CN109354504B - 一种碳化硼基复合陶瓷烧结助剂及烧结工艺 - Google Patents

一种碳化硼基复合陶瓷烧结助剂及烧结工艺 Download PDF

Info

Publication number
CN109354504B
CN109354504B CN201811422985.1A CN201811422985A CN109354504B CN 109354504 B CN109354504 B CN 109354504B CN 201811422985 A CN201811422985 A CN 201811422985A CN 109354504 B CN109354504 B CN 109354504B
Authority
CN
China
Prior art keywords
graphite
boron carbide
sintering
composite ceramic
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811422985.1A
Other languages
English (en)
Other versions
CN109354504A (zh
Inventor
钟志宏
杨安康
王睿
温群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201811422985.1A priority Critical patent/CN109354504B/zh
Publication of CN109354504A publication Critical patent/CN109354504A/zh
Application granted granted Critical
Publication of CN109354504B publication Critical patent/CN109354504B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种碳化硼基复合陶瓷烧结助剂及烧结工艺,其中烧结助剂的成分及配比为:钛20‑40wt%,硅60‑80wt%。本发明利用真空热压烧结工艺制备碳化硼基复合陶瓷,在烧结温度为1850℃,保温时间为30min,压力为30MPa,烧结助剂添加量为30wt%时,原位反应热压烧结的碳化硼基复合陶瓷的性能较优,显微硬度、弯曲强度、断裂韧性和抗压强度分别为28.4GPa,582MPa,6.3MPa·m1/2和4109MPa。在较低的烧结温度下,获得了致密度高、可线切割加工、力学性能良好的碳化硼基复合陶瓷,具有较高的实用价值。

Description

一种碳化硼基复合陶瓷烧结助剂及烧结工艺
技术领域
本发明涉及一种碳化硼基复合陶瓷烧结助剂及烧结工艺,属于碳化硼陶瓷基复合材料的制备领域。
背景技术
碳化硼陶瓷是极具吸引力的高温功能-结构材料,具有优异的化学和物理性能,如良好的化学稳定性、高硬度、低密度、高熔点和良好的耐磨性。因此,碳化硼已经在广泛的领域中得到应用,如防弹装甲、耐火材料、磨料涂层、电子等。此外,由于硼具有良好的中子吸收能力,碳化硼在核反应堆中作为中子吸收剂和屏蔽材料也有着广泛的应用。碳化硼陶瓷的烧结性和机械加工性差,以及其固有的脆性大的问题,限制了碳化硼陶瓷的实际应用,因此需要发展碳化硼基复合陶瓷或复合材料。碳化硼及其复合材料的广泛应用促进了陶瓷烧结技术的发展,同时陶瓷材料烧结技术的发展又拓宽了碳化硼的应用领域。因此,研究碳化硼及其复合材料的烧结助剂配方和烧结工艺具有重要的意义。
碳化硼烧结性差归因于高共价键和低扩散迁移率,而机械加工性差归因于其高硬度和低电导率。碳化硼陶瓷脆性大的原因是对裂纹扩展的高度敏感。因此,降低碳化硼陶瓷的烧结温度(~2200℃),提高其断裂韧性及改善其机械加工性能对其应用而言至关重要。碳、铝、硅、氧化铝通常被引入作为烧结助剂,以降低烧结温度。然而,这些烧结助剂的加入并没有使碳化硼陶瓷的断裂韧性得到显著改善。在促进碳化硼烧结致密的同时,生成一些弥散分布的性能优异的陶瓷相,对提高其综合力学性能具有非常重要的作用。例如,在碳化硼中添加碳化硅(SiC)后,可大幅提高其抗氧化能力和断裂韧性;而在碳化硼中添加二硼化钛(TiB2)可提高其断裂韧性和改善机械加工性能。因此,寻找一种新的烧结助剂,在较低的烧结温度下,实现高致密度、高电导率、力学性能良好的碳化硼基复合陶瓷的烧结,具有重要的现实意义。
发明内容
为了避免现有技术中存在的不足之处,本发明旨在提供一种碳化硼基复合陶瓷烧结助剂及烧结工艺。
本发明碳化硼基复合陶瓷烧结助剂,其组分构成如下:
钛(Ti)20-40wt%,硅(Si)60-80wt%,其他不可避免的杂质,总质量之和为100%。
优选为钛24wt%,硅76wt%。
本发明碳化硼基复合陶瓷烧结助剂的制备方法,包括如下步骤:
步骤1:将配比量的钛和硅进行熔炼,随炉冷却,凝固为合金块;
步骤2:将步骤1所得合金块加工成粉末,随后通过球磨机或粉碎机破碎成平均粒径5-20μm的合金粉末,即得烧结助剂。
步骤1中,所述熔炼为非自耗电弧熔炼或真空感应熔炼。所述非自耗电弧熔炼是在氩气气氛中熔炼4-6次;所述真空感应熔炼是在真空度≤10-2Pa、熔炼温度1500-1700℃条件下保温10-30min。
利用本发明烧结助剂制备碳化硼基复合陶瓷的烧结工艺,包括如下步骤:
步骤1:混粉
将烧结助剂粉末与碳化硼粉末混合,获得待烧结混合粉;
步骤2:烧结前准备
事先准备好一个内径50mm的石墨模具,两个配套的压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径50mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;将矩形石墨纸贴在石墨模具内壁,并按照压头/石墨垫片/石墨纸/待烧结混合粉/石墨纸/石墨垫片/压头的顺序进行装配;
步骤3:原位反应热压烧结
在真空度10-1Pa以下,升温至烧结温度1700-1950℃并保温10-60min,加载压力为10-40MPa,保温结束后降温,降压。
步骤1中,所述混合是通过球磨混粉或机械搅拌加超声分散的方式混粉。
步骤1中,碳化硼粉末的粒径为0.5-20μm。
步骤1中,烧结助剂的添加质量为待烧结混合粉总质量的5-40wt%。
步骤3中,升温速率为5-30℃/min;升压速率为5-10MPa/h。
步骤3中,所述降温的方式是随炉冷却;或者以10℃/min的降温速率降至1000℃,后随炉冷却。其中以10℃/min的降温速率降至1000℃,后随炉冷却的效果最佳,较慢的冷却速度是为了防止冷却过快而产生应力,提高碳化硼复合陶瓷的力学性能。
步骤3中,所述降压的方式是以30MPa/h的降压速率降至0MPa。
本发明利用原位反应热压烧结工艺(烧结温度:1700-1950℃;保温时间:10-60min;压力:10-40MPa)制备碳化硼复合陶瓷。在烧结温度为1850℃,保温时间为30min,压力为30MPa,烧结助剂的添加量为30wt%,B4C的量为70wt%时,获得了性能较佳的碳化硼复合陶瓷,显微硬度、弯曲强度、断裂韧性和抗压强度分别为28.4GPa、582MPa、6.3MPa·m1/2和4109MPa,具有较高的实用价值。另外,制备的复合陶瓷的开气孔率较低,并且可以用普通线切割设备进行复杂形状的电火花切割加工。
与现有技术相比,本发明的有益效果体现在:
本发明采用了一种新型的钛硅合金金属烧结助剂,降低了碳化硼陶瓷的烧结温度,解决了碳化硼陶瓷烧结温度高的问题。
本发明利用碳化硼与钛硅合金原位反应生成TiB2和SiC,形成B4C-TiB2-SiC三相复合陶瓷,具有高致密度和优异的力学性能,此发明与以往相比,可以得到高断裂韧性的碳化硼基复合陶瓷,解决了断裂韧性低的问题。
本发明中,由于原位反应生成了TiB2,B4C-TiB2-SiC三相复合陶瓷具有较高的电导率,可进行电火花切割加工,解决了碳化硼陶瓷不能用线切割进行电火花加工的问题。
附图说明
图1是纯碳化硼和以钛硅合金作为烧结助剂制备的碳化硼复合陶瓷的微观组织形貌。从图1可以看出添加烧结助剂后,微观组织得到细化,致密度提高。
图2是添加不同质量分数烧结助剂制备的碳化硼复合陶瓷的密度和开气孔率。从图2可以看出随着烧结助剂质量分数的增加,密度不断提高,而开气孔率不断降低。
图3是添加不同质量分数烧结助剂制备的碳化硼复合陶瓷的力学性能。从图2可以看出随着烧结助剂质量分数的增加,各项力学性能都在提高。
图4是不同质量分数烧结助剂烧结碳化硼复合陶瓷的抗压强度结果。从图4可以看出随着烧结助剂质量分数的增加,抗压强度不断增强。这和碳化硼复合陶瓷的孔隙率有很大关系,孔隙率越小抗压强度越大。
具体实施方式
以下结合具体的实施例对本发明的技术方案作进一步的分析说明。
实施例1:烧结助剂的制备
本实施例中用于原位反应热压烧结碳化硼基复合陶瓷的烧结助剂的制备方法如下:
1、将配比量的钛和硅利用非自耗电弧熔炼设备进行熔炼,熔炼过程中,为使合金成分均匀,反复熔炼五次;钛和硅按质量百分比构成为:钛24wt%,硅76wt%。
2、将步骤1所得的合金块用机械方法破碎,然后用球磨机将粉末球磨粉碎成平均粒径为10μm的合金粉末。
3、将步骤2获得的合金粉末与碳化硼粉末(粒径0.5μm)和无水乙醇通过机械搅拌加超声分散的方式混合,获得反应烧结混合粉末。碳化硼的质量与烧结助剂的质量比例为7:3。
实施例2:烧结助剂的制备
本实施例中用于原位反应热压烧结碳化硼基复合陶瓷的烧结助剂的制备方法如下:
1、将配比量的钛和硅进行真空感应熔炼(真空度在10-2Pa以下,熔炼温度1700℃,保温时间10min),随炉冷却,凝固为合金块;钛和硅按质量百分比构成为:钛35wt%,硅65wt%。
2、将步骤1所得的合金块用机械方法砸碎,然后用研砵将砸碎的合金磨成平均粒径小于1mm的粉末,然后球磨机球磨粉碎成平均粒径为20μm的合金粉末。
3、将步骤2获得的合金粉末与B4C粉末(粒径5μm)通过球磨的方式混合,获得反应烧结混合粉末。碳化硼的质量与烧结助剂的质量比例为8:2。
实施例3:烧结助剂的制备
本实施例中用于原位反应热压烧结碳化硼基复合陶瓷的烧结助剂的制备方法如下:
1、将配比量的钛和硅利用非自耗电弧熔炼设备进行熔炼,熔炼过程中,为使合金成分均匀,反复熔炼五次;钛和硅按质量百分比构成为:钛30wt%,硅70wt%。
2、将步骤1所得的合金块用机械方法砸碎,然后用研砵将砸碎的合金磨成平均粒径小于1mm的粉末,然后球磨机球磨粉碎成平均粒径为10μm的合金粉末。
3、将步骤2获得的合金粉末与碳化硼粉末(粒径1μm)和无水乙醇通过机械搅拌加超声分散的方式混合,获得反应烧结混合粉末。碳化硼的质量与烧结助剂的质量比例为9:1。
实施例4:原位反应热压烧结工艺
本实施例中用于原位反应热压烧结碳化硼基复合陶瓷的烧结工艺如下:
1、事先准备好一个内径50mm的石墨模具,两个配套的压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径50mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;称取70wt%B4C+30wt%24Ti-76Si共15g;
2、将矩形石墨纸贴在石墨模具内壁,并按照压头/石墨垫片/石墨纸/烧结助剂/石墨纸/石墨垫片/压头的顺序进行装配石墨模具;
3、真空烧结炉升温至1850℃,升温速率为10℃/min,加载压力为30MPa,在1850℃保温30min,之后以10℃/min的降温速率降至1000℃,后随炉冷却,并以30MPa/h的降压速率降至0MPa。
本实施例得到的开气孔率、显微硬度、弯曲强度、断裂韧性和抗压强度分别为1.1%,28.4GPa,582MPa,6.3MPa·m1/2和4109MPa。
实施例5:原位反应热压烧结工艺
本实施例中用于原位反应热压烧结碳化硼基复合陶瓷的烧结工艺如下:
1、事先准备好一个内径50mm的石墨模具,两个配套的压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径50mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;称取80wt%B4C+20wt%24Ti-76Si共15g;
2、将矩形石墨纸贴在石墨模具内壁,并按照压头/石墨垫片/石墨纸/烧结助剂/石墨纸/石墨垫片/压头的顺序进行装配石墨模具;
3、真空烧结炉升温至1950℃,升温速率为10℃/min,加载压力为30MPa,在1950℃保温30min,之后以10℃/min的降温速率降至1000℃,后随炉冷却,并以30MPa/h的降压速率降至0MPa。
本实施例得到的显微硬度、弯曲强度、断裂韧性和抗压强度分别为22.2GPa,449MPa,5.1MPa·m1/2和3329MPa。
实施例6:原位反应热压烧结工艺
本实施例中用于原位反应热压烧结碳化硼基复合陶瓷的烧结工艺如下:
1、事先准备好一个内径50mm的石墨模具,两个配套的压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径50mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;称取90wt%B4C+10wt%24Ti-76Si共15g;
2、将矩形石墨纸贴在石墨模具内壁,并按照压头/石墨垫片/石墨纸/烧结助剂/石墨纸/石墨垫片/压头的顺序进行装配石墨模具;
3、真空烧结炉升温至1850℃,升温速率为10℃/min,加载压力为30MPa,在1850℃保温30min,之后以10℃/min的降温速率降至1000℃,后随炉冷却,并以30MPa/h的降压速率降至0MPa。
本实施例得到的显微硬度、弯曲强度、断裂韧性和抗压强度分别为14.5GPa,369MPa,4.4MPa·m1/2和2520MPa。
实施例7:原位反应热压烧结工艺
本实施例中用于原位反应热压烧结碳化硼基复合陶瓷的烧结工艺如下:
1、事先准备好一个内径50mm的石墨模具,两个配套的压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径50mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;称取90wt%B4C+10wt%35Ti-65Si共15g;
2、将矩形石墨纸贴在石墨模具内壁,并按照压头/石墨垫片/石墨纸/烧结助剂/石墨纸/石墨垫片/压头的顺序进行装配石墨模具;
3、真空烧结炉升温至1750℃,升温速率为10℃/min,加载压力为30MPa,在1750℃保温30min,之后以10℃/min的降温速率降至1000℃,后随炉冷却,并以30MPa/h的降压速率降至0MPa。
本实施例得到的显微硬度、弯曲强度、断裂韧性和抗压强度分别为18.4GPa,328MPa,3.5MPa·m1/2和2097MPa。
实施例8:原位反应热压烧结工艺
本实施例中用于原位反应热压烧结碳化硼基复合陶瓷的烧结工艺如下:
1、事先准备好一个内径50mm的石墨模具,两个配套的压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径50mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;称取90wt%B4C+10wt%30Ti-70Si共15g;
2、将矩形石墨纸贴在石墨模具内壁,并按照压头/石墨垫片/石墨纸/烧结助剂/石墨纸/石墨垫片/压头的顺序进行装配石墨模具;
3、真空烧结炉升温至1700℃,升温速率为10℃/min,加载压力为30MPa,在1700℃保温30min,之后以10℃/min的降温速率降至1000℃,后随炉冷却,并以30MPa/h的降压速率降至0MPa。
本实施例得到的显微硬度、弯曲强度、断裂韧性和抗压强度分别为11.6GPa,198MPa,2.7MPa·m1/2和988MPa。
实施例结果总结:
本发明利用钛硅合金粉末作为热压烧结碳化硼的烧结助剂,获得了高致密度、力学性能优良、可线切割加工的碳化硼基复合陶瓷。利用钛硅合金与碳化硼原位反应生成TiB2和SiC,获得了B4C-TiB2-SiC三相复合陶瓷。反应形成的TiB2和SiC增强相均匀分布在碳化硼陶瓷基体上,降低了反应烧结温度,提高了碳化硼陶瓷的致密度,提升了碳化硼基复合陶瓷的力学性能和加工性能。

Claims (1)

1.一种碳化硼基复合陶瓷的烧结方法,其特征在于包括如下步骤:
a、事先准备好一个内径50mm的石墨模具,两个配套的压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径50mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;称取混合粉末共15g;
b、将矩形石墨纸贴在石墨模具内壁,并按照压头/石墨垫片/石墨纸/混合粉末/石墨纸/石墨垫片/压头的顺序进行装配石墨模具;
c、真空烧结炉升温至1850℃,升温速率为10℃/min,加载压力为30MPa,在1850℃保温30min,之后以10℃/min的降温速率降至1000℃,后随炉冷却,并以30MPa/h的降压速率降至0MPa;
所述混合粉末的制备步骤如下:
1、将配比量的钛和硅利用非自耗电弧熔炼设备进行熔炼,熔炼过程中,为使合金成分均匀,反复熔炼五次;钛和硅按质量百分比构成为:钛24 wt%,硅76 wt%;
2、将步骤1所得的合金块用机械方法破碎,然后用球磨机将粉末球磨粉碎成平均粒径为10μm的合金粉末;
3、将步骤2获得的合金粉末与粒径0.5μm的碳化硼粉末和无水乙醇通过机械搅拌加超声分散的方式混合,获得反应烧结混合粉末;碳化硼的质量与合金粉末烧结助剂的质量比例为7:3。
CN201811422985.1A 2018-11-27 2018-11-27 一种碳化硼基复合陶瓷烧结助剂及烧结工艺 Active CN109354504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811422985.1A CN109354504B (zh) 2018-11-27 2018-11-27 一种碳化硼基复合陶瓷烧结助剂及烧结工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811422985.1A CN109354504B (zh) 2018-11-27 2018-11-27 一种碳化硼基复合陶瓷烧结助剂及烧结工艺

Publications (2)

Publication Number Publication Date
CN109354504A CN109354504A (zh) 2019-02-19
CN109354504B true CN109354504B (zh) 2021-09-14

Family

ID=65343221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811422985.1A Active CN109354504B (zh) 2018-11-27 2018-11-27 一种碳化硼基复合陶瓷烧结助剂及烧结工艺

Country Status (1)

Country Link
CN (1) CN109354504B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204337B (zh) * 2019-06-04 2021-04-30 中南大学 一种航天陀螺仪轴承用碳化硼陶瓷材料的制备方法及其碳化硼陶瓷材料
CN110256081A (zh) * 2019-06-25 2019-09-20 合肥工业大学 一种碳化硼基复合陶瓷材料及其制备工艺
CN114163243A (zh) * 2021-11-30 2022-03-11 东北大学 一种以晶体硅切割废料为助剂制备碳化硼陶瓷材料的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105130438A (zh) * 2015-08-21 2015-12-09 上海工程技术大学 一种基于反应烧结制备碳化硼陶瓷复合材料的方法
CN107457499A (zh) * 2017-08-09 2017-12-12 合肥工业大学 一种用于碳化硅陶瓷及其复合材料的高温钎料制备方法及钎焊工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209231A (ja) * 1989-02-09 1990-08-20 Mitsubishi Heavy Ind Ltd B↓4cクラッド鋼

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105130438A (zh) * 2015-08-21 2015-12-09 上海工程技术大学 一种基于反应烧结制备碳化硼陶瓷复合材料的方法
CN107457499A (zh) * 2017-08-09 2017-12-12 合肥工业大学 一种用于碳化硅陶瓷及其复合材料的高温钎料制备方法及钎焊工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B4C-TiSi2 SYSTEM SHOCK-RESISTANT CERAMICS;О.Н. Григорьев等;《Haykobi hotatkи》;20171231(第58期);第86-93页 *

Also Published As

Publication number Publication date
CN109354504A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
US20210323875A1 (en) Short-Fiber-Reinforced Oriented MAX-Phase Ceramic-Based Composite and Preparation Method Therefor
Heydari et al. Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
KR20210110472A (ko) 탄화붕소 복합재료 및 그의 제조방법
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
JPH0253387B2 (zh)
Wang et al. Effect of TiB2 content on microstructure and mechanical properties of in-situ fabricated TiB2/B4C composites
CN113387704B (zh) 一种碳化硼-硼化钛轻质高强复合陶瓷材料及其制备方法
JPH06345534A (ja) 炭化ホウ素、二ホウ化チタンおよび元素状態炭素に基づく複合材料およびその製造方法
CN113121237B (zh) 一种碳化硼基复合陶瓷及其制备工艺
CN111533560A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN110304923B (zh) 一种基于颗粒级配的碳化硼基陶瓷复合材料的制备方法
Tan et al. Effects of heat treatment on phase contents and mechanical properties of infiltrated B4C/2024Al composites
He et al. Microstructure and mechanical properties of short-carbon-fiber/Ti 3 SiC 2 composites
CN110818428A (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN103938006B (zh) 耐铝液腐蚀金属陶瓷材料的制备方法
CN110436928A (zh) 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
CN111848170A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
Ke et al. Densification mechanism, microstructure and mechanical properties of ZrC ceramics prepared by high-pressure spark plasma sintering
CN110183231B (zh) 一种高强高韧碳化硼基陶瓷材料的制备方法及其陶瓷材料
CN104593657A (zh) 一种碳化硼基复合材料及其制备方法
CN113416077B (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant