CN114804875A - 一种铈锆复合稀土基高熵陶瓷材料及其制备方法 - Google Patents

一种铈锆复合稀土基高熵陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114804875A
CN114804875A CN202110071755.0A CN202110071755A CN114804875A CN 114804875 A CN114804875 A CN 114804875A CN 202110071755 A CN202110071755 A CN 202110071755A CN 114804875 A CN114804875 A CN 114804875A
Authority
CN
China
Prior art keywords
rare earth
cerium
zirconium composite
based high
entropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110071755.0A
Other languages
English (en)
Inventor
张雪松
杨帆
薛丽燕
赵志钢
邵志恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Institute of Rare Earth Materials
Original Assignee
Xiamen Institute of Rare Earth Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Institute of Rare Earth Materials filed Critical Xiamen Institute of Rare Earth Materials
Priority to CN202110071755.0A priority Critical patent/CN114804875A/zh
Publication of CN114804875A publication Critical patent/CN114804875A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开了一种铈锆复合稀土基高熵陶瓷材料及其制备方法,具有以下化学通式:RE2(Zr0.5Ce0.5)2O7,其中,RE选自稀土元素La、Nd、Sm、Eu、Gd、Dy、Ho、Yb、Tm、Lu、Sc和Y中的至少五种,且每种稀土元素的摩尔数相同。本发明将铈酸和锆酸稀土进行高熵化设计,丙采用稀土氧化物RE2O3掺杂,通过将多种稀土离子结合得到铈锆复合稀土基高熵陶瓷,由于参与结构的金属离子均为具有独特的电子层的稀土离子,因而在多领域下均表现出良好的化学性质,进一步降低了其热导率,提高了耐热性能,常温热导率最低降至0.8W/(m.K),且热膨胀系数相对较大,非常适于作为热障涂层材料。

Description

一种铈锆复合稀土基高熵陶瓷材料及其制备方法
技术领域
本发明属于高熵合金技术领域,具体而言,涉及一种铈锆复合稀土高熵、高熵多孔陶瓷材料及其制备方法。
背景技术
近年来,高熵陶瓷(High-entropy ceramics,HECs)作为一种含有三种或三种以上主成分的等摩尔比或接近等摩尔比的单组分化合物的固溶体,因其导热系数低、硬度高、耐环境性强等特性越来越受到人们的关注。高熵陶瓷通常指由五种或五种以上陶瓷组元形成的固溶体,因其独特的“高熵效应”及优越的性能,近年来已成为陶瓷领域的热点。熵是热力学中表征物质混乱程度的参量,其概念由克劳修斯(T.Clausius)于1854年提出。熵越低,系统越稳定有序;熵越高,系统越混乱。高熵陶瓷的研究最早可追溯到2015年,随后越来越多的高熵陶瓷,包括萤石结构、钙钛矿结构、尖晶石结构的高熵氧化物陶瓷以及硼化物、碳化物、氮化物、硅化物等非氧化物高熵陶瓷如雨后春笋般涌现出来,逐渐成为研究热点。
高熵陶瓷的特点可以概括为四点:(1)热力学的高熵效应;(2)结构的晶格畸变效应;(3)动力学的迟滞扩散效应;(4)性能上的“鸡尾酒”效应。高熵材料的核心效应之一是缓慢扩散,其中由于固溶体引起的晶格畸变和多元素的协同扩散,阻碍了原子的运动和原子的有效扩散,因此,当高温下使用高熵材料时,可以保持细小的晶粒,并期望晶粒生长速度缓慢,这种慢扩散效应为TBC材料即晶粒细小、生长速度慢的高熵固溶体的设计开辟了一个新的窗口。
鉴于高熵陶瓷具有此优异的性能,因此,围绕高熵陶瓷的掺杂等研究成为目前研究的热点。
发明内容
本发明旨在提供一种铈锆复合稀土基高熵陶瓷及其制备方法,该方法可通过材料的高熵作用获得具有良好红外吸收性能的低导热系数材料。
为了实现上述目的,根据本发明的一个方面,提供了一种铈锆复合稀土基高熵陶瓷材料,具有以下化学通式:RE2(Zr0.5Ce0.5)2O7,其中,RE选自镧(La)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、镝(Dy)、钬(Ho)、镱(Yb)、铥(Tm)、镥(Lu)钪(Sc)和钇(Y)中的至少五种,且每种稀土元素的摩尔数相同。
根据本发明,所述铈锆复合稀土基高熵陶瓷材料的结构式为(La0.4Gd0.4Er0.4Tm0.4Yb0.4)(Zr0.5Ce0.5)2O7、(La0.4Nd0.4Sm0.4Eu0.4Dy0.4)(Zr0.5Ce0.5)2O7或(La0.4Gd0.4Ho0.4Lu0.4Y0.4)(Zr0.5Ce0.5)2O7
根据本发明,所述铈锆复合稀土基高熵陶瓷材料为致密陶瓷材料或者多孔陶瓷材料,所述通孔的孔径为5nm~50μm,优选为0.2~10μm。
根据本发明,所述铈锆复合稀土基高熵陶瓷材料的热导率为0.6W/mK~0.9W/mK。
根据本发明的另一方面,还提供了一种铈锆复合稀土基高熵陶瓷材料的制备方法,包括以下步骤:S1、将氧化锆、氧化铈和至少五种稀土氧化物RE2O3混合,加入无水乙醇和粘结剂,进行高能球磨;其中,所述稀土氧化物RE2O3中的稀土元素选自La、Nd、Sm、Eu、Gd、Dy、Ho、Yb、Tm、Lu、Sc和Y中的至少五种;S2、将步骤S1得到的混合物干燥、过筛、压片,得到致密坯体A;S3、将致密坯体A进行预烧结、保温,再破碎处理,得到铈锆复合稀土基高熵陶瓷粉体;S4、将步骤S3中得到的铈锆复合稀土基高熵陶瓷粉体与无水乙醇、粘结剂进行高能球磨;或者将铈锆复合稀土基高熵陶瓷粉体与成孔剂、无水乙醇、粘结剂混合后进行高能球磨,得到混合物;S5、将步骤S4中得到的混合物干燥、过筛、压块,得到致密坯体B,将坯体B经过烧结、保温,即可得到铈锆复合稀土基高熵致密或多孔陶瓷。
根据本发明,步骤S1中所述氧化锆、氧化铈中金属离子(Zr4++Ce4+)与稀土氧化物总的RE3+满足摩尔比为1:1。优选地,当稀土氧化物为五种时,五种稀土氧化物中稀土元素的摩尔比为1:1:1:1:1。
根据本发明,所述粘结剂为PVP、PVB或聚乙二醇。
优选地,所述粘接剂与混合物粉体/铈锆复合稀土基高熵陶瓷粉体的质量比为(0.03-0.08):1,所述乙醇和混合物粉体/铈锆复合稀土基高熵陶瓷粉体的体积质量比(mL/g)为(1-10):3。
根据本发明,所述步骤S1中高能球磨的转速为800~1100rpm,时间为2~6小时;所述高能球磨的模式为每工作4分钟间歇1分钟,正转反转依次轮换。
优选地,步骤S1中高能球磨时的磨球为氧化锆球,所述氧化锆球与粉体原料的质量比为(2-10):1;所述氧化锆球的直径为3mm。
根据本发明,所述步骤S2和步骤S5中的干燥温度为60~90℃,干燥时间为12~24小时。优选地,所述过筛的筛网孔径为50~200目。优选地,所述压片时压块的压力为5~15MPa,压块的压制时间为10~20s。优选地,在步骤S3中预烧结的温度为1000~1200℃,升温速率为2℃/min,保温时间为6~24小时,优选保温8~12小时。
根据本发明,所述步骤S3中采用高能球磨机破碎处理,转速为800~1100rpm,时间为10分钟。优选地,所述步骤S4中高能球磨采用氧化锆球,所述氧化锆球与铈锆复合稀土基高熵陶瓷粉体的质量比为(2-10):1,所述氧化锆球的直径约为1cm。优选地,所述步骤S4中成孔剂为纤维素纳米纤维、纤维素纳米晶和纤维素粉中的一种或多种。优选地,所述纤维素纳米纤维的直径为4~10nm,长为1~3μm;优选直径为4~8nm,长为1.5~2μm。优选地,所述纤维素纳米晶的直径为5~20nm,长为50~200nm。优选地,所述纤维素粉的粒径≤25μm。优选地,所述铈锆复合稀土基高熵陶瓷粉体与成孔剂的质量比为1:(0-0.5)。
优选地,所述步骤S5中的烧结温度为1000~1900℃,优选为1400℃~1600℃升温速率为2℃/min,保温时间为6~24小时。
本发明的有益效果:
1)本发明将铈酸稀土和锆酸稀土结合并进行高熵化设计,降低了热导率,提高了耐热性能,同时采用稀土氧化物RE2O3掺杂,通过将多种稀土离子结合得到铈锆复合稀土基高熵陶瓷,由于参与结构的金属离子均为具有独特的电子层的稀土离子,因而在多领域下均表现出良好的化学性质,进一步降低了热导率,铈锆复合稀土基高熵陶瓷材料的热导率为0.6W/mK~0.9W/(mK),且热膨胀系数相对较大,非常适用于作为热障涂层材料使用。相对于现有的热障涂层,本发明设计的铈锆复合稀土基高熵陶瓷的热导率随温度升高而降低,且在特定配比下温度升高不会发生晶型变化,因此在高温使用过程中不会碎裂。
2)本发明的铈锆稀土基高熵陶瓷本身的导热系数已明显降低,在此基础上利用纤维素造孔形成多孔陶瓷,以纤维素作为成孔剂容易形成通孔,通孔的形成进一步降低了材料的导热系数,此外纤维素的碳含量少,还能有效防止陶瓷材料的碳化。
附图说明
图1为本发明采用高温固相法制备铈锆复合稀土基高熵陶瓷、高熵多孔陶瓷的工艺流程图。
图2为本发明实施例1中合成的(La0.4Gd0.4Er0.4Tm0.4Yb0.4)Ce2O7高熵陶瓷粉体的XRD图。
图3为本发明实施例1中合成的(La0.4Gd0.4Er0.4Tm0.4Yb0.4)Ce2O7高熵陶瓷的EDS元素分布图。
图4为本发明实施例2中合成的(La0.4Nd0.4Sm0.4Eu0.4Gd0.4)Ce2O7高熵陶瓷的EDS元素分布图。
图5为本发明实施例3中合成的(La0.4Dy0.4Ho0.4Lu0.4Y0.4)Ce2O7高熵陶瓷的EDS元素分布图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合本附图及实施例,对本发明做进一步的详细说明。需要强调,此处描述的具体实施例仅用于更好的阐述本发明,为本发明部分实施例,而非全部实施例,所以并不用作限定本发明。此外,下面描述的本发明实施例中涉及的技术特征,只要彼此间未构成冲突,即可以相互组合。
本发明提供了一种铈锆复合稀土基高熵陶瓷材料,具有以下化学通式:具有以下化学通式:RE2(Zr0.5Ce0.5)2O7,其中,RE选自镧(La)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、镝(Dy)、钬(Ho)、镱(Yb)、铥(Tm)、镥(Lu)钪(Sc)和钇(Y)中的至少五种,且每种稀土元素的摩尔数相同。
本发明将铈酸稀土和锆酸稀土结合并进行高熵化设计,降低了热导率,提高了耐热性能,同时采用稀土氧化物RE2O3掺杂,通过将多种稀土离子结合得到铈锆复合稀土基高熵陶瓷,由于参与结构的金属离子均为具有独特的电子层的稀土离子,因而在多领域下均表现出良好的化学性质,进一步降低了热导率,常温热导率最低降至0.8W/(m.K),且热膨胀系数相对较大,非常适用于作为热障涂层材料使用。相对于现有的热障涂层,本发明设计的铈锆复合稀土基高熵陶瓷的热导率随温度升高而降低,且在特定配比下温度升高不会发生晶型变化,因此在高温使用过程中不会碎裂。
具体地,所述铈锆复合稀土基高熵陶瓷材料的结构式可以为的结构式为(La0.4Gd0.4Er0.4Tm0.4Yb0.4)(Zr0.5Ce0.5)2O7、(La0.4Nd0.4Sm0.4Eu0.4Dy0.4)(Zr0.5Ce0.5)2O7或(La0.4Gd0.4Ho0.4Lu0.4Y0.4)(Zr0.5Ce0.5)2O7
本发明的铈锆复合稀土基高熵陶瓷材料可以为无孔致密陶瓷材料或者多孔陶瓷材料。当铈锆复合稀土基高熵陶瓷材料为多孔陶瓷材料时,其孔为通孔,所述通孔的孔径为5nm~50μm,优选为0.2~10μm。优选地,所述铈锆复合稀土基高熵陶瓷材料的热导率为0.6W/mK~0.9W/mK。
根据本发明另一方面,还提供了一种铈锆复合稀土基高熵陶瓷材料的制备方法,包括以下步骤:
S1、将氧化锆(ZrO2)氧化铈(CeO2)和至少五种稀土氧化物(RE2O3)混合,得到混合物粉体,向所述混合物粉体中加入无水乙醇和粘结剂,进行高能球磨。
S2、将步骤S1得到的混合物经过干燥、过筛、压片,得到致密坯体A。
S3、将所述致密坯体A进行预烧结、保温,再破碎处理,得到铈锆复合稀土基高熵陶瓷粉体。
S4、将步骤S3中得到的所述铈锆复合稀土基高熵陶瓷粉体与无水乙醇、粘结剂进行高能球磨;或者将铈锆复合稀土基高熵陶瓷粉体与成孔剂、无水乙醇、粘结剂混合后进行高能球磨,得到混合物;
S5、将步骤S4中得到的混合物干燥、过筛、压块,得到致密坯体B,将所述致密坯体B经过烧结、保温,即可得到铈锆复合稀土基高熵致密或多孔陶瓷。。
所述稀土氧化物RE2O3中的稀土元素选自镧(La)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、镝(Dy)、钬(Ho)、镱(Yb)、铥(Tm)、镥(Lu)钪(Sc)和钇(Y)中的至少五种,且每种稀土元素的摩尔数相同,以RE表示,本文中提及的RE均不含Ce。
根据本发明,步骤S1中所述氧化锆、氧化铈与五种稀土氧化物中金属离子满足:(Zr4++Ce4+)与RE3+总的摩尔比为1:1。优选地,Zr4+与Ce4+的摩尔比为1:1。优选地,当稀土氧化物具有五种时,五种稀土氧化物中稀土元素的摩尔比为1:1:1:1:1。
根据本发明,步骤S1、S4中还包括添加粘结剂混合进行高能球磨的过程,所述粘结剂为PVP、PVB或聚乙二醇。
优选地,在所述步骤S1中,所述粘接剂与所述混合物粉体的质量比为(0.03-0.08):1。所述乙醇与所述混合物粉体的体积质量比(mL/g)为(1-10):3。
优选地,在所述步骤S4中,所述粘接剂与所述铈锆复合稀土基高熵陶瓷粉体的质量比为(0.03-0.08):1。所述乙醇与铈锆复合稀土基高熵陶瓷粉体的体积质量比(mL/g)为(1-10):3。
根据本发明,所述高能球磨的转速为800~1100rpm,时间为2~6小时;所述高能球磨的模式为每工作4分钟间歇1分钟,正转反转依次轮换。优选地,球磨所用的磨球为氧化锆球,氧化锆球与粉体原料的质量比为(2-10):1,其直径约为3mm。
根据本发明,所述步骤S2、S5中的干燥温度为60~90℃,干燥时间为12~24小时。优选地,所述过筛的筛网孔径为50~200目;压片时压块的压力为5~15MPa,压块的压制时间为10~20s。
优选地,在步骤S3中预烧结的温度为1000~1200℃,升温速率为2℃/min,保温时间为6~24小时,优选保温8~12小时。
根据本发明,步骤S3中破碎采用高能球磨机进行,其转速为800~1100rpm,时间为10分钟。优选地,球磨所用的磨球为氧化锆球,所述氧化锆球与铈锆复合稀土基高熵陶瓷粉体的质量比为(2-10):1,所述氧化锆球的直径约为1cm。
优选地,步骤S4中的成孔剂为纤维素纳米纤维、纤维素纳米晶和纤维素粉中的一种或多种。
优选地,所述纤维素纳米纤维的直径为4~10nm,长为1~3μm;优选直径为4~8nm,长为1.5~2μm。
优选地,所述纤维素纳米晶的直径为5~20nm,长为50~200nm。
优选地,所述纤维素粉的粒径≤25μm。
优选地,铈锆复合稀土基高熵陶瓷粉体成孔剂的质量比为1:(0-0.5)。
根据本发明的实施方案,所述步骤S5中的烧结温度为1000~1900℃,优选为1400℃~1600℃升温速率为2℃/min,保温时间为6~24小时。
下面结合具体实施例进一步说明本发明的技术方案。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
实施例1
制备铈锆复合稀土基高熵陶瓷(La0.4Gd0.4Er0.4Tm0.4Yb0.4)(Zr0.5Ce0.5)2O7,步骤流程如图1所示:1)分别称取0.02mol的La2O3、Gd2O3、Er2O3、Tm2O3、Yb2O3粉以及0.05mol的ZrO2、CeO2粉置于500ml氧化锆球磨罐中,加入50ml乙醇,1.9g PVP以及120g氧化锆(直径3mm)球进行高能球磨,控制球磨机转速800rpm,球磨6h,其中每工作4分钟后间歇1分钟,正转反转依次轮换。2)将球磨后的混合物置于80℃条件下干燥12h,完成后过200目标准筛进行筛分,而后将粉末进行压块,设置压块机压力为10MPa,压制10s,得到坯体A,然后将坯体A放入马弗炉中进行预烧结,控制预烧结温度1200℃,升温速度2℃/min,保温时间12h,得到(La0.4Gd0.4Er0.4Tm0.4Yb0.4)(Zr0.5Ce0.5)2O7高熵陶瓷。3)将上述得到的高熵陶瓷置于氧化锆球磨罐中,加入120g氧化锆球(直径1cm),控制球磨机转速800rpm,球磨10min(无间歇),将得到的铈锆复合稀土基高熵陶瓷进行破碎;之后将氧化锆球(直径1cm)取出,加入50ml乙醇,1.9g PVP以及240g氧化锆(直径3mm)球进行高能球磨,控制球磨机转速900rpm,球磨6h(工作4分钟后间歇1分钟)。4)完成后将混合物置于80℃条件下干燥12h,完成后过200目标准筛进行筛分,而后将粉末进行压块,设置压块机压力为10MPa,压制10s,得到坯体B,而后将坯体B放入马弗炉中进行烧结,控制烧结温度1700℃,升温速度2℃/min,保温时间12h,即可得到(La0.4Gd0.4Er0.4Tm0.4Yb0.4)(Zr0.5Ce0.5)2O7高熵陶瓷。图2为铈锆复合稀土基高熵陶瓷(La0.4Gd0.4Er0.4Tm0.4Yb0.4)(Zr0.5Ce0.5)2O7的XRD图,可以看出得到的铈锆复合稀土基高熵陶瓷为典型的萤石结构材料,同时其特征峰无杂峰也无毛刺,说明得到的产物晶型完整。
图3为其DES元素分布图,六种稀土离子均匀分布在陶瓷体上,实现了稀土金属的均匀掺杂。采用热常数分析仪(hot disk)方法测试其热导率,其热导率数值为0.8581W/mK。
实施例2
制备铈锆复合稀土基高熵陶瓷(La0.4Nd0.4Sm0.4Eu0.4Dy0.4)(Zr0.5Ce0.5)2O7,制备流程步骤如下:
1)分别称取0.02mol的La2O3、Nd2O3、Sm2O3、Eu2O3、Dy2O3粉以及0.05mol的ZrO2、CeO2粉置于500ml氧化锆球磨罐中,加入80ml乙醇,2.56g PVB以及240g氧化锆(直径3mm)球进行高能球磨,控制球磨机转速1000rpm,球磨4h(工作4分钟后间歇1分钟);
2)将球磨后的混合物置于90℃条件下干燥12h,完成后过100目标准筛进行筛分,而后将粉末进行压块,设置压块机压力为10MPa,压制20s,得到坯体A,然后将坯体A放入马弗炉中进行预烧结,控制预烧结温度1000℃,升温速度2℃/min,保温时间8h,得到(La0.4Nd0.4Sm0.4Eu0.4Dy0.4)(Zr0.5Ce0.5)2O7高熵陶瓷。
3)将上述得到的高熵陶瓷置于氧化锆球磨罐中,加入240g氧化锆球(直径1cm),控制球磨机转速1000rpm,球磨10min(无间歇),将得到的铈锆复合稀土基高熵陶瓷进行破碎;之后将氧化锆球(直径1cm)取出,加入80ml乙醇,6.4g纤维素纳米晶(直径为5-20nm,长为50-200nm),2.56g PVB以及240g氧化锆(直径3mm)球进行高能球磨,控制球磨机转速1000rpm,球磨4h(工作4分钟后间歇1分钟)。
4)完成后将混合物置于90℃条件下干燥12h,完成后过100目标准筛进行筛分,而后将粉末进行压块,设置压块机压力为10MPa,压制20s,得到坯体B,而后将坯体B放入马弗炉中进行烧结,控制烧结温度1500℃,升温速度2℃/min,保温时间8h,即可得到(La0.4Nd0.4Sm0.4Eu0.4Dy0.4)(Zr0.5Ce0.5)2O7高熵陶瓷。
图4为制备的铈锆复合稀土基高熵陶瓷(La0.4Nd0.4Sm0.4Eu0.4Dy0.4)(Zr0.5Ce0.5)2O7的DES元素分布图,可以看出六种稀土离子均匀分布在陶瓷体上,实现了稀土金属的均匀掺杂。
采用热常数分析仪(hot disk)方法测试其热导率,其热导率数值为0.6934W/mK。
实施例3
铈锆复合稀土基高熵陶瓷材料(La0.4Gd0.4Ho0.4Lu0.4Y0.4)(Zr0.5Ce0.5)2O7的制备,步骤如下:
1)分别称取0.02mol的La2O3、Gd2O3、Ho2O3、Lu2O3、Y2O3粉以及0.05mol的ZrO2、CeO2粉置于500ml氧化锆球磨罐中,加入50ml乙醇,3.2g聚乙二醇以及300g氧化锆(直径3mm)球进行高能球磨,控制球磨机转速1100rpm,球磨2h,其中每工作4分钟后间歇1分钟,正转反转依次轮换。
2)将球磨后的混合物置于60℃条件下干燥24h,完成后过50目标准筛进行筛分,而后将粉末进行压块,设置压块机压力为10MPa,压制10s,得到坯体A,然后将坯体A放入马弗炉中进行预烧结,控制预烧结温度1100℃,升温速度2℃/min,保温时间20h,得到(La0.4Gd0.4Ho0.4Lu0.4Y0.4)(Zr0.5Ce0.5)2O7高熵陶瓷。
3)将上述得到的高熵陶瓷置于氧化锆球磨罐中,加入300g氧化锆球(直径1cm),控制球磨机转速1100rpm,球磨10min(无间歇),将得到的铈锆复合稀土基高熵陶瓷进行破碎;之后将氧化锆球(直径1cm)取出,加入50ml乙醇,18g纤维素纳米纤维,2g聚乙二醇以及300g氧化锆(直径3mm)球进行高能球磨,控制球磨机转速1100rpm,球磨2h(工作4分钟后间歇1分钟)。
4)完成后将混合物置于60℃条件下干燥24h,完成后过200目标准筛进行筛分,而后将粉末进行压块,设置压块机压力为10MPa,压制10s,得到坯体B,而后将坯体B放入马弗炉中进行烧结,控制烧结温度1600℃,升温速度2℃/min,保温时间24h,即可得到(La0.4Gd0.4Ho0.4Lu0.4Y0.4)(Zr0.5Ce0.5)2O7高熵陶瓷。
图5为上述制备的铈锆复合稀土基高熵陶瓷(La0.4Gd0.4Ho0.4Lu0.4Y0.4)(Zr0.5Ce0.5)2O7的DES元素分布图,其中六种稀土离子均匀分布在陶瓷体上,实现了稀土金属的均匀掺杂。
采用热常数分析仪(hot disk)方法测试其热导率,其热导率数值为0.7561W/mK。
以上所述仅是本发明的优选应用实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种铈锆复合稀土基高熵陶瓷材料,其特征在于,具有以下化学通式:RE2(Zr0.5Ce0.5)2O7,其中,RE选自稀土元素La、Nd、Sm、Eu、Gd、Dy、Ho、Yb、Tm、Lu、Sc和Y中的至少五种,且每种稀土元素的摩尔数相同。
2.根据权利要求1所述的铈锆复合稀土基高熵陶瓷材料,其特征在于,所述铈锆复合稀土基高熵陶瓷材料的结构式为(La0.4Gd0.4Er0.4Tm0.4Yb0.4)(Zr0.5Ce0.5)2O7、(La0.4Nd0.4Sm0.4Eu0.4Dy0.4)(Zr0.5Ce0.5)2O7或(La0.4Gd0.4Ho0.4Lu0.4Y0.4)(Zr0.5Ce0.5)2O7
3.根据权利要求1所述的铈锆复合稀土基高熵陶瓷材料,其特征在于,所述铈锆复合稀土基高熵陶瓷材料为致密陶瓷材料或者多孔陶瓷材料,其中,所述通孔的孔径为5nm~50μm,优选为0.2~10μm。
4.根据权利要求1所述的铈锆复合稀土基高熵陶瓷材料,其特征在于,所述铈锆复合稀土基高熵陶瓷材料的热导率为0.6W/mK~0.9W/mK。
5.一种铈锆复合稀土基高熵陶瓷材料的制备方法,其特征在于,包括以下步骤:
S1、将氧化锆、氧化铈和至少五种稀土氧化物RE2O3混合,得到混合物粉体,向所述混合物粉体中加入无水乙醇和粘结剂,进行高能球磨;其中,所述稀土氧化物RE2O3中的稀土元素选自La、Nd、Sm、Eu、Gd、Dy、Ho、Yb、Tm、Lu、Sc和Y中的至少五种;
S2、将所述步骤S1得到的混合物干燥、过筛、压片,得到致密坯体A;
S3、将所述致密坯体A进行预烧结、保温,再破碎处理,得到铈锆复合稀土基高熵陶瓷粉体;
S4、将步骤S3中得到的所述铈锆复合稀土基高熵陶瓷粉体与无水乙醇、粘结剂进行高能球磨;或者将铈锆复合稀土基高熵陶瓷粉体与成孔剂、无水乙醇、粘结剂混合后进行高能球磨,得到混合物;
S5、将步骤S4中得到的混合物干燥、过筛、压块,得到致密坯体B,将所述致密坯体B经过烧结、保温,即可得到铈锆复合稀土基高熵致密或多孔陶瓷。
6.根据权利要求5所述的制备方法,其特征在于,步骤S1中所述氧化锆、氧化铈中(Zr4++Ce4+)与稀土氧化物中金属离子总的RE3+满足摩尔比为1:1。
优选地,当稀土氧化物具有五种时,五种稀土氧化物中稀土元素的摩尔比为1:1:1:1:1。
7.根据权利要求5所述的制备方法,其特征在于,所述粘结剂为PVP、PVB或聚乙二醇。
优选地,所述粘接剂与混合物粉体/铈锆复合稀土基高熵陶瓷粉体的质量比为(0.03-0.08):1,所述乙醇和混合物粉体/铈锆复合稀土基高熵陶瓷粉体的体积质量比(mL/g)为(1-10):3。
8.根据权利要求5所述的制备方法,其特征在于,所述步骤S1中高能球磨的转速为800~1100rpm,时间为2~6小时;所述高能球磨的模式为每工作4分钟间歇1分钟,正转反转依次轮换。
优选地,所述步骤S1中高能球磨时的磨球为氧化锆球,所述氧化锆球与粉体原料的质量比为(2-10):1;所述氧化锆球的直径为3mm。
9.根据权利要求5所述的制备方法,其特征在于,所述步骤S2和步骤S5中的干燥温度为60~90℃,干燥时间为12~24小时;
优选地,所述过筛的筛网孔径为50~200目。
优选地,所述压片时压块的压力为5~15MPa,压块的压制时间为10~20s。
优选地,在步骤S3中预烧结的温度为1000~1200℃,升温速率为2℃/min,保温时间为6~24小时,优选保温8~12小时。
10.根据权利要求5所述的制备方法,其特征在于,所述步骤S3中采用高能球磨机破碎处理,转速为800~1100rpm,时间为10分钟。
优选地,所述步骤S4中高能球磨采用氧化锆球,所述氧化锆球与铈锆复合稀土基高熵陶瓷粉体的质量比为(2-10):1,所述氧化锆球的直径约为1cm。
优选地,所述步骤S4中成孔剂为纤维素纳米纤维、纤维素纳米晶和纤维素粉中的一种或多种。
优选地,所述纤维素纳米纤维的直径为4~10nm,长为1~3μm;优选直径为4~8nm,长为1.5~2μm。
优选地,所述纤维素纳米晶的直径为5~20nm,长为50~200nm。
优选地,所述纤维素粉的粒径≤25μm。
优选地,所述铈锆复合稀土基高熵陶瓷粉体与成孔剂的质量比为1:(0-0.5)。
优选地,所述步骤S5中的烧结温度为1000~1900℃,优选为1400℃~1600℃升温速率为2℃/min,保温时间为6~24小时。
CN202110071755.0A 2021-01-19 2021-01-19 一种铈锆复合稀土基高熵陶瓷材料及其制备方法 Pending CN114804875A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110071755.0A CN114804875A (zh) 2021-01-19 2021-01-19 一种铈锆复合稀土基高熵陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110071755.0A CN114804875A (zh) 2021-01-19 2021-01-19 一种铈锆复合稀土基高熵陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114804875A true CN114804875A (zh) 2022-07-29

Family

ID=82524908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110071755.0A Pending CN114804875A (zh) 2021-01-19 2021-01-19 一种铈锆复合稀土基高熵陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114804875A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925419A (zh) * 2022-12-16 2023-04-07 辽宁省轻工科学研究院有限公司 一种纳米结构稀土掺杂锆酸镧热障涂层材料及制备方法
CN117049876A (zh) * 2023-09-04 2023-11-14 桂林理工大学 一类稀土氧化物基高熵氧离子导体材料及其制备方法
CN117049876B (zh) * 2023-09-04 2024-05-17 桂林理工大学 一类稀土氧化物基高熵氧离子导体材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050119117A1 (en) * 2002-05-15 2005-06-02 Toyota Jidosha Kabushiki Kaisha Particulate matter-oxidizing material and oxidizing catalyst
CN102070335A (zh) * 2009-11-25 2011-05-25 中国科学院上海硅酸盐研究所 一种烧绿石结构稀土锆酸盐材料及其制备方法与应用
CN102659403A (zh) * 2012-05-31 2012-09-12 北京科技大学 一种耐高温热障涂层陶瓷材料及其制备方法
US20130029840A1 (en) * 2010-04-13 2013-01-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Ceria-zirconia base composite oxide, method for producing the same, and catalyst for purification of exhaust gas using the ceria-zirconia base composite oxide
CN106518062A (zh) * 2016-11-14 2017-03-22 西南科技大学 一种超低热导高温相稳定的钕铈复合锆酸盐热障涂层材料及其制备方法
CN107176835A (zh) * 2017-05-10 2017-09-19 中国地质大学(武汉) 一种铈双掺锆酸镧纳米陶瓷粉体及其制备方法
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
CN110606740A (zh) * 2019-09-11 2019-12-24 中国科学院金属研究所 高熵稀土铪酸盐陶瓷材料及其制备方法
CN111533557A (zh) * 2020-03-27 2020-08-14 东华大学 一种焦绿石型高熵氧化物固化体及其制备方法
CN111763087A (zh) * 2020-06-29 2020-10-13 西安交通大学 一系列立方萤石型高熵铈氧化物纳米粉体及其制备方法
CN111978087A (zh) * 2019-05-22 2020-11-24 北京理工大学 一种复合材料及其制备方法和应用
CN112062566A (zh) * 2019-05-22 2020-12-11 北京理工大学 一种铈酸盐复合材料及其制备方法和应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050119117A1 (en) * 2002-05-15 2005-06-02 Toyota Jidosha Kabushiki Kaisha Particulate matter-oxidizing material and oxidizing catalyst
CN102070335A (zh) * 2009-11-25 2011-05-25 中国科学院上海硅酸盐研究所 一种烧绿石结构稀土锆酸盐材料及其制备方法与应用
US20130029840A1 (en) * 2010-04-13 2013-01-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Ceria-zirconia base composite oxide, method for producing the same, and catalyst for purification of exhaust gas using the ceria-zirconia base composite oxide
CN102659403A (zh) * 2012-05-31 2012-09-12 北京科技大学 一种耐高温热障涂层陶瓷材料及其制备方法
CN106518062A (zh) * 2016-11-14 2017-03-22 西南科技大学 一种超低热导高温相稳定的钕铈复合锆酸盐热障涂层材料及其制备方法
CN107176835A (zh) * 2017-05-10 2017-09-19 中国地质大学(武汉) 一种铈双掺锆酸镧纳米陶瓷粉体及其制备方法
CN110272278A (zh) * 2019-05-17 2019-09-24 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
CN111978087A (zh) * 2019-05-22 2020-11-24 北京理工大学 一种复合材料及其制备方法和应用
CN112062566A (zh) * 2019-05-22 2020-12-11 北京理工大学 一种铈酸盐复合材料及其制备方法和应用
CN110606740A (zh) * 2019-09-11 2019-12-24 中国科学院金属研究所 高熵稀土铪酸盐陶瓷材料及其制备方法
CN111533557A (zh) * 2020-03-27 2020-08-14 东华大学 一种焦绿石型高熵氧化物固化体及其制备方法
CN111763087A (zh) * 2020-06-29 2020-10-13 西安交通大学 一系列立方萤石型高熵铈氧化物纳米粉体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN ZHOU ET AL: "High-entropy thermal barrier coating of rare-earth zirconate:A case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY *
何波等: "稀土元素对热障涂层热震性能的影响", 《沈阳农业大学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925419A (zh) * 2022-12-16 2023-04-07 辽宁省轻工科学研究院有限公司 一种纳米结构稀土掺杂锆酸镧热障涂层材料及制备方法
CN115925419B (zh) * 2022-12-16 2024-04-12 辽宁省轻工科学研究院有限公司 一种纳米结构稀土掺杂锆酸镧热障涂层材料及制备方法
CN117049876A (zh) * 2023-09-04 2023-11-14 桂林理工大学 一类稀土氧化物基高熵氧离子导体材料及其制备方法
CN117049876B (zh) * 2023-09-04 2024-05-17 桂林理工大学 一类稀土氧化物基高熵氧离子导体材料及其制备方法

Similar Documents

Publication Publication Date Title
CN114751744A (zh) 铈酸稀土基高熵陶瓷材料及其制备方法
CA1048065A (en) Silicon nitride-based sintered material
CN103626487A (zh) 复合结构钇铝石榴石透明陶瓷的制备方法
CN114105672B (zh) 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法
CN113045312B (zh) 一种具有类玻璃热导率的高熵钇烧绿石陶瓷及其制备方法
CN114573346B (zh) 一种热光伏用稀土高熵铝酸盐陶瓷选择性发射体及其制备方法及应用
US5384293A (en) Rare earth oxide-alumina-silica sintered body and method of producing the same
US7022262B2 (en) Yttrium aluminum garnet powders and processing
CN102815941B (zh) 稀土离子掺杂锆酸镧钆透明陶瓷材料及其制备方法
JP2882575B2 (ja) 高熱伝導窒化ケイ素セラミックスならびにその製造方法
CN101580393B (zh) 一种铪酸钇透明陶瓷的制备方法
CN114804875A (zh) 一种铈锆复合稀土基高熵陶瓷材料及其制备方法
JP7328484B2 (ja) 高熱膨張係数オルトリン酸塩遮熱コーティング材料及びその製造方法
CN104926355B (zh) 基于明胶溶液冷冻干燥技术制备定向多孔氮化硅陶瓷的方法
JP2615437B2 (ja) 高強度・高靱性窒化ケイ素焼結体及びその製造方法
CN106673652A (zh) 一种具有核壳结构的氧化钇基激光陶瓷及其制备方法
JP3980927B2 (ja) セリアにもとづく固体電解質
CN113716951B (zh) 一种大尺寸薄片复合结构yag基透明陶瓷的制备方法
CN107032788B (zh) 一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法
CN106830935B (zh) 一种Nd敏化的氧化钇基激光陶瓷及其制备方法
CN102815945B (zh) 锆酸镧钆透明陶瓷材料及其制备方法
CN116903368A (zh) 一种多元共掺杂钇铝石榴石热障涂层材料及其制备方法
CN114105629B (zh) 一种铬酸稀土基多孔导电高熵陶瓷的制备方法及应用
JP3007730B2 (ja) 希土類酸化物−アルミナ焼結体およびその製造方法
CN115403379A (zh) 一种细晶高熵稀土钽酸盐陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination