CN110735076B - 一种高熵金属陶瓷及其制备方法和应用 - Google Patents

一种高熵金属陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN110735076B
CN110735076B CN201910833057.2A CN201910833057A CN110735076B CN 110735076 B CN110735076 B CN 110735076B CN 201910833057 A CN201910833057 A CN 201910833057A CN 110735076 B CN110735076 B CN 110735076B
Authority
CN
China
Prior art keywords
entropy
powder
cermet
metal ceramic
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910833057.2A
Other languages
English (en)
Other versions
CN110735076A (zh
Inventor
许亮
谭大旺
郭伟明
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201910833057.2A priority Critical patent/CN110735076B/zh
Publication of CN110735076A publication Critical patent/CN110735076A/zh
Application granted granted Critical
Publication of CN110735076B publication Critical patent/CN110735076B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于金属陶瓷切削刀具领域,公开了一种高熵金属陶瓷及其制备方法和应用。所述高熵金属陶瓷是将高熵硼化物陶瓷粉(A0.2B0.2C0.2D0.2E0.2)B2和粘结剂Ni,Co,Mo进行球磨混合,其中ABCDE为Ti、Zr、Hf、V、Nb、Ta、Cr、Mo或W中互异的元素,干燥后得到混合粉体,再将混合粉体干压成块,常压气氛在真空中升温至800~1200℃,再在保护气氛下,升温至1500~1800℃煅烧制得。本发明高熵金属陶瓷的硬度高,韧性好,化学稳定性好,具有较好的耐磨性和抗冲击性,可应用于难加工材料的断续切削加工。

Description

一种高熵金属陶瓷及其制备方法和应用
技术领域
本发明属于金属陶瓷切削刀具技术领域,更具体地,涉及一种高熵金属陶瓷及其制备方法和应用。
背景技术
高熵陶瓷是一种无机非金属材料的高熵固溶体,一般由4种以上的等比例金属元素和若干种非金属元素结合而成的单相陶瓷材料。硼化物陶瓷是一种高熔点、高硬度的陶瓷材料,具有优异的耐高温耐磨性能。其中高熵硼化物是以多种等原子比例过渡族金属元素与B原子结合而成的高熵固溶体,为单相多元硼化物晶体。
其中,5元高熵硼化物的化学式形式为(A0.2B0.2C0.2D0.2E0.2)B2,ABCDE为ⅣB、ⅤB、ⅥB族金属元素,晶体中各种金属元素含量相等,晶体结构为密排六方结构。高熵硼化物的熔点高(达3000℃以上),高温强度优异,抗高温蠕变性好,可用于高温结构材料领域。同时,与一元硼化物相比,高熵硼化物的硬度更高,稳定性更好,但其韧性较差,故纯高熵硼化物陶瓷的应用受到限制。
目前,传统商用金属陶瓷刀具主要以TiCN基金属陶瓷为主,而新型硼化物基金属陶瓷的基体以TiB2为主。TiCN基金属陶瓷刀具适合于高速切削碳钢,不锈钢,淬硬钢等铁基合金材料。而TiB2基金属陶瓷硬度比TiCN基金属陶瓷更高,更适合于硬态切削。高熵硼化物陶瓷的硬度比TiB2高20%左右,更适合于硬态切削,但其韧性低于TiB2陶瓷。通过加入粘结剂以及控制烧结工艺制备高熵硼化物金属陶瓷,可以降低烧结致密化的难度,同时使得高熵硼化物陶瓷的高硬度基体得到保留,并大大提高韧性,从而获得高硬高韧耐高温的高熵金属陶瓷材料。由于其更优异的力学性能,用于高速加工切削刀具可获得比传统金属陶瓷刀具更佳的加工性能。目前以该技术制备金属陶瓷材料及其在刀具领域的应用未见报导。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明目的在于提供一种高熵金属陶瓷。
本发明的另一目的在于提供上述高熵金属陶瓷的制备方法。该方法通过以高熵硼化物陶瓷粉和粘结剂Ni,Co,Mo为原料,通过常压气氛烧结实现高熵金属陶瓷的制备。
本发明的再一目的在于提供一种上述高熵金属陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种高熵金属陶瓷,所述高熵金属陶瓷是将高熵硼化物陶瓷粉(A0.2B0.2C0.2D0.2E0.2)B2和粘结剂Ni,Co,Mo进行球磨混合,其中ABCDE为Ti、Zr、Hf、V、Nb、Ta、Cr、Mo或W中互异的元素,干燥后得到混合粉体,再将混合粉体干压成块,常压气氛在真空中升温至800~1200℃,再在保护气氛下,升温至1500~1800℃煅烧制得。
优选地,所述高熵金属陶瓷的致密度为98~100%,所述高熵金属陶瓷的硬度为17~20GPa,所述高熵金属陶瓷的断裂韧性为6~10MPa·m1/2;所述高熵金属陶瓷的抗弯强度为800~1200MPa。
优选地,所述(A0.2B0.2C0.2D0.2E0.2)B2:Ni:Co:Mo的体积比为(60~85):(5~16):(5~16):(5~8)。
优选地,所述球磨用的硬质合金球为YG6球,所述球磨的转速为100~300转/min,所述球磨的时间为5~18h。
优选地,所述(A0.2B0.2C0.2D0.2E0.2)B2粉的纯度为98~99.99wt.%,粒径为0.5~3μm;所述Ni、Co、Mo粉的纯度均为99~99.99wt.%,粒径均为1~5μm。
优选地,所述升温至800~1200℃的升温速率为15~30℃/min,所述升温至1500~1800℃的升温速率为3~12℃/min。
优选地,所述保护气氛为氩气或氮气,所述煅烧的时间为30~180min。
所述的高熵金属陶瓷的制备方法,包括如下具体步骤:
S1.将(A0.2B0.2C0.2D0.2E0.2)B2粉和粘结剂Ni,Co,Mo混料,干燥后得到(A0.2B0.2C0.2D0.2E0.2)B2-Ni-Co-Mo的混合粉体;
S2.将(A0.2B0.2C0.2D0.2E0.2)B2-Ni-Co-Mo混合粉体放进干压模具中,以150~250MPa进行干压成型,得到成型素坯;
S3.将成型素坯放入气氛烧结炉中,在小于1mbar的真空度条件下,以15~30℃/min升温至800~1200℃,然后在5min内充入1atm氩气,充气开始的同时以3~12℃/min升温至1500~1800℃煅烧30~180min,再以10~30℃/min降温至700~900℃,并随炉冷却,制得高熵金属陶瓷。
所述的高熵金属陶瓷在切削刀具领域中的应用。
优选地,所述高熵金属陶瓷刀具的相对密度为98~100%,所述金属陶瓷的硬度为17~20GPa,所述金属陶瓷的断裂韧性为6~10MPa·m1/2;所述金属陶瓷的抗弯强度为800~1200MPa。
与现有技术相比,本发明具有以下有益效果:
1.本发明的高熵金属陶瓷为过渡金属高熵硼化物基金属陶瓷,其具有高硬度和高耐磨的性能,这主要是由于高熵硼化物具有优异的硬度,通过加入粘结剂可显著提高其韧性,同时降低烧结温度,并实现常压烧结;与高熵硼化物陶瓷相比更容易实现大批量生产,并节省成本,同时具有更高韧性,具有更广的应用范围。
2.本发明由于高熵金属陶瓷比一元硼化物具有更高的硬度,且硼化物比传统碳氮化钛,碳化钛等陶瓷有更好的高温强度和硬度,通过粘结剂能进一步提高强度,因此,其具有良好的耐磨性和切削性能,该高熵金属陶瓷可应用于难加工材料的高速加工,其加工性能显著优于一元硼化物金属陶瓷和传统碳氮化钛,碳化钛基金属陶瓷。
附图说明
图1为实施例1制得的高熵金属陶瓷坯体显微形貌照片。
图2为对比例1制得的硼化钛基金属陶瓷坯体显微形貌照片。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1
1.制备:
(1)以(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2粉为(粒径为1.5μm)基体原料,以Ni、Co、Mo粉(纯度为99.5%,粒径为3μm)为粘结剂,按照(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2:Ni:Co:Mo的体积比为78:8:8:6进行配料,以乙醇为溶剂,以硬质合金YG6球为球磨介质,在行星球磨机以200r/min的转速混合12h后,得到混合均匀的(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2-Ni-Co-Mo粉体。
(2)将干燥后的(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2-Ni-Co-Mo混合粉体放进干压模具中,以200MPa进行干压成型,得到成型素坯
(3)将成型素坯放入气氛烧结炉中,在小于1mbar的真空度条件下,以20℃/min升温至1000℃,然后在5min内充入1atm氩气,充气开始的同时以8℃/min升温至1650℃,保温90min,此后以20℃/min降温至800℃,并随炉冷却,取出样品后经后续机械加工,获得高熵金属陶瓷。
2.性能测试:本实施例所得的高熵金属陶瓷的相对密度为99.5%,硬度为18.4GPa,断裂韧性为8.6MPa·m1/2,抗弯强度为1132MPa。
对比例1
1.制备:按照实施例1方法,制备得到硼化钛基金属陶瓷坯体。与实施例1不同在于,其步骤(1)中基体硼化物原料为TiB2(粒径<3μm),TiB2:Ni:Co:Mo的体积比为78:8:8:6。其余步骤与实施例1一致,取出样品后经后续机械加工获得TiB2基陶瓷。
2.性能测试:本对比例所得的硼化钛基陶瓷的相对密度为99.8%,硬度为15.2GPa,断裂韧性为8.3MPa·m1/2,抗弯强度为1003MPa。
与对比例1相比,实施例1中韧性几乎不变,且实施例1中高熵金属陶瓷的硬度比对比例1的高20%以上,强度比对比例1的高10%以上。因此,通过高熵硼化物粉体为基体原料可获得性能更优异的硼化物基金属陶瓷。图1为实施例1制得的高熵金属陶瓷的显微形貌照片。图2为对比例1制得的硼化钛基金属陶瓷的显微形貌照片。从图1中可知,高熵金属陶瓷晶粒细小,芯环结构明显且分布均匀;从图2中可知,硼化钛基金属陶瓷晶粒较大且粗细不一,且芯环结构不明显。结合实施例1与对比例1中性能测试可明显看出,在实施例1中以高熵硼化物为原料,制得了具有细晶、高硬度、高强度且高熵的金属陶瓷。
实施例2
1.制备:
(1)以(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2粉为(粒径为1.5μm)基体原料,以Ni、Co、Mo粉(纯度为99.5%,粒径为3μm)为粘结剂,按照(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2:Ni:Co:Mo的体积比为72:10:11:7进行配料,以乙醇为溶剂,以硬质合金YG6球为球磨介质,在行星球磨机以200r/min的转速混合12h后,得到混合均匀的(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2-Ni-Co-Mo粉体。
(2)将干燥后的(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2-Ni-Co-Mo混合粉体放进干压模具中,以200MPa进行干压成型,得到成型素坯
(3)将成型素坯放入气氛烧结炉中,在小于1mbar的真空度条件下,以20℃/min升温至800℃,然后在5min内充入1atm氩气,充气开始的同时以8℃/min升温至1600℃,保温90min,此后以20℃/min降温至800℃,并随炉冷却,取出样品后经后续机械加工获得高熵金属陶瓷。
2.性能测试:本实施例所得的高熵金属陶瓷的相对密度为99.8%,硬度为17.8GPa,断裂韧性为9.3MPa·m1/2,抗弯强度为1171MPa。
实施例3
1.制备:
(1)以(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2粉为(粒径为1.5μm)基体原料,以Ni、Co、Mo粉(纯度为99.5%,粒径为3μm)为粘结剂,按照(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2:Ni:Co:Mo的体积比为67:13:12:8进行配料,以乙醇为溶剂,以硬质合金YG6球为球磨介质,在行星球磨机以200r/min的转速混合12h后,得到混合均匀的(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2-Ni-Co-Mo粉体。
(2)将干燥后的(Ti0.2Zr0.2Hf0.2Ta0.2Cr0.2)B2-Ni-Co-Mo混合粉体放进干压模具中,以200MPa进行干压成型,得到成型素坯
(3)将成型素坯放入气氛烧结炉中,在小于1mbar的真空度条件下,以20℃/min升温至1000℃,然后在5min内充入1atm氩气,充气开始的同时以8℃/min升温至1530℃,保温90min,此后以20℃/min降温至800℃,并随炉冷却,取出样品后经后续机械加工获得高熵金属陶瓷。
2.性能测试:本实施例所得的高熵金属陶瓷的相对密度为99.9%,硬度为17.5GPa,断裂韧性为9.7MPa·m1/2,抗弯强度为1163MPa。
实施例4
1.制备:
(1)以(Ti0.2Zr0.2Hf0.2Ta0.2Nb0.2)B2粉为(粒径为1.5μm)基体原料,以Ni、Co、Mo粉(纯度为99.5%,粒径为3μm)为粘结剂,按照(Ti0.2Zr0.2Hf0.2Ta0.2Nb0.2)B2:Ni:Co:Mo的体积比为84:6:5:5进行配料,以乙醇为溶剂,以硬质合金YG6球为球磨介质,在行星球磨机以200r/min的转速混合12h后,得到混合均匀的(Ti0.2Zr0.2Hf0.2Ta0.2Nb0.2)B2-Ni-Co-Mo粉体。
(2)将干燥后的(Ti0.2Zr0.2Hf0.2Ta0.2Nb0.2)B2-Ni-Co-Mo混合粉体放进干压模具中,以200MPa进行干压成型,得到成型素坯
(3)将成型素坯放入气氛烧结炉中,在小于1mbar的真空度条件下,以20℃/min升温至1100℃,然后在5min内充入1atm氩气,充气开始的同时以8℃/min升温至1800℃,保温120min,此后以20℃/min降温至900℃,并随炉冷却,取出样品后经后续机械加工获得高熵金属陶瓷。
2.性能测试:本实施例所得的高熵金属陶瓷的相对密度为99.4%,硬度为19.7GPa,断裂韧性为6.4MPa·m1/2,抗弯强度为827MPa。
实施例5
1.制备:
(1)以(Ti0.2Zr0.2Hf0.2Mo0.2Nb0.2)B2粉为(粒径为1.5μm)基体原料,以Ni、Co、Mo粉(纯度为99.5%,粒径为3μm)为粘结剂,按照(Ti0.2Zr0.2Hf0.2Mo0.2Nb0.2)B2:Ni:Co:Mo的体积比为61:16:15:8进行配料,以乙醇为溶剂,以硬质合金YG6球为球磨介质,在行星球磨机以200r/min的转速混合12h后,得到混合均匀的(Ti0.2Zr0.2Hf0.2Mo0.2Nb0.2)B2-Ni-Co-Mo粉体。
(2)将干燥后的(Ti0.2Zr0.2Hf0.2Mo0.2Nb0.2)B2-Ni-Co-Mo混合粉体放进干压模具中,以200MPa进行干压成型,得到成型素坯
(3)将成型素坯放入气氛烧结炉中,在小于1mbar的真空度条件下,以20℃/min升温至800℃,然后在5min内充入1atm氩气,充气开始的同时以8℃/min升温至1500℃,保温60min,此后以20℃/min降温至700℃,并随炉冷却,取出样品后经后续机械加工获得高熵金属陶瓷。
2.性能测试:本实施例所得的高熵金属陶瓷的相对密度为99.9%,硬度为17.1GPa,断裂韧性为9.8MPa·m1/2,抗弯强度为1189MPa。
实施例6
1.制备:
(1)以(Ti0.2Zr0.2Hf0.2Mo0.2Ta0.2)B2粉为(粒径为1.5μm)基体原料,以Ni、Co、Mo粉(纯度为99.5%,粒径为3μm)为粘结剂,按照(Ti0.2Zr0.2Hf0.2Mo0.2Ta0.2)B2:Ni:Co:Mo的体积比为78:8:8:6进行配料,以乙醇为溶剂,以硬质合金YG6球为球磨介质,在行星球磨机以200r/min的转速混合12h后,得到混合均匀的(Ti0.2Zr0.2Hf0.2Mo0.2Ta0.2)B2-Ni-Co-Mo粉体。
(2)将干燥后的(Ti0.2Zr0.2Hf0.2Mo0.2Ta0.2)B2-Ni-Co-Mo混合粉体放进干压模具中,以200MPa进行干压成型,得到成型素坯
(3)将成型素坯放入气氛烧结炉中,在小于1mbar的真空度条件下,以20℃/min升温至800℃,然后在5min内充入1atm氩气,充气开始的同时以8℃/min升温至1550℃,保温180min,此后以20℃/min降温至700℃,并随炉冷却,取出样品后经后续机械加工获得高熵金属陶瓷。
2.性能测试:本实施例所得的高熵金属陶瓷的相对密度为98.3%,硬度为18.8GPa,断裂韧性为8.1MPa·m1/2,抗弯强度为1046MPa。
实施例7
1.制备:
(1)以(Ti0.2Nb0.2Hf0.2Mo0.2Ta0.2)B2粉为(粒径为1.5μm)基体原料,以Ni、Co、Mo粉(纯度为99.5%,粒径为3μm)为粘结剂,按照(Ti0.2Nb0.2Hf0.2Mo0.2Ta0.2)B2:Ni:Co:Mo的体积比为78:8:8:6进行配料,以乙醇为溶剂,以硬质合金YG6球为球磨介质,在行星球磨机以200r/min的转速混合12h后,得到混合均匀的(Ti0.2Nb0.2Hf0.2Mo0.2Ta0.2)B2-Ni-Co-Mo粉体。
(2)将干燥后的(Ti0.2Nb0.2Hf0.2Mo0.2Ta0.2)B2-Ni-Co-Mo混合粉体放进干压模具中,以200MPa进行干压成型,得到成型素坯
(3)将成型素坯放入气氛烧结炉中,在小于1mbar的真空度条件下,以20℃/min升温至1200℃,然后在5min内充入1atm氩气,充气开始的同时以8℃/min升温至1750℃,保温60min,此后以20℃/min降温至900℃,并随炉冷却,取出样品后经后续机械加工获得高熵金属陶瓷。
2.性能测试:本实施例所得的高熵金属陶瓷的相对密度为99.7%,硬度为18.1GPa,断裂韧性为9.2MPa·m1/2,抗弯强度为1157MPa。
实施例8
1.制备:
(1)以(Ti0.2Nb0.2Zr0.2Mo0.2Ta0.2)B2粉为(粒径为1.5μm)基体原料,以Ni、Co、Mo粉(纯度为99.5%,粒径为3μm)为粘结剂,按照(Ti0.2Nb0.2Zr0.2Mo0.2Ta0.2)B2:Ni:Co:Mo的体积比为78:9:5:8进行配料,以乙醇为溶剂,以硬质合金YG6球为球磨介质,在行星球磨机以200r/min的转速混合12h后,得到混合均匀的(Ti0.2Nb0.2Zr0.2Mo0.2Ta0.2)B2-Ni-Co-Mo粉体。
(2)将干燥后的(Ti0.2Nb0.2Zr0.2Mo0.2Ta0.2)B2-Ni-Co-Mo混合粉体放进干压模具中,以200MPa进行干压成型,得到成型素坯
(3)将成型素坯放入气氛烧结炉中,在小于1mbar的真空度条件下,以20℃/min升温至1000℃,然后在5min内充入1atm氩气,充气开始的同时以8℃/min升温至1650℃,保温90min,此后以20℃/min降温至800℃,并随炉冷却,取出样品后经后续机械加工获得高熵金属陶瓷。
2.性能测试:本实施例所得的高熵金属陶瓷的相对密度为99.4%,硬度为18.9GPa,断裂韧性为8.7MPa·m1/2,抗弯强度为1161MPa。
实施例9
1.制备:
(1)以(Ti0.2Nb0.2Zr0.2Cr0.2Ta0.2)B2粉为(粒径为1.5μm)基体原料,以Ni、Co、Mo粉(纯度为99.5%,粒径为3μm)为粘结剂,按照(Ti0.2Nb0.2Zr0.2Cr0.2Ta0.2)B2:Ni:Co:Mo的体积比为78:8:8:6进行配料,以乙醇为溶剂,以硬质合金YG6球为球磨介质,在行星球磨机以200r/min的转速混合12h后,得到混合均匀的(Ti0.2Nb0.2Zr0.2Cr0.2Ta0.2)B2-Ni-Co-Mo粉体。
(2)将干燥后的(Ti0.2Nb0.2Zr0.2Cr0.2Ta0.2)B2-Ni-Co-Mo混合粉体放进干压模具中,以200MPa进行干压成型,得到成型素坯
(3)将成型素坯放入气氛烧结炉中,在小于1mbar的真空度条件下,以20℃/min升温至1000℃,然后在5min内充入1atm氩气,充气开始的同时以8℃/min升温至1650℃,保温90min,此后以20℃/min降温至800℃,并随炉冷却,取出样品后经后续机械加工获得高熵金属陶瓷。
2.性能测试:本实施例所得的高熵金属陶瓷的相对密度为99.9%,硬度为17.7GPa,断裂韧性为9.1MPa·m1/2,抗弯强度为1170MPa。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种高熵金属陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.将(A0.2B0.2C0.2D0.2E0.2)B2粉和粘结剂Ni,Co,Mo进行球磨混合,其中,ABCDE为Ti、Zr、Hf、V、Nb、Ta、Cr、Mo或W中互异的元素,干燥后得到(A0.2B0.2C0.2D0.2E0.2)B2-Ni-Co-Mo的混合粉体;
S2.将(A0.2B0.2C0.2D0.2E0.2)B2-Ni-Co-Mo混合粉体放进干压模具中,以150~250MPa进行干压成型,得到成型素坯;
S3.将成型素坯放入气氛烧结炉中,在小于1mbar的真空度条件下,以15~30℃/min升温至800~1200℃,然后在5min内充入1atm氩气,充气开始的同时以3~12℃/min升温至1500~1800℃煅烧30~180min,再以10~30℃/min降温至700~900℃,并随炉冷却,制得高熵金属陶瓷。
2.根据权利要求1所述的高熵金属陶瓷的制备方法,其特征在于,步骤S1中所述(A0.2B0.2C0.2D0.2E0.2)B2:Ni:Co:Mo的体积比为(60~85):(5~16):(5~16):(5~8)。
3.根据权利要求1所述的高熵金属陶瓷的制备方法,其特征在于,步骤S1中所述球磨用的硬质合金球为YG6球,所述球磨的转速为100~300转/min,所述球磨的时间为5~18h。
4.根据权利要求1所述的高熵金属陶瓷的制备方法,其特征在于,步骤S1中所述(A0.2B0.2C0.2D0.2E0.2)B2粉的纯度为98~99.99wt.%,粒径为0.5~3μm;所述Ni、Co、Mo粉的纯度均为99~99.99wt.%,粒径均为1~5μm。
5.一种高熵金属陶瓷,其特征在于,所述高熵金属陶瓷是由权利要求1-4任一项所述的方法制备得到。
6.根据权利要求5所述的高熵金属陶瓷,其特征在于,所述高熵金属陶瓷的致密度为98~100%,所述高熵金属陶瓷的硬度为17~20GPa,所述高熵金属陶瓷的断裂韧性为6~10MPa·m1/2;所述高熵金属陶瓷的抗弯强度为800~1200MPa。
7.权利要求5或6所述的高熵金属陶瓷在切削刀具领域中的应用。
CN201910833057.2A 2019-09-04 2019-09-04 一种高熵金属陶瓷及其制备方法和应用 Active CN110735076B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910833057.2A CN110735076B (zh) 2019-09-04 2019-09-04 一种高熵金属陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910833057.2A CN110735076B (zh) 2019-09-04 2019-09-04 一种高熵金属陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110735076A CN110735076A (zh) 2020-01-31
CN110735076B true CN110735076B (zh) 2021-05-11

Family

ID=69267442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910833057.2A Active CN110735076B (zh) 2019-09-04 2019-09-04 一种高熵金属陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110735076B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111842906A (zh) * 2019-11-07 2020-10-30 齐鲁工业大学 一种添加纳米立方氮化硼的金属陶瓷刀具材料制备方法
CN111423236B (zh) * 2020-03-22 2021-05-14 华南理工大学 一种(Hf0.25Ti0.25Zr0.25W0.25)N高熵陶瓷粉体及其制备方法
CN115594495B (zh) * 2021-07-08 2023-08-25 武汉苏泊尔炊具有限公司 烹饪器具及其制备方法
CN114262833B (zh) * 2021-12-31 2022-06-21 广东工业大学 一种具有高硬度和高韧性的高熵碳化物增强TiCN基金属陶瓷及其制备方法和应用
CN115057709B (zh) * 2022-06-21 2023-07-18 山东大学 一种高熵过渡金属二硼化物及其制备方法
CN115073183B (zh) * 2022-06-27 2023-06-13 山东大学 一种高熵硼化物纳米粉体及其溶胶-凝胶制备方法
CN115029601B (zh) * 2022-07-20 2023-12-19 上海海事大学 一种高熵合金/硬质陶瓷协同强化复合涂层及其制备方法
CN115557793B (zh) * 2022-09-19 2023-06-02 广东工业大学 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN115595463B (zh) * 2022-10-26 2023-07-18 山东大学 一种高熵硬质合金刀具材料及其制备方法与应用
CN116178027B (zh) * 2022-11-23 2024-04-19 广东工业大学 一种高硬度、高韧性和强抗氧化性的高熵硼化物基陶瓷及其制备方法和应用
CN116178030A (zh) * 2022-12-16 2023-05-30 广东工业大学 一种含高熵氮化物的氮化硅陶瓷及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180188A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵含硼碳化物超高温陶瓷粉体及其制备方法
CN109371307A (zh) * 2018-11-29 2019-02-22 福建工程学院 一种以高熵合金粉末为粘结剂的wc基硬质合金的制备方法
CN109516811A (zh) * 2018-10-15 2019-03-26 广东工业大学 一种具有多元高熵的陶瓷及其制备方法和应用
CN109734451A (zh) * 2019-01-31 2019-05-10 四川大学 一种过渡金属二硼化物高熵陶瓷及其制备方法
CN110002879A (zh) * 2019-03-22 2019-07-12 广东工业大学 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006013746A1 (de) * 2006-03-24 2007-09-27 Esk Ceramics Gmbh & Co. Kg Gesinterter verschleißbeständiger Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
TWI347978B (en) * 2007-09-19 2011-09-01 Ind Tech Res Inst Ultra-hard composite material and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180188A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵含硼碳化物超高温陶瓷粉体及其制备方法
CN109516811A (zh) * 2018-10-15 2019-03-26 广东工业大学 一种具有多元高熵的陶瓷及其制备方法和应用
CN109371307A (zh) * 2018-11-29 2019-02-22 福建工程学院 一种以高熵合金粉末为粘结剂的wc基硬质合金的制备方法
CN109734451A (zh) * 2019-01-31 2019-05-10 四川大学 一种过渡金属二硼化物高熵陶瓷及其制备方法
CN110002879A (zh) * 2019-03-22 2019-07-12 广东工业大学 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN110735076A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
CN110735076B (zh) 一种高熵金属陶瓷及其制备方法和应用
CN110627508A (zh) 一种高熵硼化物基陶瓷及其制备方法和应用
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN110606748A (zh) 一种氧化铝增强高熵硼化物陶瓷及其制备方法和应用
CN114315359B (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN104630533A (zh) 一种刀具材料的复合硬质合金的制备方法
CN111410536A (zh) 一种常压烧结制备致密(HfZrTaNbTi)C高熵陶瓷烧结体的方法
JPH06345534A (ja) 炭化ホウ素、二ホウ化チタンおよび元素状態炭素に基づく複合材料およびその製造方法
CN104630529A (zh) B4C作为弥散强化添加剂的细晶WC-Co硬质合金及其制备方法
CN115110044B (zh) 一种铬硅合金溅射靶材的制备方法
CN113620713A (zh) 一种WC/VCx硬质材料及其制备方法和应用
CN111848170A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN113416078B (zh) 一种非化学计量比硼化钛及利用该非化学计量比硼化钛制备的高熵硼化物陶瓷
JPH08109431A (ja) 硬質合金を結合材とするダイヤモンド燒結体及びその製造方法
CN113277849B (zh) 高红硬性碳化钨纯相块体材料及其制备方法
CN113416077A (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN115557793B (zh) 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN115991606B (zh) 一种TiB2-SiC-B4C三元超硬陶瓷材料及其制备方法
CN110607475B (zh) 一种碳化硼增强二硼化钛基金属陶瓷及其制备方法和应用
CN108975339B (zh) 一种过渡金属碳化物粉末和过渡金属碳化物-氮化物复合粉末的制备工艺
CN116217233A (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN112851361B (zh) 一种ZrN-镧硅酸盐复相陶瓷及其热压反应烧结制备方法
CN112851360A (zh) 一种ZrN基超高温陶瓷及其热压反应烧结制备方法
CN113292343A (zh) 一种原位反应无压烧结制备碳化硼基复相陶瓷的方法
CN106830941A (zh) Al2O3与多组元过渡族金属共价键化合物烧结体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant