CN107892570B - 一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法 - Google Patents

一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN107892570B
CN107892570B CN201711117936.2A CN201711117936A CN107892570B CN 107892570 B CN107892570 B CN 107892570B CN 201711117936 A CN201711117936 A CN 201711117936A CN 107892570 B CN107892570 B CN 107892570B
Authority
CN
China
Prior art keywords
ceramic material
lanthanum zirconate
barium titanate
batio
doped modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711117936.2A
Other languages
English (en)
Other versions
CN107892570A (zh
Inventor
桑玲玲
冯永宝
杨建�
古加林
尹清川
李晓云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201711117936.2A priority Critical patent/CN107892570B/zh
Publication of CN107892570A publication Critical patent/CN107892570A/zh
Application granted granted Critical
Publication of CN107892570B publication Critical patent/CN107892570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法。所述陶瓷材料先采用固相反应法合成(La1‑xYx)2(Zr0.7Ce0.3)2O7前驱体粉末,再添加BaTiO3二次球磨后压片成型,在1600℃下烧结,获得均匀致密、热导率低、抗弯强度高的锆酸镧陶瓷材料。本发明基于热导率较低的锆酸镧材料,并采用Y和Ce取代合成特定化学组成比的前驱体,添加BaTiO3后高温烧结,工艺简单,所得到的陶瓷材料烧结致密度高,抗弯强度提高65%~227%;热导率在1.20~1.50W·m‑1·K‑1之间,可在行波管收集极、燃气轮机等器件中起隔热保护作用,同时延长器件的使用寿命。

Description

一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法
技术领域
本发明涉及一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法,属于隔热材料制备技术领域。
背景技术
行波管的收集极用来收集已经和电磁场交换能量完毕后的电子,此时的电子依旧有很高的速度,会打在收集极上产生热量。为隔离收集极管外高温热量传输至慢波管,需使用高抗弯强度低热导率隔热结构材料,以保持微波管正常可靠地工作。
目前报道的致密隔热材料为用于燃气机内壁的高温涂层隔热材料。这种高温隔热材料是稀土锆酸盐材料,其热导率低,因此广泛用作高温涂层隔热材料,从而提高燃气动力设备的工作效率及使用寿命。稀土锆酸盐材料是从氧化钇稳定氧化锆材料(YSZ)发展而来的,与之前普遍被使用的氧化钇稳定氧化锆材料相比,稀土锆酸镧材料具有更低的热导率,现有技术制备的稀土锆酸镧隔热材料的热导率多为2.00~4.00W·m-1·K-1,所制备的涂层致密性较低,易产生裂纹,一般报道称抗弯强度较低,但是此类材料的致密性及抗弯强度均鲜有研究报道。
稀土锆酸镧材料更加适用于高温环境,是一种新型的高温隔热材料,具有广阔的市场前景。为了获得高抗弯强度低热导率隔热结构材料,需要保持或改善稀土锆酸镧材料的低热导率,同时提高其抗弯强度。
发明内容
本发明的目的在于针对现有隔热陶瓷材料存在的问题,尤其是热导率较高、抗弯强度较低,因而在行波管收集极中应用受到限制的问题,提供一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法,其工艺简单,制备的陶瓷材料低热导率、抗弯强度显著提高、结构均匀致密。
本发明基于热导率较低的锆酸镧材料,并采用Y在La位部分取代,Ce在Zr位部分取代,通过固相反应法合成特定化学组成比的(La1-xYx)2(Zr0.7Ce0.3)2O7前驱体,在此基础上添加BaTiO3后高温烧结,在保证较低的热导率的同时,提高抗弯强度,制备出更均匀致密的隔热陶瓷。
为实现本发明的目的,所采用的技术方案如下:
一种钛酸钡掺杂改性锆酸镧陶瓷材料,其特征在于,所述的陶瓷材料为采用固相反应法合成得到的化学组成比为(La1-xYx)2(Zr0.7Ce0.3)2O7的前驱体添加BaTiO3后的烧结体,所述的前驱体中,x的取值范围为0≤x<0.75;所述BaTiO3的添加量为所述前驱体质量的5~15%。
所述的(La1-xYx)2(Zr0.7Ce0.3)2O7前驱体基于锆酸镧材料,并通过特定组成比的Y在La位取代、Ce在Zr位取代以得到较低的热导率。有关(La1-xYx)2(Zr0.7Ce0.3)2O7的配比范围以及对应的热导率,如下表所示:
表1(La1-xYx)2(Zr0.7Ce0.3)2O7(x=0、0.25、0.5、0.75、1)的热导率
x 0 0.25 0.5 0.75 1
热导率/(W·m<sup>-1</sup>·K<sup>-1</sup>) 1.31 1.26 1.82 2.04 2.20
为了追求较低的热导率,优选x的范围是0.1~0.5之间。从热导率上看,x的范围大于0.5时,材料的热导率已经向2W·m-1·K-1趋近;从抗弯强度来看,当x的范围小于0.1时,陶瓷材料由于气孔较多,致密性较差,抗弯强度差,随着Y2O3含量的增加,有利于陶瓷材料向均匀致密发展,所以综合考虑,x的取值范围为0.1~0.5。
优选地,所述陶瓷材料的显气孔率低至0.30~0.48%;热导率为1.20~1.50W·m-1·K-1
本发明还涉及所述钛酸钡掺杂改性锆酸镧陶瓷材料的制备方法,其特征在于,首先采用固相反应法合成化学组成为(La1-xYx)2(Zr0.7Ce0.3)2O7的前驱体粉末,其中0≤x<0.75;再添加前驱体质量5~15%的BaTiO3,经球磨、成型后烧结,制得所述钛酸钡掺杂改性锆酸镧陶瓷材料。
具体地,所述方法包括如下步骤:
a.按照化学组成比分别称量La2O3、Y2O3、ZrO2和CeO2,按照球磨体:上述四种原料:酒精=1∶2∶1的比例关系(质量比)在球磨罐中混合;
b.在球磨机上混合6~12h,得到均匀混合浆体;
c.在60~80℃下干燥10~16h,得到干燥粉末;
d.将干燥粉末在1300~1400℃温度下,煅烧合成2~4h,即为通过固相反应法获得的前驱体粉体;
e.按照添加量添加BaTiO3,进行二次球磨、干燥;
f.添加聚乙烯醇(PVA)水溶液造粒;
g.先预压成型,然后等静压成型;
h.程序升温至1600~1680℃温度下,常压烧结3~7h。
进一步地,所述x的取值范围为0.1~0.5。
进一步地,所述步骤h中,程序升温条件具体如下:在室温至200℃保持2℃/min的速率升温,在200℃~1500℃保持5℃/min的速率升温,在1500℃以上保持2℃/min的速率升温;其中,分别在150℃、350℃、520℃三个温度下各保温30min。
进一步地,所述La2O3、Y2O3、ZrO2、CeO2和BaTiO3均为商业化原料,平均粒径均在0.5~10μm之间。
有益效果:本发明基于热导率较低的锆酸镧材料,以Y在La位取代、Ce在Zr位取代,通过固相反应法合成特定化学组成比的(La1-xYx)2(Zr0.7Ce0.3)2O7前驱体,添加BaTiO3后高温烧结,在保证较低的热导率的同时,提高抗弯强度,制备出更均匀致密的隔热陶瓷。
(1)采用固相反应先合成热导率较低的前驱体粉末,再添加BaTiO3球磨干燥造粒压片烧结,工艺简单,操作方便;
(2)本发明获得了低热导率、抗弯强度显著增强、均匀致密的钛酸钡掺杂改性锆酸镧陶瓷材料。其中,所述陶瓷材料的气孔率低至0.30~0.48%;抗弯强度显著提高65~227%;热导率在1.20~1.50W·m-1·K-1之间,可用于行波管收集极保护高温器件,同时延长器件的使用寿命。
(3)此外,本发明制备的材料的烧结温度为1600℃,并保温7h,在使用温度环境600~700℃下不发生晶型转变,热稳定性较强。
附图说明
图1为本发明添加15wt%BaTiO3的(La0.75Y0.25)2(Zr0.7Ce0.3)2O7前驱体球磨、干燥、造粒后的TG-DSC图;
图2为本发明的La2Zr2O7和(La1-xYx)2(Zr0.7Ce0.3)2O7(x=0.25、0.5、0.75、1)陶瓷的XRD图谱;
图3为本发明的钛酸钡掺杂改性锆酸镧陶瓷断面的SEM图:(a)为在(La0.75Y0.25)2(Zr0.7Ce0.3)2O7加入15wt%BaTiO3后烧结体断面放大10000倍的SEM图;(b)为(La0.75Y0.25)2(Zr0.7Ce0.3)2O7加入15wt%BaTiO3后烧结体断面放大5000倍的SEM图;
图4为在(La0.75Y0.25)2(Zr0.7Ce0.3)2O7粉末中添加不同质量BaTiO3后烧结所得到的陶瓷材料的热导率以及抗弯强度对比图。
具体实施方式
下面通过具体实施例对本发明所述的技术方案给予进一步详细的说明,但有必要指出以下实施例只用于对发明内容的描述,并不构成对本发明保护范围的限制。
图1是添加15wt%BaTiO3的(La0.75Y0.25)2(Zr0.7Ce0.3)2O7球磨干燥粉末造粒后的TG-DSC图,聚乙烯醇(PVA)的放热峰在299.64℃,氧化镧水解反应后的氢氧化镧脱水温度在356.72℃,碳酸镧高温分解温度在529.43℃。在150℃、350℃和520℃各保温半个小时,通过保温使PVA慢慢分解,有利于样品的力学性能得到保证。同时,全过程总失重达到7.12%,前期失重较快,考虑主要是粉末中吸附水分解,达到0.71%,PVA溶液中H2O的分解,达到了3.97%。中间时段的失重是由于氢氧化镧脱水造成的,达到1.61%。0.83%的失重考虑是由于造粒过程中暴露在空气中的粉料吸收了CO2,生成的La2(CO3)3向La2O3的转化造成的。
图2为La2Zr2O7和(La1-xYx)2(Zr0.7Ce0.3)2O7(x=0.25、0.5、0.75、1)陶瓷的XRD图谱。从图2可知,在1600℃下烧结7h后的锆酸镧陶瓷材料,随着(La1-xYx)2(Zr0.7Ce0.3)2O7中Y2O3含量的增加,峰强不断增强。La2Zr2O7为单一的立方烧绿石结构,同时在27°、37°、45°处出现了(311)、(331)、(511)特征峰,(La1-xYx)2(Zr0.7Ce0.3)2O7(x=0.25、0.5、0.75、1)中出现与La2Zr2O7一样的特征峰,这说明Y2O3、CeO2已经完全溶入,形成了单一的立方烧绿石结构的固溶体。(La1-xYx)2(Zr0.7Ce0.3)2O7(x=0.25、0.5、0.75、1)中,衍射峰向右偏移,这是由于当离子半径较小的Y3+、Ce4+的引入,使得晶面间距减小,从而导致衍射角的增加。
以(La0.75Y0.25)2(Zr0.7Ce0.3)2O7为例,Zr与Ce的离子价态相同,都为正四价,所以Ce4 +取代Zr4+,离子半径和离子质量具体如下:Zr4+半径0.072nm,质量23.276×10-23g;Ce4+半径0.087nm,质量15.153×10-23g。材料内部晶体格子的原子的有序性被打乱,在替换的位子制造出晶体缺陷,点缺陷引起声子散射增强,声子自由程降低,从而降低了热导率。
其中,离子半径比决定了材料的结构,对于A2B2O7,当r(A3+)/r(B4+)<1.46时,表现为缺陷型萤石结构;当1.46<r(A3+)/r(B4+)<1.78时,表现为立方烧绿石结构;当r(A3+)/r(B4+)>1.78时,表现为不稳定的单斜相。其中,
Figure BDA0001466728300000041
r(La3+)=0.116nm,r(Y3+)=0.102nm,r(Zr4+)=0.072nm,r(Ce4+)=0.087nm。
当x=0.25时,r(A3+)/r(B4+)=1.47,为立方烧绿石结构,这与XRD的分析结果一致。
图3为将(La0.75Y0.25)2(Zr0.7Ce0.3)2O7加入15%BaTiO3后1600℃烧结体敲断,取断面分析断口形貌,分别放大10000(a)和5000倍(b)后的SEM图。从图3的断面形貌分析可得,晶粒的晶界清晰分明,几乎无气孔存在,所得陶瓷材料的理论密度为6.27g/em3,实际体积密度为6.10g/cm3,致密度达到97.29%。
图4显示的是在(La0.75Y0.25)2(Zr0.7Ce0.3)2O7中分别加入0~15wt%BaTiO3,在1600℃下烧结7h而成的陶瓷材料的热导率与抗弯强度的关系图,随着Y添加量的不断增多,热导率出现了先减小后增大的变化,但热导率变化范围不大,依旧稳定在1.50W·m-1·K-1以下,但是抗弯强度发生了显著的增强变化,从61.8MPa提高到了202.1MPa,超过200%。
本发明先采用固相反应法合成化学组成为(La1-xYx)2(Zr0.7Ce0.3)2O7前驱体粉末,再添加BaTiO3二次球磨干燥后造粒压片成型,在1600℃下烧结,获得均匀致密、热导率低、抗弯强度高的锆酸镧陶瓷,其中x优选0.1~0.5。BaTiO3的添加量为所述前驱体粉末的质量的5~15%。
所述的钛酸钡掺杂改性锆酸镧陶瓷材料的制备方法,具体步骤为:
a.按照化学组成比分别称量La2O3、Y2O3、ZrO2和CeO2,按照氧化锆球:上述四种原料:酒精=1∶2∶1(质量比)在尼龙球磨罐中混合;
b.在球磨机上混合6~12小时,得到均匀混合浆体,此时球磨介质是酒精,球磨体是氧化锆球,主体是上述四种原料(La2O3、Y2O3、ZrO2和CeO2);
c.在60~80℃下干燥10~16小时,得到干燥粉末;
d.将干燥粉末在1300~1400℃温度下,煅烧合成2~4h,即为通过固相反应法获得的前驱体粉体;
e.按照添加量添加BaTiO3,进行二次球磨干燥;
f.添加PVA水溶液造粒;
g.先预压成型,然后等静压成型;
h.在1600~1680℃温度范围内,常压烧结3~7h。在室温至200℃保持2℃/min的速率升温,在200℃~1500℃保持5℃/min的速率升温,在1500℃~1600℃保持2℃/min的速率升温;其中,分别在150℃、350℃、520℃三个温度下各保温30min。
实施例1
按照化学计量比初步合成(La0.75Y0.25)2(Zr0.7Ce0.3)2O7前驱体,添加5%BaTiO3
Figure BDA0001466728300000051
经过球磨、干燥、造粒、成型之后,在空气气氛下1600℃常压烧结,烧结后热导率为1.31W·m-1·K-1,体积密度为5.76g/cm3,抗弯强度为102.4MPa。
实施例2
按照化学计量比初步合成(La0.75Y0.25)2(Zr0.7Ce0.3)2O7前驱体,添加10%BaTiO3
Figure BDA0001466728300000061
经过球磨、干燥、造粒、成型之后,在空气气氛下1600℃常压烧结,烧结后热导率为1.14W·m-1·K-1,体积密度为5.84g/cm3,抗弯强度为174.7MPa。
实施例3
按照化学计量比初步合成(La0.75Y0.25)2(Zr0.7Ce0.3)2O7前驱体,添加15%
Figure BDA0001466728300000062
经过球磨、干燥、造粒、成型之后,在空气气氛下1600℃常压烧结,烧结后热导率为1.47W·m-1·K-1,体积密度为6.10g/cm3,抗弯强度为202.1MPa。
实施例4
按照化学计量比初步合成(La0.75Y0.25)2(Zr0.7Ce0.3)2O7前驱体,经过球磨、干燥、造粒、成型之后,在空气气氛下1600℃常压烧结,烧结后热导率为1.26W·m-1·K-1,体积密度为4.95g/cm3,抗弯强度为61.8MPa。
由以上4个实施例可以看出,在(La0.75Y0.25)2(Zr0.7Ce0.3)2O7前驱体的基础上加入BaTiO3之后的抗弯强度情况如下表2所示:随着BaTiO3添加量的增大,抗弯强度显著增强;当BaTiO3的质量分数达到15%时,抗弯强度达到202.1MPa,抗弯强度的提高比例为(202.1-61.8)/61.8=227.02%。
表2在(La0.75Y0.25)2(Zr0.7Ce0.3)2O7中添加不同质量BaTiO3的抗弯强度变化
BaTiO<sub>3</sub>(%) 0 5 10 15
抗弯强度/(MPa) 61.8 102.4 174.7 202.1
实施例5
按照化学计量比初步合成(La0.5Y0.5)2(Zr0.7Ce0.3)2O7前驱体,经过球磨、干燥、造粒、成型之后,在空气气氛下1600℃常压烧结,烧结后热导率为1.82W·m-1·K-1,体积密度为5.16g/cm3,抗弯强度为50.2MPa。
实施例6
按照化学计量比初步合成(La0.25Y0.75)2(Zr0.7Ce0.3)2O7前驱体,经过球磨、干燥、造粒、成型之后,在空气气氛下1600℃常压烧结,烧结后热导率为2.04W·m-1·K-1,体积密度为5.25g/cm3,抗弯强度为45.6MPa。

Claims (7)

1.一种钛酸钡掺杂改性锆酸镧陶瓷材料,其特征在于,所述的陶瓷材料为采用固相反应法合成得到的化学组成比为(La1-xYx)2(Zr0.7Ce0.3)2O7的前驱体添加BaTiO3后的烧结体;所述的前驱体中,x的取值范围为0.25~0.5;所述BaTiO3的添加量为所述前驱体质量的5~15%;所述陶瓷材料的体积密度为5.76~6.10g/cm3
2.根据权利要求1所述的一种钛酸钡掺杂改性锆酸镧陶瓷材料,其特征在于,所述陶瓷材料的热导率为1.20~1.50W·m-1·K-1
3.一种权利要求1所述的钛酸钡掺杂改性锆酸镧陶瓷材料的制备方法,其特征在于,首先采用固相反应法合成化学组成为(La1-xYx)2(Zr0.7Ce0.3)2O7的前驱体粉末,其中0≤x<0.75;再添加前驱体质量5~15%的BaTiO3,经球磨、成型后烧结,制得所述钛酸钡掺杂改性锆酸镧陶瓷材料。
4.根据权利要求3所述的钛酸钡掺杂改性锆酸镧陶瓷材料的制备方法,其特征在于,所述方法包括如下步骤:
a.按照化学组成比分别称量La2O3、Y2O3、ZrO2和CeO2,按照球磨体:上述四种原料:酒精的质量比=1:2:1在球磨罐中混合;
b.在球磨机上混合6~12h,得到均匀混合浆体;
c.在60~80℃下干燥10~16h,得到干燥粉末;
d.将干燥粉末在1300~1400℃温度下,煅烧合成2~4h,通过固相反应法获得前驱体粉体;
e.按照添加量添加BaTiO3,进行二次球磨、干燥;
f.添加聚乙烯醇水溶液造粒;
g.先预压成型,然后等静压成型;
h.程序升温至1600~1680℃温度下,常压烧结3~7h。
5.根据权利要求4所述的钛酸钡掺杂改性锆酸镧陶瓷材料的制备方法,其特征在于,所述x的取值范围为0.1~0.5。
6.根据权利要求4所述的钛酸钡掺杂改性锆酸镧陶瓷材料的制备方法,其特征在于,所述步骤h中程序升温条件为,在室温~200℃保持2℃/min的速率升温,在200℃~1500℃保持5℃/min的速率升温,在1500℃以上保持2℃/min的速率升温;其中,分别在150℃、350℃、520℃三个温度下各保温30min。
7.根据权利要求4所述的钛酸钡掺杂改性锆酸镧陶瓷材料的制备方法,其特征在于,所述La2O3、Y2O3、ZrO2、CeO2和BaTiO3均为商业化原料,平均粒径均在0.5~10μm之间。
CN201711117936.2A 2017-11-13 2017-11-13 一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法 Active CN107892570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711117936.2A CN107892570B (zh) 2017-11-13 2017-11-13 一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711117936.2A CN107892570B (zh) 2017-11-13 2017-11-13 一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107892570A CN107892570A (zh) 2018-04-10
CN107892570B true CN107892570B (zh) 2021-04-13

Family

ID=61805102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711117936.2A Active CN107892570B (zh) 2017-11-13 2017-11-13 一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107892570B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526954B (zh) * 2021-08-12 2023-04-11 昆明理工大学 一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法
CN113871608B (zh) * 2021-09-24 2023-01-17 常州大学 一种高熵焦绿石氧化物电池负极材料及其制备和应用方法
CN115925419B (zh) * 2022-12-16 2024-04-12 辽宁省轻工科学研究院有限公司 一种纳米结构稀土掺杂锆酸镧热障涂层材料及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103803972B (zh) * 2013-12-26 2015-01-14 浙江大学 一种大尺寸块体La2Zr2O7陶瓷材料及其热压烧结制备工艺
CN103787659A (zh) * 2013-12-26 2014-05-14 浙江大学 一种固溶体型 (La2-xGdx) (Zr2-yCey)O7隔热陶瓷及其制备方法

Also Published As

Publication number Publication date
CN107892570A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
CN107892570B (zh) 一种钛酸钡掺杂改性锆酸镧陶瓷材料及其制备方法
CN101786873B (zh) 锂离子电池电解质陶瓷膜的制备方法
CN113105237B (zh) 一种ab2o6型钽酸盐陶瓷及其制备方法
CN102311266A (zh) 一种铌酸钾钠无铅压电陶瓷材料的制备方法
CN103153465B (zh) 排气净化过滤器及其制造方法
CN111320468B (zh) 一种掺杂型铁酸铋-钛酸钡无铅压电陶瓷材料的制备方法
CN113372115B (zh) 一种离心式喷雾造粒法制备钽酸盐(Y/Al/RE)3TaO7空心球粉体的方法
Ge et al. A facile method to fabricate proton-conducting BaZr0· 85Y0· 15O3-δ electrolyte with a large grain size and high conductivity
CN111934002A (zh) 一种石榴石型固态电解质及其制备方法
CN103864419B (zh) 一种高致密锆酸钡陶瓷的制备方法
CN107840655A (zh) 准同型相界的钛酸铋钾基无铅弛豫铁电陶瓷的制备方法
CN113173787B (zh) 一种锆酸钆/钽酸钆复合陶瓷及其制备方法
CN103113108B (zh) 一种碳化硼陶瓷的制备方法
CN107903060A (zh) 一种电子束物理气相沉积用锆酸镧基陶瓷靶材及其制备方法
CN105271409A (zh) 一种片状铌酸钾钠粉体的制备方法
CN108002839B (zh) 一种ZrC1-x-SiC复相陶瓷的制备方法
Muccillo et al. Thermal analyses of yttrium-doped barium zirconate with phosphor pentoxide, boron oxide and zinc oxide addition
CN107253859B (zh) 高发光热稳定性的Eu-Bi共掺杂钨青铜结构发光铁电陶瓷材料及其制备方法
CN103172365B (zh) 一种微波介质陶瓷材料的制备方法
CN101643357B (zh) 一种超细立方相钛酸钡粉体的四方相转变工艺
CN103113109A (zh) 一种碳化硼陶瓷的制备方法
CN111763081B (zh) 一种焦磷酸盐复合电解质及其制备方法
CN111276735B (zh) 一种固体电解质、制备方法及钾固态电池
CN102544559B (zh) 一种用于固体氧化物燃料电池的氧化铈基电解质及其制备方法
CN115417660B (zh) 一种Eu2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant