CN109400176A - 一种高性能氮化硅陶瓷及其制备方法和应用 - Google Patents

一种高性能氮化硅陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN109400176A
CN109400176A CN201811133956.3A CN201811133956A CN109400176A CN 109400176 A CN109400176 A CN 109400176A CN 201811133956 A CN201811133956 A CN 201811133956A CN 109400176 A CN109400176 A CN 109400176A
Authority
CN
China
Prior art keywords
silicon nitride
nitride ceramics
powder
performance
heat preservation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811133956.3A
Other languages
English (en)
Inventor
吴利翔
牛文彬
卫紫君
郭伟明
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201811133956.3A priority Critical patent/CN109400176A/zh
Publication of CN109400176A publication Critical patent/CN109400176A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明属于陶瓷技术领域,公开了一种高性能氮化硅陶瓷及其制备方法,所述氮化硅(Si3N4)陶瓷是将Si、Eu2O3、助剂Al2O3‑Re2O3经混料,干燥后,得到Si‑Eu2O3‑Al2O3‑Re2O3混合粉体,将Si‑Eu2O3‑Al2O3‑Re2O3混合粉体进行造粒,然后将造粒的粉体进行干压,放入石墨炉中升温Ⅰ至1300~1450℃并保温Ⅰ进行氮化,再采用热压烧结,在气氛为1atm的氮气,加压到10~30MPa,升温Ⅱ至1600~1900℃并保温Ⅱ制得。本发明通过引入Eu2O3催化剂加快Si粉氮化,引入Eu2O3‑Al2O3‑Re2O3做为烧结助剂,改善了Si3N4致密化和性能。

Description

一种高性能氮化硅陶瓷及其制备方法和应用
技术领域
本发明属于陶瓷材料技术领域,更具体地,涉及一种高性能氮化硅(Si3N4)陶瓷及其制备方法和应用。
背景技术
Si3N4陶瓷具有耐磨、耐高温、高导热等优异性能,广泛应用于LED散热基板、高速切削刀具以及轴承球等。通常Si3N4陶瓷的制备是以高纯Si3N4粉体为原料、在添加烧结助剂的前提下,通过气压、热压或热等静压烧结制备,但是作为原料的氮化硅成本较高,使得制备得到的氮化硅陶瓷成本较高。
近年来,虽然出现了以Si粉为原料,通过反应烧结制备Si3N4陶瓷,降低成本。但是由于Si粉氮化的速度比较缓慢,短时间内很难实现完全氮化,纯硅粉在1400℃氮化2h的XRD如图1(a)所示;并且氮化后形成的Si3N4致密化较困难,很难获得高致密、高性能的Si3N4陶瓷。例如,Zhu等以Si粉为原料,通过反应气压烧结制备Si3N4陶瓷,首先Si粉在1400℃保温8h完成氮化,然后形成的Si3N4粉体继续升温到1900℃在10atm氮气下保温12h才能完成致密化(X.W.Zhu,Y.Zhou,K.Hirao,Z."Processing and Thermal Conductivity ofSintered Reaction-Bonded Silicon Nitride.I:Effect of Si PowderCharacteristics,"J.Am.Ceram.Soc.,2006,89:3331-3339)。Si粉反应气压烧结制备Si3N4陶瓷主要存在两大问题:(1)Si粉氮化时间较长,需要在1400℃保温8h;(2)Si3N4致密化困难,致密化条件过于苛刻,烧结温度较高(1900℃)、保温时间较长(12h)。如此长周期并且苛刻的制备工艺部分抵消了以Si粉为原料带来的低成本优势。目前,主要通过缩减硅粉氮化时间来减少氮化硅陶瓷制备成本,这主要通过引入氮化催化剂实现,目前为止,具有最显著促进氮化催化作用的催化剂主要有ZrO2、TiO2、Eu2O3,研究表明,只有ZrO2和TiO2在促进氮化的同时还能促进致密化,然而,加入Eu2O3作为氮化催化剂时,虽然可以显著促进Si粉氮化,但是却抑制氮化硅的烧结致密化,同时,加入Eu2O3催化剂氮化后的氮化硅样品主要含有α相氮化硅,以α相氮化硅为原料特别有利于制备高性能氮化硅陶瓷。到目前为止,还没有使用Eu2O3做为氮化催化剂实现了致密氮化硅陶瓷的制备。
发明内容
为了解决上述现有技术存在的不足和缺点,提供一种高性能氮化硅(Si3N4)陶瓷。
本发明的另一目的在于提供上述高性能Si3N4陶瓷的制备方法。本发明通过引入Eu2O3催化剂加快Si粉氮化,引入Eu2O3-Al2O3-Re2O3做为烧结助剂,在完全氮化后,采用热压烧结,改善了Si3N4致密化和性能,从而实现低成本、快速制备高性能Si3N4陶瓷。
本发明的再一目的在于提供上述高性能Si3N4陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种高性能Si3N4陶瓷,所述氮化硅陶瓷是将Si、Eu2O3、助剂Al2O3-Re2O3经混料,干燥后得到Si-Eu2O3-Al2O3-Re2O3混合粉体,将Si-Eu2O3-Al2O3-Re2O3混合粉体进行造粒,然后将造粒的粉体进行干压,放入石墨炉中升温Ⅰ至1300~1450℃并保温Ⅰ进行氮化,再采用热压烧结,在气氛为1atm的氮气下,加压到10~30MPa,升温Ⅱ至1600~1900℃并保温Ⅱ制得。
优选地,所述Re为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu中的一种以上。
优选地,所述Si:Eu2O3:Al2O3:Re2O3的质量比为(60~97):(1~20):(1~10):(1~10)。
更为优选地,所述Si:Eu2O3:Al2O3:Re2O3的质量比为17:1:1.1:0.9,所述Re为Y。
优选地,所述升温Ⅰ的速率为5~20℃/min;所述保温Ⅰ的时间为0.5~4h;升温Ⅱ的速率为5~10℃/min,所述保温Ⅱ的时间为0.5~4h。
优选地,所述Si3N4陶瓷的相对密度为95~99.9%,硬度为15~22GPa,断裂韧性为8~15MPa·m1/2,抗弯强度为800~1500Mpa。
更为优选地,所述Si3N4陶瓷的相对密度为99%,硬度为18GPa,断裂韧性为12MPa·m1/2,抗弯强度为1200Mpa。
所述的非氧化物陶瓷的制备方法,包括如下具体步骤:
S1.将Si:Eu2O3:Al2O3:Re2O3按质量比为(60~97):(1~20):(1~10):(1~10)进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上混合,经混料、干燥后,得到混合均匀的Si-Eu2O3-Al2O3-Re2O3混合粉体;
S2.将Si-Eu2O3-Al2O3-Re2O3混合粉体放入热压炉石墨模具进行干压,在气氛为1atm的氮气,无机械加压下,以5~20℃/min的速度升温至1300~1450℃保温0.5~4h进行氮化;接着在机械加压为30MPa,气氛为1atm的氮气下,以5~10℃/min的速度升温至1600~1900℃进行烧结保温0.5~4h,制得高性能的Si3N4陶瓷。
优选地,步骤S1中所述混合的时间为4~12h。
所述的氮化硅陶瓷在LED散热基板、高速切削刀具和轴承领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明采用Eu2O3作为添加剂,以低成本的Si为原料制备高性能氮化硅陶瓷,实现了硅粉的快速完全氮化硅,提高了氮化硅陶瓷的致密化。
2.本发明实现了氮化后以α相氮化硅为原料,显著提高了氮化硅陶瓷的硬度、断裂韧性和弯曲强度。
附图说明
图1为反应热压氮化阶段的XRD图谱。
图2为实施例1中反应热压烧结制得的氮化硅截面SEM照片。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.制备:
(1)以Si粉(粒径<10μm)为基体原料,以Eu2O3粉(粒径为<10μm)、Al2O3粉(纯度为99.9%)和Y2O3粉(纯度为99.9%)为添加剂,按照Si粉质量分数为80%、TiO2质量分数为10%、Al2O3质量分数为5.5%,Y2O3粉的质量分数为4.5%进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上混合8h,经混料、干燥后,得到混合均匀的Si-Eu2O3-Al2O3-Y2O3混合粉体。
(2)将Si-Eu2O3-Al2O3-Y2O3混合粉体放入热压炉石墨模具进行干压,在石墨炉中进行氮化,氮化工艺为:在气氛为1atm的氮气,无机械加压下,以20℃/min的速度升温至1400℃保温2h;接着在机械加压为30MPa,气氛为1atm的氮气下,继续在石墨炉中对完全氮化样品进行烧结,烧结工艺为:以10℃/min的速度升温至1800℃保温2h,制得高性能的Si3N4陶瓷。
2.性能测试:本实施例制得的Si3N4陶瓷的相对密度为99%,Si3N4陶瓷的XRD图谱如图1(b)所示,图1(a)表示相同的硅粉原料,不添加Eu2O3氮化催化剂时,在相同的氮化工艺下氮化后样品的XRD,在图1(a)中还有较多的残留硅粉,对比于图1(a)可知,加入Eu2O3可以实现硅粉的完全氮化,制得的氮化硅截面SEM照片,如图2所示。从图2中可知,制备的Si3N4陶瓷断面主要呈沿晶断裂且存在Si3N4大晶粒,可显著提高陶瓷的断裂韧性。测得Si3N4陶瓷的硬度为18GPa,断裂韧性为12MPa·m1/2,弯曲强度为1000Mpa。
实施例2
1.制备:按照实施例1方法将Si粉质量分数为80%、Eu2O3粉质量分数为10%、Al2O3质量分数为5.4%、Yb2O3粉质量分数为4.5%进行配料,其中氮化温度为1400℃保温2h,然后升温至1700℃保温2h,制备Si3N4陶瓷。
2.性能测试:制备所得Si3N4陶瓷的相对密度为99%,Si3N4陶瓷的硬度为18GPa,断裂韧性为13MPa·m1/2,弯曲强度为1000Mpa,氮化后的XRD如图1(c)中所示。
实施例3
1.制备:按照实施例1方法将Si粉质量分数为70%、Eu2O3粉质量分数为15%、Al2O3-La2O3粉质量分数为10%进行配料,其中Al2O3:La2O3质量分数比为75%:25%,其中氮化温度为1400℃保温2h,然后升温至1900℃保温2h,制备Si3N4陶瓷。
2.性能测试:制备所得Si3N4陶瓷的相对密度为98%,Si3N4陶瓷的硬度为18GPa,断裂韧性为15MPa·m1/2,弯曲强度为1200Mpa,氮化后的XRD如图1(d)中所示。
图1为反应热压氮化阶段的XRD图谱,其中,(a)纯Si粉在1400℃保温2h氮化;(b)Si-5%Eu2O3-Al2O3-Y2O3粉在1400℃保温2h氮化;(c)Si-10%Eu2O3-Al2O3-Y2O粉在1400℃保温2h氮化;(d)Si-15%Eu2O3-Al2O3-Y2O3粉在1400℃保温2h氮化。从图1中可知,在1400℃氮化2h的情况下,硅粉中不掺杂氮化催化剂时无法实现完全氮化,当分别加入5%,10%,15%的Eu2O3时均可以实现硅粉的完全氮化,说明Eu2O3可作为一种有效的氮化催化剂,并且加入5wt%的含量就可以实现硅粉的完全氮化。
实施例4
1.制备:按照实施例1方法将Si粉质量分数为65%、Eu2O3粉质量分数为20%、Al2O3-Lu2O3粉质量分数为15%进行配料,其中Al2O3:Lu2O3质量比为11:9,其中首先升温至1350℃保温1h,然后升温至1750℃保温2h,制备Si3N4陶瓷。
2.性能测试:制备所得Si3N4陶瓷的相对密度为99%,Si3N4陶瓷的硬度为18GPa,断裂韧性为10MPa·m1/2,弯曲强度为800Mpa。
实施例5
1.制备:按照实施例1方法将Si粉质量分数为85%、Eu2O3粉质量分数为10%、Al2O3-Y2O3粉质量分数为5%进行配料,其中Al2O3:Y2O3质量分数比为65%:35%,其中首先升温至1450℃保温0.5h,然后升温至1800℃保温1h,制备Si3N4陶瓷。
2.性能测试:制备所得Si3N4陶瓷的相对密度为97%,Si3N4陶瓷的硬度为19GPa,断裂韧性为13MPa·m1/2,弯曲强度为1400Mpa。
实施例6
1.制备:按照实施例1方法将Si粉质量分数为85%、Eu2O3粉质量分数为7.5%、Al2O3-Nd2O3粉质量分数为7.5%进行配料,其中Al2O3:Nd2O3质量分数比为50%:50%,其中首先升温至1400℃保温2h,然后升温至1800℃保温2h,制备Si3N4陶瓷。
2.性能测试:制备所得Si3N4陶瓷的相对密度为98%,Si3N4陶瓷的硬度为20GPa,断裂韧性为12MPa·m1/2,弯曲强度为1200Mpa。
实施例7
1.制备:按照实施例1方法将Si粉质量分数为90%、Eu2O3粉质量分数为5%、Al2O3-Gde2O3粉质量分数为5%进行配料,其中Al2O3:Gd2O3质量分数比为40%:60%,其中首先升温至1400℃保温2h,然后升温至1900℃保温2h,制备Si3N4陶瓷。
2.性能测试:制备所得Si3N4陶瓷的相对密度为97%,Si3N4陶瓷的硬度为18GPa,断裂韧性为15MPa·m1/2,弯曲强度为1000Mpa。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种高性能氮化硅陶瓷,其特征在于,所述氮化硅陶瓷是将Si、Eu2O3、助剂Al2O3-Re2O3经混料,干燥后得到Si-Eu2O3-Al2O3-Re2O3混合粉体,将Si-Eu2O3-Al2O3-Re2O3混合粉体进行造粒,然后将造粒的粉体进行干压,放入石墨炉中升温Ⅰ至1300~1450℃并保温Ⅰ进行氮化,再采用热压烧结,在气氛为1atm的氮气下,加压到10~30MPa,升温Ⅱ至1600~1900℃并保温Ⅱ制得。
2.根据权利要求1所述的高性能氮化硅陶瓷,其特征在于,所述Re为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu中的一种以上。
3.根据权利要求1所述的高性能氮化硅陶瓷,其特征在于,所述Si:Eu2O3:Al2O3:Re2O3的质量比为(60~97):(1~20):(1~10):(1~10)。
4.根据权利要求3所述的高性能氮化硅陶瓷,其特征在于,所述Si:Eu2O3:Al2O3:Re2O3的质量比为17:1:1.1:0.9,所述Re为Y。
5.根据权利要求3所述的高性能氮化硅陶瓷,其特征在于,所述升温Ⅰ的速率为5~20℃/min;所述保温Ⅰ的时间为0.5~4h;升温Ⅱ的速率为5~10℃/min,所述保温Ⅱ的时间为0.5~4h。
6.根据权利要求1所述的高性能氮化硅陶瓷,其特征在于,所述氮化硅陶瓷的相对密度为95~99.9%,硬度为15~22GPa,断裂韧性为8~15MPa·m1/2,抗弯强度为800~1500Mpa。
7.根据权利要求6所述的高性能氮化硅陶瓷,其特征在于,所述氮化硅陶瓷的相对密度为99%,硬度为18GPa,断裂韧性为12MPa·m1/2,抗弯强度为1200Mpa。
8.根据权利要求1-7任一项所述的氮化硅陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.将Si:Eu2O3:Al2O3:Re2O3按质量比为(60~97):(1~20):(1~10):(1~10)进行配料,以乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上混合,经混料干燥后,得到混合均匀的Si-Eu2O3-Al2O3-Re2O3混合粉体;
S2.将Si-Eu2O3-Al2O3-Re2O3混合粉体放入热压炉石墨模具进行干压,在气氛为1atm的氮气,无机械加压下,以5~20℃/min的速率升温至1300~1450℃保温0.5~4h进行氮化;接着在机械加压为30MPa,气氛为1atm的氮气下,以5~10℃/min的速率升温至1600~1900℃进行烧结保温0.5~4h,制得高性能的Si3N4陶瓷。
9.根据权利要求8所述的氮化硅陶瓷的制备方法,其特征在于,步骤S1中所述混合的时间为4~12h。
10.权利要求1-7任一项所述的氮化硅陶瓷在LED散热基板、高速切削刀具和轴承领域中的应用。
CN201811133956.3A 2018-09-27 2018-09-27 一种高性能氮化硅陶瓷及其制备方法和应用 Pending CN109400176A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811133956.3A CN109400176A (zh) 2018-09-27 2018-09-27 一种高性能氮化硅陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811133956.3A CN109400176A (zh) 2018-09-27 2018-09-27 一种高性能氮化硅陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN109400176A true CN109400176A (zh) 2019-03-01

Family

ID=65465363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811133956.3A Pending CN109400176A (zh) 2018-09-27 2018-09-27 一种高性能氮化硅陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109400176A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550957A (zh) * 2019-08-21 2019-12-10 广东工业大学 一种原位合成氮化硅/硼化锆复相陶瓷及其制备方法和应用
CN111533561A (zh) * 2020-07-06 2020-08-14 佛山华骏特瓷科技有限公司 氮化硅基陶瓷球及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569745A (zh) * 2004-01-19 2005-01-26 中国科学院上海硅酸盐研究所 稀土离子稳定的阿尔发赛隆粉体的自蔓延合成方法
CN104163633A (zh) * 2014-07-04 2014-11-26 广东工业大学 一种低成本、快速制备高导热Si3N4陶瓷的方法
CN104909765A (zh) * 2015-06-01 2015-09-16 广东工业大学 一种低成本、快速制备高性能Si3N4陶瓷球的方法
CN105622107A (zh) * 2015-12-23 2016-06-01 广东工业大学 一种表硬心韧高性能Si3N4梯度陶瓷球材料的制备方法
CN109206141A (zh) * 2018-08-27 2019-01-15 广东工业大学 一种高硬高韧氮化硅陶瓷及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569745A (zh) * 2004-01-19 2005-01-26 中国科学院上海硅酸盐研究所 稀土离子稳定的阿尔发赛隆粉体的自蔓延合成方法
CN104163633A (zh) * 2014-07-04 2014-11-26 广东工业大学 一种低成本、快速制备高导热Si3N4陶瓷的方法
CN104909765A (zh) * 2015-06-01 2015-09-16 广东工业大学 一种低成本、快速制备高性能Si3N4陶瓷球的方法
CN105622107A (zh) * 2015-12-23 2016-06-01 广东工业大学 一种表硬心韧高性能Si3N4梯度陶瓷球材料的制备方法
CN109206141A (zh) * 2018-08-27 2019-01-15 广东工业大学 一种高硬高韧氮化硅陶瓷及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴利翔: "反应结合重烧结Si3N4陶瓷的快速制备与性能研究", 《广东工业大学硕士学位论文》 *
邹强等: "Si3N4陶瓷烧结中烧结助剂的研究进展", 《硅酸盐通报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550957A (zh) * 2019-08-21 2019-12-10 广东工业大学 一种原位合成氮化硅/硼化锆复相陶瓷及其制备方法和应用
CN111533561A (zh) * 2020-07-06 2020-08-14 佛山华骏特瓷科技有限公司 氮化硅基陶瓷球及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN104909765B (zh) 一种低成本、快速制备高性能Si3N4陶瓷球的方法
CN102115332B (zh) 一种高强度β-SiAlON陶瓷及其无压烧结制备方法
CN105541341A (zh) 一种添加复合助剂制备高致密度氮化硅陶瓷的方法
CN110590377B (zh) 一种高β相致密氮化硅陶瓷及低温制备方法
CN110818428B (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN101215173A (zh) 一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法
JPH0812440A (ja) 窒化ホウ素含有材料およびその製造方法
CN104163633A (zh) 一种低成本、快速制备高导热Si3N4陶瓷的方法
CN109206141A (zh) 一种高硬高韧氮化硅陶瓷及其制备方法和应用
CN104045350A (zh) 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法
CN1830899B (zh) 一种碳化硼稀土复合陶瓷材料的制备方法
CN110627507B (zh) 一种低温碳化硅陶瓷及其制备方法和应用
JP5046221B2 (ja) 高い信頼性を持つ高熱伝導窒化ケイ素セラミックスの製造方法
CN102976760A (zh) 添加稀土氧化物的硼化锆-碳化硅复相陶瓷材料及其制备方法
Lao et al. Effects of various sintering additives on the properties of β-SiAlON–SiC ceramics obtained by liquid phase sintering
CN109400176A (zh) 一种高性能氮化硅陶瓷及其制备方法和应用
CN106747433B (zh) 氧化锆基纳米陶瓷工模具材料及其制备方法
CN101186506B (zh) 利用富硼渣制备氮化硼/赛隆陶瓷复合材料的方法
CN109942310B (zh) 一种高性能氮化硅多孔陶瓷的制备方法
HIROSAKI et al. Dense silicon nitride containing low amounts of Y2O3 and Nd2O3
CN115385698A (zh) 一种具有织构化的硼化物/氮化硅复合陶瓷及其制备方法和应用
CN109970454A (zh) 一种过渡金属氧化物抑制氮化硅相变的方法及其制得的氮化硅陶瓷
CN110483062A (zh) 一种高性能氮化硅陶瓷及其制备方法和应用
CN101955357B (zh) 可加工复相陶瓷材料及其制备方法和二次硬化热处理方法
CN103848639A (zh) 一种氮化硅增韧陶瓷

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190301