CN110835264A - 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法 - Google Patents

一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法 Download PDF

Info

Publication number
CN110835264A
CN110835264A CN201911086080.6A CN201911086080A CN110835264A CN 110835264 A CN110835264 A CN 110835264A CN 201911086080 A CN201911086080 A CN 201911086080A CN 110835264 A CN110835264 A CN 110835264A
Authority
CN
China
Prior art keywords
temperature
thermal protection
protection material
hafnium oxide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911086080.6A
Other languages
English (en)
Inventor
郭洪波
马芳德
李春
马岳
宫声凯
徐惠彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201911086080.6A priority Critical patent/CN110835264A/zh
Publication of CN110835264A publication Critical patent/CN110835264A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法及其产品。制备的热防护材料为氧化钇和四价氧化物共同掺杂氧化铪材料体系,材料的化学组成为(Hf1‑xLnx)0.92Y0.08O1.96,Ln选自Ti、Sn或Th。本发明提供的材料具有较高的相稳定性、高韧性、低热导率的特点,作为热防护材料可以保证具有高的断裂韧性,当x=0.25时,最高断裂韧性可达3.62MPa·m1/2,同时在1200℃条件下保持低的热导率约1.8W/(m*K),在1400℃内不发生相变。本发明的氧化钇和氧化钛共同掺杂稳定氧化铪材料高温相稳定性好,可以用来设计和制备使用温度不低于1400℃的高温热防护材料。

Description

一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法
技术领域
本发明属于高温热防护技术领域,具体涉及一种高温热稳定性、高断裂韧性、低热辐射转换的氧化铪基热防护材料制备方法及其产品。
背景技术
高温会使金属材料强度等性能发生严重的破坏,影响其使用寿命,尤其是在航空航天领域,开发出能够在复杂热环境下服役的新型的热防护材料是解决问题的有效途径。热防护材料利用其低的热导率大幅降低了高温合金表面的温度,增强热端部件的抗高温氧化能力,延长立了热端部件的使用寿命。但是陶瓷通常具有极低的断裂韧性,限制了其优良性能的发挥和更广泛的应用,因此陶瓷增韧的研究是热防护材料的核心课题。提高陶瓷的断裂韧性有利于提高热防护材料对微粒子和气流的抗冲击性能,从而提高热防护材料的使用寿命。随着航空航天事业的不断发展,航空发动机的使用温度越来越高,当服役温度超过1200℃时,传统的热防护材料6-8wt%YSZ,就会发生不可逆相变,从单斜相到四方相的转变过程中会产生3-5%的体积收缩,从而导致材料的破坏,此外,温度过高也会导致YSZ发生烧结现象。因此急需研发新的在高温条件下能保持高的相稳定性,同时具有高韧性和低热导率的热防护材料。氧化铪与氧化锆具有相同的晶体结构,但氧化铪单斜相到四方相的相转变温度要比氧化锆的相变温度高约600℃,同时氧化铪与氧化锆也有相近的热导率,因此氧化铪有希望成为下一代热防护材料的备选材料,但其断裂韧性较差,本发明通过掺杂四价离子可以有效的提高断裂韧性并降低热导率,来进一步提高热防护材料的隔热性能和服役温度。
发明内容
针对传统热防护材料YSZ在高温服役条件下相变以及热导率显著提高的问题,本发明提出了一种高温高韧性低热导的氧化铪基热防护材料的制备方法及其产品。
一种高温高断裂韧性低热导的氧化铪基热防护材料的制备方法如下:
步骤一,首先将实验所需的稀土氧化物Y2O3在1000℃下煅烧4-6h,以去除稀土氧化物中的水分和碳酸盐杂质;优选的煅烧时间为5h。
步骤二,将所需的Y2O3、HfO2、LnO2粉末按照(Hf1-xLnx)0.92Y0.08O1.96,0<x≤0.3的化学计量比进行称量并放于球磨罐中,以酒精为球磨介质,以二氧化锆为磨球,实验采用的原料粉末、磨球、酒精的质量比为1:5:4,磨球直径选择10mm、5mm、1mm三种,三种球的比例为4:3:3,在转速为400r/min下混合球磨8~10h,将球磨后的混合物放在60-65℃的鼓风干燥箱内烘干,再经过手动研磨,过200目筛,得到混合粉末粒径小于75μm;所述LnO2粉末中,Ln选自Ti,Sn,Th中的一种或一种以上;
步骤三,将上述粉末冷压成直径φ15mm*2mm大小的圆片,制得陶瓷生坯,将制成的生坯在空气中无压烧结,烧结温度制度为:从室温到1000℃,升温速率为3℃/min,1000℃到1200℃为升温速率2℃/min,1200℃到1550℃为升温速率1℃/min,烧结温度为1550℃,烧结保温时间为5h,完成固相反应,随炉冷却至室温,最后得到所需陶瓷块材;
上述冷压参数包括:室温下单向加压,压力为20MPa。
所述LnO2粉末优选为TiO2粉末,随TiO2掺杂量的增加,所述热防护材料的硬度先升高后下降,当0.05<x<0.15时,有最高硬度1100Hv,当0.2<x<0.3时,有最低硬度770Hv。所述热防护材料的韧性随着TiO2掺杂量的增加逐渐增加,所述材料的断裂韧性为2.38~3.62MPa·m1/2。0<x<0.2时,所述的热防护材料在25~1200℃随温度的升高,热导率下降;0.2<x<0.3时,所述的材料在25~1200℃随温度的升高,热导率降低;随着掺杂量的增加,热导率对温度的敏感性下降;在1200℃时,致密块材的最低热导率约为1.82W/(m*K)。DSC热分析显示所述热防护材料,从室温到1400℃内无相变。
以上合成步骤一~三的要点是,经过长时间球磨和高温烧结后,使得掺杂的原子扩散更加充分,最终得到实际密度98%-99.5%之间的块材。0<x<0.1时,所得陶瓷块材的组织是由单斜相和立方相组成;0.15<x<0.25时,所得陶瓷块材开始有钛酸铪相析出,M相逐渐减少,陶瓷块材的组织是由单斜相、立方相和钛酸铪相组成。
本发明还提供一种氧化钛掺杂增韧氧化铪基热防护材料,四价离子掺杂增韧氧化铪基高温热防护材料,具有下述化学组成(Hf1-xLnx)0.92Y0.08O1.96,0<x≤0.3,其中Ln为四价元素,Ln选自Ti,Sn,Th中的一种或一种以上。优选为(Hf1-xTix)0.92Y0.08O1.96,简写为XTiYSH,其中X=100x。例如(Hf0.9Ti0.1)0.92Y0.08O1.96简写为10TiYSH,其余类同。本发明提供的氧化铪材料由TiO2和Y2O3共同掺杂而得,由于不同相之间的热膨胀系数不同,导致陶瓷块材中存在压应力,使得裂纹在扩展过程中桥接,阻碍裂纹的扩展,从而使得韧性增加,25TiYSH的韧性可以达到3.62MPa·m1/2,比1TiYSH的韧性提高了53%。Y2O3和TiO2共同掺杂,在引进氧空位的同时也会引进较大的质量波动和产生晶格畸变,当TiO2引入定量的Y2O3相当于引入定量的氧空位,氧空位是最有效降低热导率的方法,25TiYSH热防护材料在1400℃内没有相变。25TiYSH的热导率从室温到1200℃随温度的升高变化不大,1200℃时的热导率为1.8W/(m*K),比0TiYSH的热导率降低了24%。
本发明的优点在于:
1.本发明提供的材料具有良好的断裂韧性,断裂韧性最高达到3.62MPa·m1/2
2.本发明制备的氧化铪基热防护陶瓷材料高温相稳定性好,室温至1400℃温度范围内无相变;
3.1200℃时,25TiYSH的热导率仅为1.8W/(m*K),并且热导率受温度的影响不大。
附图说明
图1是本案例中制备25TiYSH时的DSC曲线;
图2是本发明实施案例制备的x=0-30mol%四价离子掺杂氧化铪基陶瓷块材的硬度与韧性曲线;
图3是本发明实施案例制备的x=0-30mol%四价离子掺杂氧化铪基陶瓷块材在室温到1200℃之间热导率随温度的变化曲线。
具体实施方式
下面将结合附图和实施例对本发明做进一步的详细说明:
实施例1:(Hf0.95Ti0.05)0.92Y0.08O1.96陶瓷块材的制备
(1)称取99.9%纯度的氧化钛粉末0.3736g,99.9%纯度的氧化铪粉末18.7079g,99.9%纯度的氧化钇粉末0.9185g加入球磨罐中,并加入酒精,氧化锆磨球共100g,其中10mm磨球40g,5mm磨球30g,1mm磨球30g,设置球磨机转速设置为400r/min,球磨10小时;
(2)将球磨后的浆料放入60℃的抽风干燥箱中干燥10h,之后将干燥后的粉末进行研磨,并用200目的筛子进行筛分,得到粒度小于0.0750mm的粉末;
(3)将上一步得到的粉末压成φ15mm×2mm的圆片,压力20MPa,保压2min,最后将所得圆片放入电阻炉进行无压烧结,烧结参数为室温至l000℃升温速率为3℃每分钟,l000℃至1200℃为升温速率为2℃每分钟,1200℃至1550℃为升温速率为1℃每分钟,烧结温度为1550℃,保温5h。降温速率为5℃每分钟。胚体经过高温烧结均匀扩散和收缩后,得到致密的陶瓷样品。
利用上述固相合成法制得5TiYSH陶瓷块材,XRD显示5TiYSH陶瓷块材的物相为单斜相和立方相的混合相,5TiYSH陶瓷块材的断裂韧性、硬度和热导率如图2和图3所示,断裂韧性约2.38MPa·m1/2,硬度值约9.46GPa,热导率随温度的升高逐渐降低,在室温到1200℃之间,热导率从3.08W/(m*K)降低到2.42W/(m*K)。
实施例2:(Hf0.9Ti0.1)0.92Y0.08O1.96陶瓷块材的制备
(1)称取99.9%纯度的氧化钛粉末0.7707g,99.9%纯度的氧化铪粉末18.2818g,99.9%纯度的氧化钇粉末0.9475g加入球磨罐中,并加入75%酒精120ml,氧化锆磨球共100g,其中10mm磨球40g,5mm磨球30g,1mm磨球30g,设置球磨机转速设置为400r/min,球磨10小时;
(2)将球磨后的浆料放入60℃的抽风干燥箱中干燥10h,之后将干燥后的粉末进行研磨,并用200目的筛子进行筛分,得到粒度小于0.0750mm的粉末;
(3)将上一步得到的粉末压成φ15mm×2mm的圆片,压力20MPa,保压2min,最后将所得圆片放入电阻炉进行无压烧结,烧结参数为室温至l000℃升温速率为3℃每分钟,l000℃至1200℃为升温速率为2℃每分钟,1200℃至1550℃为升温速率为1℃每分钟,烧结温度为1550℃,保温5h。降温速率为5℃每分钟。胚体经过高温烧结均匀扩散和收缩后,得到致密的陶瓷样品。
利用上述固相合成法制得10TiYSH陶瓷块材,XRD显示10TiYSH陶瓷块材的物相为单斜相和立方相的混合相,10TiYSH陶瓷块材的断裂韧性、硬度和热导率如图2和图3所示,断裂韧性约2.42MPa·m1/2,硬度值约9.87GPa,热导率随温度的升高逐渐降低,在200到1200℃之间,热导率从2.65W/(m*K)降低到2.21W/(m*K)。
实施例3:(Hf0.85Ti0.15)0.92Y0.08O1.96陶瓷块材的制备
(1)称取99.9%纯度的氧化钛粉末1.1937g,99.9%纯度的氧化铪粉末17.8280g,99.9%纯度的氧化钇粉末0.9783g加入球磨罐中,并加入75%酒精120ml,氧化锆磨球共100g,其中10mm磨球40g,5mm磨球30g,1mm磨球30g,设置球磨机转速设置为400r/min,球磨10小时;
(2)将球磨后的浆料放入60℃的抽风干燥箱中干燥10h,之后将干燥后的粉末进行研磨,并用200目的筛子进行筛分,得到粒度小于0.0750mm的粉末;
(3)将上一步得到的粉末压成φ15mm×2mm的圆片,压力20MPa,保压2min,最后将所得圆片放入电阻炉进行无压烧结,烧结参数为室温至l000℃升温速率为3℃每分钟,l000℃至1200℃为升温速率为2℃每分钟,1200℃至1550℃为升温速率为1℃每分钟,烧结温度为1550℃,保温5h。降温速率为5℃每分钟。胚体经过高温烧结均匀扩散和收缩后,得到致密的陶瓷样品。
利用上述固相合成法制得15TiYSH陶瓷块材,XRD显示15TiYSH陶瓷块材的物相为单斜相、立方相和钛酸铪的混合相,15TiYSH陶瓷块材的断裂韧性、硬度和热导率如图2和图3所示,断裂韧性约2.73MPa·m1/2,硬度值约9.71GPa,热导率随温度的升高逐渐降低,在200到1200℃之间,热导率从2.15W/(m*K)降低到2.03W/(m*K),热导率随温度的变化不明显,呈不相关性,因此本发明提供的热防护材料具有优异的抗高温辐射作用。
实施例4:(Hf0.8Ti0.2)0.92Y0.08O1.96陶瓷块材的制备
(1)称取99.9%纯度的氧化钛粉末1.6452g,99.9%纯度的氧化铪粉末17.3436g,99.9%纯度的氧化钇粉末1.0112g加入球磨罐中,并加入75%酒精120ml,氧化锆磨球共100g,其中10mm磨球40g,5mm磨球30g,1mm磨球30g,设置球磨机转速设置为400r/min,球磨10小时;
(2)将球磨后的浆料放入60℃的抽风干燥箱中干燥10h,之后将干燥后的粉末进行研磨,并用200目的筛子进行筛分,得到粒度小于0.0750mm的粉末;
(3)将上一步得到的粉末压成φ15mm×2mm的圆片,压力20MPa,保压2min,最后将所得圆片放入电阻炉进行无压烧结,烧结参数为室温至l000℃升温速率为3℃每分钟,l000℃至1200℃为升温速率为2℃每分钟,1200℃至1550℃为升温速率为1℃每分钟,烧结温度为1550℃,保温5h。降温速率为5℃每分钟。胚体经过高温烧结均匀扩散和收缩后,得到致密的陶瓷样品。
利用上述固相合成法制得20TiYSH陶瓷块材,XRD显示20TiYSH陶瓷块材的物相为单斜相、立方相和钛酸铪的混合相,20TiYSH陶瓷块材的断裂韧性、硬度和热导率如图2和图3所示,断裂韧性约3.15MPa·m1/2,硬度值约8.41GPa,热导率随温度的升高逐渐降低,在200℃到1200℃之间,热导率从1.99W/(m*K)降低到1.94W/(m*K),热导率随温度的变化不明显,呈不相关性,因此本发明提供的热防护材料具有优异的抗高温辐射作用。
实施例5:(Hf0.75Ti0.25)0.92Y0.08O1.96陶瓷块材的制备
(1)称取99.9%纯度的氧化钛粉末2.1280g,99.9%纯度的氧化铪粉末16.8256g,99.9%纯度的氧化钇粉末1.0464g加入球磨罐中,并加入75%酒精120ml,氧化锆磨球共100g,其中10mm磨球40g,5mm磨球30g,1mm磨球30g,设置球磨机转速设置为400r/min,球磨10小时;
(2)将球磨后的浆料放入60℃的抽风干燥箱中干燥10h,之后将干燥后的粉末进行研磨,并用200目的筛子进行筛分,得到粒度小于0.0750mm的粉末;
(3)将上一步得到的粉末压成φ15mm×2mm的圆片,压力20MPa,保压2min,最后将所得圆片放入电阻炉进行无压烧结,烧结参数为室温至l000℃升温速率为3℃每分钟,l000℃至1200℃为升温速率为2℃每分钟,1200℃至1550℃为升温速率为1℃每分钟,烧结温度为1550℃,保温5h。降温速率为5℃每分钟。胚体经过高温烧结均匀扩散和收缩后,得到致密的陶瓷样品。
利用上述固相合成法制得25TiYSH陶瓷块材,XRD显示25TiYSH陶瓷块材的物相为单斜相、立方相和钛酸铪的混合相,25TiYSH陶瓷块材的断裂韧性、硬度和热导率如图2和图3所示,断裂韧性约3.62MPa·m1/2,硬度值约7.69GPa,热导率随温度的升高逐渐降低,在室温到1200℃之间,热导率从1.71W/(m*K)升高到1.82W/(m*K),热导率随温度的变化不明显,呈不相关性,因此本发明提供的热防护材料具有优异的抗高温辐射作用。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1.一种四价离子掺杂增韧氧化铪基高温热防护材料的制备方法,步骤如下:
1)首先将实验所需的稀土氧化物Y2O3在1000℃下煅烧4-6h,以去除稀土氧化物中的水分和碳酸盐杂质;
2)将所需的Y2O3、HfO2、LnO2粉末按照(Hf1-xLnx)0.92Y0.08O1.96,0<x≤0.3的化学计量比进行称量并放于球磨罐中,以酒精为球磨介质,以二氧化锆为磨球,实验采用的原料粉末、磨球、酒精的质量比为1:5:4,在转速为400r/min下混合球磨8~10h,将球磨后的混合物放在60-65℃的鼓风干燥箱内烘干,再经过手动研磨,过200目筛,得到混合粉末粒径小于75μm;所述LnO2粉末中,Ln选自Ti,Sn,Th中的一种或一种以上;
3)将上述粉末冷压成直径φ15mm*2mm的圆片,制得陶瓷生坯,将制成的生坯在空气中无压烧结,烧结温度制度为:从室温到1000℃,升温速率为3℃每分钟,1000℃到1200℃为升温速率2℃每分钟,1200℃到1550℃为升温速率1℃每分钟,烧结温度为1550℃,烧结保温时间为5h,完成固相反应,随炉冷却至室温,最后得到所需陶瓷块材。
2.根据权利要求1所述的一种四价离子掺杂增韧氧化铪基高温热防护材料的制备方法,其特征在于:磨球直径选择10mm、5mm、1mm三种,三种球的比例为4:3:3,粉末冷压参数为室温下单向加压,压力为20MPa。
3.根据权利要求1所述的一种四价离子掺杂增韧氧化铪基高温热防护材料的制备方法,其特征在于:LnO2粉末为TiO2粉末,随TiO2掺杂量的增加,所述热防护材料的硬度先升高后下降,当0.05<x<0.15时,有最高硬度1100Hv,当0.2<x<0.3时,有最低硬度770Hv。
4.根据权利要求3所述的一种四价离子掺杂增韧氧化铪基高温热防护材料的制备方法,其特征在于:所述热防护材料的韧性随着TiO2掺杂量的增加逐渐增加,所述材料的断裂韧性2.38~3.62MPa·m1/2
5.根据权利要求4所述的一种四价离子掺杂增韧氧化铪基高温热防护材料的制备方法,当x=0.25时,有最大断裂韧性3.62MPa·m1/2
6.根据权利要求3所述的一种四价离子掺杂增韧氧化铪基高温热防护材料的制备方法,其特征在于:0<x<0.2时,所述的热防护材料在25~1200℃随温度的升高,热导率下降;0.2<x<0.3时,所述的材料在25~1200℃随温度的升高,热导率降低;随着掺杂量的增加,热导率对温度的敏感性下降;在1200℃时,致密块材的最低热导率约为1.82W/(m*K)。
7.根据权利要求1所述的一种四价离子掺杂增韧氧化铪基高温热防护材料的制备方法,其特征在于:DSC热分析显示,所述热防护材料从室温到1400℃内无相变。
8.根据权利要求1所述的一种四价离子掺杂增韧氧化铪基高温热防护材料的制备方法,其特征在于:0<x<0.15时,所述材料的显微组织包括单斜相和立方相;当0.15<x<0.3时,所述材料的显微组织包括单斜相,立方相和钛酸铪。
9.根据权利要求书1-8中任一项方法制备的四价离子掺杂增韧氧化铪基高温热防护材料,其特征在于:具有下述化学组成(Hf1-xLnx)0.92Y0.08O1.96,0<x≤0.3,其中Ln为四价元素,Ln选自Ti,Sn,Th中的一种或一种以上。
CN201911086080.6A 2019-11-08 2019-11-08 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法 Pending CN110835264A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911086080.6A CN110835264A (zh) 2019-11-08 2019-11-08 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911086080.6A CN110835264A (zh) 2019-11-08 2019-11-08 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法

Publications (1)

Publication Number Publication Date
CN110835264A true CN110835264A (zh) 2020-02-25

Family

ID=69574639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911086080.6A Pending CN110835264A (zh) 2019-11-08 2019-11-08 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法

Country Status (1)

Country Link
CN (1) CN110835264A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111423230A (zh) * 2020-06-11 2020-07-17 长沙华脉新材料有限公司 一种多种稀土共掺杂增韧氧化铪陶瓷材料及其制备方法
CN113943156A (zh) * 2021-12-20 2022-01-18 中南大学 一种可规模化制备HfO2-ThO2超高温氧化物复相陶瓷的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812176B1 (en) * 2001-01-22 2004-11-02 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
US7001859B2 (en) * 2001-01-22 2006-02-21 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
CN108439977A (zh) * 2018-04-23 2018-08-24 北京航空航天大学 一种高温低热导氧化铪基热障涂层材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812176B1 (en) * 2001-01-22 2004-11-02 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
US7001859B2 (en) * 2001-01-22 2006-02-21 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
CN108439977A (zh) * 2018-04-23 2018-08-24 北京航空航天大学 一种高温低热导氧化铪基热障涂层材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUN LI: ""Effect of Y doping on microstructure and thermophysical properties of yttria stabilized hafnia ceramics"", 《CERAMICS INTERNATIONAL》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111423230A (zh) * 2020-06-11 2020-07-17 长沙华脉新材料有限公司 一种多种稀土共掺杂增韧氧化铪陶瓷材料及其制备方法
CN111423230B (zh) * 2020-06-11 2020-09-08 长沙华脉新材料有限公司 一种多种稀土共掺杂增韧氧化铪陶瓷材料及其制备方法
CN113943156A (zh) * 2021-12-20 2022-01-18 中南大学 一种可规模化制备HfO2-ThO2超高温氧化物复相陶瓷的方法
CN113943156B (zh) * 2021-12-20 2022-05-17 中南大学 一种可规模化制备HfO2-ThO2超高温氧化物复相陶瓷的方法

Similar Documents

Publication Publication Date Title
CN110590377B (zh) 一种高β相致密氮化硅陶瓷及低温制备方法
CN113526954B (zh) 一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法
CN104529449A (zh) 一种采用两步烧结制备氧化钇基透明陶瓷的方法
CN102659403A (zh) 一种耐高温热障涂层陶瓷材料及其制备方法
CN114478005B (zh) 一种四方相热障涂层材料及其制备方法
JP2951771B2 (ja) 希土類酸化物−アルミナ−シリカ焼結体およびその製造方法
CN108439977B (zh) 一种高温低热导氧化铪基热障涂层材料及其制备方法
CN110835264A (zh) 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法
CN115010491B (zh) 一种高熵稀土钽酸盐陶瓷材料及其制备方法
Zhou et al. Microstructure and mechanical properties of 8YSZ ceramics by liquid-phase sintering with CuO-TiO2 addition
Tong et al. Densification and mechanical properties of YAG ceramics fabricated by air pressureless sintering
CN110835265B (zh) 一种氧化钆增韧的氧化铪高温热防护涂层材料
CN113603475B (zh) 一种三价铬离子掺杂镁铝尖晶石透明陶瓷的制备方法
CN111423230B (zh) 一种多种稀土共掺杂增韧氧化铪陶瓷材料及其制备方法
JPH0585821A (ja) 希土類酸化物−アルミナ焼結体およびその製造方法
KR100915920B1 (ko) 파이로클로어 결정 구조의 저열전도성 세라믹 소재 및 그제조방법
CN114380606A (zh) 一种机加工高强度耐火材料制备工艺
CN113735591A (zh) 采用放电等离子烧结制备氮掺杂导电碳化硅陶瓷的方法
Lee et al. Effect of Nb2O5 and Y2O3 alloying on the mechanical properties of TZP ceramics
CN111848137A (zh) 一种高抗热震氧化铝陶瓷及其制备方法
WO1999032417A1 (en) Dense refractories with improved thermal shock resistance
JP2000095564A (ja) ジルコニア質焼結体及びその製造方法ならびに粉砕部材用材料
JPH02500267A (ja) セラミツク材料
JP2612545B2 (ja) 耐熱導電性セラミックス
CN116535209B (zh) 一种高熵稳定立方氧化锆和四方氧化锆相结构的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200225

RJ01 Rejection of invention patent application after publication