WO2020135404A1 - 一种Ti(C,N)基超硬金属复合材料及其制备方法 - Google Patents

一种Ti(C,N)基超硬金属复合材料及其制备方法 Download PDF

Info

Publication number
WO2020135404A1
WO2020135404A1 PCT/CN2019/127855 CN2019127855W WO2020135404A1 WO 2020135404 A1 WO2020135404 A1 WO 2020135404A1 CN 2019127855 W CN2019127855 W CN 2019127855W WO 2020135404 A1 WO2020135404 A1 WO 2020135404A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
ball
ball milling
composite material
metal composite
Prior art date
Application number
PCT/CN2019/127855
Other languages
English (en)
French (fr)
Inventor
邓莹
姜山
张艳华
伍太宾
陈巧旺
严辉
邓玲
陈慧
Original Assignee
重庆文理学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆文理学院 filed Critical 重庆文理学院
Priority to US16/975,715 priority Critical patent/US11319618B2/en
Publication of WO2020135404A1 publication Critical patent/WO2020135404A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/042Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling using a particular milling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • B22F2207/07Particles with core-rim gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to the technical field of metal-based composite materials, in particular to a preparation method of Ti(C,N)-based super-hard metal composite materials.
  • Ti(C,N)-based superhard composite materials are a class of high-value new materials developed in combination with vanadium and titanium resources. They have the advantages of low density, high red hardness, high wear resistance, low friction coefficient and low thermal conductivity. Ti(C,N) based superhard composite material has perfect chemical stability, and because of its low price, it is the best substitute for the currently used WC cemented carbide material.
  • Ti(C,N)-based superhard composite material is a polycrystalline sintered material, which is composed of metal bonding phase (Co/Ni) and hard phase Ti(C,N). Its fatal weakness is its high brittleness and insufficient toughness. Studies have shown that the addition of metal carbides such as WC, Mo 2 C and TaC can improve the wettability of the metal relative to the ceramic phase to varying degrees, which is beneficial to the improvement of the toughness of the ceramic body. Therefore, in the prior art, metal carbides such as WC, Mo 2 C, TaC, etc. are usually added to improve the toughness of the material.
  • the purpose of the present invention is to provide a method for preparing a Ti(C,N)-based superhard metal composite material.
  • the composite material obtained by this method has a double-core ring structure, and the strength and toughness of the material are significantly improved.
  • the present invention is as follows:
  • a preparation method of Ti(C,N)-based superhard metal composite material which uses Ti(C,N) powder and (W,Mo,Ta)(C,N) powder as the main raw materials, is (W,Mo ,Ta)(C,N) powder is added into Ti(C,N) powder, Co powder is used as the binding phase, and then prepared by molding and sintering; specific steps are as follows: Weigh Ti(C,N) powder , (W, Mo, Ta) (C, N) powder and Co powder are mixed, paraffin wax is added, then high-energy ball milling, drying, sieving, compression molding, and sintering.
  • the mass fractions of the Ti (C, N) powder, the (W, Mo, Ta) (C, N) powder and the Co powder are 40-50%, 40-50%, and 10-20%, respectively.
  • the Ti (C, N) powder, the (W, Mo, Ta) (C, N) powder and the Co powder have a particle size of 0.5 to 3 ⁇ m.
  • the added amount of the paraffin wax is calculated to account for 3 to 5% of the total mass of the mixed powder of the Ti (C, N) powder, the (W, Mo, Ta) (C, N) powder, and the Co powder.
  • the above high-energy ball mill is a planetary ball mill for high-energy ball milling, with a ball-to-material ratio of 3 to 6:1, a rotation speed of 300 to 500 r/min, and a ball mill for 48 to 90 hours.
  • the above sieving is specifically a 60 mesh sieve.
  • the above-mentioned press forming is specifically made by hydraulic press, and the pressing force is 200-230KN.
  • the above sintering is carried out in order according to the following conditions: solid phase sintering at 1150°C, holding temperature 60-80min, liquid phase sintering at 1400-1450°C, holding temperature 60-80min, then filling with 7-10MPa nitrogen, then holding temperature 60-90min , And then maintain a nitrogen atmosphere and cool to room temperature.
  • Carbothermal nitridation reduction reaction is carried out in a vacuum tube furnace, using N 2 atmosphere, the flow rate is 500 ⁇ 600ml/min, and the pressure in the furnace is 0.1 ⁇ 0.2MPa , The reduction temperature is 1300 ⁇ 1600°C, the reduction time is 3 ⁇ 4h, and (W,Mo,Ta)(C,N) powder is finally obtained.
  • the mass fractions of WO 3 , MoO 3 , Ta 2 O 5 , and carbon black are 20 to 30%, respectively. , 20-30%, 10-15%, 25-50%.
  • the powder purity of the above WO 3 , the above MoO 3 , the above Ta 2 O 5 , and the above carbon black are all >99.9%, and the average particle size is all 10-50 ⁇ m.
  • the preparation method of the above Ti(C,N)-based superhard metal composite material uses the following raw materials and proceeds in the following steps in order:
  • the weight of the powder is >99.9%, and the average particle size is 10-50 ⁇ m WO. 3 , MoO 3 , Ta 2 O 5 , and carbon black are compounded to obtain a four-component mixture; then add 4 to 10% PEG-4000 polyethylene glycol, which accounts for the total mass of the above four-component mixture, using a planetary formula
  • the ball mill is used for ball milling, where the ball milling medium is n-hexane, the ball is 5-7mm zirconia ball, the ball material mass ratio is 8-10:1, the rotation speed is 200-300r/min, the ball mill is 4-6 hours, the ball mill will be
  • the slurry is spray-dried and placed in a graphite boat, and the carbothermal nitriding reduction reaction is carried out in a vacuum tube furnace.
  • the N 2 atmosphere is used, the flow rate is 500-600 ml/min, the pressure in the furnace is 0.1-0.2 MPa, and the reduction temperature is 1300 ⁇ 1600°C, reduction time is 3 ⁇ 4h, and (W,Mo,Ta)(C,N) powder is finally obtained;
  • the microstructure of the Ti(C,N)-based superhard metal composite material prepared by the invention is a double-core ring structure having both a black-core ring and a white-core ring.
  • the microstructure of the material is black core-white ring/white core-gray ring, black core-gray ring/white core-gray ring, black core-white inner ring-gray outer ring/white core-gray ring, etc.
  • Diversified dual-core ring structure is a dual-core ring structure that simultaneously has a black core-white inner ring-gray outer ring/white core-gray ring.
  • the invention provides a Ti(C,N)-based superhard metal composite material, which has a complete and uniformly distributed double-core ring structure, and the toughness is greatly improved without ensuring that the hardness is not reduced or even slightly improved.
  • the fracture toughness value is in the range of 11.3 to 12.5 MPa ⁇ m 1/2 .
  • it is prepared by adding (W, Mo, Ta) (C, N) into the Ti (C, N) matrix, resulting in two core ring structures with black core and white core (ie double core ring Structure) Ti(C,N) based superhard metal composite material.
  • the material of this structure reduces the number of brittle black core Ti(C,N).
  • the white core has almost the same composition as the ring phase, which minimizes the core-ring difference and optimizes Ti(C,N) Based on the structure of superhard metal composite materials; its complete double-core ring structure increases the interface bonding strength of the hard phase and the bonding phase, reduces the interface stress and component segregation, thereby reducing defects and improving the strength and toughness of the material At the same time, due to the different structure of the two core rings, the stress transmission is relieved, the crack is deflected, the crack propagation is effectively prevented, the hard phase grain growth is prevented, and the Ti(C,N)-based superhardness is improved.
  • the purpose of metal composites' toughness is used to the stress transmission is relieved, the crack is deflected, the crack propagation is effectively prevented, the hard phase grain growth is prevented, and the Ti(C,N)-based superhardness is improved.
  • the strength and toughness of the dual-core ring structure Ti(C,N)-based superhard metal composite material in the present invention are significantly increased.
  • the invention provides a new idea for the development of Ti(C,N) superhard metal composite materials, can effectively solve the problem of the exhaustion of tungsten resources, and has high application value.
  • the method of the present invention realizes the smooth progress of the preparation process, ensures that the product has excellent strength and toughness, and at the same time avoids the easy increase in toughness caused by poor control during the preparation process, the hardness cannot be guaranteed, or the production occurs More grain boundaries, uneven composition, element dispersion, unsatisfactory performance, and even forming a dense pore structure, which can not guarantee product performance and other adverse situations.
  • Example 1 is an SEM morphology and energy spectrum diagram of (Ta, Mo, W) (C, N) solid solution powder prepared in Example 1 of the present invention.
  • Figure 2 is a microstructure diagram, in which figures a and b are the microstructure diagrams of the Ti(C,N)-based superhard metal composite material prepared in Example 1 of the present invention under different measurement sizes, and figure c is The microstructure of conventional Ti(C,N) powder (ie, without (W,Mo,Ta)(C,N) powder).
  • FIG. 3 is a Ti(C,N)-based superhard metal composite material prepared in Example 1 of the present invention and a conventional Ti(C,N) material (that is, (W,Mo,Ta)(C,N) is not added ) Comparison of mechanical properties.
  • FIG. 4 is a microstructure diagram of a Ti(C,N)-based superhard composite material prepared in the prior art.
  • a preparation method of Ti(C,N)-based superhard metal composite material which is carried out in sequence according to the following steps:
  • the toughness calculation formula (the following formula 1) calculates the fracture toughness value:
  • KIC 0.0889 (HV ⁇ P/4L) 1/2 (MPa ⁇ m 1/2 ).
  • the particle size of (W,Mo,Ta)(C,N) powder is 0.4 ⁇ 1.5 ⁇ m, which is spherical and the surface is smooth; its energy spectrum shows that the powder is composed of W, Mo, Ta , C, N 5 elements, indicating that the reaction product is (Ta, Mo, W) (C, N) phase.
  • the microstructure of the Ti(C,N)-based superhard metal composite material of the present invention shows a clear black core-white inner ring-gray outer ring/white core-gray ring. Double core ring structure.
  • the strength and toughness of the product Ti(C,N)-based superhard metal composite material prepared by the present invention are significantly increased compared with the conventional superhard metal composite material, which shows that the double-core ring structure superhard metal composite The material is improved by using material properties.
  • a preparation method of Ti(C,N)-based superhard metal composite material which is carried out in sequence according to the following steps:
  • the microstructure of the Ti(C,N)-based superhard metal composite material prepared in this example shows a clear black core-gray ring /White core-gray ring double core ring structure.
  • a preparation method of Ti(C,N)-based superhard metal composite material which is carried out in sequence according to the following steps:
  • the microstructure of the Ti(C,N)-based superhard metal composite material prepared in this example shows a clear black core-white ring /White core-gray ring double core ring structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)

Abstract

一种Ti(C,N)基超硬金属复合材料制备方法,以Ti(C,N)粉、(W,Mo,Ta)(C,N)粉为主要原料,以Co粉为粘结相制备,得到微观结构为同时兼具黑芯环和白芯环的双芯环结构的材料。它具有完整、均匀分布的双芯环结构,在保证硬度不降低甚至稍有提高的情况下,其韧性得到大大提升,其断裂韧性在11.3~12.5MPa·m 1/2范围。

Description

一种Ti(C,N)基超硬金属复合材料及其制备方法 技术领域
本发明涉及金属基复合材料技术领域,尤其涉及一种Ti(C,N)基超硬金属复合材料的制备方法。
背景技术
Ti(C,N)基超硬复合材料是结合钒钛资源发展起来的一类高值新材料,具有低密度、高红硬性、高耐磨性、低摩擦系数和低热导率等优点,同时Ti(C,N)基超硬复合材料具有完美的化学稳定性,并且由于价格低廉,是目前常用的WC硬质合金材料的最佳替代品。
Ti(C,N)基超硬复合材料是多晶烧结材料,由金属粘结相(Co/Ni)和硬质相Ti(C,N)组成。其致命弱点是脆性大、韧性不足。研究表明,WC、Mo 2C、TaC等金属碳化物的添加能不同程度地改善金属相对陶瓷相的润湿性,有利于陶瓷体韧性的提高。因此,现有技术中通常添加WC、Mo 2C、TaC等金属碳化物,以改善其材料韧性,其所制备的Ti(C,N)基超硬复合材料产物,在扫描电镜背散射模式(SEM-BSE)下观察,具有典型的以黑色Ti(C,N)为芯的单一芯环结构,如附图4所示。其中,芯环结构的形成受溶解-析出机制控制。固相烧结过程中,Mo 2C、TaC、WC等金属碳化物依次溶解进入金属粘结相Ni/Co中,当重金属元素在粘结相中的浓度达到饱和时,就会出现(Ti,M)(C,N)析出相(M为重金属W、Mo、Ta等),包覆在Ti(C,N)颗粒的表面形成白环。在随后的液相烧结过程中,重金属元素继续发生溶解-析出反应,但由于比重较之前降低,所以析出相的SEM-BSE形貌呈灰色,即灰环相。 这种单一芯环结构中芯与环之间的成分、点阵常数差异较大,在多相烧结过程中容易引起界面应力和成分偏聚,产生结构缺陷,使其强韧性得不到有效保障,从而制约了其在先进工程领域的应用,这也是其不能完全替代WC合金材料的主要原因。
近年来,国内外学者除了在材料强韧化技术方法上的研究,如相变强化,纤维增韧,细晶强化,纳米改性等之外,大量的研究也在Ti(C,N)基超硬复合材料微观结构优化上展开。但这些对材料微观结构的优化方法,均没有着眼于降低芯-环之间的点阵常数差异,对芯环结构的缺陷没有有效改善,这制约了超硬金属复合材料性能的有效提高。
发明内容
本发明目的在于提供一种Ti(C,N)基超硬金属复合材料的制备方法,该方法制得的复合材料为双芯环结构,且材料的强度和韧性均有明显提高。
为达到上述目的,本发明按如下技术方案:
一种Ti(C,N)基超硬金属复合材料的制备方法,以Ti(C,N)粉、(W,Mo,Ta)(C,N)粉为主要原料,是将(W,Mo,Ta)(C,N)粉添加进入Ti(C,N)粉中,以Co粉为粘结相,然后通过成型、烧结制备;具体按以下步骤进行:称取Ti(C,N)粉,(W,Mo,Ta)(C,N)粉和Co粉进行混合,加入石蜡,再进行高能球磨,干燥,过筛,压制成型,烧结。
上述Ti(C,N)粉,上述(W,Mo,Ta)(C,N)粉和上述Co粉的质量分数分别为40~50%,40~50%,10~20%。
上述Ti(C,N)粉、上述(W,Mo,Ta)(C,N)粉和上述Co粉,其粉末粒度均为0.5~3μm。
上述石蜡的加入量,按照占上述Ti(C,N)粉,上述(W,Mo,Ta)(C,N)粉和上述Co粉三者混合粉末总质量的3~5%计。
上述高能球磨,是使用行星球磨机进行高能球磨,球料比为3~6:1,转速为300~500r/min,球磨48~90小时。
上述过筛,具体是过60目筛。
上述压制成型,具体是采用液压机压制成型,压制力为200~230KN。
上述烧结,具体按照以下条件依次进行:于1150℃固相烧结,保温60~80min,于1400~1450℃液相烧结,保温60~80min分钟,后充入7~10MPa氮气,再保温60~90min,然后保持氮气气氛,降温至室温。
作为进一步优化,上述(W,Mo,Ta)(C,N)粉是按照以下步骤进行制备而得到的:
分别称取WO 3,MoO 3,Ta 2O 5,炭黑进行配料,再添加PEG-4000聚乙二醇,用行星式球磨机进行球磨,后将料浆经喷雾干燥后放入石墨舟中,在真空管式炉中进行碳热氮化还原反应,采用N 2气氛,最终获得(W,Mo,Ta)(C,N)粉。
作为进一步优化,上述(W,Mo,Ta)(C,N)粉是按照以下步骤进行制备而得到的:
分别称取WO 3,MoO 3,Ta 2O 5,炭黑进行配料得到四种组分混合料,再添加占上述四种组分混合料总质量的4~10%PEG-4000聚乙二醇,用行星式球磨机进行球磨,其中,球磨介质为正己烷,磨球为5~7mm 的氧化锆球,球料质量比8~10:1,转速为200~300r/min,球磨4~6小时,球磨后将料浆经喷雾干燥后放入石墨舟中,在真空管式炉中进行碳热氮化还原反应,采用N 2气氛,流量为500~600ml/min,炉内压力为0.1~0.2MPa,还原温度为1300~1600℃,还原时间为3~4h,最终获得(W,Mo,Ta)(C,N)粉。
作为进一步明确,上述称取WO 3,MoO 3,Ta 2O 5,炭黑进行配料时,上述WO 3、上述MoO 3、上述Ta 2O 5、上述炭黑的质量分数分别为20~30%,20~30%,10~15%,25~50%。
作为进一步优化,上述WO 3、上述MoO 3、上述Ta 2O 5、上述炭黑的粉末纯度均>99.9%,平均粒径均为10~50μm。
更为详细的说,上述Ti(C,N)基超硬金属复合材料的制备方法,采用以下原料并依次按照以下步骤进行:
(1)按照质量分数分别为20~30%,20~30%,10~15%,25~50%的用量,分别称取粉末纯度均>99.9%,平均粒径均为10~50μm的WO 3,MoO 3,Ta 2O 5,炭黑进行配料得到四种组分混合料;再添加占上述四种组分混合料总质量的4~10%PEG-4000聚乙二醇,用行星式球磨机进行球磨,其中,球磨介质为正己烷,磨球为5~7mm的氧化锆球,球料质量比8~10:1,转速为200~300r/min,球磨4~6小时,球磨后将料浆经喷雾干燥后放入石墨舟中,在真空管式炉中进行碳热氮化还原反应,采用N 2气氛,流量为500~600ml/min,炉内压力为0.1~0.2MPa,还原温度为1300~1600℃,还原时间为3~4h,最终获得(W,Mo,Ta)(C,N)粉;
(2)按照质量分数分别为40~50%,40~50%,10~20%的用量,分别称取粉末粒度均为0.5~3μm的Ti(C,N)粉,上述(W,Mo,Ta)(C,N) 粉和Co粉进行混合,再加入占上述Ti(C,N)粉、上述(W,Mo,Ta)(C,N)粉和上述Co粉三者混合粉末总质量的3~5%的石蜡,再使用行星球磨机进行高能球磨,球料比为3~6:1,转速为300~500r/min,球磨48~90小时,干燥,过60目筛,采用液压机压制成型,压制力为200~230KN,于1150℃固相烧结,保温60~80min,于1400~1450℃液相烧结,保温60~80min分钟,后充入7~10MPa氮气,再保温60~90min,然后保持氮气气氛,自然降温至室温。至此,烧结完成。
本发明制得的Ti(C,N)基超硬金属复合材料微观结构为同时兼具黑芯环和白芯环的双芯环结构。具体是指该材料的微观结构为黑芯-白环/白芯-灰环、黑芯-灰环/白芯-灰环、黑芯-白色内环-灰色外环/白芯-灰环等多样化的双芯环结构。作为进一步优选的,该材料的微观结构为同时兼具黑芯-白色内环-灰色外环/白芯-灰环的双芯环结构。
本发明具有以下有益效果:
本发明提供了一种Ti(C,N)基超硬金属复合材料,它具有完整、均匀分布的双芯环结构,在保证硬度不降低甚至稍有提高的情况下,其韧性得到大大提升,其断裂韧性值在11.3~12.5MPa·m 1/2范围。具体来说,它通过将(W,Mo,Ta)(C,N)添加进入Ti(C,N)基体进行制备,得到了同时具有黑芯与白芯两种芯环结构(即双芯环结构)的Ti(C,N)基超硬金属复合材料。这种结构的材料,降低了脆性黑芯Ti(C,N)的数量,白芯几乎与环相成分相同,最大程度地降低了芯-环之间的差异,优化了Ti(C,N)基超硬金属复合材料的结构;其完整的双芯环结构增加了硬质相和粘接相的界面结合强度,减少了界面应力和成分偏聚,从而减少了缺陷,提高了材料的强韧性,同时,两种芯环由于结构不同,缓解了应力的传递,使裂纹偏转,有效阻止了裂纹的扩展,阻止硬质相晶粒长大,从而达到了提高Ti(C,N)基超硬 金属复合材料强韧性的目的。相较于传统结构的Ti(C,N)基超硬金属复合材料材料,本发明中双芯环结构的Ti(C,N)基超硬金属复合材料的强度和韧性均有明显增加。本发明为Ti(C,N)超硬金属复合材料的开发提供了新的思路,可有效解决钨资源枯竭难题,具有很高的应用价值。此外,本发明方法实现了制备过程的顺利进行,保证了产品兼具优异的强度和韧性,同时避免了因制备过程中控制不好而易导致出现只增加了韧性,硬度不能保证,或者出现产生更多晶界、成分不均匀、元素分散,性能不理想,甚至形成不致密的孔洞结构,而无法保证产品性能等多种不利情形。
附图说明
图1是本发明实施例1中所制备的(Ta,Mo,W)(C,N)固溶体粉的SEM形貌及其能谱图。
图2是微观结构图,其中,图a、b均为本发明实施例1中所制备的Ti(C,N)基超硬金属复合材料在不同的测量尺寸下的微观结构图,图c为常规的Ti(C,N)粉体(即未添加(W,Mo,Ta)(C,N)粉末)的微观结构图。
图3是本发明实施例1中所制备的Ti(C,N)基超硬金属复合材料与常规的Ti(C,N)材料(即未添加(W,Mo,Ta)(C,N))的力学性能对比图。
图4是现有技术中所制备的Ti(C,N)基超硬复合材料的微观结构图。
具体实施方式
下面将结合本发明的实施例,对本发明中的技术方案进行清楚、完整地描述,显然,以下实施例仅仅是本发明的一部分实施例,而不是全部的实施例。
实施例1
一种Ti(C,N)基超硬金属复合材料的制备方法,它依次按照以下步骤进行:
(1)按照质量分数分别为20%,20%,10%,50%的用量,分别称取粉末纯度均>99.9%,平均粒径均为10~50μm的WO 3,MoO 3,Ta 2O 5,炭黑进行配料得到四种组分混合料,置于氧化锆陶瓷罐中,再添加占四种组分混合料总质量的4%PEG-4000聚乙二醇,用行星式球磨机进行球磨,其中,球磨介质为正己烷,磨球为5mm的氧化锆球,球料质量比10:1,转速为200r/min,球磨4小时,球磨后将料浆经喷雾干燥后放入石墨舟中,在真空管式炉中进行碳热氮化还原反应,采用N 2气氛,流量为600ml/min,炉内压力为0.2MPa,还原温度为1500℃,还原时间为3h,最终获得(W,Mo,Ta)(C,N)粉;
(2)按照质量分数分别为40%,47%,13%的用量,分别称取粉末粒度均为0.5~3μm的Ti(C 0.5,N 0.5)粉,(W,Mo,Ta)(C,N)粉和Co粉进行混合,再加入占Ti(C 0.5,N 0.5)粉、(W,Mo,Ta)(C,N)粉和Co粉三者混合粉末总质量的5%的石蜡,再使用行星球磨机进行高能球磨,球料比为6:1,转速为500r/min,球磨48小时,干燥,过60目筛,采用液压机压制成型,压制力为200KN,于1150℃固相烧结,保温60min,于1450℃液相烧结,保温80min分钟,后充入10MPa氮气,再保温90min,然后保持氮气气氛,自然降温至室温。
在本实施例1中,具体是采用YXQM-4L行星球磨机进行高能球磨;采用日本JEOL-6490LV扫描电子显微镜观察样品的形貌和晶粒大小;利用D/MAX2500VL/PC型X射线衍射仪进行物象分析(Cu K α,λ=0.154nm,扫描速度为0.05°/s);采用AR-600洛氏硬度计测硬度,采用HV-10型维氏硬度计测试材料的维氏硬度,采用Shetty断裂韧性计算公式(下述公式1)计算断裂韧性值:
公式1:KIC=0.0889(HV·P/4L)1/2(MPa·m 1/2).
从附图1中可以看出,(W,Mo,Ta)(C,N)粉的颗粒尺寸为0.4~1.5μm,呈球形且表面光滑;其能谱显示,该粉末由W、Mo、Ta、C、N 5种元素组成,说明反应产物为(Ta,Mo,W)(C,N)相。
根据附图2中的图b,可知本发明产物Ti(C,N)基超硬金属复合材料的微观结构显示出了明显的黑芯-白色内环-灰色外环/白芯-灰环的双芯环结构。
根据附图3可知,本发明制备的产物Ti(C,N)基超硬金属复合材料样品比常规超硬金属复合材料的强度和韧性均有明显增加,这说明双芯环结构超硬金属复合材料有利用材料性能提高。
实施例2
一种Ti(C,N)基超硬金属复合材料的制备方法,它依次按照以下步骤进行:
(1)按照质量分数分别为25%,23%,15%,37%的用量,分别称取粉末纯度均>99.9%,平均粒径均为10~50μm的WO 3,MoO 3,Ta 2O 5,炭黑进行配料得到四种组分混合料,置于氧化锆陶瓷罐中,再添加占四种组分混合料总质量的8%PEG-4000聚乙二醇,用行星式球磨机进行球磨,其中,球磨介质为正己烷,磨球为7mm的氧化锆球,球料质量比8:1,转速为300r/min,球磨6小时,球磨后将料浆经喷雾干燥后放入石墨舟中,在真空管式炉中进行碳热氮化还原反应,采用N 2气氛,流量为500ml/min,炉内压力为0.15MPa,还原温度为1600℃,还原时间为3.5h,最终获得(W,Mo,Ta)(C,N)粉;
(2)按照质量分数分别为45%,40%,15%的用量,分别称取粉末粒度均为0.5~3μm的Ti(C 0.7,N 0.3)粉,(W,Mo,Ta)(C,N)粉和Co粉进行混合,再加入占Ti(C 0.7,N 0.3)粉、(W,Mo,Ta)(C,N)粉和Co粉三者混合粉末总质量的3%的石蜡,再使用行星球磨机进行高能球磨,球料比为4:1,转速为400r/min,球磨60小时,干燥,过60目筛, 采用液压机压制成型,压制力为230KN,于1150℃固相烧结,保温80min,于1400℃液相烧结,保温70min分钟,后充入8MPa氮气,再保温80min,然后保持氮气气氛,自然降温至室温。至此,烧结完成。
经采用与实施例1相同的检测方法和设备进行检测得知,本例中所制备得到的产物Ti(C,N)基超硬金属复合材料的微观结构显示出了明显的黑芯-灰环/白芯-灰环的双芯环结构。
实施例3
一种Ti(C,N)基超硬金属复合材料的制备方法,它依次按照以下步骤进行:
(1)按照质量分数分别为30%,20%,10%,40%的用量,分别称取粉末纯度均>99.9%,平均粒径均为10~50μm的WO 3,MoO 3,Ta 2O 5,炭黑进行配料得到四种组分混合料,置于氧化锆陶瓷罐中,再添加占四种组分混合料总质量的10%PEG-4000聚乙二醇,用行星式球磨机进行球磨,其中,球磨介质为正己烷,磨球为6mm的氧化锆球,球料质量比9:1,转速为250r/min,球磨4.5小时,球磨后将料浆经喷雾干燥后放入石墨舟中,在真空管式炉中进行碳热氮化还原反应,采用N 2气氛,流量为560ml/min,炉内压力为0.1MPa,还原温度为1400℃,还原时间为4h,最终获得(W,Mo,Ta)(C,N)粉;
(2)按照质量分数分别为40%,40%,20%的用量,分别称取粉末粒度均为0.5~3μm的Ti(C 0.6,N 0.4)粉,(W,Mo,Ta)(C,N)粉和Co粉进行混合,再加入占Ti(C 0.6,N 0.4)粉、(W,Mo,Ta)(C,N)粉和Co粉三者混合粉末总质量的5%的石蜡,再使用行星球磨机进行高能球磨,球料比为3:1,转速为500r/min,球磨90小时,干燥,过60目筛,采用液压机压制成型,压制力为200KN,于1150℃固相烧结,保温 70min,于1450℃液相烧结,保温60min分钟,后充入10MPa氮气,再保温90min,然后保持氮气气氛,自然降温至室温。至此,烧结完成。
经采用与实施例1相同的检测方法和设备进行检测得知,本例中所制备得到的产物Ti(C,N)基超硬金属复合材料的微观结构显示出了明显的黑芯-白环/白芯-灰环的双芯环结构。

Claims (5)

  1. 一种Ti(C,N)基超硬金属复合材料的制备方法,其特征在于:以Ti(C,N)粉、(W,Mo,Ta)(C,N)粉为主要原料,将所述(W,Mo,Ta)(C,N)粉添加进入所述Ti(C,N)粉中,以Co粉为粘结相,然后通过成型、烧结制备得到微观结构为同时兼具黑芯环和白芯环的双芯环结构;所述Ti(C,N)粉,所述(W,Mo,Ta)(C,N)粉和所述Co粉的质量分数分别为40~50%,40~50%,10~20%;所述Ti(C,N)粉、(W,Mo,Ta)(C,N)粉和Co粉,其粉末粒度均为0.5~3μm;具体步骤如下:
    称取Ti(C,N)粉,(W,Mo,Ta)(C,N)粉和Co粉按所述比例进行混合,加入石蜡,再进行高能球磨,干燥,过筛,压制成型,烧结;所述烧结按照以下条件依次进行:于1150℃固相烧结,保温60~80min,于1400~1450℃液相烧结,保温60~80min分钟,后充入7~10MPa氮气,再保温60~90min,然后保持氮气气氛,降温至室温。
  2. 如权利要求1所述Ti(C,N)基超硬金属复合材料的制备方法,其特征在于:所述石蜡的加入量,按照占所述Ti(C,N)粉,所述(W,Mo,Ta)(C,N)粉和所述Co粉三者混合粉末总质量的3~5%计;所述高能球磨,是使用行星球磨机进行高能球磨,球料比为3~6:1,转速为300~500r/min,球磨48~90小时;所述过筛,具体是过60目筛;所述压制成型,具体是采用液压机压制成型,压制力为200~230KN。
  3. 如权利要求2所述Ti(C,N)基超硬金属复合材料的制备方法,其特征在于,所述(W,Mo,Ta)(C,N)粉是按照以下步骤进行制备而得到的:按照质量分数分别为20~30%,20~30%,10~15%,25~50%的用量,分别称取粉末纯度均>99.9%,平均粒径均为10~50μm的WO 3,MoO 3,Ta 2O 5,炭黑进行配料,再添加PEG-4000聚乙二醇,用行星式球磨机进行球磨,后将料浆经喷雾干燥后放入石墨舟中,在真空管式炉中进行碳热氮化还原反应,采用N 2气氛,最终获得(W,Mo,Ta)(C,N)粉。
  4. 如权利要求3所述Ti(C,N)基超硬金属复合材料的制备方法,其特征在于,所述(W,Mo,Ta)(C,N)粉是按照以下步骤进行制备而得到的:按照质量分数分别为20~30%,20~30%,10~15%,25~50%的用量,分别称取粉末纯度均>99.9%, 平均粒径均为10~50μm的WO 3,MoO 3,Ta 2O 5,炭黑进行配料得到四种组分混合料,再添加占所述四种组分混合料总质量的4~10%PEG-4000聚乙二醇,用行星式球磨机进行球磨,其中,球磨介质为正己烷,磨球为5~7mm的氧化锆球,球料质量比8~10:1,转速为200~300r/min,球磨4~6小时,球磨后将料浆经喷雾干燥后放入石墨舟中,在真空管式炉中进行碳热氮化还原反应,采用N 2气氛,流量为500~600ml/min,炉内压力为0.1~0.2MPa,还原温度为1300~1600℃,还原时间为3~4h,最终获得(W,Mo,Ta)(C,N)粉。
  5. 一种Ti(C,N)基超硬金属复合材料的制备方法,其特征在于,采用以下原料并依次按照以下步骤进行:
    (1)按照质量分数分别为20~30%,20~30%,10~15%,25~50%的用量,分别称取粉末纯度均>99.9%,平均粒径均为10~50μm的WO 3,MoO 3,Ta 2O 5,炭黑进行配料得到四种组分混合料;再添加占所述四种组分混合料总质量的4~10%PEG-4000聚乙二醇,用行星式球磨机进行球磨,其中,球磨介质为正己烷,磨球为5~7mm的氧化锆球,球料质量比8~10:1,转速为200~300r/min,球磨4~6小时,球磨后将料浆经喷雾干燥后放入石墨舟中,在真空管式炉中进行碳热氮化还原反应,采用N 2气氛,流量为500~600ml/min,炉内压力为0.1~0.2MPa,还原温度为1300~1600℃,还原时间为3~4h,最终获得(W,Mo,Ta)(C,N)粉;
    (2)按照质量分数分别为40~50%,40~50%,10~20%的用量,分别称取粉末粒度均为0.5~3μm的Ti(C,N)粉,所述(W,Mo,Ta)(C,N)粉和Co粉进行混合,再加入占所述Ti(C,N)粉、所述(W,Mo,Ta)(C,N)粉和所述Co粉三者混合粉末总质量的3~5%的石蜡,再使用行星球磨机进行高能球磨,球料比为3~6:1,转速为300~500r/min,球磨48~90小时,干燥,过60目筛,采用液压机压制成型,压制力为200~230KN,于1150℃固相烧结,保温60~80min,于1400~1450℃液相烧结,保温60~80min分钟,后充入7~10MPa氮气,再保温60~90min,然后保持氮气气氛,自然降温至室温。
PCT/CN2019/127855 2018-12-29 2019-12-24 一种Ti(C,N)基超硬金属复合材料及其制备方法 WO2020135404A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/975,715 US11319618B2 (en) 2018-12-29 2019-12-24 Ti(C,N)-based superhard metal composite material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811633555.4A CN109457162B (zh) 2018-12-29 2018-12-29 一种Ti(C,N)基超硬金属复合材料及其制备方法
CN201811633555.4 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135404A1 true WO2020135404A1 (zh) 2020-07-02

Family

ID=65615613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127855 WO2020135404A1 (zh) 2018-12-29 2019-12-24 一种Ti(C,N)基超硬金属复合材料及其制备方法

Country Status (3)

Country Link
US (1) US11319618B2 (zh)
CN (1) CN109457162B (zh)
WO (1) WO2020135404A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388770A (zh) * 2021-03-17 2021-09-14 中南大学 一种具有正梯度环芯相的Ti(C,N)基金属陶瓷及其制备方法
US11424042B2 (en) * 2019-12-30 2022-08-23 Kepco Nuclear Fuel Co., Ltd. Nuclear-fuel sintered pellets based on oxide in which fine precipitate material is dispersed in circumferential direction and method of manufacturing same
CN114985741A (zh) * 2022-06-09 2022-09-02 中国重汽集团济南动力有限公司 一种加工蠕墨铸铁的梯度刀具材料

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457162B (zh) * 2018-12-29 2020-03-06 重庆文理学院 一种Ti(C,N)基超硬金属复合材料及其制备方法
CN110029261B (zh) * 2019-05-10 2020-07-14 重庆文理学院 一种微纳米硬质合金刀具材料的制备方法
CN111195724B (zh) * 2020-01-19 2022-08-09 宜昌永鑫精工科技股份有限公司 Ti(C,N)基金属陶瓷氮气气氛烧结工艺
CN111809093A (zh) * 2020-07-21 2020-10-23 广东正信硬质材料技术研发有限公司 一种耐磨硬质合金及其制备方法
CN114752835B (zh) * 2022-03-18 2022-10-25 南京航空航天大学 一种具有蜂窝状结构的Ti(C,N)基金属陶瓷及其制备方法
CN114807657B (zh) * 2022-03-30 2023-08-15 江苏岐铭新材料科技发展有限公司 一种高强高韧多层梯度结构Ti(C,N)基金属陶瓷材料及其制备方法
CN114769583B (zh) * 2022-05-13 2024-02-02 赣南师范大学 一种核-壳结构复合粉末及其制备方法
CN115386759B (zh) * 2022-08-26 2023-10-03 西安工业大学 一种Ti(C7,N3)/TiB2/WC微纳米复合金属陶瓷刀具材料及其制备方法
CN116623119B (zh) * 2023-06-06 2024-02-02 四川苏克流体控制设备股份有限公司 基于高熵合金的耐磨控制阀用自润滑涂层材料及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308376A (en) * 1989-06-26 1994-05-03 Sandvik Ab Cermet having different types of duplex hard constituents of a core and rim structure in a Co and/or Ni matrix
JPH08199283A (ja) * 1994-07-29 1996-08-06 Hokkaido Sumiden Seimitsu Kk 炭窒化チタン基合金
CN105283570A (zh) * 2014-04-10 2016-01-27 住友电气工业株式会社 金属陶瓷和切削工具
CN106232846A (zh) * 2015-01-16 2016-12-14 住友电气工业株式会社 金属陶瓷、切削工具及金属陶瓷的制造方法
CN108950342A (zh) * 2018-07-24 2018-12-07 三峡大学 Ti(C,N)基金属陶瓷及其制备方法
CN109457162A (zh) * 2018-12-29 2019-03-12 重庆文理学院 一种Ti(C,N)基超硬金属复合材料及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229068A (ja) * 1998-02-09 1999-08-24 Mitsubishi Materials Corp 耐摩耗性にすぐれた炭窒化チタン系サーメット製切削工具
JP4172754B2 (ja) * 2002-05-21 2008-10-29 京セラ株式会社 TiCN基サーメットおよびその製造方法
CN1312078C (zh) * 2004-10-29 2007-04-25 华中科技大学 亚微米晶粒Ti(C,N)基金属陶瓷及其制备方法
JP5559575B2 (ja) * 2009-03-10 2014-07-23 株式会社タンガロイ サーメットおよび被覆サーメット
WO2011136197A1 (ja) * 2010-04-26 2011-11-03 株式会社タンガロイ サーメットおよび被覆サーメット
KR101807629B1 (ko) * 2014-03-19 2017-12-11 가부시키가이샤 탕가로이 서멧 공구
CN105734382B (zh) * 2016-01-29 2017-07-25 重庆文理学院 超细金属陶瓷材料及其制备方法
WO2018193659A1 (ja) * 2017-04-19 2018-10-25 住友電気工業株式会社 超硬合金、それを含む切削工具および超硬合金の製造方法
CN107552802B (zh) * 2017-09-26 2021-04-02 中南大学 一种金属陶瓷用碳氮化钛基固溶体粉末及制备方法
CN109053191B (zh) * 2018-08-17 2021-11-30 中南大学 一种无粘结相碳氮化钛基金属陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308376A (en) * 1989-06-26 1994-05-03 Sandvik Ab Cermet having different types of duplex hard constituents of a core and rim structure in a Co and/or Ni matrix
JPH08199283A (ja) * 1994-07-29 1996-08-06 Hokkaido Sumiden Seimitsu Kk 炭窒化チタン基合金
CN105283570A (zh) * 2014-04-10 2016-01-27 住友电气工业株式会社 金属陶瓷和切削工具
CN106232846A (zh) * 2015-01-16 2016-12-14 住友电气工业株式会社 金属陶瓷、切削工具及金属陶瓷的制造方法
CN108950342A (zh) * 2018-07-24 2018-12-07 三峡大学 Ti(C,N)基金属陶瓷及其制备方法
CN109457162A (zh) * 2018-12-29 2019-03-12 重庆文理学院 一种Ti(C,N)基超硬金属复合材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424042B2 (en) * 2019-12-30 2022-08-23 Kepco Nuclear Fuel Co., Ltd. Nuclear-fuel sintered pellets based on oxide in which fine precipitate material is dispersed in circumferential direction and method of manufacturing same
CN113388770A (zh) * 2021-03-17 2021-09-14 中南大学 一种具有正梯度环芯相的Ti(C,N)基金属陶瓷及其制备方法
CN113388770B (zh) * 2021-03-17 2021-12-28 中南大学 一种具有正梯度环芯相的Ti(C, N)基金属陶瓷及其制备方法
CN114985741A (zh) * 2022-06-09 2022-09-02 中国重汽集团济南动力有限公司 一种加工蠕墨铸铁的梯度刀具材料

Also Published As

Publication number Publication date
US20210002745A1 (en) 2021-01-07
US11319618B2 (en) 2022-05-03
CN109457162B (zh) 2020-03-06
CN109457162A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
WO2020135404A1 (zh) 一种Ti(C,N)基超硬金属复合材料及其制备方法
CN109053206B (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN107552802B (zh) 一种金属陶瓷用碳氮化钛基固溶体粉末及制备方法
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN108642361B (zh) 一种高强度高硬度陶瓷材料及其生产工艺
CN108728719B (zh) 一种耐磨复合陶瓷材料及其生产工艺
CN103058662B (zh) 二硼化钛基纳米复合自润滑陶瓷刀具材料及其制备方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN110655404A (zh) 一种钛碳化硅基复合陶瓷材料及其制备工艺
CN111943702B (zh) 一种原位自生β-SIALON晶须增韧碳化钨复合材料及其制备方法与应用
CN105950940A (zh) 一种镀镍立方氮化硼复合材料及其制备方法
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN113620713A (zh) 一种WC/VCx硬质材料及其制备方法和应用
CN113416076A (zh) 一种自增强碳化硅陶瓷材料的制备方法
CN110157969B (zh) 一种含微量钴的超粗碳化钨硬质合金的制备方法
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN109053191B (zh) 一种无粘结相碳氮化钛基金属陶瓷及其制备方法
CN115259859B (zh) 一种碳化硼防弹陶瓷材料及其制备方法
CN111825462A (zh) 金刚石石墨烯改性碳化硅陶瓷材料及其制备方法及防弹装甲
CN115557793B (zh) 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN108315629A (zh) 一种Al/SiC金属陶瓷复合材料的制备方法
CN113941708A (zh) 一种增强PcBN复合片界面结合能力的制备方法
CN112239360A (zh) 一种氧化硼与氧化镁及其反应产物协同增韧的碳化钨复合材料及其制备
CN113816747A (zh) TiC增强MAX相高熵陶瓷基复合材料及其制备方法
CN109180209B (zh) 一种采用原位自生法制备碳化硅纳米线增强石墨-碳化硅复合材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906298

Country of ref document: EP

Kind code of ref document: A1