CN109665848B - 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用 - Google Patents

一种超高温SiC-HfB2复合陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN109665848B
CN109665848B CN201910040588.6A CN201910040588A CN109665848B CN 109665848 B CN109665848 B CN 109665848B CN 201910040588 A CN201910040588 A CN 201910040588A CN 109665848 B CN109665848 B CN 109665848B
Authority
CN
China
Prior art keywords
powder
sic
hfb
composite ceramic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910040588.6A
Other languages
English (en)
Other versions
CN109665848A (zh
Inventor
郭伟明
张岩
江泽斌
吴利翔
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201910040588.6A priority Critical patent/CN109665848B/zh
Publication of CN109665848A publication Critical patent/CN109665848A/zh
Application granted granted Critical
Publication of CN109665848B publication Critical patent/CN109665848B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明属于陶瓷材料技术领域,公开了一种超高温SiC‑HfB2复合陶瓷及其制备方法和应用。所述超高温SiC‑HfB2复合陶瓷是将SiC粉末、HfO2粉末、Ta2O5粉末和无定型硼粉加入溶剂和球磨介质进行混合,干燥后得到混合粉体,将混合粉体模压制成的混合粉末坯体,在真空条件下进行热处理,先升温至900~1300℃保温Ⅰ,再升温至1500~1800℃保温Ⅱ,进行真空热处理得SiC‑HfB2粉末,采用放电等离子烧结将SiC‑HfB2粉末升温至1000~1400℃时充入保护气氛,然后升温至1800~2200℃煅烧制得超高温SiC‑HfB2复合陶瓷,该SiC‑HfB2复合陶瓷具有较好的耐高温性能。

Description

一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
技术领域
本发明属于陶瓷材料技术领域,更具体地,涉及一种超高温SiC-HfB2复合陶瓷及其制备方法和应用。
背景技术
近年来,对于SiC的性能的研究已引起了很多研究者的兴趣。碳化硅(SiC) 陶瓷具有优异的抗击穿、耐磨损、化学稳定性、抗辐照性能等优点使其在得到广泛的应用。如SiC陶瓷是五种最具装甲应用价值的陶瓷材料之一,具有良好的抗氧化性能,但是其高温性能有待提高。HfB2作为过渡金属超高温陶瓷的一种,具有熔点高、硬度大、抗腐蚀、中子吸收截面大等优异的性质,其与SiC的复合材料必将具有更加优异的性能,是制备现代的陶瓷防护装甲板,核反应堆中中子吸收控制棒、高温轴承、防弹板、喷嘴、高温耐蚀部件以及高温和高频范围的电子设备零部件等领域的非常有前景的材料。
文献报道在SiC中引入微米或者亚微米的ZrB2、HfB2、WC等物质,由于其晶粒尺寸较大,烧结后的SiC复合材料的高温强度并未得到提升。在SiC中加入纳米级的增强相后,其烧结后并未出现纳米晶颗粒,而是剧烈长大变为微米级,有些团聚现象还会出现异常长大的晶粒,降低材料性能,因此引入增强相并使得其在高温下仍然保持优异性能还需要进一步研究。专利CN201611021565.3通过简单的硼热反应制备出了较细的硼化物粉末,但是其在高温下不稳定,1800℃粉末颗粒会长大,专利CN201810535363.3用同样的方法,原位固溶微量的Ta,制备出超细硼化物粉末,且其粉末性能稳定,在1800℃以上颗粒不会长大。但是上述合成的粉末粒径小、纯度高的硼化物粉末烧结后的性能还未做出评估,其与 SiC混合烧结制备的复合材料的性能还有待研究。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明首要目的在于提供一种超高温SiC-HfB2复合陶瓷。该陶瓷具有高温性能稳定、力学性能及抗氧化性能优异的特点。
本发明另一目的在于提供上述超高温SiC-HfB2复合陶瓷的制备方法。
本发明再一目的在于提供上述超高温SiC-HfB2复合陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种超高温SiC-HfB2复合陶瓷,所述超高温SiC-HfB2复合陶瓷是将SiC粉末、HfO2粉末、Ta2O5粉末和无定型硼粉为原料粉体,加入溶剂和球磨介质进行混合,干燥后得到混合粉体,将混合粉体模压制成的混合粉末坯体,在真空条件下进行热处理,先升温至900~1300℃保温Ⅰ,再升温至1500~1800℃保温Ⅱ,进行真空热处理得SiC-HfB2粉末,采用放电等离子烧结将SiC-HfB2粉末升温至 1000~1400℃时充入保护气氛,然后升温至1800~2200℃煅烧制得超高温 SiC-HfB2复合陶瓷。
优选地,所述SiC、HfO2和Ta2O5的摩尔比为(30~40):(5~15):(0~2)。
优选地,所述SiC粉末、HfO2粉末和Ta2O5粉末的纯度均>99.9%,所述SiC 粉末、HfO2粉末和Ta2O5粉末的粒径均为1~2μm;所述无定型硼粉的纯度为 95~95.6%,所述无定型硼粉的粒径为1~2μm。
优选地,所述无定型硼与HfO2的摩尔比为(3~5):1,无定型硼粉与Ta2O5摩尔比为(8~10):1。
优选地,所述的SiC-HfB2的粒径为0.1~0.85μm,纯度为99.0~99.9wt%,氧含量为0.1~0.5wt%。
优选地,所述SiC-HfB2复合陶瓷的相对密度>99%,晶粒为1.24~2.1μm,室温强度400~1000MPa,所述SiC-HfB2复合陶瓷在1000~1500℃的时高温强度为 320~800MPa,该陶瓷在1000~1500℃热处理后重量变化率为0.3~2%。
优选地,所述溶剂为乙醇、丙醇、甲醇或丙酮;所述保护气氛为N2或Ar。
优选地,所述升温至900~1300℃和升温至1500~1800℃时的速率均为 5~20℃/min,所述保温Ⅰ和保温Ⅱ的时间均为0.5~2h;所述煅烧的时间为1~30min,所述煅烧的压力为10~100MPa,所述升温至1800~2200℃时的升温的速率为 100~400℃/min。
所述的超高温SiC-HfB2复合陶瓷的制备方法,包括如下具体步骤:
S1.将SiC粉末、HfO2粉末、Ta2O5粉末和无定型硼粉为原料,加入溶剂和球磨介质进行混合,在球磨机上混合10~48h,干燥后获得混合粉体;
S2.将混合粉体模压后的坯体放入石墨坩埚中,以5~20℃/min的速率升温至900~1300℃保温0.5~2h,然后再以5~20℃/min的速率升温至1500~1800℃保温0.5~2h,获得SiC-HfB2粉末;
S3.将SiC-HfB2粉末放入石墨模具中,采用放电等离子烧结以 100~400℃/min速率升温至1000~1400℃时充保护气氛,再以100~400℃/min速率升温至1800~2200℃,保温1~30min,加压10~100MPa煅烧,制得超高温 SiC-HfB2复合陶瓷。
所述超高温SiC-HfB2复合陶瓷在超高温抗氧化领域中的应用。
本发明的SiC-HfB2复合陶瓷是将SiC粉末、HfO2粉末、Ta2O5粉末和无定型硼粉为原料粉体,原位引入Ta,制备出的SiC-HfB2超细粉末,此粉末性能稳定,高温致密化的时候粉末仍然不发生长大,固可以得到细晶结构的陶瓷复合材料,由于超细第二相的增强,烧结后的SiC-HfB2复合陶瓷具有高温性能稳定,抗氧化性能优异的性质。
与现有技术相比,本发明具有以下有益效果:
1.本发明采用SiC粉末、HfO2粉末、Ta2O5粉末为原料,原位引入Ta,使得制备的SiC-HfB2复合陶瓷粉末颗粒细小,该方法在高温时,不存在第二相粒径长大的现象,其在高温的的情况下仍然保持细晶结构,这会大幅度提升 SiC-HfB2复合陶瓷的性能。
2.本发明采用硼热还原法制备的SiC-HfB2复合陶瓷粉末,相对于传统的以商业购买的硼化物,原位合成粉末粒径较小,纯度高,且分散性好,从而提高其高温性能以及抗氧化性能。
3.本发明通过硼热反应引入过量的硼,其作为烧结助剂促进SiC-HfB2复合陶瓷致密,提高其性能,其B也具有优异的高温性能,使得SiC-HfB2复合陶瓷的高温性能得到很大的提升。
4.本发明只需普通辊式球磨就可制备出SiC-HfB2复合陶瓷粉末,该方法不存在高能球磨因能量过高使得粉体发生粘结,从而可以得到高品质粉体。
附图说明
图1为实施例4中SiC-HfB2粉体(a)与SiC-HfB2复合陶瓷(b)的SEM照片。
图2为对比例1中SiC-HfB2粉体(a)与SiC-HfB2复合陶瓷(b)的SEM照片。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以SiC(粉末的纯度99.9%,粒径1μm)、HfO2(粉末的纯度99.9%,粒径1μm)、Ta2O5(粉末的纯度99%,粒径1μm)与无定型硼粉(纯度95.6%,粒径1μm)为原料,将SiC粉末、HfO2粉末、Ta2O5粉末按照摩尔比为39:10: 1,无定型硼粉与HfO2的摩尔比为4:1,无定型硼粉与Ta2O5的摩尔比为8.8:1,加入溶剂和球磨介质进行混合,在球磨机上混合24h,干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以15℃/min的速率升温至 1000℃保温1h,然后再以10℃/min的速率升温至1600℃保温2h,获得SiC-HfB2粉体。
3.将SiC-HfB2粉末放入石墨模具中,采用放电等离子烧结以150℃/min速率升温至1400℃时充保护气氛,再以150℃/min速率升温至2200℃,保温10min,加压30MPa煅烧,制得超高温SiC-HfB2复合陶瓷。
通过激光粒度分析本实施例的SiC-HfB2粉体的粒径为0.68μm,纯度99.2wt%,氧含量为0.3wt%。超高温SiC-HfB2复合陶瓷相对密度99.4%,晶粒尺寸为1.89μm,室温强度560MPa,所述陶瓷在1200℃的高温强度450MPa,陶瓷在1000~1500℃热处理后重量增加1.6%。
实施例2
1.以SiC(粉末的纯度99.9%,粒径2μm)、HfO2(粉末的纯度99.9%,粒径2μm)、Ta2O5(粉末的纯度99%,粒径2μm)与无定型硼粉(纯度95.6%,粒径2μm)为原料,将SiC粉末、HfO2粉末、Ta2O5粉末按照摩尔比为39.2:10: 0.8,无定型硼粉与HfO2的摩尔比为4:1,无定型硼粉与Ta2O5的摩尔比为8.8: 1,加入溶剂和球磨介质进行混合,在球磨机上混合24h,干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以15℃/min的速率升温至 1000℃保温1h,然后再以10℃/min的速率升温至1500℃保温2h,获得SiC-HfB2粉体。
3.将SiC-HfB2粉末放入石墨模具中,采用放电等离子烧结以150℃/min速率升温至1400℃时充保护气氛,再以100℃/min速率升温至2200℃,保温10min,加压30MPa煅烧,制得超高温SiC-HfB2复合陶瓷。
通过激光粒度分析本实施例的SiC-HfB2粉体的粒径为0.54μm,纯度99.3wt%,氧含量为0.3wt%。超高温SiC-HfB2复合陶瓷相对密度99.5%,晶粒尺寸为1.82μm,室温强度670MPa,所述陶瓷在1200℃的高温强度560MPa,陶瓷在1000~1500℃热处理后重量增加1.4%。
实施例3
1.以SiC(粉末的纯度99.9%,粒径1μm)、HfO2(粉末的纯度99.9%,粒径1μm)、Ta2O5(粉末的纯度99%,粒径1μm)与无定型硼粉(纯度95.6%,粒径2μm)为原料,将SiC粉末、HfO2粉末、Ta2O5粉末按照摩尔比为38.4:10: 1.6,无定型硼粉与HfO2的摩尔比为4:1,无定型硼粉与Ta2O5的摩尔比为8.8:1,加入溶剂和球磨介质进行混合,在球磨机上混合24h,干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以15℃/min的速率升温至 1100℃保温2h,然后再以10℃/min的速率升温至1600℃保温2h,获得SiC-HfB2粉体。
3.将SiC-HfB2粉末放入石墨模具中,采用放电等离子烧结以150℃/min速率升温至1500℃时充保护气氛,再以100℃/min速率升温至2200℃,保温10min,加压30MPa煅烧,制得超高温SiC-HfB2复合陶瓷。
通过激光粒度分析本实施例的SiC-HfB2粉体的粒径为0.34μm,纯度99.6wt%,氧含量为0.2wt%。超高温SiC-HfB2复合陶瓷相对密度99.7%,晶粒尺寸为1.72μm,室温强度750MPa,所述陶瓷在1200℃的高温强度630MPa,陶瓷在1000~1500℃热处理后重量增加0.8%。
实施例4
1.以SiC(粉末的纯度99.9%,粒径1μm)、HfO2(粉末的纯度99.9%,粒径2μm)、Ta2O5(粉末的纯度99%,粒径1μm)与无定型硼粉(纯度95.6%,粒径1μm)为原料,将SiC粉末、HfO2粉末、Ta2O5粉末按照摩尔比为38:10: 2,无定型硼粉与HfO2的摩尔比为4:1,无定型硼粉与Ta2O5的摩尔比为8.8:1,加入溶剂和球磨介质进行混合,在球磨机上混合24h,干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至 1100℃保温2h,然后再以10℃/min的速率升温至1600℃保温1h,获得SiC-HfB2粉体。
3.将SiC-HfB2粉末放入石墨模具中,采用放电等离子烧结以150℃/min速率升温至1500℃时充保护气氛,再以100℃/min速率升温至2200℃,保温10min,加压30MPa煅烧,制得超高温SiC-HfB2复合陶瓷。
通过激光粒度分析本实施例的SiC-HfB2粉体的粒径为0.16μm,纯度99.8wt%,氧含量为0.1wt%。超高温SiC-HfB2复合陶瓷相对密度99.9%,晶粒尺寸为1.24μm,室温强度1000MPa,所述陶瓷在1200℃的高温强度800MPa,陶瓷在1000~1500℃热处理后重量增加0.3%。
图1为本实施例中SiC-HfB2粉体(a)与SiC-HfB2复合陶瓷(b)的SEM照片。从图1中(a)可知,SiC-HfB2粉体的粒径均匀,且细小,平均粒径为0.16μm,从图1中(b)可以看出SiC-HfB2复合陶瓷中有两相存在,黑色相为SiC相,灰色相为HfB2相,黑色相与灰色相均匀分布,且其晶粒尺寸仍然保持细晶结构,为1.24μm,从图1中(b)中未发现气孔,说明烧结的SiC-HfB2复合陶瓷致密,其致密度为99.9%,说明本实施例中的SiC-HfB2复合陶瓷具有高温性能稳定,优异的抗氧化性能。
对比例1
1.以SiC(粉末的纯度99.9%,粒径1μm)、HfO2(粉末的纯度99.9%,粒径1μm)、Ta2O5(粉末的纯度99%,粒径1μm)与无定型硼粉(纯度95.6%,粒径1μm)为原料,将SiC粉末、HfO2粉末、Ta2O5粉末按照摩尔比为40:10: 0,无定型硼粉与HfO2的摩尔比为4:1,无定型硼粉与Ta2O5的摩尔比为8.8:1,加入溶剂和球磨介质进行混合,在球磨机上混合24h,干燥后获得混合粉体。
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至 900℃保温2h,然后再以10℃/min的速率升温至1500℃保温2h,获得SiC-HfB2粉体。
3.将SiC-HfB2粉末放入石墨模具中,采用放电等离子烧结以100℃/min速率升温至1400℃时充保护气氛,再以100℃/min速率升温至2200℃,保温5min,加压30MPa煅烧,制得超高温SiC-HfB2复合陶瓷。
通过激光粒度分析本实施例的SiC-HfB2粉体的粒径为1.15μm,纯度99.0wt%,氧含量为0.5wt%。超高温SiC-HfB2复合陶瓷相对密度99.2%,晶粒尺寸为2.1μm,室温强度400MPa,所述陶瓷在1200℃的高温强度320MPa,陶瓷在1000~1500℃热处理后重量增加2%。
图2为本实施例中SiC-HfB2粉体(a)与SiC-HfB2复合陶瓷(b)的SEM照片。从图2中(a)可知,未添加Ta时,SiC-HfB2粉体的粒径较大,平均粒径为 1.15μm,从图2中(b)可以看出SiC-HfB2复合陶瓷中有两相存在,黑色相为 SiC相,灰色相为HfB2相,黑色相与灰色相分布不均匀,且其晶粒较大,为2.1μm,从图2中(b)中发现少量闭气孔气孔,其致密度为99.2%,虽然烧结的SiC-HfB2复合陶瓷较为致密,但是由于其晶粒高温下长大,因此本实施例中的SiC-HfB2复合陶瓷高温性能不稳定,抗氧化性能的性质较低。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种超高温SiC-HfB2复合陶瓷,其特征在于,所述超高温SiC-HfB2复合陶瓷是将SiC粉末、HfO2粉末、Ta2O5粉末和无定型硼粉加入溶剂和球磨介质进行混合,干燥后得到混合粉体,将混合粉体模压制成的混合粉末坯体,在真空条件下进行热处理,先升温至900~1300℃保温Ⅰ,再升温至1500~1800℃保温Ⅱ,进行真空热处理得复合SiC-HfB2粉末,采用放电等离子烧结将所得粉末升温至1000~1400℃时充入保护气氛,然后升温至1800~2200℃煅烧制得超高温SiC-HfB2复合陶瓷;所述SiC、HfO2和Ta2O5的摩尔比为(30~40):(5~15):(0~2),且Ta2O5不为零,所述无定型硼与HfO2的摩尔比为(3~5):1,无定型硼粉与Ta2O5摩尔比为(8~10):1;所述SiC粉末、HfO2粉末和Ta2O5粉末的纯度均>99.9%,所述SiC粉末、HfO2粉末和Ta2O5粉末的粒径均为1~2μm;所述无定型硼粉的纯度为95~95.6%,所述无定型硼粉的粒径为1~2μm。
2.根据权利要求1所述的超高温SiC-HfB2复合陶瓷,其特征在于,所述的SiC-HfB2的粒径为0.1~0.85µm,纯度为99.0~99.9wt%,氧含量为0.1~0.5wt%。
3.根据权利要求1所述的超高温SiC-HfB2复合陶瓷,其特征在于,所述SiC-HfB2复合陶瓷的相对密度>99%,晶粒为1.24~2.1µm,室温强度400~1000MPa,所述SiC-HfB2复合陶瓷在1000~1500℃的时高温强度为320~800MPa,该陶瓷在1000~1500℃热处理后重量变化率为0.3~2%。
4.根据权利要求1所述的超高温SiC-HfB2复合陶瓷,其特征在于,所述溶剂为乙醇、丙醇、甲醇或丙酮;所述保护气氛为N2或Ar。
5.根据权利要求1所述的超高温SiC-HfB2复合陶瓷,其特征在于,所述升温至900~1300℃和升温至1500~1800℃时的速率均为5~20℃/min,所述保温Ⅰ和保温Ⅱ的时间均为0.5~2h;所述煅烧的时间为1~30min,所述煅烧的压力为10~100MPa,所述升温至1800~2200℃时的升温的速率为100~400℃/min。
6.根据权利要求1-5任一项所述的超高温SiC-HfB2复合陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1. 将SiC粉末、HfO2粉末、Ta2O5粉末和无定型硼粉为原料,加入溶剂和球磨介质进行混合,在球磨机上混合10~48h,干燥后获得混合粉体;
S2. 将混合粉体模压后的坯体放入石墨坩埚中,以5~20℃/min的速率升温至900~1300℃保温0.5~2h,然后再以5~20℃/min的速率升温至1500~1800℃保温0.5~2h,获得SiC-HfB2复合粉末;
S3. 将步骤S2获得的粉末放入石墨模具中,采用放电等离子烧结以100~400℃/min速率升温至1000~1400℃时充保护气氛,再以100~400℃/min速率升温至1800~2200℃,保温1~30min,加压10~100MPa煅烧,制得超高温SiC-HfB2复合陶瓷。
7.权利要求1~5任一项所述超高温SiC-HfB2复合陶瓷在超高温抗氧化领域中的应用。
CN201910040588.6A 2019-01-16 2019-01-16 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用 Expired - Fee Related CN109665848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910040588.6A CN109665848B (zh) 2019-01-16 2019-01-16 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910040588.6A CN109665848B (zh) 2019-01-16 2019-01-16 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109665848A CN109665848A (zh) 2019-04-23
CN109665848B true CN109665848B (zh) 2021-07-09

Family

ID=66149512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910040588.6A Expired - Fee Related CN109665848B (zh) 2019-01-16 2019-01-16 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109665848B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128147B (zh) * 2019-05-27 2021-08-27 山东理工大学 一种耐高温太阳能集热陶瓷材料及其制备方法
CN110590404B (zh) * 2019-10-16 2022-02-01 中国矿业大学 一种碳基材料表面HfB2-SiC抗氧化涂层的制备方法
CN113735589A (zh) * 2021-08-30 2021-12-03 河北工业职业技术学院 SiC-HfB2双层复合材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139073A (en) * 1980-03-31 1981-10-30 Agency Of Ind Science & Technol Material for mhd generator
JPS6046973A (ja) * 1983-08-25 1985-03-14 大森 守 炭化珪素一窒化珪素焼結複合材料とその製造方法
CN103804013A (zh) * 2013-12-25 2014-05-21 中国科学院上海硅酸盐研究所 一种多孔超高温陶瓷材料的制备方法
CN106478110A (zh) * 2016-10-12 2017-03-08 黑龙江科技大学 一种ZrB2‑SiC复合陶瓷的制备方法
CN107746281A (zh) * 2017-11-10 2018-03-02 中国矿业大学 一种超高温陶瓷硼化物固溶体粉体的制备方法
CN110668822A (zh) * 2019-11-13 2020-01-10 哈尔滨工业大学 一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139073A (en) * 1980-03-31 1981-10-30 Agency Of Ind Science & Technol Material for mhd generator
JPS6046973A (ja) * 1983-08-25 1985-03-14 大森 守 炭化珪素一窒化珪素焼結複合材料とその製造方法
CN103804013A (zh) * 2013-12-25 2014-05-21 中国科学院上海硅酸盐研究所 一种多孔超高温陶瓷材料的制备方法
CN106478110A (zh) * 2016-10-12 2017-03-08 黑龙江科技大学 一种ZrB2‑SiC复合陶瓷的制备方法
CN107746281A (zh) * 2017-11-10 2018-03-02 中国矿业大学 一种超高温陶瓷硼化物固溶体粉体的制备方法
CN110668822A (zh) * 2019-11-13 2020-01-10 哈尔滨工业大学 一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics:Effect of Ta additions;E.POILA等;《Intenational of Materials Science》;20041231;第39卷;全文 *
Toward Oxidation-Resistant ZrB2-SiC Ultra High Temperature Ceramics;EMILYEAKINS等;《Metallurgical and Materials Transactions》;20110430;第42A卷;全文 *
烧结助剂对HfB2-SiC基超高温陶瓷组织和性能的影响研究;翁凌等;《稀有金属材料与工程》;20070831;第36卷;全文 *

Also Published As

Publication number Publication date
CN109665848A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
CN110002879B (zh) 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN109516811B (zh) 一种具有多元高熵的陶瓷及其制备方法和应用
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN109516812B (zh) 一种超细高熵固熔体粉末及其制备方法和应用
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
WO2020135404A1 (zh) 一种Ti(C,N)基超硬金属复合材料及其制备方法
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN109338172A (zh) 一种高熵合金增强的2024铝基复合材料及其制备方法
CN109487141B (zh) 一种板状碳化物固溶体增韧混晶Ti(C,N)基金属陶瓷的制备方法
CN112679213B (zh) 一种超多元高熵陶瓷及其制备方法和应用
CN112830791A (zh) 一种高熵陶瓷及其制备方法和应用
CN105367057A (zh) 一种高致密碳化硼复相陶瓷材料的制备方法
CN112063905B (zh) 一种高性能WC-WCoB-Co复相硬质合金及其制备方法
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN114959406A (zh) 一种振荡压力烧结超高温中熵陶瓷增强难熔细晶中熵合金复合材料
CN111848170A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN115557793B (zh) 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN108892528B (zh) 一种多孔氮化硅陶瓷材料及其制备方法
CN108975339B (zh) 一种过渡金属碳化物粉末和过渡金属碳化物-氮化物复合粉末的制备工艺
CN111943682B (zh) 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用
CN112830792B (zh) 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用
CN111378871B (zh) 一种球磨混粉-放电等离子烧结钛基复合材料及制备方法
CN114262834A (zh) 一种高温自润滑复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Guo Weiming

Inventor after: Zhang Yan

Inventor after: Jiang Zebin

Inventor after: Wu Lixiang

Inventor after: Lin Huatai

Inventor before: Jiang Zebin

Inventor before: Zhang Yan

Inventor before: Guo Weiming

Inventor before: Wu Lixiang

Inventor before: Lin Huatai

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210709

Termination date: 20220116