CN117088692A - 一种多相协同超高温陶瓷基复合材料及其制备方法 - Google Patents

一种多相协同超高温陶瓷基复合材料及其制备方法 Download PDF

Info

Publication number
CN117088692A
CN117088692A CN202311146088.3A CN202311146088A CN117088692A CN 117088692 A CN117088692 A CN 117088692A CN 202311146088 A CN202311146088 A CN 202311146088A CN 117088692 A CN117088692 A CN 117088692A
Authority
CN
China
Prior art keywords
matrix composite
ceramic matrix
powder
graphite mold
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311146088.3A
Other languages
English (en)
Other versions
CN117088692B (zh
Inventor
龙昌柏
许安伟
丁向东
李苏植
薛敏涛
胡磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202311146088.3A priority Critical patent/CN117088692B/zh
Publication of CN117088692A publication Critical patent/CN117088692A/zh
Application granted granted Critical
Publication of CN117088692B publication Critical patent/CN117088692B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种多相协同超高温陶瓷基复合材料及其制备方法,方法包括步骤:1、按照质量份数取50~80份碳化铪粉体、20~50份碳化钽粉体、3~8份六硼化硅粉体和0.1~5份稀土元素粉体混合均匀,得到混合粉体A;2、将混合粉体置于球磨罐中,在保护性气氛气体中干法球磨,得到混合粉体B;3、将混合粉体B置于管式炉中,向管式炉中通入氮/氢混合气,在600~1200℃下充分还原,得到产物C;4、将产物C研磨和过筛后装入石墨模具,将石墨模具置于放电等离子体设备中,以50~150℃/min的升温速率自室温升温至1750~1900℃,烧结15~30min,冷却至室温后,脱模并进行打磨处理,得到Hf‑Ta‑C‑B超高温陶瓷基复合材料,提高了复合材料的抗烧蚀能力和强韧性。

Description

一种多相协同超高温陶瓷基复合材料及其制备方法
技术领域
本发明涉及超高温陶瓷,具体是一种多相协同超高温陶瓷基复合材料及其制备方法。
背景技术
航空航天领域对热防护系统有着特殊的要求,在高马赫飞行器再入时,飞行器前缘、尖端部分会产生极端的热对流、热辐射,温度高达2400℃,使得传统合金和复合材料不能满足温度要求,因此超高温陶瓷基复合材料(UHTCMC)作为一种十分有潜力的候选材料应运而生。过渡金属碳化物具有很高的熔点,其中碳化铪HfC和碳化钽TaC的熔点分别为3900℃和3800℃,在超高温服役环境中具有较大的潜力。对于碳化物超高温陶瓷基复合材料,其氧化过程主要表现为内部金属原子向外扩散和外部氧原子向内扩散,烧蚀过程包括高温氧化、气流冲刷和机械剥落,一方面可以通过形成致密和连续的氧化层,减少向内的氧扩散和抵抗机械冲刷,另一方面要使得致密氧化层在烧蚀过程中表现出适当的粘度,进行气体副产物的释放和填充裂纹,提高其强韧性和抗烧蚀性能,是目前研究的重点和难点。
已有文献公开了制备不同比例的TaC+HfC陶瓷,相比于纯HfC陶瓷和纯TaC陶瓷,TaC+HfC混合陶瓷的氧化速率明显降低,这是由于经过氧化后,两种碳化物可生成Hf6Ta2O17氧化层,其致密性好,具有较低的氧扩散速率,能够耐受气流冲刷;并且碳化钽的氧化物Ta2O5的熔点为1800℃,在超高温环境中,存在状态为熔融态,能够填充裂纹和微孔,使得氧化层能够自愈合、致密性良好,但是陶瓷烧蚀后的表面氧化层存在膨胀和剥落,并且内部存在较多的微裂纹和微孔。另有文献通过包埋渗工艺制备了Zr0.8Ti0.2C0.74B0.26涂层,相比于Zr0.83T0.17C涂层,3000℃下烧蚀60s后,其线烧蚀率和质量烧蚀率明显降低,接近于零;这是由于B原子的引入增强了化学键,使得原子间作用力增强,以及氧化硼改善了液相的粘稠度,能够充分的释放出气体副产物,并填充裂纹和微孔,然而,其在2000℃和2500℃烧蚀后形成的氧化层疏松多孔,存在较多的微裂纹。中国专利CN109678511A公布了一种致密HfC(Si)-HfB2复相陶瓷的制备方法,将氧化铪粉体、纳米碳黑以及六硼化硅粉体按照一定比例混合,经过湿法球磨并干燥后,在1500~1650℃进行放电等离子烧结,通过碳-硼热还原反应一步生成HfC(Si)-HfB2复相陶瓷,反应烧结促进了晶粒的重排;硅原子固溶在碳化铪晶体中,形成固溶强化,其致密性和断裂韧性较高,但是陶瓷中氧元素含量较高,使得氧原子在晶界处偏析,造成应力集中,在450℃~1800℃时,虽然液相氧化硼可以起到填充裂纹和微孔的作用,但是,当温度在1800℃以上时,疏松多孔结构的氧化铪难以得到液相填充,使得氧化层的致密性较差。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种多相协同超高温陶瓷基复合材料及其制备方法,提高了复合材料的抗烧蚀能力和强韧性。
为了实现上述目的,本发明采用以下技术方案予以实现:
一种多相协同超高温陶瓷基复合材料的制备方法,包括如下步骤:
步骤1、按照质量份数取50~80份碳化铪粉体、20~50份碳化钽粉体、3~8份六硼化硅粉体和0.1~5份稀土元素粉体混合均匀,得到混合粉体A;
步骤2、将混合粉体置于球磨罐中,在保护性气氛气体中干法球磨,得到混合粉体B;
步骤3、将混合粉体B置于管式炉中,向管式炉中通入氮/氢混合气,在600~1200℃下充分还原,得到产物C;
步骤4、将产物C研磨和过筛后装入石墨模具,将石墨模具置于放电等离子设备中,以50~150℃/min的升温速率自室温升温至1750~1900℃,烧结15~30min,冷却至室温后,脱模并进行打磨处理,得到Hf-Ta-C-B超高温陶瓷基复合材料。
进一步地,所述步骤1的稀土元素粉体为六硼化镧、硼化钇、碳化钇中的一种或多种。
进一步地,所述步骤2的保护性气氛气体为氮气或氩气。
进一步地,所述步骤2的干法球磨是在300~500r/min的速率下,球磨8~24h,且球料比为(4~6):1。
进一步地,所述步骤3的氮/氢混合气中氢气的体积分数为1%~8%。
进一步地,所述步骤3的还原时间为1~6h。
进一步地,所述步骤4的过筛是过250~300目筛。
进一步地,所述步骤4的烧结过程中施加的单向轴向压力为30~70MPa。
一种多相协同超高温陶瓷基复合材料,在2300℃的等离子火焰中烧蚀300s,线烧蚀率为0.001um/s。
本发明与现有技术相比,具有如下技术效果:
1)本发明材料直接选用高纯度碳化铪、碳化钽陶瓷粉体作为原料,避免了氧杂质的引入,并增加了反应过程的可控性,通过放电等离子烧结,使陶瓷粉体直接与六硼化硅发生原位反应生成超高温陶瓷,即硼化铪和硼化钽,促进了晶界的流动和迁移,得到了碳化铪、碳化钽、硼化铪和硼化钽多相协同作用的超高温陶瓷基复合材料,利用硼原子增强化学键,提高了材料的致密性和力学性能;烧蚀后生成的Ta2O5在1800℃以上为液相,可以填充疏松多孔结构的二氧化铪,改善了氧化层的粘度,生成致密的氧化膜;HfO2与Ta2O5发生共晶反应,形成Hf6Ta2O17固溶体,其具有较低的氧扩散系数,并且可以改善氧化层的粘度,形成连续的保护层;通过以上所述,克服了传统超高温陶瓷难以烧结致密化的难题,大大增强了复合材料的抗烧蚀能力。
2)本发明通过稀土金属元素与低熔点氧化物反应以及利用氢热还原工艺,显著降低了陶瓷烧结后复合材料内部的氧含量,同时,通过引入的钽元素起到固溶强化的作用,稀土元素进入陶瓷晶体中,起到第二相强化和阻碍晶粒生长的作用,减少了氧的析出,从而减少应力集中,烧蚀后稀土元素氧化物可以与氧化铪形成RE2Hf2O7固溶体,使得HfO2相保持稳定,还可以促进RE2SiO7硅酸盐化合物的生成,起到填充裂纹、孔洞等缺陷的作用,经过放电等离子反应烧结制备出致密度优异、晶粒细小、氧元素含量极低的Hf-Ta-C-B超高温陶瓷基复合材料,提高了复合材料的强韧性。
3)本发明通过碳化铪、碳化钽、硼化铪、硼化钽以及稀土金属元素的多相协同调控,生成的陶瓷基复合材料力学性能优异、抗烧蚀性能好,在2300℃的等离子火焰中烧蚀300s,线烧蚀率仅为0.001微米/秒,具有良好的抗烧蚀能力。
附图说明
图1:本发明实施例1制备的Hf-Ta-C-B超高温陶瓷基复合材料的XRD图;
图2:本发明实施例1制备的Hf-Ta-C-B超高温陶瓷基复合材料的宏观形貌图;
图3:本发明实施例1制备的Hf-Ta-C-B超高温陶瓷基复合材料的SEM图;
图4:本发明实施例1制备的Hf-Ta-C-B超高温陶瓷基复合材料用2300℃等离子火焰烧蚀300s后的宏观形貌图;
图5:本发明实施例1制备的Hf-Ta-C-B超高温陶瓷基复合材料用2300℃等离子火焰烧蚀300s后的SEM图。
具体实施方式
以下结合实施例对本发明的具体内容做进一步详细解释说明。
实施例1
步骤1、按照质量份数取60份碳化铪粉体、25份碳化钽粉体、3份六硼化硅粉体和1份六硼化镧粉体混合均匀,得到混合粉体A;
步骤2、按照球料比为5:1将混合粉体置于高能球磨罐中,在氮气中,以400r/min的速率干法球磨12h,得到混合粉体B;
步骤3、将混合粉体B置于管式炉中,向管式炉中通入氮/氢混合气,氮/氢混合气中氢气的体积分数为2%,在800℃下还原3h,得到产物C;
步骤4、将产物C放置在玛瑙研钵中研磨,过300目筛,在石墨模具中提前铺设两层0.2mm碳纸,然后将研磨后的粉末装入石墨模具,将石墨模具置于放电等离子设备中,施加50MPa的单向轴向压力,以50℃/min的升温速率自室温升温至1800℃,烧结20min,冷却至室温后,进行脱模,打磨处理后,得到Hf-Ta-C-B超高温陶瓷基复合材料。
从图1可以看出,实施例1制备的Hf-Ta-C-B超高温陶瓷基复合材料,经过原位烧结,成功生成了硼化铪和硼化钽相,并且XRD峰形尖锐,说明其结晶性良好,固溶充分。
从图2可以看出,实施例1制备的Hf-Ta-C-B超高温陶瓷基复合材料表面光滑、均匀,具有光泽,形状完整,未出现裂纹和孔洞等缺陷。
从图3可以看出,实施例1制备的Hf-Ta-C-B超高温陶瓷基复合材料具有明、灰、黑三种不同对比度的相,并且其晶粒细小、结构致密,未出现小孔和裂纹等微观组织缺陷。
从图4可以看出,实施例1制备的Hf-Ta-C-B超高温陶瓷基复合材料经过2300℃等离子火焰烧蚀300s后,生成的氧化层形状完整,与基体结合良好,没有出现剥落、烧蚀坑、裂纹等明显缺陷,起到了良好的保护基体的作用,抗烧蚀性能优异。
从图5可以看出,实施例1制备的Hf-Ta-C-B超高温陶瓷基复合材料经过2300℃等离子火焰烧蚀300s后,其表面氧化层的微观结构致密,生成的玻璃相均匀填充颗粒状氧化物,未发现孔洞、裂纹等缺陷生成,获得了一层致密性优异的连续氧化层。
实施例2
步骤1、按照质量份数取72份碳化铪粉体、35份碳化钽粉体、5份六硼化硅粉体和0.4份硼化钇粉体混合均匀,得到混合粉体A;
步骤2、按照球料比为5:1将混合粉体置于高能球磨罐中,在保护性气氛气体中,以450r/min的速率干法球磨20h,得到混合粉体B;
步骤3、将混合粉体B置于管式炉中,向管式炉中通入氮/氢混合气,氮/氢混合气中氢气的体积分数为5%,在1000℃下还原5h,得到产物C;
步骤4、将产物C放置在玛瑙研钵中研磨,过300目筛,在石墨模具中提前铺设两层0.2mm碳纸,然后将研磨后的粉末装入石墨模具,将石墨模具置于放电等离子设备中,施加55MPa的单向轴向压力,以100℃/min的升温速率自室温升温至1850℃,烧结15min,冷却至室温后,进行脱模,打磨处理后,得到Hf-Ta-C-B超高温陶瓷基复合材料。
实施例3
步骤1、按照质量份数取65份碳化铪粉体、30份碳化钽粉体、4份六硼化硅粉体和3份碳化钇粉体混合均匀,得到混合粉体A;
步骤2、按照球料比为4:1将混合粉体置于高能球磨罐中,在保护性气氛气体中,以300r/min的速率干法球磨18h,得到混合粉体B;
步骤3、将混合粉体B置于管式炉中,向管式炉中通入氮/氢混合气,氮/氢混合气中氢气的体积分数为6%,在900℃下还原4h,得到产物C;
步骤4、将产物C放置在玛瑙研钵中研磨,过250目筛,在石墨模具中提前铺设两层0.2mm碳纸,然后将研磨后的粉末装入石墨模具,将石墨模具置于放电等离子设备中,施加30MPa的单向轴向压力,以80℃/min的升温速率自室温室温至1900℃,烧结25min,冷却至室温后,进行脱模,打磨处理后,得到Hf-Ta-C-B超高温陶瓷基复合材料。
实施例4
步骤1、按照质量份数取70份碳化铪粉体、40份碳化钽粉体、6份六硼化硅粉体和2份硼化钇粉体混合均匀,得到混合粉体A;
步骤2、按照球料比为6:1将混合粉体置于高能球磨罐中,在保护性气氛气体中,以350r/min的速率干法球磨16h,得到混合粉体B;
步骤3、将混合粉体B置于管式炉中,向管式炉中通入氮/氢混合气,氮/氢混合气中氢气的体积分数为8%,在1200℃下还原1h,得到产物C;
步骤4、将产物C放置在玛瑙研钵中研磨,过250目筛,在石墨模具中提前铺设两层0.2mm碳纸,然后将研磨后的粉末装入石墨模具,将石墨模具置于放电等离子设备中,施加70MPa的单向轴向压力,以100℃/min的升温速率自室温室温至1750℃,烧结30min,冷却至室温后,进行脱模,打磨处理后,得到Hf-Ta-C-B超高温陶瓷基复合材料。
实施例5
步骤1、按照质量份数取50份碳化铪粉体、20份碳化钽粉体、7份六硼化硅粉体和5份六硼化镧粉体混合均匀,得到混合粉体A;
步骤2、按照球料比为4:1将混合粉体置于高能球磨罐中,在保护性气氛气体中,以500r/min的速率干法球磨8h,得到混合粉体B;
步骤3、将混合粉体B置于管式炉中,向管式炉中通入氮/氢混合气,氮/氢混合气中氢气的体积分数为1%,在600℃下还原6h,得到产物C;
步骤4、将产物C放置在玛瑙研钵中研磨,过300目筛,在石墨模具中提前铺设两层0.2mm碳纸,然后将研磨后的粉末装入石墨模具,将石墨模具置于放电等离子设备中,施加60MPa的单向轴向压力,以150℃/min的升温速率自室温室温至1800℃,烧结15min,冷却至室温后,进行脱模,打磨处理后,得到Hf-Ta-C-B超高温陶瓷基复合材料。
实施例6
步骤1、按照质量份数取80份碳化铪粉体、50份碳化钽粉体、8份六硼化硅粉体和0.1份碳化钇粉体混合均匀,得到混合粉体A;
步骤2、按照球料比为6:1将混合粉体置于高能球磨罐中,在保护性气氛气体中,以400r/min的速率干法球磨24h,得到混合粉体B;
步骤3、将混合粉体B置于管式炉中,向管式炉中通入氮/氢混合气,氮/氢混合气中氢气的体积分数为3%,在1100℃下还原2h,得到产物C;
步骤4、将产物C放置在玛瑙研钵中研磨,过250目筛,在石墨模具中提前铺设两层0.2mm碳纸,然后将研磨后的粉末装入石墨模具,将石墨模具置于放电等离子设备中,施加40MPa的单向轴向压力,以120℃/min的升温速率自室温升温至1800℃,烧结30min,冷却至室温后,进行脱模,打磨处理后,得到Hf-Ta-C-B超高温陶瓷基复合材料。

Claims (9)

1.一种多相协同超高温陶瓷基复合材料的制备方法,其特征在于,包括如下步骤:
步骤1、按照质量份数取50~80份碳化铪粉体、20~50份碳化钽粉体、3~8份六硼化硅粉体和0.1~5份稀土元素粉体混合均匀,得到混合粉体A;
步骤2、将混合粉体置于球磨罐中,在保护性气氛气体中干法球磨,得到混合粉体B;
步骤3、将混合粉体B置于管式炉中,向管式炉中通入氮/氢混合气,在600~1200℃下充分还原,得到产物C;
步骤4、将产物C研磨和过筛后装入石墨模具,将石墨模具置于放电等离子设备中,以50~150℃/min的升温速率自室温升温至1750~1900℃,烧结15~30min,冷却至室温后,脱模并进行打磨处理,得到Hf-Ta-C-B超高温陶瓷基复合材料。
2.根据权利要求1所述的多相协同超高温陶瓷基复合材料的制备方法,其特征在于,所述步骤1的稀土元素粉体为六硼化镧、硼化钇或碳化钇中的一种或多种。
3.根据权利要求1所述的多相协同超高温陶瓷基复合材料的制备方法,其特征在于,所述步骤2的保护性气氛气体为氮气或氩气。
4.根据权利要求1所述的多相协同超高温陶瓷基复合材料的制备方法,其特征在于,所述步骤2的干法球磨是在300~500r/min的速率下,球磨8~24h,且球料比为(4~6):1。
5.根据权利要求1所述的多相协同超高温陶瓷基复合材料的制备方法,其特征在于,所述步骤3的氮/氢混合气中氢气的体积分数为1%~8%。
6.根据权利要求1所述的多相协同超高温陶瓷基复合材料的制备方法,其特征在于,所述步骤3的还原时间为1~6h。
7.根据权利要求1所述的多相协同超高温陶瓷基复合材料的制备方法,其特征在于,所述步骤4的过筛是过250~300目筛。
8.根据权利要求1所述的多相协同超高温陶瓷基复合材料的制备方法,其特征在于,所述步骤4的烧结过程中施加的单向轴向压力为30~70MPa。
9.一种如权利要求1~8任一项所述方法制备的多相协同超高温陶瓷基复合材料,其特征在于,在2300℃的等离子火焰中烧蚀300s,线烧蚀率为0.001um/s。
CN202311146088.3A 2023-09-06 2023-09-06 一种多相协同超高温陶瓷基复合材料及其制备方法 Active CN117088692B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311146088.3A CN117088692B (zh) 2023-09-06 2023-09-06 一种多相协同超高温陶瓷基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311146088.3A CN117088692B (zh) 2023-09-06 2023-09-06 一种多相协同超高温陶瓷基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN117088692A true CN117088692A (zh) 2023-11-21
CN117088692B CN117088692B (zh) 2024-08-02

Family

ID=88771454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311146088.3A Active CN117088692B (zh) 2023-09-06 2023-09-06 一种多相协同超高温陶瓷基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117088692B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503427A (zh) * 2011-11-10 2012-06-20 哈尔滨工业大学 一种高韧性硼化物-碳化物复相陶瓷的制备方法
CN109678511A (zh) * 2018-12-23 2019-04-26 上海交通大学 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
CN114315359A (zh) * 2022-01-04 2022-04-12 哈尔滨工业大学 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN115716755A (zh) * 2022-11-18 2023-02-28 上海大学 一种超高温陶瓷基复合材料及其制备方法
US20230167029A1 (en) * 2022-04-28 2023-06-01 Zhejiang Normal University Ablation-resistant high-entropy carbide-high-entropy diboride-silicon carbide multiphase ceramic and preparation thereof
CN116217233A (zh) * 2023-03-27 2023-06-06 广东工业大学 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503427A (zh) * 2011-11-10 2012-06-20 哈尔滨工业大学 一种高韧性硼化物-碳化物复相陶瓷的制备方法
CN109678511A (zh) * 2018-12-23 2019-04-26 上海交通大学 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
US20210179499A1 (en) * 2018-12-23 2021-06-17 Shanghai Jiao Tong University METHOD FOR PREPARATION OF DENSE HfC(Si)-HfB2 COMPOSITE CERAMIC
CN114315359A (zh) * 2022-01-04 2022-04-12 哈尔滨工业大学 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
US20230167029A1 (en) * 2022-04-28 2023-06-01 Zhejiang Normal University Ablation-resistant high-entropy carbide-high-entropy diboride-silicon carbide multiphase ceramic and preparation thereof
CN115716755A (zh) * 2022-11-18 2023-02-28 上海大学 一种超高温陶瓷基复合材料及其制备方法
CN116217233A (zh) * 2023-03-27 2023-06-06 广东工业大学 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN117088692B (zh) 2024-08-02

Similar Documents

Publication Publication Date Title
US10364194B2 (en) Composite material and method for preparing the same
Li et al. Spark plasma sintering of TiC–ZrC composites
CN114853477B (zh) 一种耐烧蚀高熵碳化物-高熵硼化物-碳化硅复相陶瓷及其制备方法
Xu et al. Microstructure and ablation resistance of ZrCxNy-modified ZrC-SiC composite coating for carbon/carbon composites
CN110963799B (zh) 一种液相硅辅助成形热防护类Z-pins硅化物陶瓷棒结构的制备方法
Aguirre et al. Zirconium-diboride silicon-carbide composites: A review
Peng et al. Comparative insights into C/C–ZrC–SiC composites with different substrate carbon on microstructures, mechanical properties, and ablation behaviors
Ren et al. Influences of deposition temperature, gas flow rate and ZrC content on the microstructure and anti-ablation performance of CVD-HfC-ZrC coating
Jiang et al. Oxidation protective ZrB2-MoSi2-SiC-Si coating for graphite materials prepared by slurry dipping and vapor silicon infiltration
CN112028635A (zh) 一种超高温陶瓷复合材料及制备方法
Adabi et al. Effect of infiltration parameters on composition of W–ZrC composites produced by displacive compensation of porosity (DCP) method
CAI Fabrication of Y2Si2O7 coating and its oxidation protection for C/SiC composites
CN110776321A (zh) 一种超高温轻质热防护材料大梯度过渡层的制备方法
CN116239400A (zh) 一种含纳米复相超高温陶瓷内涂层的C/C-UHTCs复合材料及其制备方法
CN114315394A (zh) 利用Ti3SiC2三维网络多孔预制体增强SiC陶瓷基复合材料的制备方法
CN111484330A (zh) 金刚石增强碳化硅基板及其制备方法和电子产品
Shao et al. Ablation behavior and mechanisms of ZrC-SiC-MoSi2 coated C/C-SiC-ZrC ceramic matrix composites under oxyacetylene torch
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
TW200521103A (en) High thermally conductive aluminum nitride sintered product
Ren et al. Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering
Zhao et al. Comparative ablation behaviors of C/SiC–ZrC and C/SiC–HfC composites prepared by ceramization of carbon aerogel preforms
Zhou et al. Pressureless sintering and ablation behavior of PyC-Csf/ZrB2-SiC-ZrC ceramics doped with B4C
CN117088692B (zh) 一种多相协同超高温陶瓷基复合材料及其制备方法
CN115716755B (zh) 一种超高温陶瓷基复合材料及其制备方法
CN115477545B (zh) 连续碳纤维增强高熵陶瓷复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant