CN109516811B - 一种具有多元高熵的陶瓷及其制备方法和应用 - Google Patents

一种具有多元高熵的陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN109516811B
CN109516811B CN201811196871.XA CN201811196871A CN109516811B CN 109516811 B CN109516811 B CN 109516811B CN 201811196871 A CN201811196871 A CN 201811196871A CN 109516811 B CN109516811 B CN 109516811B
Authority
CN
China
Prior art keywords
ceramic
solid solution
powder
oxide
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811196871.XA
Other languages
English (en)
Other versions
CN109516811A (zh
Inventor
郭伟明
张岩
牛文彬
张威
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201811196871.XA priority Critical patent/CN109516811B/zh
Priority to PCT/CN2018/120033 priority patent/WO2020077770A1/zh
Publication of CN109516811A publication Critical patent/CN109516811A/zh
Application granted granted Critical
Publication of CN109516811B publication Critical patent/CN109516811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Abstract

本发明属于陶瓷材料技术领域,公开了一种具有多元高熵的陶瓷及其制备方法和应用。该陶瓷是以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物和无定型硼粉为原料,球磨混合后压制成坯体;放入石墨坩埚中进行真空热处理得(Me1xMe2yMe3zMe4nMe5m)B2固熔体粉体;采用放电等离子烧结将上述固熔体粉体升温至1000~1400℃时充入保护气氛,然后升温至1800~2200℃煅烧制得。所得多元高熵陶瓷的相对密度>95%,硬度为25~35GPa,断裂韧性为2~8MPa·m1/2,晶粒尺寸为0.1~1.1μm,经1000℃~1500℃热处理后重量变化率为0.3~1%。

Description

一种具有多元高熵的陶瓷及其制备方法和应用
技术领域
本发明属于表面功能薄膜材料技术领域,更具体地,涉及一种具有多元高熵的陶瓷及其制备方法和应用。
背景技术
随着航空、航天、电子、通信等技术以及机械、化工、能源等工业的发展,对材料的性能提出越来越高、越来越多的要求,传统的单一材料已不能满足使用要求。高熵陶瓷具有五种或五种以上的组元,若其固溶成为单相固熔体陶瓷,因具有较高的熵值,易获得热稳定性高的固溶相和纳米结构,不同的高熵陶瓷具有不同的特性,其表现优于传统陶瓷材料。多组元高熵陶瓷是一个可合成、可加工、可分析、可应用的新陶瓷世界,具有很高的学术研究价值和很大的工业发展潜力。
阻碍陶瓷向多元方向发展的主要原因是:传统陶瓷的发展经验告诉我们,虽然可以通过添加特定的少量陶瓷元素来改善性能,但元素种类过多会导致很多化合物尤其是脆性金属间化合物的出现,从而导致陶瓷性能的恶化,如变脆等。此外,也给材料的组织和成分分析带来很大困难。难熔金属的硼化物,ZrB2、HfB2、 NbB2、TaB2、CrB2、TiB2和MoB2因其优异的物理、化学和机械性能而备受关注。其多组元高熵陶瓷也具有高强度、硬度、优异的耐磨性、优异的耐高温强度、良好的结构稳定性和良好的耐蚀性和抗氧化性。其制备均使用商业购买的硼化物粉体,高能球磨后烧结出陶瓷材料,但是只有少量的报道成功制备出单相高熵陶瓷,因此关于这些材料及其特性还有很多需要研究的地方。
发明内容
为了解决上述现有技术存在的不足和缺点,提供一种具有多元高熵的陶瓷。该陶瓷具有均一固溶体相的、组元稳定的、力学性能及抗氧化性能优异的高熵陶瓷。
本发明另一目的在于提供上述具有多元高熵陶瓷的制备方法。
本发明再一目的在于提供上述具有多元高熵陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种具有多元高熵的陶瓷,所述陶瓷是以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物和无定型硼粉为原料,加入溶剂经球磨混合得混合粉体,经模压后所得坯体放入石墨坩埚中,升温至800~1200℃保温Ⅰ后,再升温至1400~1600℃保温Ⅱ,进行真空热处理得(Me1x Me2yMe3zMe4nMe5m)B2固熔体粉体;采用放电等离子烧结将(Me1x Me2yMe3zMe4nMe5m)B2固熔体粉体升温至1000~1400℃时充入保护气氛,然后升温至1800~2200℃煅烧制得;所述0.1≤x≤0.9,0.1≤y≤0.9,0.1≤z≤0.9,0.1≤n≤0.9,0.1≤m≤0.9。
优选地,x=0.2,y=0.2,z=0.2,n=0.2,m=0.2。
优选地,所述陶瓷的相对密度>95%,硬度为25~35GPa,断裂韧性 2~8MPa·m1/2,晶粒尺寸为0.1~1.1μm,所述陶瓷在1000~1500℃热处理后重量变化率为0.3~1%。
优选地,所述固熔体粉体(Me1xMe2yMe3zMe4nMe5m)B2的纯度 99.0-99.9wt%,所述固熔体粉体的粒径为0.1~1μm,所述固熔体粉体的氧含量为 0.1-0.5wt%,所述固熔体粉体的碳含量为0.1~0.5wt%。
优选地,所述固熔体粉体(Me1x Me2yMe3zMe4nMe5m)B2中Me1、Me2、 Me3、Me4和Me5为Hf、Zr、Ti、Nb、Ta、Mo或Cr。
优选地,所述溶剂为乙醇、丙醇、甲醇或丙酮。
优选地,所述保护气氛为N2或Ar。
优选地,所述升温至800~1200℃和升温至1400~1600℃时的速率均为 5~20℃/min,所述保温Ⅰ和保温Ⅱ的时间均为0.5~2h;所述煅烧的时间为1~30min,所述煅烧的压力为10~100MPa,所述升温至1800~2200℃时的升温的速率为 100~400℃/min。
所述的具有多元高熵的陶瓷的制备方法,包括如下具体步骤:
S1.以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5 的氧化物和无定型硼粉为原料,加入溶剂和球磨介质,在球磨机上混合10~48h,干燥后获得混合粉体;
S2.将混合粉体模压后的坯体放入石墨坩埚中,以5~20℃/min的速率升温至800~1200℃保温0.5~2h,然后再以5~20℃/min的速率升温至1400~1600℃保温0.5~2h,获得(Me1x Me2yMe3zMe4nMe5m)B2固熔体粉体;
S3.将(Me1x Me2yMe3zMe4nMe5m)B2固熔体粉体放入石墨模具中,采用放电等离子烧结以100~400℃/min速率升温至1000~1400℃时充保护气氛,再以 100~400℃/min速率升温至1800~2200℃,保温1~30min,加压10~100MPa煅烧,制得(Me1xMe2yMe3zMe4nMe5m)B2多元高熵的陶瓷。
所述具有多元高熵的陶瓷在超高温抗氧化器件领域中的应用。
本发明的一种具有多元高熵的陶瓷,所述陶瓷是将单相固熔体粉体(Me1xMe2yMe3zMe4nMe5m)B2为原料,Me1,Me2,Me3,Me4,Me5五元金属之间固溶,经过放电等离子烧结后,由于其冷却速度快,很难出现固溶析出相,获得的陶瓷仍为(Me12Me22Me32Me42Me52)B2单相多元高熵的陶瓷体,组分均一,成分稳定,性能优异,且一种粉末具有多元金属的性质。
与现有技术相比,本发明具有以下有益效果:
1.本发明采用固相法自合成的超细高熵陶瓷粉末,通过放电等离子烧结制备多元高熵陶瓷材料,研究表明此固相法合成的高熵陶瓷粉末晶粒较细,且组分均一。晶粒尺寸小,成分均匀的原料粉末,且烧结出的高熵陶瓷材料性能优异。
2.本发明的方法反应原料就为单相固熔体粉末,相比于多种硼化物高能球磨获得的混合原料粉末物理上均匀性,该方法达到了原料组分的化学均匀性。这也有利于其烧结材料的均匀固熔体相的形成,也节约能源与成本。
3.本发明的方法制备的高熵陶瓷材料,由于原料是固熔体粉末,形成固熔体可以促进原子扩散,可在低温下实现烧结致密,改善烧结性能,提高材料性能。
4.本发明的方法采用SPS实现高熵陶瓷材料的快速制备,极大缩短了晶粒长大时间,可获得晶粒细小的陶瓷,原料粉体成本低且原料粉末相对于商业购买的硼化物粉末细,其在烧结过程中扩散较快,更易烧结出单相高熵陶瓷材料,这会使得高熵陶瓷材料的组织更细小,更大的提高材料的性能。
附图说明
图1为实施例中2制得的(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2高熵固熔体粉末的 XRD图。
图2为实施例2中制得经SPS烧结后(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2高熵陶瓷的XRD图。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以HfO2、ZrO2、Nb2O5、Ta2O5和Cr2O3和无定型硼粉为原料,以乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上混合,干燥后获得混合粉体;
2.将混合粉体模压后获得坯体放入石墨坩埚中,以10℃/min的速率升温至 1200℃保温1h,然后再以10℃/min的速率升温至1600℃保温1h,真空热处理后的获得(Hf0.2Zr0.2Nb0.2Ta0.2Cr0.2)B2超细高熵陶瓷固熔体粉末。
3.将(Hf0.2Zr0.2Nb0.2Ta0.2Cr0.2)B2多元高熵固熔体粉末为原料粉体,将其放入石墨模具中,以300℃/min升温速率将温度升至2000℃,保温5min,加压80MPa,在1200℃时充Ar气,通过放电等离子(SPS)烧结,制得具有多元高熵的陶瓷材料。
通过激光粒度分析测得本实施例多元高熵的陶瓷固熔体粉末的粒径为 0.34μm,用碳氧分析仪测得固熔体粉末的氧含量为0.1wt%,固熔体粉末的碳含量为0.02wt%。制备得到的具有多元高熵的陶瓷材料形成了均一的单相固熔体。其相对密度为99%,硬度30GPa,断裂韧性6MPa·m1/2,晶粒尺寸为0.50μm,陶瓷的抗氧化性能良好,1200℃热处理后重量增加了0.85%。
实施例2
1.以HfO2、MoO3、Nb2O5、Ta2O5和TiO2和无定型硼粉为原料,以乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上混合,干燥后获得混合粉体;
2.将混合粉体模压后获得坯体放入石墨坩埚中,以10℃/min的速率升温至 1100℃保温1h,然后再以10℃/min的速率升温至1550℃保温1h,真空热处理后获得(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2超细高熵固熔体粉末。
3.将(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2多元高熵固熔体粉末放入石墨模具中,以200℃/min升温速率将温度升至1800℃,保温5min,加压40MPa,1200℃时充 Ar气,通过放电等离子烧结获得多元高熵陶瓷材料。
图1为本实施例制得的(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2高熵固熔体粉末的XRD 图。其中,(a)为氧化物混合粉末,(b)为(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2多元高熵固熔体粉末,从图1中可知氧化物混合粉末中存在HfO2、Ta2O5、Nb2O5、 TiO2的和MoO3相,(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2固熔体粉末只有一相,说明氧化物混合粉末经过热处理后,Hf,Mo,Ta,Nb和Ti之间发生固溶,形成了单相多元高熵固溶体粉末;
图2为本实施例制得的经SPS烧结后(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2高熵陶瓷的XRD图。其中,(a)为(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2多元高熵固熔体粉末; (b)为(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2多元高熵陶瓷。从图2中可知, (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2多元高熵固熔体粉末中只有一相,与HfB2标准PDF 卡片65-86778对比可知,(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2的峰向高角度偏移,多元高熵固熔体粉末为均一的固熔体相。说明多元高熵固熔体粉末经过SPS烧结后仍为均一的固熔体相。
通过激光粒度分析测得本实施例固熔体粉末的粒径为0.10μm,用碳氧分析仪测得固熔体粉末的氧含量为0.08wt%,固熔体粉末的碳含量为0.01wt%,制备得到的具有多元高熵的陶瓷材料形成了均一的单相固熔体,其相对密度为99%,硬度35GPa,断裂韧性5MPa·m1/2,晶粒尺寸为0.10μm,陶瓷的抗氧化性能良好,1200℃热处理后重量增加了0.35%。
实施例3
1.以HfO2、ZrO2、Nb2O5、MoO3和Cr2O3和无定型硼粉为原料,以乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上混合,干燥后获得混合粉体;
2.将混合粉体模压后获得坯体放入石墨坩埚中,以10℃/min的速率升温至1000℃保温1h,然后再以10℃/min的速率升温至1550℃保温1h,真空热处理后的获得(Hf0.2Zr0.2Nb0.2Mo0.2Cr0.2)B2超细高熵固熔体粉末;
3.将(Hf0.2Zr0.2Nb0.2Mo0.2Cr0.2)B2多元高熵固熔体粉末放入石墨模具中,以100℃/min升温速率将温度升至2000℃,保温30min,加压10MPa,1200℃时充Ar气,通过放电等离子烧结,制得具有多元高熵的陶瓷材料。
通过激光粒度分析测得本实施例固熔体粉末的粒径为0.80μm,用碳氧分析仪测得固熔体粉末的氧含量为0.01wt%,固熔体粉末的碳含量为0.03wt%,制备得到的具有多元高熵的陶瓷材料形成了均一的单相固熔体,其相对密度为99%,硬度25GPa,断裂韧性8MPa·m1/2,晶粒尺寸为1.10μm,陶瓷的抗氧化性能良好,1200℃热处理后重量增加了0.71%。
实施例4
1.以HfO2、TiO2、Nb2O5、Ta2O5和Cr2O3和无定型硼粉为原料,以乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上混合,干燥后获得混合粉体;
2.将混合粉体模压后获得坯体放入石墨坩埚中,以10℃/min的速率升温至 1200℃保温1h,然后再以10℃/min的速率升温至1550℃保温1h,真空热处理后的获得(Hf0.2Ti0.2Nb0.2Ta0.2Cr0.2)B2超细高熵陶瓷固溶体粉末。
3.将(Hf0.2Ti0.2Nb0.2Ta0.2Cr0.2)B2多元高熵陶瓷粉末放入石墨模具中,以150℃/min升温速率将温度升至2000℃,保温15min,加压50MPa,1200℃时充 Ar气,通过放电等离子烧结,制得具有多元高熵的陶瓷材料。
通过激光粒度分析测得本实施例固熔体粉末的粒径为0.39μm,用碳氧分析仪测得固熔体粉末的氧含量为0.15wt%,固溶体粉末的碳含量为0.01wt%,制备得到的具有多元高熵的固熔体材料形成了均一的单相固熔体,其相对密度为99%,硬度30GPa,断裂韧性4.23MPa·m1/2,晶粒尺寸为0.45μm,陶瓷的抗氧化性能良好,1400℃热处理后重量增加了0.72%。
实施例5
1.以HfO2、TiO2、ZrO2、Ta2O5和Cr2O3和无定型硼粉为原料,以乙醇为溶剂,以Si3N4球为球磨介质,在球磨机上混合,干燥后获得混合粉体;
2.将混合粉体模压后获得坯体放入石墨坩埚中,以10℃/min的速率升温至 1150℃保温1h,然后再以10℃/min的速率升温至1550℃保温1h,真空热处理后的获得(Hf0.2Zr0.2Ti0.2Ta0.2Cr0.2)B2超细高熵陶瓷固熔体粉末。
3.将(Hf0.2Ti0.2Nb0.2Ta0.2Cr0.2)B2多元高熵陶瓷粉末放入石墨模具中,以 400℃/min升温速率将温度升至2000℃,保温1min,加压100MPa,1200℃时充Ar 气,通过放电等离子烧结,制得具有多元高熵的陶瓷材料。
通过激光粒度分析测得本实施例固溶体粉末的粒径为0.39μm,用碳氧分析仪测得固熔体粉末的氧含量为0.13wt%,固熔体粉末的碳含量为0.02wt%,制备得到的具有多元高熵的陶瓷材料形成了均一的单相固熔体,其相对密度为99%,硬度35GPa,断裂韧性6MPa·m1/2,晶粒尺寸为0.52μm,陶瓷的抗氧化性能良好,1500℃热处理后重量增加了0.3%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种具有多元高熵的陶瓷,其特征在于,所述陶瓷是以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物和无定型硼粉为原料,加入溶剂经球磨混合得混合粉体,经模压后所得坯体放入石墨坩埚中,升温至800~1200℃保温Ⅰ后,再升温至1400~1600℃保温Ⅱ,进行真空热处理得(Me1x Me2yMe3zMe4nMe5m)B2固熔体粉体;采用放电等离子烧结将(Me1x Me2yMe3zMe4nMe5m)B2固熔体粉体升温至1000~1400℃时充入保护气氛,然后升温至1800~2200℃煅烧制得;所述0.1≤x≤0.9,0.1≤y≤0.9,0.1≤z≤0.9,0.1≤n≤0.9,0.1≤m≤0.9;所述陶瓷的晶粒尺寸为0.1~1.1μm。
2.根据权利要求1所述的具有多元高熵的陶瓷,其特征在于,所述x=0.2,y=0.2,z=0.2,n=0.2,m=0.2。
3.根据权利要求1所述的具有多元高熵的陶瓷,其特征在于,所述陶瓷的相对密度>95%,硬度为25~35GPa,断裂韧性2~8MPa·m1/2,所述陶瓷在1000~1500℃热处理后重量变化率为0.3~1%。
4.根据权利要求1所述的具有多元高熵的陶瓷,其特征在于,所述固熔体粉体(Me1xMe2yMe3zMe4nMe5m)B2的纯度99.0~99.9wt%,所述固熔体粉体的粒径为0.1~1μm,所述固熔体粉体的氧含量为0.1~0.5wt%,所述固熔体粉体的碳含量为0.1~0.5wt%。
5.根据权利要求1所述的具有多元高熵的陶瓷,其特征在于,所述固熔体粉体(Me1xMe2yMe3zMe4nMe5m)B2中Me1、Me2、Me3、Me4和Me5为Hf、Zr、Ti、Nb、Ta、Mo或Cr。
6.根据权利要求1所述的具有多元高熵的陶瓷,其特征在于,所述溶剂为乙醇、丙醇、甲醇或丙酮。
7.根据权利要求1所述的具有多元高熵的陶瓷,其特征在于,所述保护气氛为N2或Ar。
8.根据权利要求1所述的具有多元高熵的陶瓷,其特征在于,所述升温至800~1200℃和升温至1400~1600℃时的速率均为5~20℃/min,所述保温Ⅰ和保温Ⅱ的时间均为0.5~2h;所述煅烧的时间为1~30min,所述煅烧的压力为10~100MPa,所述升温至1800~2200℃时的升温的速率为100~400℃/min。
9.根据权利要求1-8任一项所述的具有多元高熵的陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.以Me1的氧化物、Me2的氧化物、Me3的氧化物、Me4的氧化物、Me5的氧化物和无定型硼粉为原料,加入溶剂和球磨介质,在球磨机上混合10~48h,干燥后获得混合粉体;
S2.将混合粉体模压后的坯体放入石墨坩埚中,以5~20℃/min的速率升温至800~1200℃保温0.5~2h,然后再以5~20℃/min的速率升温至1400~1600℃保温0.5~2h,进行真空热处理获得(Me1x Me2yMe3zMe4nMe5m)B2固熔体粉体;
S3.将(Me1x Me2yMe3zMe4nMe5m)B2固熔体粉体放入石墨模具中,采用放电等离子烧结以100~400℃/min速率升温至1000~1400℃时充保护气氛,再以100~400℃/min速率升温至1800~2200℃,保温1~30min,加压10~100MPa煅烧,制得(Me1x Me2yMe3zMe4nMe5m)B2多元高熵的陶瓷。
10.权利1~8任一项所述具有多元高熵的陶瓷在超高温抗氧化器件领域中的应用。
CN201811196871.XA 2018-10-15 2018-10-15 一种具有多元高熵的陶瓷及其制备方法和应用 Active CN109516811B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811196871.XA CN109516811B (zh) 2018-10-15 2018-10-15 一种具有多元高熵的陶瓷及其制备方法和应用
PCT/CN2018/120033 WO2020077770A1 (zh) 2018-10-15 2018-12-10 一种具有多元高熵的陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811196871.XA CN109516811B (zh) 2018-10-15 2018-10-15 一种具有多元高熵的陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109516811A CN109516811A (zh) 2019-03-26
CN109516811B true CN109516811B (zh) 2021-04-06

Family

ID=65772640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811196871.XA Active CN109516811B (zh) 2018-10-15 2018-10-15 一种具有多元高熵的陶瓷及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109516811B (zh)
WO (1) WO2020077770A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078507B (zh) * 2019-06-18 2020-12-18 昆明理工大学 一种高熵稀土增韧钽酸盐陶瓷及其制备方法
CN110330341B (zh) * 2019-07-24 2021-09-14 哈尔滨工业大学 一种高纯超细过渡金属碳化物单相高熵陶瓷粉体及其制备方法
CN110511035A (zh) * 2019-08-05 2019-11-29 广东工业大学 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用
CN110526716A (zh) * 2019-08-07 2019-12-03 广东工业大学 一种具有高韧性和高导热的硼化物陶瓷及其制备方法和应用
CN110606748A (zh) * 2019-09-04 2019-12-24 广东工业大学 一种氧化铝增强高熵硼化物陶瓷及其制备方法和应用
CN110735076B (zh) * 2019-09-04 2021-05-11 广东工业大学 一种高熵金属陶瓷及其制备方法和应用
CN110615681A (zh) * 2019-09-23 2019-12-27 航天材料及工艺研究所 一种多孔高熵六硼化物陶瓷及其制备方法
CN110776310B (zh) * 2019-11-06 2021-09-28 常州大学 一种离子补偿混合物共沉淀制备钙钛矿型复合氧化物高熵陶瓷粉的方法
CN110776311B (zh) * 2019-11-06 2021-07-30 常州大学 一种热压烧结制备钙钛矿型复合氧化物高熵陶瓷的方法
CN110818430B (zh) * 2019-11-12 2021-01-19 西安交通大学 一种均匀的高熵氧化物陶瓷亚微米级球形粉体及其制备方法
CN110759733B (zh) * 2019-11-19 2022-05-31 湘潭大学 一种Y0.5Dy0.5Ta0.5Nb0.5O4钽系陶瓷材料及其制备方法
CN110845237B (zh) * 2019-11-28 2022-04-12 太原理工大学 高熵陶瓷粉体及其制备方法和高熵陶瓷块体
CN111423236B (zh) * 2020-03-22 2021-05-14 华南理工大学 一种(Hf0.25Ti0.25Zr0.25W0.25)N高熵陶瓷粉体及其制备方法
WO2022204556A1 (en) * 2021-03-26 2022-09-29 Nutech Ventures High-entropy metal/ceramic composite materials for harsh environments
CN113264769B (zh) * 2021-07-08 2022-07-22 昆明理工大学 一种高熵稳定稀土钽酸盐/铌酸盐陶瓷及其制备方法
CN113636842B (zh) * 2021-07-29 2023-02-10 安徽工业大学科技园有限公司 一种高熵二硼化物-碳化硼复相陶瓷、制备方法及其应用
CN113620722B (zh) * 2021-09-06 2022-07-01 西北工业大学 一种稀土铌酸盐高熵粉体、多孔高熵陶瓷及制备方法和应用
CN114804889B (zh) * 2022-05-24 2022-12-30 深圳技术大学 一种纳/微米结构过渡金属硼化物高熵陶瓷块体材料及其制备方法
CN115073183B (zh) * 2022-06-27 2023-06-13 山东大学 一种高熵硼化物纳米粉体及其溶胶-凝胶制备方法
CN115557793B (zh) * 2022-09-19 2023-06-02 广东工业大学 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN117383943A (zh) * 2023-11-02 2024-01-12 中国科学院兰州化学物理研究所 一种高温摩擦自适应单相自润滑高熵陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006074595A1 (fr) * 2005-01-14 2006-07-20 Genfa Li Poudres eutectiques pour production et soudure de ceramiques et leur procede de production
WO2007110148A1 (de) * 2006-03-24 2007-10-04 Esk Ceramics Gmbh & Co. Kg Gesinterter werkstoff, sinterfähige pulvermischung, verfahren zur herstellung des werkstoffs und dessen verwendung
CN103011827A (zh) * 2012-12-20 2013-04-03 复旦大学 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法
CN103130508A (zh) * 2011-12-02 2013-06-05 中国科学院上海硅酸盐研究所 一种制备织构化硼化物基超高温陶瓷的方法
CN107282937A (zh) * 2016-04-12 2017-10-24 海南大学 一种超细多元复合陶瓷粉体及其制备方法
CN108439986A (zh) * 2018-05-09 2018-08-24 西北工业大学 (HfTaZrTiNb)C高熵陶瓷粉体及高熵陶瓷粉体和高熵陶瓷块体的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860327B (zh) * 2014-02-21 2017-10-20 中国科学院宁波材料技术与工程研究所 一种具有柱状晶粒的ZrB2粉体的制备方法
WO2016116562A1 (en) * 2015-01-22 2016-07-28 Swerea Ivf Ab Method for additive manufacturing comprising freeze granulation allowing for flexible alloy design
CN106517225B (zh) * 2016-11-15 2021-02-12 广东工业大学 一种超细M1-xTixB2粉体的制备方法
CN106854080B (zh) * 2016-11-15 2020-10-30 中南大学 一种致密超细晶碳化硼陶瓷材料降低烧结温度的制备方法
CN108455623A (zh) * 2018-05-29 2018-08-28 广东工业大学 一种超细过渡金属硼化物粉体及其制备方法和应用
CN108546130B (zh) * 2018-07-19 2022-02-15 广东工业大学 一种超高温陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006074595A1 (fr) * 2005-01-14 2006-07-20 Genfa Li Poudres eutectiques pour production et soudure de ceramiques et leur procede de production
WO2007110148A1 (de) * 2006-03-24 2007-10-04 Esk Ceramics Gmbh & Co. Kg Gesinterter werkstoff, sinterfähige pulvermischung, verfahren zur herstellung des werkstoffs und dessen verwendung
CN103130508A (zh) * 2011-12-02 2013-06-05 中国科学院上海硅酸盐研究所 一种制备织构化硼化物基超高温陶瓷的方法
CN103011827A (zh) * 2012-12-20 2013-04-03 复旦大学 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法
CN107282937A (zh) * 2016-04-12 2017-10-24 海南大学 一种超细多元复合陶瓷粉体及其制备方法
CN108439986A (zh) * 2018-05-09 2018-08-24 西北工业大学 (HfTaZrTiNb)C高熵陶瓷粉体及高熵陶瓷粉体和高熵陶瓷块体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
High-Entropy Metal Diborides:A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics;Yuanyao Zhang等;《Scientific Report》;20121130;全文 *

Also Published As

Publication number Publication date
CN109516811A (zh) 2019-03-26
WO2020077770A1 (zh) 2020-04-23

Similar Documents

Publication Publication Date Title
CN109516811B (zh) 一种具有多元高熵的陶瓷及其制备方法和应用
CN109516812B (zh) 一种超细高熵固熔体粉末及其制备方法和应用
CN110002879B (zh) 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
Li et al. Spark plasma sintering of TiC–ZrC composites
Demirskyi et al. High-temperature reactive spark plasma consolidation of TiB2–NbC ceramic composites
CN105838913B (zh) 一种石墨烯/镍基复合材料及其制备方法
CN110698204B (zh) 一种max相陶瓷的制备方法
CN108642361B (zh) 一种高强度高硬度陶瓷材料及其生产工艺
CN103182506B (zh) 一种TiCp/M2高速钢复合材料及其SPS制备方法
CN110484796B (zh) 一种过渡金属碳化物高熵陶瓷颗粒及其制备方法
CN105272260B (zh) 一种无粘结相碳化钨复合材料及其制备方法
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
CN114315359B (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN112679213B (zh) 一种超多元高熵陶瓷及其制备方法和应用
CN113337746B (zh) 一种碳化物增强高熵合金复合材料的制备方法
Cheloui et al. Microstructure and mechanical properties of TiB–TiB2 ceramic matrix composites fabricated by spark plasma sintering
CN112830791A (zh) 一种高熵陶瓷及其制备方法和应用
CN110655404A (zh) 一种钛碳化硅基复合陶瓷材料及其制备工艺
Yin et al. Improvement in microstructure and mechanical properties of Ti (C, N) cermet prepared by two-step spark plasma sintering
Abdollahi et al. Effect of B4C, MoSi2, nano SiC and micro-sized SiC on pressureless sintering behavior, room-temperature mechanical properties and fracture behavior of Zr (Hf) B2-based composites
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN106517225A (zh) 一种超细M1‑xTixB2粉体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant