CN113526954B - 一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法 - Google Patents

一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法 Download PDF

Info

Publication number
CN113526954B
CN113526954B CN202110925857.4A CN202110925857A CN113526954B CN 113526954 B CN113526954 B CN 113526954B CN 202110925857 A CN202110925857 A CN 202110925857A CN 113526954 B CN113526954 B CN 113526954B
Authority
CN
China
Prior art keywords
powder
ceramic
rare earth
earth zirconate
site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110925857.4A
Other languages
English (en)
Other versions
CN113526954A (zh
Inventor
冯晶
陈琳
李柏辉
郭俊
王建坤
张陆洋
徐浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202110925857.4A priority Critical patent/CN113526954B/zh
Publication of CN113526954A publication Critical patent/CN113526954A/zh
Application granted granted Critical
Publication of CN113526954B publication Critical patent/CN113526954B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷及其制备方法。所述稀土锆酸盐陶瓷包括化学式为A2B2O7的物质;其中A位阳离子为Sc、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb和Lu中的四种或四种以上金属阳离子的混合,A位内不同金属阳离子具有相同摩尔含量;B位阳离子为Ti、Hf、Sn、Th和Ce中的三种或三种以上金属阳离子与Zr离子的混合,B位内不同金属阳离子具有相同摩尔含量。本发明所制备的稀土锆酸盐陶瓷具有热导率低、硬度高、断裂韧性优异、物相纯度高和致密度高等特点。

Description

一种高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷及其制备方法
技术领域
本发明属于材料科学与工程技术领域,具体涉及一种高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷及其制备方法。
背景技术
高温结构陶瓷要求材料具有高熔点、优异的高温稳定性、突出的力学性质(高硬度、高杨氏模量和高断裂韧性)和化学稳定性等特点,满足上述各种不同条件的情况下材料制备成本低、制备工艺简单和原料来源广等优势将促进材料的大规模应用。
萤石型和焦绿石型结构的稀土氧化物陶瓷材料目前已经在许多领域获得应用,如高温叶片表面防护涂层、火箭发动机防护涂层和耐酸碱腐蚀防护、固态氧化物燃料电池、核废料存储器和耐磨涂层等方面。
当前萤石型和焦绿石型结构的稀土锆酸盐氧化物陶瓷材料存在的问题主要是高温稳定性差,在1500℃以上温度会发生相变;抗核辐射性能差,无法长时间作为核废料存储器材使用;作为热障涂层使用时高温热导率高、热膨胀系数不足;作为固态氧化物燃料电池使用时氧传输能力不足等。
为了解决以上问题需要提高材料中的晶格点缺陷浓度、高温稳定性并优化其他热学性质,同时力学性质如高硬度和高断裂韧性作为结构陶瓷材料的关键参数也必须得到满足。
发明内容
本发明的目的是提供一种高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷及其制备方法,制备具有热导率低、硬度高、断裂韧性优异、物相纯度高和致密度高等特点的稀土锆酸盐陶瓷。
为了实现以上目的,本发明采用的技术方案:
本发明公开了一种高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷,所述稀土锆酸盐陶瓷包括化学式为A2B2O7的物质;其中A位阳离子为Sc、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb和Lu中的四种或四种以上金属阳离子的混合,A位内不同金属阳离子具有相同摩尔含量;B位阳离子为Ti、Hf、Sn、Th和Ce中的三种或三种以上金属阳离子与Zr离子的混合,B位内不同金属阳离子具有相同摩尔含量。
本发明还公开了一种高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷的制备方法,包括以下步骤:
(1)按照A2B2O7的化学式分别计量称取A2O3和BO2氧化物,然后升温去除有机杂质并降低原料粉末的反应活性,冷却降温后得到粉末C;
(2)将粉末C球磨混料、干燥、过筛,得到粉末D;
(3)将粉末D进行放电等离子烧结,得到烧结后的块体陶瓷;
(4)将烧结后的块体陶瓷进行升温除碳处理,得到所述稀土锆酸盐陶瓷。
作为优选的技术方案,所述步骤(1)中,将原料粉末置于600-1200℃温度下保温2-10小时,去除有机杂质并降低原料粉末的反应活性。
作为优选的技术方案,所述步骤(3)中,放电等离子烧结的温度为1200-1600℃,压力为100-200MPa,时间为5-15min。
作为优选的技术方案,所述步骤(4)中,将烧结后的块体陶瓷在1000-1500℃温度下保温2-5小时进行升温除碳处理。
本发明的有益效果:
1、针对当前萤石型和焦绿石型结构的A2B2O7稀土锆酸盐陶瓷材料存在的高温稳定性差、高温热导率高、热膨胀系数不足、断裂韧性差等问题,本发明以熵稳定晶格作为理论基础,提供了高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷及其制备方法,在A位和B位同时引入不同类型的金属阳离子,并且同一阳离子位置处的不同金属阳离子具有相同摩尔含量,将晶格的构型熵最大化,从而最大发挥熵稳定晶格的作用,将构型熵最大化能够有效降低材料烧结所需温度,并结合快速高温高压烧结抑制晶粒长大,利用晶粒细化和固溶强化机制提高材料断裂韧性。
2、本发明在A位和B位阳离子处同时进行高熵稳定处理,利用阳离子位置处的原子尺寸和原子质量无序性提高声子散射降低材料热导率,利用晶格松弛提高材料热膨胀系数。
3、本发明所制备的稀土锆酸盐陶瓷具有热导率低、硬度高、断裂韧性优异、物相纯度高和致密度高等特点,可应用于热障涂层、环境障涂层、固态氧化物燃料电池和核废料储存器等领域。
附图说明
图1为实施例1制得的(La1/5Eu1/5Gd1/5Dy1/5Ho1/5)2(Ce1/5Sn1/5Ti1/5Zr1/5Hf1/5)2O7陶瓷的XRD衍射图;
图2为实施例1制得的(La1/5Eu1/5Gd1/5Dy1/5Ho1/5)2(Ce1/5Sn1/5Ti1/5Zr1/5Hf1/5)2O7陶瓷的热导率随温度的变化趋势图;
图3为实施例1-6制得的陶瓷的硬度和断裂韧性变化趋势图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步阐述。
实施例1
(1)按照A2B2O7的化学式分别计量称取A2O3和BO2氧化物,其中A为La、Eu、Gd、Dy和Ho的混合并且具有相同摩尔含量,B为Ce、Sn、Ti、Zr和Hf的混合并且具有相同摩尔含量,随后置于高温炉中在900℃保温2小时去除粉末中含有的有机杂质并降低原料粉末的反应活性,冷却降温后得到粉末C。
(2)将粉末C、酒精和氧化锆磨球按照1:2:3的质量比置于球磨罐中进行球磨混料,球磨时转速为300转每分钟,球磨时间12小时,随后将混合均匀粉末在90℃保温8小时进行干燥处理,最终过筛300目得到粉末D。
(3)将粉末D置于石墨模具进行研制成形,随后置于放电等离子烧结系统进行高温高压烧结,烧结条件为1400℃-150MPa-10min,得到烧结后的块体陶瓷。
(4)将烧结后的块体陶瓷在1400℃下保温2小时进行升温除碳处理,得到致密的单相焦绿石型结构的(La1/5Eu1/5Gd1/5Dy1/5Ho1/5)2(Ce1/5Sn1/5Ti1/5Zr1/5Hf1/5)2O7陶瓷。
实施例2
(1)按照A2B2O7的化学式分别计量称取A2O3和BO2氧化物,其中A为Eu、Gd、Dy和Ho的混合并且具有相同摩尔含量,B为Ce、Sn、Ti、Zr和Hf的混合并且具有相同摩尔含量,随后置于高温炉中在600℃保温10小时去除粉末中含有的有机杂质并降低原料粉末的反应活性,冷却降温后得到粉末C。
(2)将粉末C、酒精和氧化锆磨球按照1:2:3的质量比置于球磨罐中进行球磨混料,球磨时转速为500转每分钟,球磨时间6小时,随后将混合均匀粉末在100℃保温4小时进行干燥处理,最终过筛200目得到粉末D。
(3)将粉末D置于石墨模具进行研制成形,随后置于放电等离子烧结系统进行高温高压烧结,烧结条件为1200℃-200MPa-15min,得到烧结后的块体陶瓷。
(4)将烧结后的块体陶瓷在1000℃下保温5小时进行升温除碳处理,得到致密的单相焦绿石型结构的(Eu1/4Gd1/4Dy1/4Ho1/4)2(Ce1/5Sn1/5Ti1/5Zr1/5Hf1/5)2O7陶瓷。
实施例3
(1)按照A2B2O7的化学式分别计量称取A2O3和BO2氧化物,其中A为La、Sm、Eu、Gd、Dy和Ho的混合并且具有相同摩尔含量,B为Sn、Ti、Zr和Hf的混合并且具有相同摩尔含量,随后置于高温炉中在1200℃保温2小时去除粉末中含有的有机杂质并降低原料粉末的反应活性,冷却降温后得到粉末C。
(2)将粉末C、酒精和氧化锆磨球按照1:2:3的质量比置于球磨罐中进行球磨混料,球磨时转速为340转每分钟,球磨时间8小时,随后将混合均匀粉末在70℃保温10小时进行干燥处理,最终过筛500目得到粉末D。
(3)将粉末D置于石墨模具进行研制成形,随后置于放电等离子烧结系统进行高温高压烧结,烧结条件为1600℃-100MPa-5min,得到烧结后的块体陶瓷。
(4)将烧结后的块体陶瓷在1500℃下保温2小时进行升温除碳处理,得到致密的单相焦绿石型结构的(La1/6Sm1/6Eu1/6Gd1/6Dy1/6Ho1/6)2(Sn1/4Ti1/4Zr1/4Hf1/4)2O7陶瓷。
实施例4
(1)按照A2B2O7的化学式分别计量称取A2O3和BO2氧化物,其中A为La、Eu、Gd、Dy和Ho的混合并且具有相同摩尔含量,B为Th、Sn、Ti、Zr和Hf的混合并且具有相同摩尔含量,随后置于高温炉中在800℃保温8小时去除粉末中含有的有机杂质并降低原料粉末的反应活性,冷却降温后得到粉末C。
(2)将粉末C、酒精和氧化锆磨球按照1:2:3的质量比置于球磨罐中进行球磨混料,球磨时转速为460转每分钟,球磨时间5小时,随后将混合均匀粉末在80℃保温9小时进行干燥处理,最终过筛350目得到粉末D。
(3)将粉末D置于石墨模具进行研制成形,随后置于放电等离子烧结系统进行高温高压烧结,烧结条件为1450℃-180MPa-10min,得到烧结后的块体陶瓷。
(4)将烧结后的块体陶瓷在1350℃下保温4小时进行升温除碳处理,得到致密的单相焦绿石型结构的(La1/5Eu1/5Gd1/5Dy1/5Ho1/5)2(Th1/5Sn1/5Ti1/5Zr1/5Hf1/5)2O7陶瓷。
实施例5
(1)按照A2B2O7的化学式分别计量称取A2O3和BO2氧化物,其中A为Y、Lu、Eu、Gd、Dy和Yb的混合并且具有相同摩尔含量,B为Th、Sn、Ti、Zr和Hf的混合并且具有相同摩尔含量,随后置于高温炉中在980℃保温7小时去除粉末中含有的有机杂质并降低原料粉末的反应活性,冷却降温后得到粉末C。
(2)将粉末C、酒精和氧化锆磨球按照1:2:3的质量比置于球磨罐中进行球磨混料,球磨时转速为300转每分钟,球磨时间9小时,随后将混合均匀粉末在90℃保温10小时进行干燥处理,最终过筛500目得到粉末D。
(3)将粉末D置于石墨模具进行研制成形,随后置于放电等离子烧结系统进行高温高压烧结,烧结条件为1500℃-150MPa-10min,得到烧结后的块体陶瓷。
(4)将烧结后的块体陶瓷在1250℃下保温2小时进行升温除碳处理,得到致密的单相焦绿石型结构的(Y1/6Lu1/6Eu1/6Gd1/6Dy1/6Yb1/6)2(Th1/5Sn1/5Ti1/5Zr1/5Hf1/5)2O7陶瓷。
实施例6
(1)按照A2B2O7的化学式分别计量称取A2O3和BO2氧化物,其中A为Yb、Tm、Er、Gd、Dy和Ho的混合并且具有相同摩尔含量,B为Ce、Th、Sn、Ti、Zr和Hf的混合并且具有相同摩尔含量,随后置于高温炉中在1000℃保温3小时去除粉末中含有的有机杂质并降低原料粉末的反应活性,冷却降温后得到粉末C。
(2)将粉末C、酒精和氧化锆磨球按照1:2:3的质量比置于球磨罐中进行球磨混料,球磨时转速为500转每分钟,球磨时间3小时,随后将混合均匀粉末在90℃保温5小时进行干燥处理,最终过筛500目得到粉末D。
(3)将粉末D置于石墨模具进行研制成形,随后置于放电等离子烧结系统进行高温高压烧结,烧结条件为1400℃-160MPa-12min,得到烧结后的块体陶瓷。
(4)将烧结后的块体陶瓷在1350℃下保温3小时进行升温除碳处理,得到致密的单相焦绿石型结构的(Yb1/6Tm1/6Er1/6Gd1/6Dy1/6Ho1/6)2(Ce1/6Th1/6Sn1/6Ti1/6Zr1/6Hf1/6)2O7陶瓷。
图1为实施例1制得的(La1/5Eu1/5Gd1/5Dy1/5Ho1/5)2(Ce1/5Sn1/5Ti1/5Zr1/5Hf1/5)2O7陶瓷的XRD衍射图,从图中可以看出,该陶瓷物相纯度高,无析出相/第二相产生。
图2为实施例1制得的(La1/5Eu1/5Gd1/5Dy1/5Ho1/5)2(Ce1/5Sn1/5Ti1/5Zr1/5Hf1/5)2O7陶瓷的热导率随温度的变化趋势图,从图中可以看出,在室温至1000℃的温度范围内热导率随着温度的升高略微增大,并在温度超过400℃后趋于稳定,所制备材料的热导率为0.8-1.1W·m-1·K-1,远远低于单稀土元素的RE2Zr2O7、RE2Hf2O7和RE2Ti2O7等陶瓷材料(1.3-2.5W·m-1·K-1)。
图3为实施例1-6制得的陶瓷的硬度和断裂韧性变化趋势图,实施例1-6制得的陶瓷分别对应试样1-6,从图中可以看出,实施例1-6制得的陶瓷在保持A2B2O7型稀土锆酸盐陶瓷高硬度的同时,通过细晶强化和固溶强化的方式提高了材料的断裂韧性(2.0-2.8MPa·m0.5),单稀土元素的A2B2O7型陶瓷断裂韧性约为1.0MPa·m0.5
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.一种高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷,其特征在于:所述稀土锆酸盐陶瓷包括化学式为(Yb1/6Tm1/6Er1/6Gd1/6Dy1/6Ho1/6)2(Ce1/6Th1/6Sn1/6Ti1/6Zr1/6Hf1/6)2O7的物质;其中A位阳离子为Gd、Dy、Ho、Er、Tm和Yb离子的混合,A位内不同金属阳离子具有相同摩尔含量;B位阳离子为Ti、Hf、Sn、Th、Ce和Zr离子的混合,B位内不同金属阳离子具有相同摩尔含量;
其由如下方法制备而成:
(1)按照A 2 B 2O7的化学式分别计量称取A 2O3BO2氧化物,然后升温去除有机杂质并降低原料粉末的反应活性,冷却降温后得到粉末C;
(2)将粉末C球磨混料、干燥、过筛,得到粉末D;
(3)将粉末D进行放电等离子烧结,得到烧结后的块体陶瓷;
(4)将烧结后的块体陶瓷进行升温除碳处理,得到所述稀土锆酸盐陶瓷。
2.权利要求1所述的高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷的制备方法,其特征在于:包括以下步骤:
(1)按照A 2 B 2O7的化学式分别计量称取A 2O3BO2氧化物,然后升温去除有机杂质并降低原料粉末的反应活性,冷却降温后得到粉末C;
(2)将粉末C球磨混料、干燥、过筛,得到粉末D;
(3)将粉末D进行放电等离子烧结,得到烧结后的块体陶瓷;
(4)将烧结后的块体陶瓷进行升温除碳处理,得到所述稀土锆酸盐陶瓷。
3.根据权利要求2所述的高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷的制备方法,其特征在于:所述步骤(1)中,将原料粉末置于600-1200℃温度下保温2-10小时,去除有机杂质并降低原料粉末的反应活性。
4.根据权利要求2所述的高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷的制备方法,其特征在于:所述步骤(3)中,放电等离子烧结的温度为1200-1600℃,压力为100-200MPa,时间为5-15min。
5.根据权利要求2所述的高熵同时稳定A位和B位阳离子的稀土锆酸盐陶瓷的制备方法,其特征在于:所述步骤(4)中,将烧结后的块体陶瓷在1000-1500℃温度下保温2-5小时进行升温除碳处理。
CN202110925857.4A 2021-08-12 2021-08-12 一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法 Active CN113526954B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110925857.4A CN113526954B (zh) 2021-08-12 2021-08-12 一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110925857.4A CN113526954B (zh) 2021-08-12 2021-08-12 一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN113526954A CN113526954A (zh) 2021-10-22
CN113526954B true CN113526954B (zh) 2023-04-11

Family

ID=78122383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110925857.4A Active CN113526954B (zh) 2021-08-12 2021-08-12 一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113526954B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230242457A1 (en) * 2022-02-01 2023-08-03 General Electric Company Composition
CN115572162A (zh) * 2022-04-29 2023-01-06 厦门稀土材料研究所 一种堆用中子控制用稀土中高熵铪酸盐陶瓷材料
CN115073174B (zh) * 2022-05-07 2023-04-18 昆明理工大学 一种致密高熵稀土铌酸盐高温陶瓷材料、制备方法及应用
CN114835492A (zh) * 2022-05-18 2022-08-02 厦门稀土材料研究所 一种稀土基锆铪复合陶瓷材料及其制备方法和应用
CN114956820A (zh) * 2022-05-31 2022-08-30 西北工业大学 一种稀土复合氧化物多孔高熵陶瓷及其制备方法和应用
CN115093218B (zh) * 2022-07-20 2023-08-15 内蒙古科技大学 一种锆酸盐陶瓷材料及其制备方法和应用
CN115894029B (zh) * 2023-01-03 2023-09-01 中国科学院新疆理化技术研究所 基于高熵稀土锆酸盐的氧不敏感型负温度系数热敏材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009000553B4 (de) * 2009-02-02 2012-12-06 Schott Ag Aktive Optokeramiken mit kubischer Kristallstruktur, deren Herstellung und Verwendungen
CN107892570B (zh) * 2017-11-13 2021-04-13 南京工业大学 一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法
CN111533557B (zh) * 2020-03-27 2021-11-09 东华大学 一种焦绿石型高熵氧化物固化体及其制备方法
CN112661511A (zh) * 2021-01-13 2021-04-16 中国人民解放军国防科技大学 一种掺杂改性的稀土锆酸盐粉体及其制备方法和应用
CN113023776B (zh) * 2021-03-10 2022-07-19 上海交通大学 一种热障涂层用萤石结构高熵氧化物粉体及其制备方法

Also Published As

Publication number Publication date
CN113526954A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN113526954B (zh) 一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法
CN113264769B (zh) 一种高熵稳定稀土钽酸盐/铌酸盐陶瓷及其制备方法
Chandratreya et al. Reaction mechanisms in the formation of PZT solid solutions
Wang et al. Silicon nitride crystal structure and observations of lattice defects
Maître et al. Effect of silica on the reactive sintering of polycrystalline Nd: YAG ceramics
CN113354414A (zh) 一种熵稳定re2o3-ao2-b2o5氧化物陶瓷及其制备方法
Li et al. Transparent Nd: YAG ceramics fabricated using nanosized γ‐alumina and Yttria powders
Wu et al. Theoretical and experimental investigations of mechanical properties for polymorphous YTaO4 ceramics
Yang et al. Optical, thermal, and mechanical properties of (Y1− x Sc x) 2O3 transparent ceramics
Duan et al. High thermal conductivity silicon nitride ceramics prepared by pressureless sintering with ternary sintering additives
CN108439977B (zh) 一种高温低热导氧化铪基热障涂层材料及其制备方法
Kosyanov et al. Effect of Nd3+ ions on phase transformations and microstructure of 0–4 at.% Nd3+: Y3Al5O12 transparent ceramics
WO2010004862A1 (ja) 酸化物焼結体、同焼結体からなるスパッタリングターゲット、同焼結体の製造方法及び同焼結体スパッタリングターゲットゲートの製造方法
Das et al. Synthesis and flash sintering of zirconium nitride powder
Zhou et al. Annealing induced discoloration of transparent YAG ceramics using divalent additives in solid-state reaction sintering
Duan et al. Effect of MgO doping on densification and grain growth behavior of Gd 2 Zr 2 O 7 ceramics by microwave sintering process
Qiao et al. Structure, mechanical properties, and thermal conductivity of BaZrO3 doped at the AB site
Jia et al. Design and synthesis of high-entropy pyrochlore ceramics based on valence combination
Lan et al. Low-temperature synthesis of K0. 5Na0. 5NbO3 ceramics in a wide temperature window via cold-sintering assisted sintering method and enhanced electrical properties
Mandal et al. Preparation of Multiple‐Cation alpha‐SiAlON Ceramics Containing Lanthanum
Zhang et al. Effects of different types of sintering additives and post-heat treatment (PHT) on the mechanical properties of SHS-fabricated Si3N4 ceramics
Yang et al. Rapid preparation of Gd2Zr2− xCexO7 waste forms by flash sintering and their chemical durability
Huang et al. Effect of a new nonoxide additive, Y3Si2C2, on the thermal conductivity and mechanical properties of Si3N4 ceramics
Wang et al. Effects of YH2 addition on pressureless sintered AlN ceramics
Tong et al. Densification and mechanical properties of YAG ceramics fabricated by air pressureless sintering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant