CN115403379A - 一种细晶高熵稀土钽酸盐陶瓷的制备方法 - Google Patents

一种细晶高熵稀土钽酸盐陶瓷的制备方法 Download PDF

Info

Publication number
CN115403379A
CN115403379A CN202211027428.6A CN202211027428A CN115403379A CN 115403379 A CN115403379 A CN 115403379A CN 202211027428 A CN202211027428 A CN 202211027428A CN 115403379 A CN115403379 A CN 115403379A
Authority
CN
China
Prior art keywords
rare earth
ceramic
entropy
sintering
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211027428.6A
Other languages
English (en)
Inventor
孟彬
房聪聪
李晨
平鑫宇
林武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202211027428.6A priority Critical patent/CN115403379A/zh
Publication of CN115403379A publication Critical patent/CN115403379A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种细晶高熵稀土钽酸盐陶瓷的制备方法,属于高熵陶瓷材料烧结技术领域。本发明所述高熵陶瓷材料的化学式为(5RE0.2)Ta3O9,其中RE为La、Ce、Nd、Sm、Eu和Gd中的任意5种元素组合;其制备方法为按照化学计量比称量La2O3、CeO2、Nd2O3、Sm2O3、Eu2O3、Gd2O3和Ta2O5;采用湿法球磨混合均匀,经过干燥、研磨、过筛得到混合均匀的粉体;将干燥后的粉体放置于SPS烧结模具中,SPS烧结参数为1400℃保温10min、压力为50MPa。本发明采用SPS烧结可以有效地抑制晶粒的生长,不需要添加任何烧结助剂,该陶瓷的致密度高;该制备方法具有烧结时间短,成本较低等特点。

Description

一种细晶高熵稀土钽酸盐陶瓷的制备方法
技术领域
本发明涉及一种细晶高熵稀土钽酸盐陶瓷的制备方法,属于高熵陶瓷材料技术领域。
背景技术
高熵陶瓷材料通常是指由5种或5种以上元素等比例掺杂并占据陶瓷材料的阴离子或者阳离子位置形成的多主元固溶体陶瓷,其具有四大效应,即热力学高熵效应、晶格畸变效应、迟滞扩散效应和鸡尾酒效应。这四大效应有望使得高熵陶瓷具有较低的热导率等突出优势。
稀土钽酸盐具有高熔点、良好的热稳定性及优异的热物理性能,成为新型热障涂层的候选材料。由于当前服役于热障涂层的陶瓷材料YSZ在1200℃存在相变,故其使用温度不能超过1200 ℃,因此迫切找到一种超过1200 ℃的热障涂层服役材料。通过对稀土钽酸盐进行高熵化设计,可以进一步降低其热导率,因此高熵稀土钽酸盐有望成为下一代热障陶瓷的理想候选材料。现有常规烧结技术烧结温度高、烧结时间长、容易导致晶粒粗大和性能劣化等问题。
发明内容
为了解决现有常规烧结技术烧结温度高、烧结时间长、容易导致晶粒粗大和性能劣化的不足,本发明提出了一种利用SPS烧结制备细晶高熵稀土钽酸盐陶瓷的方法,所述高熵稀土钽酸盐陶瓷化学式为(5RE0.2)Ta3O9,其中RE为La、Ce、Nd、Sm、Eu、Gd六种元素中的任意5种不同元素,各稀土元素之间的摩尔比等于1,具体包括以下步骤:
(1)按化学式(5RE0.2)Ta3O9中规定的化学计量比称量稀土氧化物和五氧化二钽,所述稀土氧化物为:氧化镧(La2O3)、氧化铈(CeO2)、氧化钕(Nd2O3)、氧化钐(Sm2O3)、氧化铕(Eu2O3)、氧化钆(Gd2O3)中的任意5种,各稀土元素的摩尔比相同。
(2)采用湿法球磨原材料,经过干燥、研磨、过筛得到混合均匀的粉体。
(3)将混合均匀的粉体置于SPS烧结模具内,1400℃保温10min。
(4)将SPS烧结后的陶瓷放入马弗炉1100-1200 ℃退火2-5 h用以消除SPS烧结过程中表面产生的碳化层,即可获得高熵稀土钽酸盐陶瓷。
优选的,本发明步骤(1)中5种稀土元素摩尔量之和与钽元素的摩尔比为1:3,各稀土氧化物按等摩尔比称量,本发明中5种稀土元素可以使熵值最大,从而使晶格混乱度增加,使其热导率降低。
优选的,本发明所述稀土氧化物和五氧化二钽的纯度≥99%。
优选的,本发明步骤(2)中球磨的条件为:球磨转速300-400 r/min,球磨时间为12-20 h;球磨介质为乙醇、ZrO2球,球:料:乙醇的质量比为5:1:1,干燥的温度为80-90℃,干燥时间为10~24h。
优选的,本发明步骤(3)采用SPS烧结,其模具直径为15mm,压力为50MPa。
优选的,本发明步骤(3)中,所述烧结过程为以100/min的升温速率将温度从室温升温至1300℃,然后再以20℃/min的升温速率将温度从1300升温至1400℃,保温10 min。
本发明选取的稀土元素以及Ta元素具有较大的相对原子质量,并且由于五种元素的等摩尔比掺杂,晶格的畸变加剧了对声子的散射,有助于降低热导率;采用SPS烧结产生较小的晶粒尺寸,晶界含量提高,产生晶界声子散射,可以使陶瓷的热导率进一步降低。
本发明的有益效果
(1)本发明的制造陶瓷坯体的过程无需造粒、煅烧,直接采用SPS烧结,具有烧结时间短、烧结温度低、能耗低、效率高、制备出的陶瓷晶粒细小等特点。
(2)本发明制备的高熵稀土钽酸盐粉体不需要添加任何粘结剂和烧结助剂。
(3)本发明制备的高熵稀土钽酸盐(5RE0.2)Ta3O9的平均晶粒尺寸在1.55~2.64 μm之间,具有较低的热导率和较好的烧结性能;(Gd0.2Ce0.2Nd0.2Sm0.2Eu0.2)Ta3O9在室温下的热导率为1.74 W·m-1·K-1,是当前热障涂层服役材料YSZ(氧化钇稳定氧化锆)的0.87倍。
附图说明
图1为实施例1的1~6经过SPS烧结制备的(5RE0.2)Ta3O9高熵陶瓷烧结后的XRD图谱。
图2为实施例1的1~6经过SPS烧结制备的(5RE0.2)Ta3O9高熵陶瓷烧结后的SEM图谱。
图3为实施例1的1~6经过SPS烧结制备(5RE0.2)Ta3O9高熵陶瓷烧结后的晶粒分布统计图。
图4为对比实施例2的1~6经过高温箱式电阻炉烧结制备(5RE0.2)Ta3O9高熵陶瓷烧结后的晶粒分布统计图。
图5为实施例1的1~6经过SPS烧结制备(5RE0.2)Ta3O9高熵陶瓷烧结后的热导率图谱。
具体实施方式
下面结合附图和具体实施实例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
一种细晶高熵稀土钽酸盐陶瓷材料的制备方法,具体步骤如下:
(1)将氧化镧(La2O3)、氧化铈(CeO2)、氧化钕(Nd2O3)、氧化钐(Sm2O3)、氧化铕(Eu2O3)、氧化钆(Gd2O3)中的任意5种,按照LaO3/2:CeO2:NdO3/2:SmO3/2:EuO3/2:TaO5/2按照摩尔比为1:1:1:1:1:15进行配料。
(2)把配好料的粉体置于行星式球磨机中球磨,其中采用无水乙醇作为液体介质,ZrO2球为研磨球,球:粉末:乙醇的质量比为5:1:1,球磨机的转速为300 r/min,球磨时间为12 h,正转6h,反转6h,间隔15 min,球磨后的粉体在80℃烘箱中干燥24 h后过300目筛,得到混合均匀的粉体。
(3)将混合均匀的粉体置于SPS模具
Figure 100002_DEST_PATH_IMAGE001
内,采用SPS烧结1400℃保温10min,压力为50 MPa。
(4)将SPS烧结后的陶瓷在空气中1200℃退火2h以消除SPS烧结过程中产生的碳化层,最终得到(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)Ta3O9高熵陶瓷。
表1为本发明实施例1的1~6的具体参数(表格中斜线表示不含有该成分)
Figure 18490DEST_PATH_IMAGE002
对比实施例
料的制备方法,具体步骤如下:
(1)将氧化镧(La2O3)、氧化铈(CeO2)、氧化钕(Nd2O3)、氧化钐(Sm2O3)、氧化铕(Eu2O3)、氧化钆(Gd2O3)中的任意5种,按照LaO3/2:CeO2:NdO3/2:SmO3/2:EuO3/2:TaO5/2按照摩尔比为1:1:1:1:1:15进行配料。
(2)把配好料的粉体置于行星式球磨机中球磨,其中采用无水乙醇作为液体介质,ZrO2球为研磨球,球:粉末:乙醇的质量比为5:1:1,球磨机的转速为300 r/min,球磨时间为12 h,正转6h,反转6h,间隔15 min,球磨后的粉体在80℃烘箱中干燥24 h后过300目筛,得到混合均匀的粉体。
(3)将混合均匀的粉体置于不锈钢模具(ϕ=16mm)内,用液压压制成型(保压压力为117 MPa,保压时间为8 min),得到粉末坯体。
(4)将粉末坯体置于氧化铝坩埚内,再将坩埚置于高温箱式电阻炉中,在空气气氛下以10℃/min升温至1000℃,以5℃/min升温至1400℃,以3℃/min升温至1500℃,保温10h,使其自然冷却,最终得到(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)Ta3O9高熵陶瓷。
表2为本发明对比实施例2的1~6的具体参数(表格中斜线表示不含有该成分)
Figure DEST_PATH_IMAGE003
结果分析
图1是实施例1的1~6制备的(5RE0.2)Ta3O9高熵陶瓷经SPS烧结后的XRD图谱,由图1可以看出,所有实施例制备的高熵陶瓷为单一固溶体。
图2(a~f)为实施例1的1~6制备的(5RE0.2)Ta3O9高熵陶瓷经SPS烧结后的SEM图谱,由图可以看出,晶粒晶界较为明显,存在少量的气孔分布于晶界内。
图3为实施例1的1~6制备的(5RE0.2)Ta3O9高熵陶瓷经SPS烧结后的晶粒分布统计图谱,(5RE0.2)Ta3O9的平均晶粒尺寸在1.55~2.64 μm之间;图4为对比实施例2的1~6制备的(5RE0.2)Ta3O9高熵陶瓷经高温电阻炉烧结后的晶粒分布统计图谱,(5RE0.2)Ta3O9的平均晶粒尺寸在3.77~4.36 μm之间,经过对比可以很明显的看出经过SPS烧结之后,可以得到较小的晶粒尺寸,达到细化晶粒的效果。
图5为实施例1的(5RE0.2)Ta3O9高熵陶瓷经SPS烧结后的热导率图谱,所有高熵稀土钽酸盐(5RE0.2)Ta3O9陶瓷的热导率随着温度的升高而升高,其值在2.31~1.74W·m-1·K-1之间(25~500℃),低于当前服役的热障涂层陶瓷(YSZ)的热导率;这主要是由于高熵陶瓷中掺杂许多稀土元素导致晶格畸变以及多组元之间离子半径差异而增加了声子散射,声子-声子之间的碰撞几率增加,从而降低热导率。

Claims (6)

1.一种细晶高熵稀土钽酸盐陶瓷的制备方法,其特征在于,包括如下步骤:
(1)按化学式(5RE0.2)Ta3O9中规定的化学计量比称量稀土氧化物和五氧化二钽,所述稀土氧化物为La2O3、CeO2、Nd2O3、Sm2O3、Eu2O3、Gd2O3中的任意5种;
(2)采用湿法球磨原材料,经过干燥、研磨、过筛得到混合均匀的粉体;
(3)将混合均匀的粉体置于SPS烧结模具内进行烧结;
(4)将烧结后的陶瓷放入马弗炉1100-1200℃退火2-5 h用以消除SPS烧结过程中表面产生的碳化层,即可获得高熵稀土钽酸盐陶瓷。
2.根据权利要求1所述的细晶高熵稀土钽酸盐陶瓷的制备方法,其特征在于:5种稀土元素摩尔量之和与钽元素的摩尔比为1:3,并且稀土元素按照等摩尔比称量。
3.根据权利要求1所述的细晶高熵稀土钽酸盐陶瓷的制备方法,其特征在于:稀土氧化物和五氧化二钽的纯度≥99%。
4.根据权利要求1所述的细晶高熵稀土钽酸盐陶瓷的制备方法,其特征在于,步骤(2)中球磨的条件为:球磨转速300-400 r/min,球磨时间为12-20h,正转6-10h,反转6-10h,期间间隔15-20min;球磨介质为乙醇、ZrO2球,球:料:乙醇的质量比为5:1:1,干燥的温度为80-90℃,干燥时间为10~24h。
5.根据权利要求1所述的细晶高熵稀土钽酸盐陶瓷的制备方法,其特征在于:步骤(3)中的SPS烧结的模具为
Figure DEST_PATH_IMAGE001
=15mm,保压压力为50 MPa。
6.根据权利要求1所述的细晶高熵稀土钽酸盐陶瓷的制备方法,其特征在于:步骤(3)中,所述烧结过程为:以100℃/min的升温速率将温度从室温升温至1300℃,然后再以20℃/min的升温速率将温度从1300升温至1400℃保温10 min。
CN202211027428.6A 2022-08-25 2022-08-25 一种细晶高熵稀土钽酸盐陶瓷的制备方法 Pending CN115403379A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211027428.6A CN115403379A (zh) 2022-08-25 2022-08-25 一种细晶高熵稀土钽酸盐陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211027428.6A CN115403379A (zh) 2022-08-25 2022-08-25 一种细晶高熵稀土钽酸盐陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN115403379A true CN115403379A (zh) 2022-11-29

Family

ID=84162653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211027428.6A Pending CN115403379A (zh) 2022-08-25 2022-08-25 一种细晶高熵稀土钽酸盐陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN115403379A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239387A (zh) * 2023-02-09 2023-06-09 中国科学院金属研究所 利用中/高熵多元稀土烧结助剂的高强度氮化硅制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107602120A (zh) * 2017-08-01 2018-01-19 昆明理工大学 一种致密稀土钽酸盐高温陶瓷的制备方法
CN110511035A (zh) * 2019-08-05 2019-11-29 广东工业大学 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用
CN112830782A (zh) * 2021-01-25 2021-05-25 山东大学 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法
CN113264769A (zh) * 2021-07-08 2021-08-17 昆明理工大学 一种高熵稳定稀土钽酸盐/铌酸盐陶瓷及其制备方法
CN114230339A (zh) * 2022-01-17 2022-03-25 北京理工大学 一种稀土钽酸盐高熵陶瓷材料及其制备方法和应用
US20220106234A1 (en) * 2019-06-18 2022-04-07 Kunming University Of Science And Technology High-entropy rare earth-toughened tantalate ceramic and preparation method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107602120A (zh) * 2017-08-01 2018-01-19 昆明理工大学 一种致密稀土钽酸盐高温陶瓷的制备方法
US20220106234A1 (en) * 2019-06-18 2022-04-07 Kunming University Of Science And Technology High-entropy rare earth-toughened tantalate ceramic and preparation method therefor
CN110511035A (zh) * 2019-08-05 2019-11-29 广东工业大学 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用
CN112830782A (zh) * 2021-01-25 2021-05-25 山东大学 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法
CN113264769A (zh) * 2021-07-08 2021-08-17 昆明理工大学 一种高熵稳定稀土钽酸盐/铌酸盐陶瓷及其制备方法
CN114230339A (zh) * 2022-01-17 2022-03-25 北京理工大学 一种稀土钽酸盐高熵陶瓷材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄伯云等, 中国铁道出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239387A (zh) * 2023-02-09 2023-06-09 中国科学院金属研究所 利用中/高熵多元稀土烧结助剂的高强度氮化硅制备方法

Similar Documents

Publication Publication Date Title
CN110272278B (zh) 热障涂层用高熵陶瓷粉体及其制备方法
CN112830782B (zh) 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法
CN113264769B (zh) 一种高熵稳定稀土钽酸盐/铌酸盐陶瓷及其制备方法
CN113045312B (zh) 一种具有类玻璃热导率的高熵钇烧绿石陶瓷及其制备方法
CN112960978B (zh) 一种A位高熵钙钛矿氧化物MeTiO3热电陶瓷及其制备方法
JP2022532847A (ja) 低融点酸化物による腐食を防止する希土類タンタル酸塩セラミックス及びその製造方法
CN104529449A (zh) 一种采用两步烧结制备氧化钇基透明陶瓷的方法
CN114230339B (zh) 一种稀土钽酸盐高熵陶瓷材料及其制备方法和应用
US7022262B2 (en) Yttrium aluminum garnet powders and processing
CN110776311A (zh) 一种热压烧结制备钙钛矿型复合氧化物高熵陶瓷的方法
CN113354414A (zh) 一种熵稳定re2o3-ao2-b2o5氧化物陶瓷及其制备方法
CN115403379A (zh) 一种细晶高熵稀土钽酸盐陶瓷的制备方法
US7566408B2 (en) YAG lasing systems and methods
CN114751744A (zh) 铈酸稀土基高熵陶瓷材料及其制备方法
CN114105672B (zh) 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法
CN112062566A (zh) 一种铈酸盐复合材料及其制备方法和应用
CN114956818A (zh) 一种低热导率高熵铈酸盐陶瓷材料及其制备方法
CN106631029B (zh) 一种晶粒定向碳化硅陶瓷材料及其制备方法
CN115010491B (zh) 一种高熵稀土钽酸盐陶瓷材料及其制备方法
CN106830935B (zh) 一种Nd敏化的氧化钇基激光陶瓷及其制备方法
CN113548891A (zh) 一种两相钽酸钴陶瓷块体及其制备方法
CN114804875A (zh) 一种铈锆复合稀土基高熵陶瓷材料及其制备方法
CN116462505B (zh) 一种高熵稀土钽酸盐氧离子绝缘体材料及其制备方法
CN110835264A (zh) 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法
CN114133215B (zh) 一种A位高熵钙钛矿ReMnO3热电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination