山东大学 | 一种高熵过渡金属二硼化物及其制备方法 |
CN115159990A (zh) * | 2022-08-23 | 2022-10-11 | 北京理工大学 | 一种高韧性高熵金属二硼化物及其制备方法 |
CN115403379A (zh) * | 2022-08-25 | 2022-11-29 | 昆明理工大学 | 一种细晶高熵稀土钽酸盐陶瓷的制备方法 |
CN115894042B (zh) * | 2022-11-01 | 2024-03-19 | 桂林理工大学 | 一种超高硬度高熵金属硼化物陶瓷及其低温无压制备方法 |
CN115894042A (zh) * | 2022-11-01 | 2023-04-04 | 桂林理工大学 | 一种超高硬度高熵金属硼化物陶瓷及其低温无压制备方法 |
CN116178027A (zh) * | 2022-11-23 | 2023-05-30 | 广东工业大学 | 一种高硬度、高韧性和强抗氧化性的高熵硼化物基陶瓷及其制备方法和应用 |
CN116178027B (zh) * | 2022-11-23 | 2024-04-19 | 广东工业大学 | 一种高硬度、高韧性和强抗氧化性的高熵硼化物基陶瓷及其制备方法和应用 |
CN115872749A (zh) * | 2022-11-30 | 2023-03-31 | 武汉科技大学 | 一种高熵硼化物增强b4c复合陶瓷及其原位合成方法 |
CN115872749B (zh) * | 2022-11-30 | 2023-12-19 | 武汉科技大学 | 一种高熵硼化物增强b4c复合陶瓷及其原位合成方法 |
CN116375477A (zh) * | 2023-03-22 | 2023-07-04 | 湘潭大学 | 一种高硬度、抗氧化的高熵陶瓷及其制备方法 |
CN117142864A (zh) * | 2023-09-01 | 2023-12-01 | 高安常莹新型材料有限公司 | 一种耐加工陶瓷及其制备方法 |
CN117466649A (zh) * | 2023-11-13 | 2024-01-30 | 中国科学院兰州化学物理研究所 | 一种多功能高熵硼化物的制备方法 |
CN117466649B (zh) * | 2023-11-13 | 2024-04-09 | 中国科学院兰州化学物理研究所 | 一种多功能高熵硼化物的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110511035A (zh) | 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用 | |
CN109516811B (zh) | 一种具有多元高熵的陶瓷及其制备方法和应用 | |
CN110002879A (zh) | 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用 | |
JP6637956B2 (ja) | 焼結されたセラミック材料、焼結されたセラミック材料を得るための粉末組成物、その製造方法及びセラミック部品 | |
CN109879669A (zh) | 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用 | |
JP5732037B2 (ja) | 耐摩耗性部材およびその製造方法 | |
CN109987941A (zh) | 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用 | |
JP2008050247A (ja) | 高強度ジルコニア焼結体および製造方法 | |
GB2305430A (en) | Zirconia based ceramic material | |
CN103524142B (zh) | 一种氮化硅-碳化硅-碳化钛微纳米复合材料的制备方法 | |
CN108640672A (zh) | 一种镁铝尖晶石透明陶瓷的制备方法 | |
JP5930317B2 (ja) | 高強度強靱性ZrO2‐Al2O3系固溶体セラミックスの作製法 | |
CN107473237B (zh) | 一种二元钨硼化物超硬材料的制备方法 | |
JPH07232959A (ja) | アルミナ基セラミックス及びその製造方法 | |
Storozhenko et al. | Advances in organoelement chemistry for the development of new materials | |
JP5544567B2 (ja) | 窒化ケイ素系セラミックスの製造方法 | |
WO2015019992A1 (ja) | 炭化ホウ素セラミックス及びその作製法 | |
CN106747339A (zh) | 一种陶瓷加工工艺 | |
CN104261822B (zh) | 一种氧化锆复合陶瓷及其制备方法 | |
Maruoka et al. | Influence of Si-doping of nano-Ni dispersed Al2O3 composites on high-temperature oxidation | |
JP4379189B2 (ja) | ジルコニア−アルミナ系着色複合セラミック材料の製造方法 | |
CN112830792A (zh) | 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用 | |
JP5673946B2 (ja) | 窒化ケイ素系セラミックスの製造方法 | |
JP2000256066A (ja) | 窒化珪素質焼結体とその製造方法およびこれを用いた耐摩耗性部材 | |
CN113582673A (zh) | 一种氧化铝/钛硅碳层状复合材料及其原位制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191129 |
|
RJ01 | Rejection of invention patent application after publication |