CN116217233A - 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用 - Google Patents

一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN116217233A
CN116217233A CN202310305898.2A CN202310305898A CN116217233A CN 116217233 A CN116217233 A CN 116217233A CN 202310305898 A CN202310305898 A CN 202310305898A CN 116217233 A CN116217233 A CN 116217233A
Authority
CN
China
Prior art keywords
entropy
powder
carbide
ceramic
boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310305898.2A
Other languages
English (en)
Other versions
CN116217233B (zh
Inventor
郭伟明
刘洋
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202310305898.2A priority Critical patent/CN116217233B/zh
Publication of CN116217233A publication Critical patent/CN116217233A/zh
Application granted granted Critical
Publication of CN116217233B publication Critical patent/CN116217233B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于非氧化物陶瓷基复合材料技术领域,公开了一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用。该复相陶瓷是将高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和SiB6混合粉体放入石墨模具,采用放电等离子烧结或热压烧结,制得SiC晶须和高熵硼化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2增硬增韧高熵碳化物的复相陶瓷,该复相陶瓷具有比单一的高熵碳化物陶瓷更高的维氏硬度和断裂韧性;且相对密度大于99%,维氏硬度为23~26GPa,断裂韧性为4~6MPa·m1/2,可应用在制备切削难加工材料或航空航天耐磨零部件中。

Description

一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷 及其制备方法和应用
技术领域
本发明属于非氧化物陶瓷基复合材料技术领域,更具体地,涉及一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用。
技术背景
高熵碳化物陶瓷材料具有高熔点、高硬度、高耐磨性和高化学稳定性等优异性能,可应用于航空航天、高速切削刀具、军事装备和核能等领域。相较于传统过渡金属一元碳化物陶瓷材料,高熵碳化物陶瓷具有多样的元素组合和简单的单一相结构,在成分设计上拥有很大的发挥空间,是传统过渡金属一元碳化物陶瓷的理想替代材料。然而,由于高熵碳化物特殊的晶体结构,导致其断裂韧性低于传统的过渡金属一元碳化物陶瓷,限制了其进一步应用。故开发提升高熵碳化物陶瓷断裂韧性的有效手段,成为了现下研究者的研究重点。
高熵硼化物陶瓷属于超高温材料,具有良好的热稳定性和化学稳定性,引起了研究者的广泛关注。其有望成为超音速飞行器、火箭发动机等极端环境下的候选材料。高熵硼化物陶瓷的维氏硬度显著高于高熵碳化物陶瓷,将高熵硼化物以第二相的形式引入高熵碳化物陶瓷有望进一步提升高熵碳化物陶瓷的维氏硬度和高温性能。同时,晶须作为传统的增韧材料已被证明对高熵碳化物陶瓷具有很好的增韧效果。
目前,多采用直接添加高熵硼化物及晶须的方法来实现对高熵碳化物的增硬增韧,这种方法成本高、工艺复杂,且易受到原材料品质的影响。然而在高熵金属非氧化物陶瓷基材料领域,尚未报道过原位生成SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷材料。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明的目的在于提供一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷。该复相陶瓷具有致密的结构。原位生成的SiC晶须和高熵硼化物均匀的分布在高熵碳化物基体中,极大地提高了复相材料的维氏硬度和断裂韧性。
本发明的另一目的在于提供上述SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的制备方法。该方法采用放电等离子烧结或热压烧结,将高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体通过原位反应制得SiC晶须增硬增韧的高熵碳化物复相陶瓷。
本发明的再一目的在于提供上述SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷,所述的复相陶瓷是将高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和SiB6混合,制得(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体;将上述混合粉体加入无水乙醇,超声搅拌制得浆料;经辊式球磨机球磨、干燥和过筛后装入石墨模具,干压成坯体;在保护气氛下,将坯体在压力为20~40MPa,1800~2000℃进行放电等离子烧结或者热压烧结制得。
优选地,所述的复相陶瓷的相对密度大于98%,维氏硬度为23~26GPa,断裂韧性为4~6MPa·m1/2
优选地,所述的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体的粒径为30nm~1μm;所述的SiB6粉体的粒径为1~6μm。
优选地,以(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和SiB6粉体的总质量为100%计,(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体的质量百分比为90~99wt.%,SiB6粉体的质量百分比为1~10wt.%。
所述的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的制备方法,包括以下步骤:
S1.将高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和SiB6混合,制得(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体;
S2.将(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体加入无水乙醇,超声搅拌制得浆料;然后将氮化硅介质球加入浆料经辊式球磨机球磨,经干燥和过筛后装入石墨模具,干压成坯体;
S3.在保护气氛下,将坯体在压力为20~40MPa,1800~2000℃进行放电等离子烧结或者热压烧结,制得原位生成SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷,分子式为SiC-(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2-(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C。
优选地,步骤S2中所述球磨的转速为100~300r/min;所述球磨的时间为18~36h;所述干燥的温度为60~80℃,所述干燥的时间为12~24h。
优选地,步骤S3中所述放电等离子烧结的具体程序为:先以100~150℃/min的速率升温至1000~1200℃,开始充氩气并且开始加压,继续将温度升至1800~2000℃,同时压力升至20~40MPa;升温程序执行完毕后保温保压10~20min;然后以80~100℃/min的速率降温,1000~1200℃泄压完毕,温度降至750~850℃后随炉降温。
优选地,步骤S3中所述热压烧结的具体程序为:先以10~14℃/min的升温速率升温,室温~1000℃开始充氩气并且开始加压,继续以6~8℃/min的升温速率升温,将温度升至1800~2000℃,同时压力升至20~40MPa;升温程序执行完毕后保温保压1~1.5h;然后以10~12℃/min的速率降温,1000~1200℃泄压完毕,降温至750~850℃后随炉降温。
所述的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷在制备切削难加工材料或航空航天耐磨零部件中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明制得的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷具有高韧性、高硬度的优点。该复相陶瓷具有比单一的高熵碳化物陶瓷更高的维氏硬度和断裂韧性;且相对密度大于99%,维氏硬度为23~26GPa,断裂韧性为4~6MPa·m1/2,可应用在制备切削难加工材料或航空航天耐磨零部件中。
2.本发明采用了反应烧结工艺,通过在高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C加入SiB6,在高温下与高熵碳化物反应原位生成了高熵硼化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2和SiC晶须,且(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2和SiC晶须抑制了(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C晶粒长大,提高陶瓷力学性能。
3.本发明采用了反应烧结工艺,该工艺简单,成本低,节约能源。
附图说明
图1为实施例1制备的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的微观结构照片。
图2为实施例2制备的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的微观结构照片。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以质量分数比为93%:7%的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体(粒径为30nm~1μm)和六硼化硅粉体(SiB6)为原料,配制混合粉体,加入无水乙醇,并超声搅拌1h制得浆料。
2.将浆料在辊式球磨机以无水乙醇为分散剂,Si3N4球为球磨介质,以200r/min转速混料24h,在烘箱80℃干燥24h,过100目筛,得到混合均匀的(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体;
3.将(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体装入石墨模具,放入放电等离子烧结炉,以100℃/min的速率升温至1000℃,开始充氩气并且开始加压,然后升温至1800℃放电等离子烧结,同时压力升至20MPa,并保温保压20min,保温结束后以100℃/min的速率降温,1000℃泄压完毕,800℃后随炉降温,得到原位生成的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷,其分子式为SiC-(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2-(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C。
图1为实施例1制备的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的微观结构照片。从图1中可知,深色相为SiC相,浅色相为(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C和(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2相。从样品的显微结构中未观察到气孔存在,说明样品经过烧结后实现了致密化。(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C和(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2相晶粒呈不规则状。同时,该样品生成的SiC晶须相比实施例2的样品生成的SiC晶须具有更大的长径比,可以更为有效的提升样品的断裂韧性。本实施例制得的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的相对密度为99%,维氏硬度为26.0GPa,断裂韧性为6.1MPa·m1/2
实施例2
1.以质量分数比为94%:6%的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和六硼化硅粉体为原料,配制混合粉体,加入无水乙醇,并超声搅拌1h制得浆料。
2.将浆料在辊式球磨机以无水乙醇为分散剂,Si3N4球为球磨介质,以200r/min转速混料24h,在烘箱80℃干燥24h,过100目筛,得到混合均匀的(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体;
3.将(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体装入石墨模具,放入放电等离子烧结炉,以100℃/min的速率升温至1000℃,开始充氩气并且开始加压,然后升温至1850℃放电等离子烧结,同时压力升至30MPa,并保温保压20min,保温结束后以100℃/min的速率降温,1000℃泄压完毕,800℃后随炉降温,得到原位生成SiC晶须和高熵硼化物增硬增韧的高熵碳化物复相陶瓷,其分子式为SiC-(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2-(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C。
图2为实施例2制备的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的微观结构照片。由图2中可知,深色相为SiC相,浅色相为(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C和(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2相。从样品的显微结构中未观察到气孔存在,说明样品经过烧结后实现了致密化。同时(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C和(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2相晶粒呈不规则状。SiC晶须可以在陶瓷断裂过程中引发裂纹偏转、晶须拔出,从而有效的提升样品的断裂韧性。而(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2高熵硼化物相具有比(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C高熵碳化物相更高的硬度,从而提升了样品的硬度。本实施例制得的原位生成SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的相对密度为100%,维氏硬度为25.6GPa,断裂韧性为5.3MPa·m1/2
实施例3
1.以质量分数比为90%:10%的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和SiB6粉体为原料,配制混合粉体,加入无水乙醇,并超声搅拌1h制得浆料。
2.将浆料在辊式球磨机以无水乙醇为分散剂,Si3N4球为球磨介质,以200r/min转速混料24h,在烘箱80℃干燥24h后,过100目筛,得到混合均匀的(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体;
3.将(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体装入石墨模具,放入热压烧结炉,以10℃/min的速率升温至1200℃,开始充氩气并且开始加压,然后以6℃/min的速率升温至2000℃热压烧结,同时压力升至40MPa,并保温保压60min,保温结束后以10℃/min的速率降温,1000℃泄压完毕,800℃后随炉降温,得到原位生成SiC晶须和高熵硼化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2增硬增韧的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C复相陶瓷。
本实施例制得的原位生成晶须及高熵硼化物增硬增韧高熵碳化物复相陶瓷的相对密度为100%,维氏硬度为23.4GPa,断裂韧性为4.5MPa·m1/2
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷,其特征在于,所述的复相陶瓷是将高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和SiB6混合,制得(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体;将上述混合粉体加入无水乙醇,超声搅拌制得浆料;经辊式球磨机球磨、干燥和过筛后装入石墨模具,干压成坯体;在保护气氛下,将坯体在压力为20~40MPa,1800~2000℃进行放电等离子烧结或者热压烧结制得。
2.根据权利要求1所述的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷,其特征在于,所述的复相陶瓷的相对密度大于98%,维氏硬度为23~26GPa,断裂韧性为4~6MPa·m1/2
3.根据权利要求1所述的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷,其特征在于,所述的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体的粒径为30nm~1μm;所述的SiB6粉体的粒径为1~6μm。
4.根据权利要求1所述的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷,其特征在于,以(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和SiB6粉体的总质量为100%计,(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体的质量百分比为90~99wt.%,SiB6粉体的质量百分比为1~10wt.%。
5.根据权利要求1-4任一项所述的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的制备方法,其特征在于,包括以下步骤:
S1.将高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和SiB6混合,制得(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体;
S2.将(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiB6混合粉体加入无水乙醇,超声搅拌制得浆料;然后将氮化硅介质球加入浆料经辊式球磨机球磨,经干燥和过筛后装入石墨模具,干压成坯体;
S3.在保护气氛下,将坯体在压力为20~40MPa,1800~2000℃进行放电等离子烧结或者热压烧结,制得原位生成SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷,分子式为SiC-(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)B2-(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C。
6.根据权利要求5所述的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的制备方法,其特征在于,步骤S2中所述球磨的转速为100~300r/min;所述球磨的时间为18~36h;所述干燥的温度为60~80℃,所述干燥的时间为12~24h。
7.根据权利要求5所述的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的制备方法,其特征在于,步骤S3中所述放电等离子烧结的具体程序为:先以100~150℃/min的速率升温至1000~1200℃,开始充氩气并且开始加压,继续将温度升至1800~2000℃,同时压力升至20~40MPa;升温程序执行完毕后保温保压10~20min;然后以80~100℃/min的速率降温,1000~1200℃泄压完毕,温度降至750~850℃后随炉降温。
8.根据权利要求5所述的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷的制备方法,其特征在于,步骤S3中所述热压烧结的具体程序为:先以10~14℃/min的升温速率升温,室温~1000℃开始充氩气并且开始加压,继续以6~8℃/min的升温速率升温,将温度升至1800~2000℃,同时压力升至20~40MPa;升温程序执行完毕后保温保压1~1.5h;然后以10~12℃/min的速率降温,1000~1200℃泄压完毕,降温至750~850℃后随炉降温。
9.权利要求1-4任一项所述的SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷在制备切削难加工材料或航空航天耐磨零部件中的应用。
CN202310305898.2A 2023-03-27 2023-03-27 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用 Active CN116217233B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310305898.2A CN116217233B (zh) 2023-03-27 2023-03-27 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310305898.2A CN116217233B (zh) 2023-03-27 2023-03-27 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116217233A true CN116217233A (zh) 2023-06-06
CN116217233B CN116217233B (zh) 2024-01-09

Family

ID=86571371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310305898.2A Active CN116217233B (zh) 2023-03-27 2023-03-27 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116217233B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117088692A (zh) * 2023-09-06 2023-11-21 西安交通大学 一种多相协同超高温陶瓷基复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002879A (zh) * 2019-03-22 2019-07-12 广东工业大学 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN110627508A (zh) * 2019-08-28 2019-12-31 广东工业大学 一种高熵硼化物基陶瓷及其制备方法和应用
CN112408984A (zh) * 2020-10-29 2021-02-26 航天材料及工艺研究所 一种耐高温近红外吸收高熵陶瓷及其制备方法
EP3954806A1 (en) * 2020-08-14 2022-02-16 Raytheon Technologies Corporation Environmental barrier coating
CN114853477A (zh) * 2022-04-28 2022-08-05 浙江师范大学 一种耐烧蚀高熵碳化物-高熵硼化物-碳化硅复相陶瓷及其制备方法
WO2022241733A1 (zh) * 2021-05-20 2022-11-24 中广核研究院有限公司 高熵陶瓷惰性基弥散燃料芯块及其制备方法
CN115385712A (zh) * 2021-05-25 2022-11-25 中国科学院上海硅酸盐研究所 一种高熵超高温陶瓷基复合材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002879A (zh) * 2019-03-22 2019-07-12 广东工业大学 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN110627508A (zh) * 2019-08-28 2019-12-31 广东工业大学 一种高熵硼化物基陶瓷及其制备方法和应用
EP3954806A1 (en) * 2020-08-14 2022-02-16 Raytheon Technologies Corporation Environmental barrier coating
CN112408984A (zh) * 2020-10-29 2021-02-26 航天材料及工艺研究所 一种耐高温近红外吸收高熵陶瓷及其制备方法
WO2022241733A1 (zh) * 2021-05-20 2022-11-24 中广核研究院有限公司 高熵陶瓷惰性基弥散燃料芯块及其制备方法
CN115385712A (zh) * 2021-05-25 2022-11-25 中国科学院上海硅酸盐研究所 一种高熵超高温陶瓷基复合材料及其制备方法
CN114853477A (zh) * 2022-04-28 2022-08-05 浙江师范大学 一种耐烧蚀高熵碳化物-高熵硼化物-碳化硅复相陶瓷及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117088692A (zh) * 2023-09-06 2023-11-21 西安交通大学 一种多相协同超高温陶瓷基复合材料及其制备方法

Also Published As

Publication number Publication date
CN116217233B (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
CN110627508A (zh) 一种高熵硼化物基陶瓷及其制备方法和应用
CN110818428B (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN114315359B (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN106904977B (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN113636842B (zh) 一种高熵二硼化物-碳化硼复相陶瓷、制备方法及其应用
CN110606748A (zh) 一种氧化铝增强高熵硼化物陶瓷及其制备方法和应用
CN112500178B (zh) 一种原位生成ZrB2-SiC增韧PcBN刀具及其制备方法
CN113121237B (zh) 一种碳化硼基复合陶瓷及其制备工艺
CN115180960B (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN108624772A (zh) 超细晶碳化钨基硬质合金材料及其制备方法
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN110903091A (zh) 一种SiC-Ti3SiC2复合材料及其制备方法
CN113149676B (zh) 一种利用两步法烧结原位增韧碳化硼基复相陶瓷的方法
CN107746282A (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
CN110627504A (zh) 碳化硼复合材料的无压烧结制备方法
CN114671689A (zh) 一种热压液相烧结碳化硼复合陶瓷及其制备方法
CN113416077A (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN108503370A (zh) 一种单相氮化硅陶瓷及其sps制备工艺
CN116535218B (zh) 一种高纯致密碳化硅陶瓷材料及其固相烧结方法和应用
CN111499386A (zh) 一种复合陶瓷材料及其制备方法
CN113121238B (zh) 一种高性能碳化硼基复合陶瓷材料及其制备方法
CN116178034B (zh) 一种晶须增韧高熵碳化物复相陶瓷及其制备方法和应用
CN105585324A (zh) 晶须增韧强化碳陶瓷复合材料
CN114394837A (zh) 一种抗氧化性的二硼化物-碳化物固溶体陶瓷的制备方法和应用
CN113816747A (zh) TiC增强MAX相高熵陶瓷基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant