CN110590377B - 一种高β相致密氮化硅陶瓷及低温制备方法 - Google Patents

一种高β相致密氮化硅陶瓷及低温制备方法 Download PDF

Info

Publication number
CN110590377B
CN110590377B CN201911036674.6A CN201911036674A CN110590377B CN 110590377 B CN110590377 B CN 110590377B CN 201911036674 A CN201911036674 A CN 201911036674A CN 110590377 B CN110590377 B CN 110590377B
Authority
CN
China
Prior art keywords
silicon nitride
powder
sintering
lithium salt
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911036674.6A
Other languages
English (en)
Other versions
CN110590377A (zh
Inventor
赵世贤
郭昂
王战民
李凌锋
司瑶晨
王刚
李红霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Original Assignee
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinosteel Luoyang Institute of Refractories Research Co Ltd filed Critical Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority to CN201911036674.6A priority Critical patent/CN110590377B/zh
Publication of CN110590377A publication Critical patent/CN110590377A/zh
Application granted granted Critical
Publication of CN110590377B publication Critical patent/CN110590377B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于氮化硅陶瓷技术领域,涉及一种高β相含量致密氮化硅陶瓷及低温制备方法。涉及的一种高β相含量致密氮化硅陶瓷的制备原料包括Si3N4粉和烧结助剂;烧结助剂为LixMOy型锂盐以及一种或多种其它氧化物组成的复合烧结助剂;其中LixMOy型锂盐为LiAlO2、LiYO2、LiNbO3、Li2ZrO3、LiYbO2、Li2SiO3中的一种,其它氧化物为稀土氧化物或金属氧化物,Y2O3、CeO2、Yb2O3、MgO、CaO、MgAl2O4中的一种或多种;所述复合烧结助剂中LixMOy型锂盐和其它氧化物质量比为4~12:0~8;所述Si3N4粉与复合烧结助剂质量比为85~94:6~15。本发明大大降低了烧结温度,减少了氮化硅陶瓷的挥发,更好的保持氮化硅陶瓷的优异性能。

Description

一种高β相致密氮化硅陶瓷及低温制备方法
技术领域
本发明属于氮化硅陶瓷技术领域,涉及一种高β相含量致密氮化硅陶瓷及低温制备方法。
背景技术
氮化硅陶瓷具有良好的耐磨耐蚀性、高的抗弯强度、良好的断裂韧性、极大的硬度而且理论热导率值较高(200–300Wm-1·K-1),因此被广泛用于现代工业中(汽车发动机零部件、核反应堆支撑、刀具、陶瓷装甲以及航空航天等领域)。致密氮化硅陶瓷的烧结制备一直是研究的热点,因为氮化硅是一种强共价键材料,也因此导致其难以固相烧结,必须加入烧结助剂通过液相作为传质媒介促进其致密化烧结;目前氮化硅陶瓷制品的生产大多依靠热压和气压烧结等高成本的烧结方式,同时对烧结温度的要求十分高(1700-1900℃),且在氮化硅烧结制备过程中存在一个α相向β相的转变,这个相转变对于氮化硅陶瓷的致密化程度及力学性能的改善有决定性的影响,而在低温段很难完成较高的相转变,也因此极大限制了高性能氮化硅陶瓷在许多高新技术领域的工业化生产和普及应用。
关于氮化硅的制备大多采用高温下的热压或气压方式进行烧结:例如:张辉的专利“一种致密化氮化硅陶瓷材料的制备办法”(公开号CN103553632A)采用的烧结温度为1750℃~1850℃,烧结温度高导致所需设备及成本也急剧加大。赵振威的专利“一种提高氮化硅材料性能一致性的烧结方法”(公开号CN104119079A)利用气压和热压烧结的方式,导致制备成本高、效率低。于方丽的专利“一种氮化硅陶瓷及制备方法”(公开号CN105859301A)采用气压烧结方式,烧结温度也达到1800℃,从而导致成本过高。
氮化硅陶瓷由于其烧结温度过高,生产设备要求苛刻等问题,致使其工业化生产效率大大降低,目前低温制备高β相致密氮化硅陶瓷技术的相关研究十分少,因此研究一种低温制备高性能氮化硅陶瓷制备技术变得极其重要。
发明内容
为解决上述技术问题,本发明的目的在于提供一种关于高β相致密氮化硅陶瓷及低温制备方法。
本发明为完成上述发明目的采用如下技术方案:
一种高β相含量致密氮化硅陶瓷,高β相含量致密氮化硅陶瓷的制备原料包括Si3N4粉和烧结助剂;烧结助剂为LixMOy型锂盐以及一种或多种其它氧化物组成的复合烧结助剂;其中LixMOy型锂盐为LiAlO2、LiYO2、LiNbO3、Li2ZrO3、LiYbO2、Li2SiO3中的一种,其它氧化物为稀土氧化物或金属氧化物,Y2O3、CeO2、Yb2O3、MgO、CaO、MgAl2O4中的一种或多种;所述复合烧结助剂中LixMOy型锂盐和其它氧化物质量比为4~12:0~8;所述Si3N4粉与复合烧结助剂质量比为85~94:6~15。
所述的单相LixMOy型锂盐由Li2O与另外一种氧化物复合而成;所述合成单相LixMOy型锂盐的两种氧化物和其它氧化物中必须包含至少一种稀土氧化物。
另外一种氧化物为Al2O3、Y2O3、Nb2O5、ZrO2、Yb2O3或SiO2中的一种。
优选的,所述LixMOy型锂盐和其它氧化物质量比为6~10:2~6。
优选的,所述Si3N4粉与烧结助剂质量比为88~92:8~12。
一种高β相致密氮化硅陶瓷的低温制备方法,包括以下步骤:
步骤A:将合成单相LixMOy型锂盐的Li2O与另外一种氧化物按1.02~1.5的摩尔配比称取并进行球磨混合;
步骤B:将球磨过的混合粉体在加热炉中在800~1400℃的温度下煅烧2~4h进行预合成得到单相LixMOy型锂盐粉体;
步骤C:将预合成的单相LixMOy型锂盐粉体和其它稀土或金属氧化物按配比与Si3N4粉混入乙醇并进行高能球磨;
步骤D:将混合后的粉体进行干燥、喷雾造粒和成型;
步骤E:将成型后的生坯在不高于1650℃下进行烧结,得到所述的Si3N4陶瓷。
步骤A和C磨球和粉料质量比为3~10:1,磨球材质为氮化硅,球磨时间为12h~48h。
步骤B预合成温度为900℃~1300℃,保温2~3h。
步骤D喷雾造粒的工艺条件为氮气气氛,进口温度130~190℃,出口温度65~95℃。
步骤D成型为等静压成型,压力大小200~240MPa,保压15~30min。
步骤E烧结方法为氮气气氛烧结或空气埋粉无压烧结,空气埋粉无压烧结是将成型的生坯放入埋有氮化硅粉的石墨坩埚中,然后将石墨坩埚放入埋有石墨的氧化铝匣钵中进行空气气氛无压烧结。
步骤E烧结温度为1550~1650℃,保温时间为4h~10h,升温速度为2℃/min~10℃/min。
综上所述,本发明提供了一种高β相含量的致密Si3N4陶瓷的低温制备方法,由该方法可制得高β含量、高致密、力学性能优异且近净型的氮化硅陶瓷制品。
与现有技术相比,本发明具有下述优势特点:
(1)本发明采用新型低熔点的LixMOy型锂盐以及一种或多种其它金属或稀土氧化物组成的复合烧结助剂,使烧结温度大大降低,从而减少了氮化硅陶瓷的挥发,更好的保持氮化硅陶瓷的优异性能。
(2)本发明在低温无压烧结的同时能够促进氮化硅相转变,极大提高了β-氮化硅相含量,从而在一定程度上提高了氮化硅陶瓷的力学性能。
(3)本发明的氮化硅陶瓷生产设备要求不高且极大节约能源,可广泛用于各领域工业化生产,使氮化硅陶瓷广泛使用于高中低端产业。
附图说明
图1是本发明制备的高β相致密氮化硅陶瓷典型显微形貌图。
图2是本发明制备的高β相致密氮化硅陶瓷典型的X射线衍射分析图谱。
具体实施方式
下面结合实施例对本发明作进一步说明,本发明的方式包括但不仅限于以下实施例。
实施例1:
按所述Li2O(原料为Li2CO3)和Al2O3摩尔比为1.02:1进行配比,然后在行星式球磨机上进行球磨6h,球磨介质为氮化硅磨球,球料比为5:1。
将球磨后的混合粉体烘干,放入氧化铝坩埚中进行1000℃煅烧2h。
将煅烧后得到的单相LiAlO2研磨过40目筛与Y2O3和Si3N4粉体按质量比10:2:88进行配比,在行星式球磨机上进行球磨24h,球磨介质为氮化硅磨球,球料比为5:1。
然后将混合均匀的粉体进行喷雾造粒,工艺为N2气氛,设定进口温度160℃,出口温度80℃,得到Si3N4造粒粉。
将造粒过后的Si3N4粉放入等静压模具中,在220MPa冷等静压压力下进行成型。
最后将成型的生坯放入石墨坩埚中埋入氮化硅粉进行氮气气氛无压烧结。以3℃/min的升温速率升温至1650℃,并保温4h,制得所述氮化硅陶瓷。
本实例所制得的氮化硅陶瓷气孔率为0.5%,相对密度97.67%,β-Si3N4转化率为83%。
实施例2:
按所述Li2O(原料为Li2CO3)和Al2O3摩尔比为1.02:1进行配比,然后在行星式球磨机上进行球磨6h,球磨介质为氮化硅磨球,球料比为7:1。
将球磨后混合粉体烘干,放入氧化铝坩埚中进行900℃煅烧3h。
将煅烧后得到的单相LiAlO2破碎过40目筛与Y2O3和Si3N4粉体按质量比8:4:88进行配比,在行星式球磨机上进行球磨24h,球磨介质为氮化硅磨球,球料比为7:1。
然后将混合均匀的粉体进行喷雾造粒,工艺为N2气氛,设定进口温度180℃,出口温度90℃,得到Si3N4造粒粉。
将造粒过后的Si3N4粉放入等静压模具中,在200MPa冷等静压压力下进行成型。
最后将成型的生坯放入石墨坩埚中并用氮化硅粉填埋,把石墨坩埚放入刚玉莫来石质匣钵中在空气条件下进行无压烧结。以3℃/min的升温速率升温至1650℃,并保温8h,制得所述Si3N4陶瓷。
本实例所制得的氮化硅陶瓷气孔率为0.7%,相对密度为98.01%,β-Si3N4转化率为82%。
实施例3:
按所述Li2O(原料为Li2CO3)和Y2O3摩尔比为1.5:1进行配比,然后在行星式球磨机上进行球磨12h,球磨介质为氮化硅磨球,球料比为10:1。
将球磨后的烧结助剂混合粉体烘干后,放入氧化铝坩埚中进行1300℃煅烧2h。
将煅烧后的单相LiYO2破碎过40目筛与MgO和Si3N4粉体按质量比4:8:88进行配比,在行星式球磨机上进行球磨24h,球磨介质为氮化硅磨球,球料比为10:1。
然后将混合均匀的粉体进行喷雾造粒,工艺为N2气氛,设定进口温度180℃,出口温度90℃,得到Si3N4造粒粉。
将造粒过后的Si3N4粉放入等静压模具中,在240MPa冷等静压压力下进行成型。
最后将成型的生坯放入石墨坩埚中埋入氮化硅粉进行氮气气氛烧结。以5℃/min的升温速率升温至1650℃,并保温4h,制得所述Si3N4陶瓷。
本实例所制得的氮化硅陶瓷气孔率为2.36%,相对密度为96.69%,β-Si3N4转化率为78%。
实施例4:
按所述Li2O(原料为Li2CO3)和ZrO2摩尔比为1.05:1进行配比,然后在行星式球磨机上进行球磨6h,磨球材质为氮化硅磨球,球料比为5:1。
将球磨后的烧结助剂混合粉体烘干后,放入氧化铝坩埚中进行800℃煅烧2h。
将煅烧后的单相Li2ZrO3破碎过40目筛与Y2O3和Si3N4粉体按质量比4:8:88进行配比,在行星式球磨机上进行球磨24h,球磨介质为氮化硅磨球,球料比为5:1。
然后将混合均匀的粉体进行喷雾造粒,工艺为N2气氛,设定进口温度180℃,出口温度90℃,得到Si3N4造粒粉。
将造粒过后的Si3N4粉放入等静压模具中,在220MPa压力下保压15min进行成型。
最后将成型的生坯置于氮气气氛进行烧结。以3℃/min的升温速率升温至1650℃,并保温10h,制得所述Si3N4陶瓷。
本实例所制得的氮化硅陶瓷气孔率为0.8%,相对密度为97.17%,β-Si3N4转化率为90%。
实施例5:
按所述Li2O(原料为Li2CO3)和Al2O3摩尔比为1.02:1进行配比,然后在行星式球磨机上进行球磨6h,磨球材质为氮化硅磨球,球料比为5:1。
将球磨后的烧结助剂混合粉体烘干后,放入氧化铝坩埚中进行1000℃煅烧2h。
将煅烧后的单相LiAlO2破碎过40目筛与Y2O3、CaO和Si3N4粉体按质量比6:4:2:88进行配比,在行星式球磨机上进行球磨24h,球磨介质为氮化硅磨球,球料比为5:1。
然后将混合均匀的粉体进行喷雾造粒,工艺为N2气氛,设定进口温度180℃,出口温度90℃,得到Si3N4造粒粉。
将造粒过后的Si3N4粉放入等静压模具中,在240MPa冷等静压压力下进行成型。
最后将成型的生坯放入石墨坩埚中埋入氮化硅粉进行氮气气氛无压烧结。以3℃/min的升温速率升温至1650℃,并保温8h,制得所述Si3N4陶瓷。
本实例所制得的氮化硅陶瓷气孔率为0.83%,相对密度为97.69%,β-Si3N4转化率为88%。
本发明将不会被限制于本文所示的这些实施例,而是符合与本文所公开的原理和优势特点相一致的范围都应受到保护。

Claims (3)

1.一种高β相含量致密氮化硅陶瓷,其特征在于:高β相含量致密氮化硅陶瓷的制备原料包括Si3N4粉和烧结助剂;烧结助剂为LixMOy型锂盐以及一种或多种其它氧化物组成的复合烧结助剂;其中LixMOy型锂盐为LiAlO2、LiYO2、LiNbO3、Li2ZrO3、LiYbO2中的一种,其它氧化物为稀土氧化物或金属氧化物,Y2O3、CeO2、Yb2O3、MgO、CaO、MgAl2O4中的一种或多种;所述复合烧结助剂中LixMOy型锂盐和其它氧化物质量比为6~10:2~6;所述Si3N4粉与烧结助剂质量比为88~92:8~12;所述的单相LixMOy型锂盐由Li2O与另外一种氧化物复合而成;所述合成单相LixMOy型锂盐的两种氧化物和其它氧化物中必须包含至少一种稀土氧化物。
2.如权利要求1所述的一种高β相含量致密氮化硅陶瓷,其特征在于:另外一种氧化物为Al2O3、Y2O3、Nb2O5、ZrO2、Yb2O3中的一种。
3.制备权利要求1-2任一所述的一种高β相致密氮化硅陶瓷的低温制备方法,制备方法包括以下步骤:
步骤A:将合成单相LixMOy型锂盐的Li2O与另外一种氧化物按1.02~1.5的摩尔配比称取并进行球磨混合;
步骤B:将球磨过的混合粉体在加热炉中在800~1400℃的温度下煅烧2~4h进行预合成得到单相LixMOy型锂盐粉体;
步骤C:将预合成的单相LixMOy型锂盐粉体和其它氧化物按配比与Si3N4粉混入乙醇并进行高能球磨;
步骤D:将混合后的粉体进行干燥、喷雾造粒和成型;
步骤E:将成型后的生坯在不高于1650℃下进行烧结,得到所述的Si3N4陶瓷;其特征在于:步骤E烧结方法为空气埋粉无压烧结,空气埋粉无压烧结是将成型的生坯放入埋有氮化硅粉的石墨坩埚中,然后将石墨坩埚放入埋有石墨的氧化铝匣钵中进行空气气氛无压烧结;步骤E烧结温度为1550~1650℃,保温时间为4h~10h,升温速度为2℃/min~10℃/min。
CN201911036674.6A 2019-10-29 2019-10-29 一种高β相致密氮化硅陶瓷及低温制备方法 Active CN110590377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911036674.6A CN110590377B (zh) 2019-10-29 2019-10-29 一种高β相致密氮化硅陶瓷及低温制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911036674.6A CN110590377B (zh) 2019-10-29 2019-10-29 一种高β相致密氮化硅陶瓷及低温制备方法

Publications (2)

Publication Number Publication Date
CN110590377A CN110590377A (zh) 2019-12-20
CN110590377B true CN110590377B (zh) 2020-11-13

Family

ID=68852007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911036674.6A Active CN110590377B (zh) 2019-10-29 2019-10-29 一种高β相致密氮化硅陶瓷及低温制备方法

Country Status (1)

Country Link
CN (1) CN110590377B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112209725B (zh) * 2020-10-15 2023-06-06 郑州航空工业管理学院 一种氮化硅陶瓷烧结的前处理方法、氮化硅陶瓷及其制备方法
CN112573927A (zh) * 2021-01-13 2021-03-30 福建臻璟新材料科技有限公司 一种氮化硅陶瓷粉体及其制备工艺
CN112851367B (zh) * 2021-01-26 2023-03-24 泰晟新材料科技有限公司 挤出成型薄壁氮化硅管件及其制备方法
CN113968742B (zh) * 2021-11-08 2023-03-03 江苏耀鸿电子有限公司 一种高导热高稳定性的覆铜基板及其加工工艺
CN115073186B (zh) * 2022-07-22 2023-05-23 中国科学院兰州化学物理研究所 一种氮化硅陶瓷烧结体及其制备方法
CN115677357B (zh) * 2022-11-10 2023-07-11 中国科学院上海硅酸盐研究所 一种高耐磨氮化硅陶瓷及其制备方法
CN116120073B (zh) * 2022-12-29 2023-11-24 滁州用朴新材料科技有限公司 一种氮化硅陶瓷刀具及其制备方法
CN116003879B (zh) * 2023-01-05 2023-12-22 江苏联瑞新材料股份有限公司 一种球形氮化硅粉体的快速制备方法
CN116813353A (zh) * 2023-05-30 2023-09-29 安徽工业大学 一种氮化硅基复合粉末及其制备方法和烧结方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942301A (zh) * 2019-04-22 2019-06-28 中钢集团洛阳耐火材料研究院有限公司 一种低成本氮化硅陶瓷的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034099B2 (ja) * 1991-11-21 2000-04-17 京セラ株式会社 窒化珪素質焼結体およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942301A (zh) * 2019-04-22 2019-06-28 中钢集团洛阳耐火材料研究院有限公司 一种低成本氮化硅陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Densification, Mass Loss, and Mechanical Properties of Low-Temperature Pressureless-Sintered Si3N4 with LiYO2 Additive: The Effects of Additive Content and Annealing;Sea-Hoon Lee;《International Journal of Applied Ceramic Technology》;20090708;第7卷(第6期);第881-888页 *

Also Published As

Publication number Publication date
CN110590377A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
CN110590377B (zh) 一种高β相致密氮化硅陶瓷及低温制备方法
CN101560104B (zh) 碳化硅陶瓷管或棒的制备方法
US4524138A (en) Substantially pore-free sintered polycrystalline articles of α-silicon carbide, boron carbide and free carbon and process for their manufacture
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN101182193B (zh) 一种原位自增韧氧化铝陶瓷的制备方法
US5656218A (en) Method for making high performance self-reinforced silicon carbide using a pressureless sintering process
CN105541341A (zh) 一种添加复合助剂制备高致密度氮化硅陶瓷的方法
CN109942301A (zh) 一种低成本氮化硅陶瓷的制备方法
US4693988A (en) Single phase silicon carbide refractory
KR101719284B1 (ko) 사이알론 결합 탄화규소 재료
CN111908923B (zh) 一种高硬度氮化硅陶瓷及其制备方法
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
CN110627504A (zh) 碳化硼复合材料的无压烧结制备方法
JPS5851910B2 (ja) チツカケイソケイシヨウケツタイノセイゾウホウホウ
KR101620510B1 (ko) 고인성 고경도 상압소결 탄화규소 소재 제조용 조성물, 탄화규소 소재 및 소재의 제조방법
CN101734920A (zh) 一种氮化钛多孔陶瓷及其制备方法
CN101143782A (zh) 一种低温制备大块致密高纯单相Y2SiO5陶瓷块体材料的方法
CN110835264A (zh) 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法
CN113387699B (zh) 一种高熵REMgAl11O19陶瓷及其制备方法和应用
CN112552031B (zh) 一种SiO2-BN复相陶瓷及其制备方法
CN109400176A (zh) 一种高性能氮化硅陶瓷及其制备方法和应用
CN110937903B (zh) 一种高强度、高导热性的氮化硅陶瓷材料及其制备方法
Tressler An assessment of low cost manufacturing technology for advanced structural ceramics and its impact on ceramic armor
CN112521160A (zh) 一种B4C/h-BN高温复相陶瓷及其制备方法
JPS632913B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant